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Abstract

In this work, the numerical simulation of transport in porous media using the
fully meshless Diffuse Approximate Method (DAM) is described. The physi-
cal background is related to mass, momentum, energy and species transport.
Numerical examples provide an insight to the behavior and to the proper-
ties of DAM. First, numerical diffusion of DAM is analyzed on the Smith
and Hutton problem. Next, the problem of unconfined flow is presented to
prove the convergence of the method. On 1D transport of decaying species
4 explicit time stepping procedures (explicit Euler, explicit CBS, Adams-
Bashforth, Runge-Kutta) are tested for their accuracy and efficiency. The
solution of a realistic large-scale problem is shown on the case of coupled
fluid flow and species transport trough the radwaste repository. The results
for two radionuclides are presented. The problem of Darcy natural convec-
tion in a square enclosure is introduced to give the comparison between well
developed Pressure Poisson and novel CBS velocity-pressure coupling algo-
rithms. The ability of meshless methods to cope with problems defined on
irregular domains is shown on the same problem. A complex problem of
coupled mass, momentum, energy and species transport is presented as a
last numerical example of double diffusive natural convection in a composite
fluid-porous layer. Despite the fact that DAM has already been implemented
on many physical problems, numerous open questions concerning accuracy
and stability on non-uniform grids still exist. Stability and accuracy are im-
proved in this work by a developed free parameter optimization algorithm.
The algorithm is adopted to one parametric and to two parametric weight
functions. In addition to the free parameter optimization, guidelines about
the size of the domain of influence are given. The specific proper implemen-
tation of diffusive and advective terms into this type of meshless methods is
described at the end.
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Povzetek

Delo obravnava numerično simulacijo transporta v poroznem mediju s popol-
noma brezmrežno Difuzijsko aproksimacijsko metodo (DAM). Fizikalni okvir
obsega transport mase, gibalne količine, toplote in snovi. Obnašanje in last-
nosti Difuzijske aproksimacijske metode so prikazane na numeričnih primerih.
Na prvem, Smith and Huttonovem primeru, je analizirana numerična difuz-
ija metode. S primerom prostega toka skozi izbrano področje je dokazana
konvergenca in konsistentnost. Na enodimenzionalnem problemu transporta
radionuklida sta analizirani natančnost in učinkovitost štirih časovnih shem
(eksplicitna Eulerjeva, eksplicitna CBS, Adams-Bashforthova in Runge-Kutta).
Simulacija toka podzemne vode in transporta radionuklidov skozi odlagalǐsče
radioaktivnih odpadkov prikazuje bolj stvaren in računsko večji je primer.
Rezultati so podani za dva radionuklida. Primerjava med Poissonovim in
CBS hitrostno-tlačnim algoritmom je narejena na primeru naravne konvek-
cije v Darcyjevem poroznem mediju v kotanji. Z istim primerom je prikazana
zmožnost brezmrežnih metod za reševanje problemov na zahtevneǰsih ge-
ometrijah. Zadnji numerični primer dvojne difuzijske naravne konvekcije v
domeni s porozno in kapljevinsko plastjo predstavlja kompleksen problem
sklopljenih enačb transporta mase, gibalne količine, toplote in snovi. Kljub
temu, da je bila Difuzijska aproksimacijska metoda uporabljena za reševanje
mnogih fizikalnih problemov, pa so ostajala odprta številna vprašanja, ki
se nanašajo na natančnost in stabilnost rešitve pri neuniformnih mrežah.
Natančnost in stabilnost metode je v tem delu izbolǰsana z uporabo razvitega
optimizacijskega algoritma za iskanje prostih parametrov. Algoritem je uporaben
za optimizacijo eno in dvo parametričnih utežnih funkcij. Poleg optimizacije
prostih parametrov so narejene tudi smernice glede velikosti vplivne domene.
Na koncu je prikazana tudi pravilna implementacija difuzijskega in advekci-
jskega člena za ta tip brezmrežnih metod.

Ključne besede:

Difuzijska aproksimacijska metoda, brezmrežna methoda, transport v poro-
znem mediju, radioaktivni odpadki, optimizacija prostih parametrov.
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1 Introduction

Materials in general frequently fall under the class described as porous me-
dia. By a porous medium we mean a material consisting of a solid matrix
with an interconnected void. The porous medium can be formed naturally
or it can be fabricated. Transport phenomena in porous media thus gov-
ern many processes in engineering as well as in nature. For this reason it
is not uncommon that much human effort is put into research of transport
in porous media. Ever since the original work of Darcy [Darcy, 1856], the
transport phenomena in porous media have been studied both experimen-
tally and theoretically. Nowadays there are over 100 publications per year
only on the problem of convection in porous media. The interest in transport
in porous media seems to be increasing due to its wide application in indus-
trial and natural systems. Despite the development of very sophisticated and
relevant analytical techniques [Raghavan and Ozkan, 1994] a great majority
of porous media models can be solved only by using discrete approximate
solutions. In discrete approximate methods, the involved partial differential
equations (PDE), which describe particular physical phenomena, are spa-
tially and temporary discretized. The solution is obtained by the iterative
solution of the involved equations. Numerous different numerical methods
exist to solve the above mentioned problem.

Numerical simulations give us the possibility to have insight into pro-
cesses which are difficult to understand or difficult to model experimentally
such as for example change of flow structure in the case of double diffu-
sive convection in a composite fluid-porous layer. For better understanding
of such problems, an extensive analysis based on conditions and parame-
ters variation is essential. The simulations are also needed in cases where
transport processes are slow in nature. A good example of such process is a
radionuclide release from the source and its transport, for example, through
geological formations. Typically, radionuclides are transported by ground-
water flow whose velocity can be very slow, so the transport can even be
diffusion driven. Apart from the advection transport mechanism, most of
the radionuclides are retarded due to sorption mechanisms. Thus the peak

1
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concentrations at some location where this information is needed (e.g. the
location of the critical group) could be reached even after several hundred
thousand years. Therefore the simulation of such processes by discrete ap-
proximate method plays a key role in the safety assessment of nuclear waste
disposal facilities.

The ever-increasing interest in porous media transport problems on phys-
ically complex situations and increasing development of computational capa-
bilities results in many publications in the field of numerical implementation
of transport phenomena in porous media. For example, the problem of Darcy
natural convection in porous media was first numerically studied in [Chan
et al., 1970], using the finite difference method (FDM). A similar study was
performed by [Hickox and Gartling, 1981] using the finite element method
(FEM). [Prasad and Kulacki, 1984] pioneered the use of the finite volume
method (FVM) for solving this problem. The problem of natural convection
in porous media alone was extended to the examination of flow in a laterally
heated rectangular enclosure partly filled with pure fluid and partly with a
porous medium saturated by this fluid. The most comprehensive study is
that in [Beckerman et al., 1988]. [Beckerman and Viskanta, 1988] also made
calculations for double diffusive convection during dendritic solidification of
a binary mixture. The effects of double diffusion in a composite fluid-porous
layer were first analyzed by [Gobin and Bennacer, 1996a].

After computers became available to the wider public, many commercial
packages came onto the market. For example in the field of radionuclide
transport one of the first commercial packages, Porflow for coupled ground-
water flow, heat transfer and radionuclide transport was developed by [Run-
chal, 1982]. Many packages were developed later, based on different numeri-
cal methods. The Modflow 3D FDM based model for groundwater flow was
released in 1988 [McDonald and Harbaugh, 1988], and the Tough 3D FVM
based code in 1987 [Pruess, 1987] to name only a few. Traditional methods
e.g. FDM, FVM described in [Ferziger and Perić, 1997] and [Patankar, 1980]
or FEM ([Zienkiewicz and Taylor, 2000a], [Zienkiewicz and Taylor, 2000b],
[Zienkiewicz and Taylor, 2000c]) are widely used in practice.

The emphasis of this work is in the field of meshless numerical methods.
Our goal is to improve, analyze, and further develop one in this class, namely
the Diffuse Approximate Method (DAM).

Our previous work

DAM was chosen on the basis of our previous work on different mesh-reduction
and meshless methods. Our work began in 1998 with the comparison of dif-
ferent radial basis functions in DRBEM [Šarler and Perko, 1998]. For the
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same method, a convergence study was made in [Perko et al., 2000]. Actual
application of DRBEM to natural convection in Darcy porous media was
pioneered by [Šarler et al., 2000] and for Darcy-Brinkman porous media in
[Šarler et al., 2004a]. The industrial applications were made by DRBEM
first for direct-chill of aluminium slabs, where coupled momentum and en-
ergy equations are used [Šarler and Perko, 2000] and later, for radionuclide
transport near a nuclear waste repository [Šarler and Perko, 2001]. The first
attempt to solve natural convection in fluids by fully meshless radial basis
collocation method (RBFCM) is by [Perko et al., 2001b]. The same method
was used for calculation of natural convection in solid-liquid systems [Perko
et al., 2001a]. The solution of natural convection in Darcy porous media by
RBFCM is elaborated in [Šarler et al., 2002], [Šarler et al., 2004b] and for
Darcy-Brinkman porous media in 2003 [Perko et al., 2003].

From the knowledge acquired during previous work, the decision about
the most appropriate meshless numerical method for a given physical problem
was based on the following parameters which should be met to large extent
as possible:

• Accuracy

• Stability

• Ease of implementation

• Ease of spatial and temporal discretization

• Possibility of grid refinement and adoption

• Consumption of memory

• Calculation time

A method that drew our attention was diffuse approximate method (DAM),
because of the contribution of Sadat and his group who participated in nu-
merical comparison exercise where numerical 2D simulation of melting from
a vertical wall, dominated by natural convection in the liquid phase [Gobin
and Le Quéré, 2000]. The results were compared between 13 authors. The
DAM proved to be at least as accurate and stable as the other traditional
methods even for high Prandtl and Rayleigh numbers.

The history of DAM

The Diffuse Approximate Method (DAM) was first presented in [Nayroles
et al., 1991], where the authors show the response of the method to the step
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function. DAM was afterwards generalized in [Belytscko et al., 1994b] and
[Belytscko et al., 1996a] who named it the Element Free Galerkin (EFG)
method. They calculated the problem of fracture crack growth in [Belytscko
et al., 1994a], where different continuous and discontinuous weight functions
were examined in order to determine the influence on the simulation of a
crack, which is basically a discontinuity. The problem encountered with
a discontinuity is that the effect of neighboring nodes differs to whether a
certain node is on one or the other side of the crack.

In 1996 Sadat and his group [Sadat et al., 1996] solved the problem of
natural convection in porous media. In this work they made a simulation of
Darcy flow in porous media inside differentially heated cavity for Porous me-
dia Rayleigh number Ra*=100 and Ra*=500. The results were compared to
FEM solution and gave more accurate results at the same grid density. The
solution of Navier-Stokes equations and comparison to established bench-
mark test with Reynolds number Re=5000 was found in 1998 [Couturier
and Sadat, 1998b]. Afterwards they performed solid/liquid phase change
phenomena simulations in [Couturier and Sadat, 1999]. Natural convection
in fluids was first developed in [Couturier and Sadat, 1998a] and analyzed
in [Sadat and Couturier, 2000] for 2D, and for 3D in 2002 in [Sophy and
Sadat, 2002]. Sadat’s group is presently devoted to research of magnetohy-
drodynamic problems [Sophy and Sadat, subm]. Probably the first industrial
application of DAM is elaborated in [Šarler et al., 2004c], where the method
was implemented for calculation of solid-liquid phase change phenomena in
direct-chill casting of aluminium slabs.

Overview of present work

Chapter 2: Meshless numerical methods

Although traditional methods are proved to be fast and robust, and are used
to solve most of the numerical problems nowadays, they have a common spa-
tial discretization problem, namely grid generation or polygonization. The
calculation domain in traditional methods is spatially discretized by poly-
gons, which is reflected in additional consumption of calculation time. To
alleviate polygonization problems, there is an ongoing development of a new
generation of numerical methods.

The polygonization problem is partly alleviated by so called mesh-redu-
ction or semi-meshless methods, where domain integrals are transformed to
boundary integrals only. A typical representative of mesh-reduction methods
is the Boundary Element Method (BEM) [Brebbia et al., 1984]. However,
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the transformation of domain integrals in BEM is, due to fundamental solu-
tion, possible only for some PDEs. The improvement of BEM is made by the
approximation of the resultant domain by a set of global approximation func-
tions and subsequent representation of the domain integrals of these global
approximation functions by the boundary integrals. This method is called
the Dual Reciprocity Boundary Element Method (DRBEM) [Partridge et al.,
1992]. Nevertheless, the solution of boundary integrals involved in DRBEM
is usually based on a cumbersome evaluation, since the polygonization of the
boundary is always compulsory.

The idea to simplify mesh generation and to ease the solving of real and
thus geometrically complex engineering problems leads to the development
of fully meshless methods. Grid generation in the context of meshless meth-
ods is not needed. Consequently, the process of spatial discretization can,
ideally, be fully automated. From the mathematical point of view, there are
many ways to alleviate the polygonization by constructing meshless shape
functions. Since there are many ways to construct meshless shape functions,
there are many different meshless methods based on them, e.g. the meshless
local Petrov-Galerkin (MLPG) method [Atluri and Zhu, 1998], the Point In-
terpolation Method (PIM) [Liu and Gu, 1999], the Point Assembly method
(PAM) [Liu, 1999], the Finite Point Method et al. [Onate, 1996], Reproduc-
ing Kernel Particle Method [Liu et al., 1993], which is an improvement of the
Smooth Particle Method [Gingold and Monaghan, 1977], the Element Free
Galerkin (EFG) method [Belytscko et al., 1994b] which originates from the
Diffuse Approximate Method, developed in [Nayroles et al., 1991].

In Chapter 2 general definitions on meshless methods are given. In the
beginning, the differences between the most typical numerical methods are
presented. The main focus is on discretization issues which are typical for
meshless methods, such as construction of support or domain of influence
and node searching. At the end the classification of meshless methods is
given.

Chapter 3: Physical background

The extent of the underlying physics in this chapter is developed only up to
the level which is used in the cases shown below, starting with the general
properties of porous media. The general transport equation is introduced
and extended for specific transport processes. The mass and momentum
conservation equations are presented for flow in porous media under various
conditions. Therefore, the basic Darcy equation is extended to the Darcy-
Brinkman and Darcy-Forchheimer equations. In addition, the formulation of
the one domain Navier-Stokes - Darcy-Brinkman equation is given, which is
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used for one-domain representation of porous-fluid domains.
The governing equation for energy transport in porous media is then pre-

sented. The energy equation is given for situations without phase transitions
in the fluid phase.

Finally, the species transport, defined by the species conservation equa-
tion, is presented. The species conservation equation is given for non-decaying
and non-sorbed species at the beginning. This equation is later expanded to
decaying and sorbing species. Special attention is paid to the derivation and
implementation of the diffusion tensor.

Chapter 4: Solution procedures

From the numerical point of view, partial differential equations can be solved
in several ways. First, the description of several time-stepping procedures is
introduced. The solution of non-coupled transport equations can be solved
directly using these procedures. The momentum conservation equation,
however, requires a more involved description, because its solution is con-
structed from the coupled mass and momentum conservation equations. Two
algorithms are described in detail in this chapter. First the traditional
Pressure Poison algorithm and then the more contemporary CBS algorithm
[Zienkiewicz and Codina, 1995b] is described. The CBS algorithm is used
for the first time in meshless methods in this work. The implementation of
the CBS algorithm to solve the momentum equation is described separately,
because it has never been applied before to any meshless method.

Chapter 5: The Diffuse Approximate Method

In this chapter the details about the DAM are given in more detail. First, the
moving least squares principle is described and later applied to solve PDE. In
addition, the implementation of boundary conditions of Dirichlet, Neumann
and Robin type is provided.

Chapter 6: Numerical examples

The performance of the DAM is tested on several physical problems. In the
beginning, the effect of numerical diffusion is analyzed on the Smith and
Hutton problem. It is shown for the first time that the numerical diffusion
of meshless methods is much lower than in traditional methods. The sec-
ond case shows the simple but in nature very often encountered problem of
unconfined flow. The problem involves flow through an open domain charac-
terized by two materials with different hydraulic properties. The comparison
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is made with a commercial package [Porflow, 2001]. The third case represents
the 1D case of advective-diffusive transport of decaying and sorbing species.
Several time-stepping procedures are tested and compared in terms of stabil-
ity. Also the effect of time step on accuracy is shown. Later, both processes -
water flow and radionuclide transport - are coupled. The release of radionu-
clides into groundwater are tested against the results provided by commercial
package [Porflow, 2001]. This 2D case shows the capability of DAM to solve
problems in realistic geometry and with realistic physical parameters. Next,
the fluid flow in porous media is coupled to the energy conservation equa-
tion. This is a simple problem of Darcy natural convection in differentially
heated cavity. Although the results have been already published by [Sadat
et al., 1996] for the same method and by [Šarler et al., 2000] and [Perko
et al., 2003] for DRBEM and RBFCM respectively, this simulation is used
for comparison between two velocity-pressure coupling algorithms; the tradi-
tional Pressure Poisson and contemporary CBS algorithm. To show that the
method is capable to solve a given problem in an arbitrary geometry, one case
of natural convection in the domain with complex shaped holes is presented.
The latter case of double diffusive natural convection in a porous-fluid layer
is environmentally and industrially important and numerically interesting.
Here the problem is characterized by coupling of the momentum, energy and
species conservation equations. The goal of this problem is to determine the
effect of several parameters to heat and species transfer and their influence
on flow pattern. The results are compared with the FVM solution. The
described test cases show that DAM is well capable to deal with large-scale
and geometrically complex problems.

Chapter 7: Advanced topics on DAM

Although in Chapter 6 several complex problems are solved, many details
concerning DAM remain unexplained. This is because the great majority of
published results as well as the results in Chapter 6 are produced on uniform
grids. In order to be able to make the calculations on arbitrary grids, several
issues need to be discussed in more details. Certainly the most important is
the behavior of the method with respect to weight function and the involved
free parameter. Second question that need to be answered is about the size of
the domain of influence. The answers to both question are not definite, but
they provide a good guideline for a future work. The application of advective
and diffusive terms are discussed at the end. Their application needs some
more attention than in other (locally conservative) numerical methods.
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Main achievements

Although there is intense development in the field of meshless numerical
methods, their involvement in realistic or even industrial applications is still
rare. Therefore all problems presented in this work, except for natural con-
vection in porous media, are new from the point of view of implementation
into DAM and some of them even to other meshless methods. In addition to
application of the method to sophisticated problems the following theoretical
issues have been assessed:

• characterization of numerical diffusion in DAM

• effect of free parameter and weight function

• effect of size of the domain of influence

• effect of time stepping schemes

• effectiveness of CBS algorithm in meshless methods



2 Meshless methods

The interest in numerical modelling of industrial and environmental pro-
cesses has grown increasingly in recent decades. This increasing interest is
governed by different motivations; from the need to improve industrial pro-
cesses in terms of efficiency, to the risk evaluations of various environmental
issues. The numerical simulation of such problems requires the solving of the
complex (partial) differential equations that govern these phenomena. The
simulations can be made using various tools, usually by numerical methods.
The most extensively used numerical methods are the finite difference method
(FDM), the finite volume method (FVM), the finite element method (FEM)
and for the past 20 years also the boundary element method (BEM). In these
methods, the given geometry on which certain physical process takes place is
discretized into polygons . Every such domain is represented (or discretized)
by nodes. If there is a predefined connection between the given nodes this is
called a mesh. In meshless methods, on the other hand, no predefined mesh
is required and nodes can be ideally arbitrarily scattered within the problem
domain and on the boundary. Because there is no need to create a mesh,
and the nodes can be (ideally) created by a computer in a fully automated
manner, the time an engineer would spend on conventional mesh generation
can be reduced. Additionally this provides flexibility in adding, removing or
adaptive re-meshing of nodes whenever and wherever needed.

Although traditional methods are implemented in many static, dynamic,
linear or nonlinear stress analysis of solids, structures, as well as fluid dy-
namics and coupled problems, and are proved to be fast and robust, there
are several limitations becoming increasingly evident, namely:

1. Creation of mesh for the problem domain is a prerequisite. Usually the
engineer spends a lot of time in creating the mesh, which becomes a
major component of the cost of a simulation project because the cost
of CPU time is drastically decreasing. This is even more pronounced
in 3D simulations and in complex geometries.

2. Numerical diffusion of advective flows is large in traditional methods

9
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and strongly depends on the grid density.

3. Re-meshing and mesh adaptivity in traditional methods suffers from
degradation of accuracy and additional numerical diffusion. Re-meshing
requires ”mappings” of field variables between meshes in successive
stages in solving the problem.

4. For large 3D problems, the computational cost of re-meshing at each
step becomes very high, even if an adaptive scheme is available.

5. Some traditional methods (FDM) require regularly distributed nodes.

6. Problems with free and moving boundaries are difficult to model.

2.1 Definitions related to meshless methods

The terminology in connection with meshless methods is still not unified.
For a start, the whole branch of meshless methods is named differently in
different literature. The term meshless was first used and is now also most
commonly used [Belytscko et al., 1996b]. In some literature the term mesh
free appears, sometimes abbreviated as MFree [Liu, 2003]. The meaning of
the two, however, is the same. Some authors oppose these terms since the
definitions of mesh, grid, cell, volume, element, etc. are still not precisely de-
fined. Therefore the common name polygon free methods is proposed, which
is probably the most acceptable and non-ambiguous. Still in this work the
term meshless will be used because nowadays it is most frequently applied
in literature.

In addition to meshless methods there is also another similar branch of
numerical methods, where only boundaries need to be polygonized. These nu-
merical methods are called mesh-reduction methods or semi-meshless meth-
ods. Typical representatives of this branch are BEM [Wrobel and Aliabadi,
2002], [Brebbia et al., 1984] and DRBEM [Partridge et al., 1992].

2.1.1 Boundary and domain discretization

The shape of the problem domain is often very complex in reality. In addition,
the intensity and complexity of the involved physical problem can also be
high. To be able to cope with both the geometrical and physical complexity,
this domain should be represented or discretized as precisely as possible into
a finite number of nodes with known values of field variables. Usually the
geometry is simplified to a reasonable representation due to the constraints
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on time and computational resources. The details of the geometry should be
modelled only if more accurate results are needed in these regions.

In classical numerical methods e.g. FVM and FEM, discretized nodes are
connected in a predefined manner using nodal lines that form the polygons,
shown in Figure 2.1(a) and 2.1(b). Meshing is performed to discretize the
geometry created into elements or cells, or polygons in general. The solution
on all individual elements forms the solution for the whole problem domain.
Mesh generation is a very important part of the preprocess in FVM or FEM,
and it can be a more or less time-consuming process. The domain has to be
meshed properly into elements of specific shapes such as triangles or quadri-
laterals in 2D. No overlapping and/or gaps are allowed. Connectivity must
also be created between elements. This means that the information of all
elements that are connected with a certain element has to be written. Many
packages are designed mainly for meshing. Mesh generators for triangular
grids are nowadays quite automated for 2D and also for 3D but they are
time consuming. One of the main driving forces for the creation of a new

Figure 2.1: Discretization of geometry for different numerical methods; (a) FVM, (b)
FEM, BEM, (c) DRBEM, (d) MSM.

numerical method is in fact the complexity of mesh generation. This led
to the development of the BEM [Brebbia et al., 1984] which is a weighted
residual method for solving partial differential equations (PDEs), character-
ized by choosing an appropriate fundamental solution as a weighting function
and by using the generalized Green’s formula for complete transfer of one or
more partial differential operators to the weighted function. The main com-
parative advantage of the BEM over the discrete approximative methods is
demonstrated in cases where this procedure results in the boundary integral
equations only. This turns out to be possible only for some PDEs. The Dual
Reciprocity Boundary Element Method (DRBEM) [Partridge et al., 1992]
represents one of the possibilities for transforming the resultant domain inte-
grals into a finite series of boundary integrals. The key point of the DRBEM
is the approximation of the field in the domain by a set of global approxima-
tion functions and subsequent representation of the domain integrals of these
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global approximation functions by the boundary integrals. The discretization
of the domain is respectively represented only by grid nodes, shown in Fig-
ure 2.1(c). DRBEM belongs to the class of mesh-reduction or semi-meshless
methods. The solution of boundary integrals involved in DRBEM is based on
a cumbersome evaluation of regular, weakly-singular, strongly-singular, and
hyper-singular integrals and polygonization of the boundary is still needed.
Consequently, the more intense development of numerical methods is tending
toward fully meshless numerical methods.

A given geometry or problem boundary and domain can be discretized
only by setting a number of nodes, represented in Figure 2.1(d). Sometimes
the term representation of the domain is used instead of discretization. The
numerical solution is possible by the construction of shape function without
predefined knowledge about the relationship between the nodes. Currently
the most widely used methods for constructing meshless shape functions are
the moving least squares (MLS) approximation and interpolation techniques.
There are some others such as quasi-interpolation introduced by [Pollandt,
1997]. Each one of them has their good and bad qualities. The main ad-
vantage of MLS over interpolation is better stability and accuracy when
the discretization of the domain is more unstructured [Buhmann, 2003]. As
proposed in [Lazzaro and Montefusco, 2002] two quantities to measure the
density of the data set are used in this work: separation distance δsep which
is the half distance between the closest pair of nodes in the data set, and fill
distance δfill which gives the radius of the largest inner empty space.

MLS also provides better approximation when strong non-linearities or
jump conditions are involved. Their main drawback is that the constructed
shape function does not possess the Kronecker delta function property. In
other words, this means that the function value is not exact in the calcu-
lated node. The Kronecker delta property is important when dealing with
boundary conditions of the second or third type, namely Neumann and Robin
boundary conditions where the values (which should be as exact as possible)
on the boundaries are calculated from the known derivatives. The condition
of the Kronecker delta property is satisfied in the interpolation technique of
the shape function construction. From the CPU time point of view, interpo-
lation methods are usually a little bit faster, which is due to the construction
of only a left-hand side matrix and right-hand side vector as opposed to ap-
proximation techniques where matrix multiplication is performed on both
sides.
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2.1.2 Support and domain of influence

The construction of shape function in all discrete numerical methods is made
on the basis of known values in the neighboring nodes. The terms support
and domain of influence are related to the quantity of the known values
which is used for construction of the shape function. The difference between
the domain of influence and the support is shown in Figure 2.2. The term

Figure 2.2: Support and influence domain.

support is used when the radius of support is given (in Figure 2.2 marked with
r1 and r2, r1 = r2). The number of nodes inside the support varies (in Figure
2.2 from 5 nodes in r1 to 8 nodes in r2). The support is used for example in
case of compact support radial basis functions. As a consequence the order
of matrices involved varies as well. Therefore this approach can be used
only when the nodal density does not vary too drastically. When the grid is
more non-uniform the use of the domain of influence (DOI) is preferred. In
the influence domain the number of nodes is defined, whereas the radius of
influence σ varies in general (σ1 6= σ2). Both the support and the influence
domain can have different shapes, most often circular or rectangular. In the
limit case where all nodes are inside the domain of influence or the support
(now both terms are valid) we speak of global interpolation methods or global
approximation methods.

2.1.3 Node searching

When the support or the domain of influence around the given reference
node is constructed, we have to find the nodes that fall into this support or
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domain of influence. Several problems arise here. First, it is very expen-
sive if every node in the entire domain has to be checked against the node,
especially if the number of nodes is large. With this we lose some of the at-
tributes of using meshless methods. However, the problem can be alleviated
by the construction of subdomains. One example of such an algorithm is the
Bucket algorithm for node searching [Liu and Tu, 2002]. This is a very sim-
ple algorithm that divides the problem domain into buckets, each containing
domain nodes up to a predefined number limit. The number limit is defined
according to the problem size and maximum number of nodes allowed in an
influence domain. The range of node searching can thus be reduced from
the entire problem domain to a number of buckets that have overlaps with
the domain of influence under construction. In other words, the nodes for
each domain of influence are searched only from the nearest buckets, which
reduces the overall time for node searching.

The second problem is in finding the most optimal nodes for construction
of the shape function. Usually the nodes which fall into the support or the
domain of influence are chosen on the basis of the smallest Euclidian distance.
This kind of search is adequate in the case of uniform or less non-uniform
grids. Sometimes the grids are strongly non-uniform and thus very unfavor-
able for use in meshless methods. Two cases of such unfavorable grids are
shown in Figure 2.3. In Figure 2.3a uniform non-equidistant grid is shown.
If we try to find for example the 9 nearest nodes, all will coincide in the
same line. In such cases the constructed matrix is singular and no solution
is obtained. Intuitively this is obvious, since the derivatives in y direction
are impossible to calculate. The second case in Figure 2.3b shows a highly
non-uniform grid. The solution for the reference node in this case carries
the burden of the error which is due to the extrapolation of the values from
the neighboring nodes. This problem can be circumvented by applying the

Figure 2.3: Two cases of unfavorable node distributions.
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appropriate search algorithm. Similarly to the Bucket algorithm explained
above, we can use the same idea here and name it the Quartile bucket al-
gorithm. Consider 9 nodes in the domain of influence. It is most favorable
for construction of the shape function that the nodes in the domain of influ-
ence are distributed around the reference node. Therefore we construct four
buckets around the reference node. For 9 nodes each bucket will contain 2
nodes (in Figure 2.4 marked by grey circles). Now we search for the nearest

Figure 2.4: Schematic of Quartile bucket algorithm.

nodes in the first bucket, then in the second bucket and so on for the third
and the fourth quartile. If there are no nodes in the problem domain to fill
the bucket, the bucket is enlarged in the next quartile. This approach can
be useful when dealing with highly non-uniform grids.

2.2 Classification of meshless methods

As described in the previous chapters, the main issue in meshless methods
is the construction of the meshless shape function. The construction of the
meshless shape function should be possible only from known the positions
of the nodes without any predefined mesh. According to [Liu, 2003], a good
method of shape function construction should satisfy the following basic re-
quirements:

1. The nodal distribution can be arbitrary within reason. (arbitrary nodal
distribution).

2. The algorithm must be stable (stability).

3. The constructed shape function should satisfy a certain order of con-
sistency (consistency).
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4. The domain for the field variable approximation/interpolation should
be small compared with the entire problem domain (locality).

5. The algorithm should be computationally efficient (efficiency).

6. Ideally, the shape function should possess the Kronecker delta function
property (Kronecker delta property).

7. Ideally, the field approximation using the shape function should be
compatible throughout the problem domain (compatibility).

Satisfying the above listed requirements usually provides us with ease of
implementation, numerical efficiency and accuracy. The first requirement is
the general requirement of meshless methods.

The second requirement, stability, is necessary for solving realistic com-
plex problems. The numerical stability of a method describes how a certain
method responds to the differences between the calculation and the function
being approximated. In a stable method, the errors due to the approxima-
tions get damped out as the computation proceeds. In an unstable method,
any errors in processing get magnified as the calculation proceeds. Unstable
methods quickly generate results that are physically incorrect and are useless
for numerical processing [The Free Dictionary, 2004].

The third requirement, consistency, is essential for the convergence of the
numerical results. For a method to be consistent, the truncation error must
become zero when time step ∆t → 0 and/or the space between nodes tends
towards zero.

The fourth requirement, locality, is not necessary, but it provides band
shaped or small matrices which are much faster to solve. This requirement
may also fall under requirement 5, where in addition unacceptably expensive
shape function construction is taken into account. If the construction of the
shape function is too expensive it will become unpractical no matter how
good the solution is.

The 6th requirement, the Kronecker delta property, is not necessary as
well, but it is very practical especially for imposing boundary conditions.

A number of ways to construct shape function have been proposed. The
classification of the methods can be based on different properties, for example
on the representation of shape function construction. There are three major
categories. More detailed explanations about the specific methods listed
below can be found in [Liu, 2003], [Atluri and Shen, 2002], or [Atluri, 2004].

1. Finite integral representation methods

(a) Smoothed particle hydrodynamics method (SPH)
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(b) Reproducing kernel particle method (RKPM)

(c) General kernel reproduction method (GKR)

2. Finite series representation methods

(a) Moving least squares methods (MLS)

i. MLS approximation

ii. Generalized MLS approximation

(b) Shepard function interpolation

(c) Point interpolation method (PIM)

i. Polynomial PIM

ii. Radial PIM

(d) Partition of unity method (PU)

i. Partition of unity finite elements (PUFE)

ii. hp-clouds

(e) Radial basis function collocation method

i. with global interpolation (RBFCM)

ii. with compact support

3. Finite differential representation methods

(a) Finite difference method for regular grids

(b) Finite difference method for irregular grids
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3 Physical background

Transport in porous media governs many processes in engineering and in
nature. Processes can be described by differential equations if one indepen-
dent variable is involved (e.g. time), or partial differential equations if the
parameter is a function of more than one independent variable (e.g. time,
space).

The descriptions of physical phenomena in this work extend only to the
level of actual numerical implementation. More detailed description and
derivation of relevant relations can be found in the appropriate literature
e.g. [Bear, 1972], [Nield and Bejan, 1998], [Furbish, 1997].

Mass, momentum, heat and species transport in porous media are de-
scribed in this work. On the macroscopic scale, the transport of momentum
is governed by different equations for different flow regimes. Usually, the
flow in porous media is described by Darcy’s equation. For special cases of
porous media flow, the Darcy equation can be adopted to Darcy-Brinkman
or Darcy-Forchheimer formulations. In several instances, the corresponding
domain can be occupied with both porous and fluid regions. One possibility
to solve this problem is to use the one-domain approach by which both flow
regimes can be described. In the one-domain approach, mixed Navier-Stokes
and Darcy-Brinkman equations are often used. All above-mentioned formu-
lations will be described below. The energy conservation equation for porous
media in simple one-phase formulation without phase-change is presented.
Transport of species is described by the species conservation equation, which
will be developed for non-decaying and decaying species. Some important
properties such as diffusion, dispersion and sorption are also given.

All three processes can be independent of each other, for example in trans-
port of radionuclides, where water flow is not affected by the concentration
of radionuclides. However, the processes can be coupled, as for example in
the case of natural convection of binary fluids where flow is forced by thermal
and concentration buoyancy forces.

But first we shall focus on the general properties of porous media.
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3.1 Porosity

Porosity is the most obvious property of porous medium. Following the
definition in [Nield and Bejan, 1998], the porosity ε of a porous medium is
the fraction of the total volume of the medium that is occupied by void
space. Thus 1 − ε is the fraction that is occupied by solid. The pores
can be either interconnected or isolated. The porosity which includes all -
connected and isolated - pores is also termed total porosity. Effective porosity
is introduced when not all voids are connected, so the effective porosity is
the ratio of connected void to total volume. The effective porosity defines
the permeability of a material. Effective porosity is typically less than total
porosity. Porosity can vary in general from 0 ≤ ε ≤ 1. For media found in
nature porosity does normally not exceed 0.6.

3.2 Density

Porous media in general is a multiphase system. The focus in this work is
on saturated porous media, therefore the representative elementary volume
is occupied only by a solid and a liquid phase. The densities can be averaged
over the whole sample volume or over the solid phase. In the former case,
when the mass of solid, denoted by ms is averaged over r.e.v. Vtot, we are
speaking of bulk density

%b =
ms

Vtot

. (3.1)

Bulk density of a porous medium is useful property since in practice it can be
easily measured. If the mass of solid phase ms is averaged over the volume
of solid, this is called solid density

%s =
ms

Vs

. (3.2)

These definitions are important because they describe the density properties
of a porous medium, independent of any fluid present. Bulk density and
density of solid can vary in space and time. The bulk density of saturated
porous media can vary with fluid pressure as well [Furbish, 1997]. From the
ratio between bulk and solid density we can obtain porosity

ε = 1 − %b

%s

. (3.3)
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3.3 Permeability and hydraulic conductivity

The specific permeability or intrinsic permeability K is the measure of the
flow conductance of the porous matrix. If the permeability is larger, the
resistance of porous matrix to flow is lower and vice versa. In the case
of single-phase flow we abbreviate this to permeability. The coefficient K
depends solely on the properties of the porous medium, but not on the fluid
properties. For an anisotropic porous medium the permeability is written in
tensor form, which in three dimensions can be written as

KKK =




Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz


 . (3.4)

This tensor is symmetric, such as Kxy = Kyx, etc. No general relationship
between effective porosity and permeability exists [Kaviany, 1995].

Especially in geology and when the fluid phase involved in transport is
water, the property hydraulic conductivity κ is used. Hydraulic conductivity
does not depend only on the properties of the porous matrix, but is the func-
tion of both the porous media and the fluid. The relation between hydraulic
conductivity and permeability is given by

κ = K%f g

µ
, (3.5)

where %f , g and µ stand for density of fluid, magnitude of gravitational
acceleration and dynamic viscosity, respectively. Similar to the permeability
in anisotropic conditions, hydraulic conductivity κ also has to be written in
tensor form κκκ

κκκ =



κxx κxy κxz

κyx κyy κyz

κzx κzy κzz


 . (3.6)

The symmetry conditions are identical to those in permeability.

3.4 General transport equation

Before we proceed with the description of specific conservation equations,
here the general transport equation [Šarler and Perko, 2000] is introduced.
A general transport equation can be applied to a broad spectra of mass,
energy, momentum, and species transfer problems.

∂

∂t
[% C(φ)] + ∇ · [%vvv C(φ)] = −∇ · (−DDD∇φ) + S, (3.7)
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with %, φ, t, v, DDD, and S standing for density, transport variable, time,
velocity, diffusion tensor and source, respectively. The scalar function C
stands for possible more involved constitutive relations between the conserved
and diffused properties. The application of all conservation equations used
in present work into general transport equations is shown in Appendix A.

3.5 Mass and momentum conservation equa-

tion

First we recall the definition of porous media that this is a material consist-
ing of a solid matrix with an interconnected void. Fluid in such material
will, naturally, flow only through the pores. To obtain a continuum model,
the velocities have to be averaged over the representative elementary vol-
ume. The velocity can be averaged over the volume element of the whole
medium, or it can be averaged only over the volume of fluid. In the former
case this quantity has been given different names such as seepage velocity,
filtration velocity, and Darcy velocity, here denoted by VVV . In the latter case
we get pore water velocity vvv which is related to Darcy velocity VVV by the
Dupuit-Forchheimer relationship VVV = ε vvv. With this relation we can derive
differential equations expressing conservation laws. The continuity equation
or mass conservation equation for fluid phase can be written

∂(ε %f )

∂t
+ ∇ · (%f V) = 0, (3.8)

where %f is the density of fluid. If the porosity ε is constant, equation (3.8)
is simplified to

ε
∂%f

∂t
+ ∇ · (%f V) = 0, (3.9)

In addition, with assumed constant density the equation (3.9) further sim-
plifies to

∇ · V = 0. (3.10)

When fluid is subjected to forces, these forces - according to Newton’s second
law - cause motion. The motion is described by the momentum conservation
equation. Fluid flow in saturated porous media is most usually described by
the Darcy equation

∇P = − µ

KVVV + FFF , (3.11)

where ∇P is the pressure gradient and FFF represents volume forces acting on
the fluid. These forces can result from thermal or solutal buoyancy. Approx-
imation of buoyancy forces is described by the Boussinesq approximation
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FFF = %0 g [1 − βT (T − T0) − βC (C − C0)], (3.12)

where βT and βC are thermal and concentration expansion factors. Some-
times, especially in fabricated porous media, the porosities are large. In such
porous media, when ε > 0.8 [Rubinstein, 1986] another viscous term has to be
added to the Darcy equation. This equation is then called Darcy-Brinkman
equation

∇P = − µ

KVVV + ∇ · (µeff ∇VVV ) + FFF , (3.13)

where µeff is the effective viscosity. With the analogy to Navier-Stokes equa-
tions many authors (see [Nield and Bejan, 1998]) use acceleration and con-
vective extensions to the Darcy equation (3.11).

∂(%fvvv)

∂t
+ ∇ · (%fvvvvvv) = −∇P − µ

KVVV + ∇ · (µeff ∇VVV ) + FFF . (3.14)

Assuming constant porosity ε, equation (3.14) with the Dupuit-Forchheimer
relation gives:

1

ε

∂(%fVVV )

∂t
+

1

ε2
∇ · (%fVVV VVV ) = −∇P − µ

KVVV + ∇ · (µeff ∇VVV ) + FFF . (3.15)

The transient term in equations (3.14) and (3.15) is derived on the assump-
tion that the partial derivative with respect to time permutes with a volume

average, but in general this is not valid. This term can be replaced by % ccca
∂VVV
∂t

,
where ccca is a constant tensor that depends on the geometry of the porous
medium (see [Nield and Bejan, 1998] for details). In addition, some authors
[Beck, 1972] and [Nield and Bejan, 1998] have stated that the use of the
convective term ∇ · (%fvvvvvv) can be questionable. Nevertheless, the convective
term has little effect on flow when velocities are small. However, the equation
becomes very useful in the one-domain formulation of composite fluid-porous
layers, for example in the simulation of solidification process where mushy
zone appears between the solid and liquid phase. This mushy zone can be
macroscopically described as porous media varying from 0 ≤ ε ≤ 1. Porosity
ε = 1 defines a fluid and equation (3.15) becomes an ordinary Navier-Stokes
equation, whereas porosity ε = 0 defines a solid. Between these limiting
values the equation exhibits Darcy-Brinkman behavior defined by equation
(3.13). Instead of the use of convective term ∇ · (%fvvvvvv), Forchheimer’s equa-
tion can be used for large velocities

∇P = −K
µ
VVV − cF K1/2 % |VVV |VVV + FFF , (3.16)



24 PHYSICAL BACKGROUND

where cF is a dimensionless form-drag constant.
Flow in an unsaturated porous medium exhibits quite different behavior

due to the three phase system involved in an unsaturated porous medium,
namely solid, fluid and air phase. This influences the resistance of the porous
medium to flow in several ways. The first one is that fluid can flow only
through the pores filled with fluid. The second effect is that due to capillarity
large pores are dried first. Usually these effects are described in compact form
as variable permeability of hydraulic conductivity, dependent on saturation θ,
i.e. K(θ) or κ(θ) for instance by the van Genuchten equation [van Genuchten,
1980]. Further description of models for unsaturated porous media will be
dropped, because it exceeds the focus of this work.

3.6 Energy conservation equation

The temperature field is solved through the energy conservation equation.
Assuming that there is thermal equilibrium so that Tf = Ts = T , where Tf

and Ts are the temperatures of the solid and fluid phase, respectively, the
energy conservation equation can be defined for the solid phase s

(1 − ε)(% cp)s
∂T

∂t
= (1 − ε)∇ · (λλλs ∇T ) + (1 − ε)ST,s, (3.17)

and for the liquid phase f

ε (% cp)f
∂T

∂t
+ ∇ · ((% cp)f V T ) = ε∇ · (λλλf ∇T ) + ε ST,f . (3.18)

cp is the specific heat at the constant pressure, λλλ is the thermal conductivity
tensor, and ST is the heat production per unit volume. In equation (3.17) it
is assumed that the solid phase is not moving, which is not true in general.
By assuming thermal equilibrium Tf = Ts = T the summation of equations
(3.18) and (3.17) gives

(% cp)m
∂T

∂t
+ ∇ · ((% cp)f V T ) = ∇ · (λλλm ∇T ) + ST , (3.19)

cp, λ, and ST are mixture heat capacity, mixture thermal conductivity, and
mixture heat production per unit volume of the medium, respectively, defined
as

(% c)m = (1 − ε)(% cp)s + ε (% c)f , (3.20)

λλλm = (1 − ε)λλλs + ελλλf , (3.21)

ST = (1 − ε)ST,s + ε ST,f . (3.22)
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3.7 Species conservation equation

The species equation defines the variation of the concentration field in the
problem domain with given boundary conditions. For liquid phase, the
species conservation equation with absence of any sources or sinks reads

∂Cf

∂t
+ ∇ · (VVV Cf ) = ∇ · (DDD∇Cf ). (3.23)

There are no diffusion and advection processes in the solid phase. Therefore
we can write

∂Cs

∂t
= 0. (3.24)

Cf and Cs are the concentrations in liquid and solid phase, respectively.
The combination of equations (3.23) and (3.24) gives the variation of total
concentration Ctot (which is in fact the mixture concentration),

∂Ctot

∂t
+ ∇ · (VVV Cf ) = ∇ · (DDD∇Cf ), (3.25)

with DDD being the hydrodynamic dispersion coefficient. Two processes are
incorporated in the hydrodynamic dispersion parameter: molecular diffusion
and dispersion. Molecular diffusion is a thermochemical process, where mass
is transported due to thermal or solutal gradients. On the other hand, dis-
persion is mechanical process, where spreading of the substance is caused due
to the motion of the fluid. Although the physical basis is different for both
processes, the macroscopic behavior is similar. Hence D can be partitioned
into two parts

DDD = Dp III +DDD∗, (3.26)

where Dp is the pore or effective molecular diffusion constant of the porous
medium, III the identity matrix and DDD∗ is a symmetric dispersion coefficient
tensor. The elements of DDD∗ are given by the rotation

DDD∗ = D̃DD
−1
DDD′ D̃DD, (3.27)

where D̃DD is the rotation matrix, defined in general 3D form as:

[
cosϕ1 cosϕ2 sinϕ1 cosϕ2 − sinϕ2

cosϕ1 sinϕ2 sinϕ3 − sinϕ1 cosϕ3 sinϕ1 sinϕ2 sinϕ3 − cosϕ1, cosϕ3 cosϕ2 sinϕ3

cosϕ1 sinϕ2 cosϕ3 + sinϕ1 sinϕ3 sinϕ1 sinϕ2 cosϕ3 − cosϕ1, sinϕ3 cosϕ2 cosϕ3

]

with rotation ϕ1, ϕ2, and ϕ3 around x, y, and z direction, respectively. DDD’ is
the local dispersion tensor with longitudinal coefficient of dispersion DL and
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transverse coefficient of dispersion DT

DDD′ =



DL 0 0
0 DT 0
0 0 DT


 =



αL v̄ 0 0

0 αT v̄ 0
0 0 αT v̄


 . (3.28)

In the above equation αL and αT denote longitudinal and transverse disper-
sivities and v̄ is the length of the velocity vector defined as

v̄ =
√
v2

x + v2
y + v2

z . (3.29)

In explicit form the dispersion coefficient tensor is written

D∗
xx =

1

v̄

[
αT (v2

y + v2
z) + αL v

2
x

]
, (3.30)

D∗
yy =

1

v̄

[
αT (v2

x + v2
z) + αL v

2
y

]
, (3.31)

D∗
zz =

1

v̄

[
αT (v2

x + v2
y) + αL v

2
z

]
, (3.32)

D∗
xy = D∗

yx =
vx vy

v̄
[αL − αT ] , (3.33)

D∗
xz = D∗

zx =
vx vz

v̄
[αL − αT ] , (3.34)

D∗
yz = D∗

zy =
vy vz

v̄
[αL − αT ] . (3.35)

In case the chemical reacts with the solid matrix (e.g. sorption onto the
surfaces of mineral grains, organic carbon, iron oxides, hydroxides), the total
concentration Ctot is partitioned into two terms [Jury and Flűhler, 1992]

Ctot = ε Cf + %bCads, (3.36)

where %b is bulk density and Cads is adsorbed concentration. The quantity
Cads is expressed in units of mass of solute adsorbed per mass of dry solid.
Assuming a linear sorption process, Cads is expressed as

Cads = KdCf , (3.37)

where Kd is the distribution coefficient. Substituting Cads in equation (3.36)
by relation (3.37) gives

Ctot = ε Cf + %bKdCf = ε Cf

(
1 +

%bKd

ε

)
. (3.38)
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Finally, by inserting equations (3.38) into (3.25) yields

R
∂Cf

∂t
+ ∇ · (vvv Cf ) = ∇ · (DDD∇Cf ), (3.39)

where R is called the retardation factor, defined for linear sorption as defined
in (3.38) by

R = 1 +
%bKd

ε
. (3.40)

In fact, the retardation acts macroscopically by slowing down the transport
of species as it directly influences the transient term. Linear sorption can
be assumed only in the case when the sorption and desorption process may
proceed sufficiently rapidly relative to local variation in concentration in-
duced by advection and dispersion. More general definitions of equilibrium
sorption are given by the Freundlich sorption isotherm or Langmuir sorption
isotherm, but their description exceeds the focus of this work. When dealing
with decaying substances the decay term is also included. This extension of
equation (3.39) for a single radionuclide is

R
∂Cf

∂t
+ ∇ · (vvv Cf ) = ∇ · (DDD∇Cf ) − λ̄ RCf , (3.41)

where λ̄ is the first-order decay coefficient, defined as λ̄ = ln 2/t1/2, with t1/2

being the half life. In the absence of all transport mechanisms, the solution
of (3.41) simplifies to

Cf = Cf,0 e
−λ̄ t, (3.42)

with initial concentration Cf,0. In addition, in decay chains the decay of
a parent radionuclide leads to the generation of daughter radionuclide. In
such case, the transport of several chemicals is involved in a sequential first-
order decay chain. For two elements, liquid concentrations C1 and C2 (the
subscript f is dropped) the coupled advection-dispersion equation becomes

R1
∂C1

∂t
+ ∇ · (vvv C1) = ∇ · (DDD∇C1) − λ̄1R1C1, (3.43)

R2
∂C2

∂t
+ ∇ · (vvv C2) = ∇ · (DDD∇C2) − λ̄2R2C2 + λ̄1R1C1, (3.44)

where the last term on the right-hand side of equation (3.44) accounts for
the generation or production of C2 owing to the decay of C1.
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4 Solution procedures

In many practical engineering applications extensive studies of fluid flow,
heat and/or species transfer are essential. The given physical problems are
mathematically described by appropriate differential or integral equations
(see Chapter 3). In general, the equations are fully coupled, meaning that
each equation depends on the solution of the other equations. For example,
in fluid flow, the mass conservation equation and momentum conservation
equations are coupled via density, velocity and pressure. In addition, the flow
can be forced by thermal or solutal gradients, which in turn, are affected by
fluid flow. For each case presented in Chapter 6 the exact solution procedure
is provided.

Time discretization or integration over time plays, apart from space dis-
cretization, a key role in the solution of steady and unsteady problems. Some
common time-stepping procedures are addressed in this chapter. The study
is performed regardless of the particular type of space discretization. Next,
the solution of coupled momentum and mass conservation equations for fluid
flow are elaborated, since this is a case that requires special attention. The
solution procedure is described for Navier-Stokes equations and the Darcy
equation. Two procedures are presented here and compared in Chapter 6.5.

4.1 Time discretization

If the variation of transport variable φ(ppp) is time dependent we gain an
additional dimension which is time. Similar to discretization of space, time
also has to be discretized, but with one difference, which is the direction
of influence. Whereas each source anywhere in the domain may have an
effect anywhere else, the same source in time may affect only the events in
the future. In other words, there is no reverse influence. The solution of
a general time-dependent problem defined on a domain Ω with boundary
Γ, described in equation (3.7) is constructed by the initial and boundary
conditions. The value of transport variable φ(ppp, t) at a node with position

29
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vector ppp and the initial time t0 is defined as

φ(ppp, t0) = φ0(ppp); ppp = Ω + Γ. (4.1)

Basically we are interested in the solution of the transport variable at the
new time tτ+1 = tτ +∆t. Therefore, the solution of the transport variable at
the new discrete time level φ(ppp, tτ+1) is calculated from the solution at the
previous time level φ(ppp, tτ ). Time step ∆t denotes the difference between two
discrete time levels. For easier presentation, the notation φ(ppp, tτ ) is simplified
to φτ (ppp) and the general transport equation (3.7) is rewritten to

∂[% C(φ(ppp))]

∂t
= Ψ(φ(ppp)), (4.2)

the term Ψ(φ(ppp)) represents all involved terms that might occur (e.g. advec-
tive, diffusive, sources or sinks). For the sake of simplicity, relation (4.2) is
defined below for constant density and non-involved transport variable φ as

∂φ(ppp)

∂t
= Ψ(φ(ppp)). (4.3)

If small time steps are used, the solution is accurate regardless of the choice
of time stepping procedure. The choice of time stepping procedure, however,
has a great influence on stability, accuracy and computing time when larger
time steps are preferred. A quite extensive description of the time stepping
procedures can be found in [Ferziger and Perić, 1997]. The principal time
stepping strategies are summarized below.

4.1.1 Explicit Euler method

This is the simplest method in which all fluxes and sources are evaluated
using known values from previous time step τ . The general equation (4.3)
can be discretized in the finite difference manner as

φτ+1(ppp) − φτ (ppp)

∆t
= Ψ(φτ (ppp)) + O(∆t), (4.4)

or
φτ+1(ppp) = φτ (ppp) + ∆tΨ(φτ (ppp)). (4.5)

The truncation error O(∆t) denotes the first order accuracy in time. The
only unknown is φτ+1(ppp). All other values are taken from earlier time steps.
Since the extrapolation to the value at the new discrete time level can have
a significant error, this method has the lowest stability among all methods.
Nevertheless, the explicit Euler method is most frequently used in our calcu-
lations for three reasons:
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• calculation speed (no need for evaluation of the left-hand side of the
equation)

• the memory consumption is low

• in many problems the processes experience transitions which are fairly
fast. In such cases the time step should be small anyway to account
for all transient effects.

4.1.2 Implicit method

If stability is a prime requirement, the implicit method is used. The implicit
method is first order accurate in time with O(∆t).

φτ+1(ppp) − φτ (ppp)

∆t
= Ψ(φτ+1(ppp)) + O(∆t), (4.6)

or

φτ+1(ppp) − ∆tΨ(φτ+1(ppp)) = φτ (ppp). (4.7)

The unknowns at the new discrete time level are φτ+1(ppp) − ∆tΨ(φτ+1(ppp)).
Because all unknowns are on the left-hand side of equation, this makes them
harder to program and they use more computer memory and computational
time per time step. The implicit method is unconditionally stable. Even
for large time steps the implicit method produces a stable but not necessar-
ily physically correct solution. The implicit method is especially useful for
solving steady problems since large time steps can be used.

4.1.3 Semi-implicit method

This method is a combination of the implicit and the explicit method.

φτ+1(ppp) − φτ (ppp)

∆t
= ιΨ(φτ+1(ppp)) + (1 − ι) Ψ(φτ (ppp)) + O(∆t2), (4.8)

or

φτ+1(ppp) − ι∆tΨ(φτ+1(ppp)) = φτ (ppp) + (1 − ι)∆tΨ(φτ (ppp)). (4.9)

If parameter ι is set to ι = 0 the method is explicit Euler and for ι = 1 a fully
implicit time scheme is employed. If ι = 0.5 then the method is called Crank-
Nicolson. This method is implicit in general, but it contains the contribution
from the previous time level which makes it second order accurate in time.
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4.1.4 Multilevel methods

All possible two-level methods have been presented previously. Additional
time levels can be added to achieve higher-order approximation. The mul-
tipoint methods are derived by fitting a polynomial to the derivatives at a
number of levels in time. If a Langrange polynomial is fit to the discrete
time levels from m previous time steps φτ−m+1(ppp), φτ−m+2(ppp),...,φτ (ppp), the
explicit method of order O(m) is obtained. Methods of this type are called
Adams-Bashforth methods. The first order method (m = 1) is explicit, while
the second (m = 2) and the third (m = 3) are

φτ+1(ppp) = φτ (ppp) +
∆t

2

[
3 Ψ(φτ (ppp)) − Ψ(φτ−1(ppp))

]
+ O(∆t2) (4.10)

and

φτ+1(ppp) = φτ (ppp)+
∆t

12

[
23 Ψ(φτ (ppp)) − 16 Ψ(φτ−1(ppp)) + 5 Ψ(φτ−2(ppp))

]
+O(∆t3)

(4.11)
If data at tτ+1 is included in the interpolation polynomial, implicit meth-
ods known as Adams-Moulton methods are obtained. The first order is an
implicit method, the second order is semi-implicit, and the third order is

φτ+1(ppp) = φτ (ppp) +
∆t

12

[
5 Ψ(φτ+1(ppp)) + 8 Ψ(φτ (ppp)) − Ψ(φτ−1(ppp))

]
+ O(∆t3)

(4.12)
The multilevel approach has the advantage that it is relatively easy to con-
struct and it requires only one evaluation of Ψ(φ) per time level. Its disad-
vantage is, because it requires data from many prior points, that it cannot be
started with. For the evaluation of the first steps other lower level methods
i.e. explicit method for Adams-Bashforth and implicit for Adams-Moulton
methods have to be used.

4.1.5 Runge-Kutta Methods

The difficulties in starting multilevel methods can be alleviated by using
time levels between two time steps. These methods are called Runge-Kutta
methods. The second order Runge-Kutta method consists of two steps. The
first one is a half-step predictor based on the explicit Euler methods.

φτ+1/2(ppp) = φτ (ppp) +
∆t

2
Ψ(φτ (ppp)). (4.13)

It is followed by a midpoint corrector which makes the method second-order
accurate

φτ+1(ppp) = φτ (ppp) + ∆tΨ(φτ+1/2(ppp)) + O(∆t2). (4.14)
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Higher order Runge-Kutta methods have been developed as well. The most
commonly used is fourth order Runge-Kutta

φτ+1/2
∗ (ppp) = φτ (ppp) +

∆t

2
Ψ(φτ (ppp)), (4.15)

φτ+1/2
∗∗ (ppp) = φτ (ppp) +

∆t

2
Ψ(φτ+1/2

∗ (ppp)),

φτ+1
∗ (ppp) = φτ (ppp) + ∆tΨ(φτ+1/2

∗∗ (ppp)),

φτ+1(ppp) = φτ (ppp) +
∆t

6

[
Ψ(φτ )(ppp) + 2 Ψ(φτ+1/2

∗ (ppp))+

2 Ψ(φτ+1/2
∗∗ (ppp)) + Ψ(φτ+1

∗ (ppp))
]
+ O(∆t4).

The major problem with Runge-Kutta methods is that the function Ψ(φ) has
to be evaluated several times in one time step. These methods are therefore
more expensive for calculation than the multipoint methods of comparable
order. However, they are more accurate and more stable than the multipoint
methods of the same order.

4.1.6 Characteristic Based Split (CBS) algorithm

The CBS algorithm was introduced in [Zienkiewicz and Codina, 1995b] and
[Zienkiewicz and Codina, 1995a] for the reason of stability improvement of
the numerical procedure. The CBS is a time-iterative solution algorithm
that was shown to be very general for the solution of transport equations.
The basic idea of the CBS algorithm is to introduce an approach which lies
somewhere between Lagrangian and Eulerian treatment [Zienkiewicz et al.,
1984]. So the values at the new time level tτ+1 are not calculated simply from
the values in the spatial coordinate ppp in time level tτ , but from the coordinate
which is displaced for some value δδδ from the original coordinate i.e. ppp− δδδ at
time level tτ . The solution is obtained by Taylor expansion around δδδ

Ψ(φτ (ppp− δδδ)) ≈ Ψ(φτ (ppp)) − δδδ · ∇Ψ(φτ (ppp)) + O(δδδ2). (4.16)

The displacement δδδ is the distance travelled by the particle in the character-
istic direction ξ; ξ ∈ {x, y} in time step ∆t, which is

δδδ = VVV∆t, (4.17)

where VVV is an average value of VVV . The average velocity VVV is defined here

VVV (ppp) =
VVV τ+1(ppp) + VVV τ (ppp)

2
. (4.18)
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For a fully explicit scheme the relation (4.18) simplifies to

VVV (ppp) = VVV τ (ppp). (4.19)

As explained above, the semi-implicit equation (4.9) is rewritten in a way that
the right side of equation is introduced in Lagrangian coordinates. In other
words, the stability of the procedure is improved by taking the information
at positions along the characteristic (ppp− δδδ) and not from the actual position
ppp.

φτ+1(ppp) − φτ (ppp)

∆t
= ιΨ(φτ+1(ppp)) + (1 − ι) Ψ(φτ (ppp− δδδ)), (4.20)

where 0 < ι < 1 is set to 0 for fully explicit, 0.5 for semi-implicit, and 1 for
fully implicit time scheme. By first order Taylor expansion (4.16) of equation
(4.20) we obtain

φτ+1(ppp) − φτ (ppp)

∆t
= ιΨ(φτ+1(ppp)) + (1− ι) [Ψ(φτ (ppp))− δδδ · ∇Ψ(φτ (ppp))]. (4.21)

Inserting (4.17) into (4.21) and assuming (4.19) gives

φτ+1(ppp) − φτ (ppp)

∆t
= (4.22)

ιΨ(φτ+1(ppp)) + (1 − ι) [Ψ(φτ (ppp)) − ∆t VVV τ (ppp) · ∇Ψ(φτ (ppp))].

For semi implicit scheme ι = 0.5 the equation (4.22) reads

φτ+1(ppp) − φτ (ppp)

∆t
= (4.23)

1

2
Ψ(φτ+1(ppp)) +

1

2
[Ψ(φτ (ppp)) − ∆t VVV τ (ppp) · ∇Ψ(φτ (ppp))].

Further approximation can be made for explicit procedure by

1

2
Ψ(φτ+1(ppp)) +

1

2
Ψ(φτ (ppp)) = Ψ(φτ (ppp)). (4.24)

Now, the explicit CBS procedure gives

φτ+1(ppp) − φτ (ppp)

∆t
= Ψ(φτ (ppp)) − ∆t

2
VVV τ (ppp) · ∇Ψ(φτ (ppp)). (4.25)

Finally, by rearrangement of (4.25) we obtain

φτ+1(ppp) = φτ (ppp) + ∆tΨ(φτ (ppp)) − ∆t2

2
VVV τ (ppp) · ∇Ψ(φτ (ppp)). (4.26)

In the CBS algorithm we gain the stabilizing term ∆t2

2
VVV τ (ppp) · ∇Ψ(φτ (ppp)) in

addition to fully explicit Euler procedure.
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4.2 Treatment of momentum conservation

equation

Previously, several different time stepping procedures were explained. By
knowing the initial and boundary conditions, a general transport equation
can be solved by any of them. However, the solution can be obtained in a
straightforward manner only for partial differential equations with one un-
known transport variable, e.g. energy conservation equation with unknown
temperature T or species conservation equation with unknown concentration
C. However, the solution of the momentum conservation equation is more
complex, since the velocity VVV and pressure P are involved in the same equa-
tion and are interdependent. Therefore, the solution has to be obtained by
coupling of the momentum and mass conservation equations. Here the dis-
cussion is limited to primitive variable formulation, because it is the most
general.

Two algorithms are explained here. The first one, the Explicit pressure
correction algorithm, is used often in flow calculation. The second one, the
CBS algorithm, is relatively new and it has not yet been implemented to
any meshless method. The solution procedure is presented for a combined
Navier-Stokes equation with Darcy term (3.15). Appropriate formulation for
the solution of the Darcy equation is shown as well. The solution of the
momentum conservation equation starts with known velocity and pressure
boundary conditions and with initial velocity field at the initial time tτ=0 at
each node with position ppp

VVV (ppp, 0) = VVV 0(ppp); ppp ∈ Ω, (4.27)

where the initial velocity field must obey the mass conservation principle

∇ · VVV 0(ppp) = 0, (4.28)

with initial velocity VVV 0(ppp) at initial time tτ=0.

4.2.1 Explicit pressure Poisson solution of the momen-
tum conservation equation

The solution of the explicit pressure Poisson algorithm is presented here for
incompressible fluids. With some additional efforts in the pressure correction
equation, the algorithm could be extended to compressible fluids as well.
From the known velocity field at the time step tτ (and initially from the
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velocity field at tτ=0), first the pressure field is calculated by applying the
divergence to the momentum conservation equation (3.15)

∇2P τ = ∇ ·
(
−∆(%VVV )

ε∆t
− 1

ε2
∇ · (%VVV VVV ) − µ

KVVV + ∇ · (µeff ∇VVV ) + FFF

)τ

(4.29)

where ∆(%VVV )τ = (%VVV )τ − (%VVV )τ−1. Thus the Laplacian is produced on the
left-hand side of equation (4.29), which is called the pressure Poisson equa-
tion. With explicit time stepping scheme, the Laplacian in the equation
(4.29) cannot be calculated in one step. Therefore the pressure is calculated
by the use of the false transient with false time tf , which drives the pressure
equation towards the steady-state

∂P τ

∂tf
= −∇2P τ + ∇ ·

(
−∆(%VVV )

ε∆t
− 1

ε2
∇ · (%VVV VVV )− (4.30)

µ

KVVV + ∇ · (µeff ∇VVV ) + FFF
)τ

.

Equation (4.30) is solved iteratively by applying false time step ∆tf as

l+1P τ = lP τ + ∆tf

[
−l(∇2P )τ + ∇ ·l

(
−∆(%VVV )

ε∆t
− (4.31)

1

ε2
∇ · (%VVV VVV ) − µ

KVVV + ∇ · (µeff ∇VVV ) + FFF

)]τ

,

where l denotes old internal iteration and l + 1 new internal iteration. If
the flow is not penetrating through the boundaries (confined flow), the pres-
sure boundary conditions are Neumann boundary conditions, where equation
(4.29) is multiplied by the normal on the boundary

∂P τ

∂nΓ

=l

[
−∆(%VVV )

ε∆t
− 1

ε2
∇ · (%VVV VVV ) − µ

KVVV + ∇ · (µeff ∇VVV ) + FFF

]τ

· nnnΓ(4.32)

Now the pressure field and its derivatives in the internal time step are known
and the intermediate velocity at the new time step can be obtained as

l+1V̂VV
τ+1

= VVV τ +
ε∆t

%
· (4.33)

[
− 1

ε2
∇ ·l (%VVV VVV ) −l+1 (∇P ) − µ

K
l

VVV + ∇ ·l (µeff ∇VVV ) + FFF

]τ

.

The calculated velocity is denoted by V̂VV because it does not satisfy the con-
dition of mass conservation in general. To assure compliance with mass
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conservation, pressure and velocity corrections have to be applied. There-
fore the velocity V̂VV is corrected by the velocity correction V̆VV . Written for
incompressible conditions, the relation is

∇ · VVV τ+1 = ∇ · (V̂VV + V̆VV )τ+1. (4.34)

Assuming that the velocity correction occurs exclusively due to the action of
the pressure correction, we can write

%

ε∆t
V̆VV

τ+1
= −∇P̆ τ+1. (4.35)

The pressure correction P̆ is again calculated by applying the divergence to
both sides of equation (4.35), which in combination with (4.34) gives

∇2P̆ τ+1 = − 1

ε∆t
∇ · (% V̂VV )τ+1. (4.36)

The natural boundary conditions for pressure correction are Neumann bound-
ary conditions

∂P̆ τ+1

∂nΓ

= 0. (4.37)

Now, in a similar manner to the pressure equation we can calculate the
pressure correction by means of the false transient as

∂P̆ τ+1

∂tf
= −l(∇2P̆ )τ+1 − 1

ε∆t
∇ ·l+1 (% V̂VV )τ+1. (4.38)

Explicitly the equation (4.38) is calculated according to

l+1P̆ τ+1 =l P̆ τ+1 + ∆tf

[
−l(∇2P̆ ) − 1

ε∆t
∇ ·l+1 (% V̂VV )

]τ+1

. (4.39)

After the solution for pressure correction and its derivatives are obtained,
the pressure and velocity fields are updated

lP = l+1P +l+1 P̆ (4.40)

lVVV τ+1 = l+1V̂VV
τ+1 −l+1 ∇P̆ ε∆t

%
. (4.41)

In order to proceed to the next time step, the conditions

ηP = |l+1P τ+1 −l P τ+1| < ηP,lim, (4.42)

ηV = |l+1V τ+1 −l V τ+1| < ηV,lim, (4.43)

have to be satisfied and ηP,lim and ηV,lim are internal measures of convergence
for pressure and velocity, respectively. If the condition of internal conver-
gence is not met, than we return to equation (4.31). The entire procedure is
presented in Figure 4.1.
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Figure 4.1: Flowchart for pressure Poisson solution of momentum equation.
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Implementation of Darcy equation

In the previous section the solution procedure is presented for Navier-Stokes
and similar non-linear equations. The Solution of the Darcy equation is
slightly different. Recalling equation (3.11) we observe that the relation be-
tween the pressure gradient and the velocity is linear. Therefore the solution
procedure is simplified because the velocity field is evaluated directly from
the linear relation with the pressure gradient. Instead of an iterative solution
of equation (4.33), velocity V̂VV is obtained via the relation

l+1V̂VV =
K
µ

(−∇P + FFF )l. (4.44)

The velocity and pressure correction procedures described below are the same
as explained above. Since the Darcy equation is not transient, the time loop
in Figure 4.1 is obsolete. Again in this case we have to solve the pressure
equation by taking a divergence on both sides.

4.2.2 CBS solution of the momentum conservation equa-
tion

Many algorithms exist for solution of the momentum equation (SIMPLE,
SIMPLER, SIMPLEC, PISO, etc) that are usually associated with a specific
numerical method. Most of them are in semi-, quasi-, and fully implicit
form, and are applicable in most cases to the problems of incompressible
fluids. The CBS algorithm is well applicable for fully compressible flows
in both explicit and semi-implicit forms. A further advantage of the CBS
algorithm is the possibility of solving subsonic and supersonic flows using the
same formulation. The solution of the momentum conservation equation by
CBS algorithm is explained in this chapter. The solution procedure starts
again with known velocity field and guessed pressure field at initial time with
appropriate boundary conditions. If the variable φ is replaced by the mass
flux %vvv = %VVV /ε and Ψ(φ) = −∇P−1/ε2 ∇·(%VVV VVV )− µ

K
VVV +∇·(µeff ∇VVV )+FFF

into equation (4.26), we obtain the following solution

l+1∆(%̂ VVV )τ+1 =l+1 (%̂ VVV )τ+1 − (%VVV )τ = (4.45)

ε∆t l
[
−∇P̄ − µ

K
VVV − 1

ε2
∇ · (%VVV VVV ) + ∇ · (µeff ∇VVV ) + FFF

]τ+1

−∆t2

2

l
VVV τ∇ ·l

[
−∇P̄ − µ

K
VVV − 1

ε2
∇ · (%VVV VVV ) + ∇ · (µeff ∇VVV ) + FFF

]τ+1
.

where ∆(%̂ VVV ) is difference between mass flux per unit area in new and old

time step and %̂ VVV is an intermediate value. Again l + 1 and l represent new



40 SOLUTION PROCEDURES

and old intermediate iterative steps, respectively. The pressure gradient term
∇P̄ is defined as

∇P̄ = ι∇P τ+1 + (1 − ι)∇P τ , (4.46)

where parameter ι is 1 for implicit solution and 0 for explicit solution which
is used in this work. At the initial time step tτ=0, the pressure gradient ∇P̄
is set to 0. Next, density change is obtained from mass conservation equation
(3.9). Using temporal discretization of equation (3.9) and after rearranging,
the relation for density change is

l+1∆ %τ+1 = −∆t

ε
∇ · l+1(%VVV )τ+ι1 . (4.47)

The term (%VVV )τ+ι1 is defined as

l+1(%VVV )τ+ι1 = ι1
l+1(%VVV )τ+1 + (1 − ι1)

l+1(%VVV )τ , (4.48)

and ι1 ranges between 0.5 < ι1 < 1. The correction of velocities is again
obtained from the pressure gradient

l+1(%VVV )τ+1 −l+1 (%̂ VVV )τ+1 = ε∆t l∇P̄ . (4.49)

Now inserting equations (4.48) and (4.49) into (4.47) gives for the explicit
scheme

l+1∆ %τ+1 = −∆t
ε

[
ι1 ∇ · l+1(%̂ VVV )τ+1 + (1 − ι1)∇ · l+1∆(%VVV )τ+1

]
(4.50)

+∆t2 ι1
l∇2P τ .

Pressure change in one time step is obtained through density change and
speed of sound cs

l+1∆P τ+1 = cs
2 l+1∆%τ+1. (4.51)

For real compressible fluids speed of sound cs depends on pressure P and
density %.

c2s =
∂P

∂%
=
κP

%
, (4.52)

where κ is the ratio of specific heats equal to cp/cv. For a fluid with small
compressibility it holds that

c2s =
K

%
, (4.53)

where K is the bulk modulus. The appropriate definition of cs is case depen-
dent. Naturally for incompressible fluids (∆%→ 0), coefficient cs must limit
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toward infinity. Therefore, in the explicit scheme, it is impossible to imple-
ment relation (4.51). In order to solve this problem, Nithiarasu proposed an
artificial compressibility (γ) instead of an infinite speed of sound [Nithiarasu,
2003]. The artificial compressibility γ is defined in [Massarotti et al., 2004]
to be of the following form

γ = max(ε, vconv, vdif ), (4.54)

where ε is a constant taken as 0.5, vconv is the convective velocity and vdiff

is the diffusive velocity.

vconv =
√
V V , (4.55)

vdiff =
2

hRe
, (4.56)

with h being minimum local element size.
On the basis of many tests, all results in this work were calculated using

my own defined artificial compressibility with value

γ =

√
ν

∆t
. (4.57)

Relation (4.57) has two advantages in comparison to the relation given in
(4.56). The first, our relation is dimensionally consistent as opposed to (4.56).
The second, minimum size of element, used in (4.56) has no meaning in
meshless methods (or it can be the minimal distance between the nodes).

Implementation of Darcy equation

For time dependent Darcy equation we can write

1

ε

∂(%VVV )

∂t
= −∇P − µ

KVVV + FFF . (4.58)

Similar to the procedure shown for the more general momentum equation
the mass flow %VVV /ε is introduced for general variable φ and Ψ(φ) = −∇P −
µ
K
VVV + FFF

l+1∆(%̂ VVV ) = l+1(%̂ VVV )τ+1 − (%VVV )τ = (4.59)

ε∆t l
[
−∇P̄ − µ

KVVV + FFF
]τ+1

− ∆t2

2
VVV∇ ·l

[
∇P +

µ

KVVV − FFF
]τ+1

.
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Solution procedure The CBS algorithm can be implemented in two ways:
In Split 1 the pressure term is retained at its previous time step value, while
in Split 2 the pressure term is completely removed from equation (4.45).
Although the procedure in both cases is very similar, we will focus on Split
1. The solution procedure is constituted from three general steps

• Step 1: Calculate intermediate momentum equation (4.45)

• Step 2: Calculate density difference (4.50) and pressure difference
(4.51)

• Step 3: Apply velocity correction from equation (4.49)

More precisely, for the explicit time scheme, the procedure goes

1. Set initial values in new time step lP τ+1 and lVVV τ+1 to old values P τ

and VVV τ .

2. Calculate pressure gradients ∇P from known pressure field in internal
iteration l.

3. Calculate velocity gradients ∇VVV and derivatives of convective term
∇ · (%VVV VVV ) from lVVVτ+1.

4. Obtain partial derivatives of stabilization term ∇Ψ(φ).

5. Calculate partial derivatives of ∆(%̂ VVV ) from equation (4.45).

6. From equations (4.50) (for ι = 0) and (4.51) obtain ∆P .

7. Update l+1P τ+1 =l P τ+1 + ∆P .

8. Update l+1VVV τ+1 = VVV τ +l+1 ∆(%VVV )τ+1/%.

9. Repeat from step 2 internally until the velocity difference
ηV = |l+1VVV τ+1 −l VVV τ+1| is smaller than prescribed convergence criteria
ηV,lim.

10. Proceed to the next time step.

If steady-state is needed the algorithm is repeated until |VVV τ+1 −VVV τ | < ηV,con

and ηV,con is the steady-state criterion.



5 Diffuse Approximate
Method (DAM)

DAM belongs to the class of Moving Least Squares (MLS) methods. MLS,
originated by mathematicians for data fitting and surface reconstruction, is
often termed also local regression and loss. It can be categorized as a method
of finite series representation of functions. MLS methods have been gaining
popularity as an alternative for constructing meshless shape functions in
recent years because it is generally considered to be one of the best schemes
to interpolate data with reasonable accuracy [Atluri and Shen, 2002].

5.1 MLS Approximation

A subdomain nΩ, which is a neighborhood of a node pppn and is located within
the problem domain Ω, is denoted as the domain of influence of node pppn

(see Figure 5.1). To approximate the distribution of function φ in nΩ over

Figure 5.1: The problem domain with the domain of influence.
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arbitrary located nodes pppi; i = 1, 2, ..., I, where I is the number of nodes in
the domain of influence nΩ, the MLS approximant φ̂(ppp) at node ppp can be
defined by

φ̂(ppp) = ϕϕϕk(ppp− pppi)
T ααα(ppp), (5.1)

In DAM, the basis is formed by polynomials. Therefore, ϕϕϕk(ppp−pppi) = [ϕ1(ppp−
pppi), ϕ2(ppp−pppi), ...., ϕK(ppp−pppi)] is a complete monomial basis, K is the number
of terms in the basis. For example for the 2D case ϕk are ϕ1 = 1; ϕ2 =
(px − px i); ϕ3 = (py − py i); ϕ4 = (px − px i)

2; ϕ5 = (px − px i) (py − py i); ϕ6 =
(py − py i)

2, i.e. K = 6. The coefficients αk(ppp) are obtained via minimization
of a weighted functional

I(αk(ppp)) =
I∑

i=1

nŴ (‖ppp− pppi‖)
K∑

k=1

[
αk(ppp)ϕk(‖ppp− pppi‖) − φ̂(pppi)

]2

, (5.2)

nŴ (‖ppp − pppI‖) is the weight function associated with the node n and is ex-
plained in more detail in Chapter 7.1. ‖ppp− pppI‖ denotes L2 norm. The min-
imization of I in equation (5.2) with respect to αk(ppp) leads to the following

linear relation between ααα and φ̂φφ

Aααα = φ̂φφ. (5.3)

For each n′th calculated node the left-hand side K ×K matrix A and right-
hand side vector φ̂φφ are written in explicit form as

nAjk =
I∑

i=1

ϕk(pppi − pppn) nŴ (pppi − pppn)ϕj(pppi − pppn), (5.4)

while vector nbj on the right-hand side consists of

nφ̂j =
I∑

i=1

ϕj(pppi − pppn) nŴ (pppi − pppn) φ̂(pppi). (5.5)

The MLS approximation is well defined only when the matrix A is non-
singular. Thus, a necessary condition for a well-defined MLS approximation
is that the number of nodes in the domain of influence I is larger or equal to
the number of the basis elements K, i.e. I ≥ K.

5.2 From MLS approximation to DAM

The mathematical tool described in Section 5.1 can be effectively used in
finding the solution of partial differential equations. For each node pppn ∈ nΩ
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we solve the system of equations (5.3). The values of function φ̂ are then
calculated at each node pppn from the relation (5.1). Since the solution is
sought exactly at node pppn, the polynomial basis is

ϕϕϕ =




1
0
0
0
0
0



, (5.6)

which gives us a simple relation for function value at node pppn

φ̂(pppn) = α1. (5.7)

The first derivatives from known values αk are calculated with the known
derivatives of the basis functions. Hence we can write

∂φ̂(pppn)

∂ξ
=
∂ϕϕϕk(pppn − pppn)T

∂ξ
ααα(pppn); ξ ∈ {x, y}, (5.8)

with first-order polynomial basis partial derivatives at node pppn

∂ϕϕϕ

∂x
=




0
1
0
0
0
0



,

∂ϕϕϕ

∂y
=




0
0
1
0
0
0



, (5.9)

and the consequent derivatives

∂φ̂(pppn)

∂x
= α2,

∂φ̂(pppn)

∂y
= α3. (5.10)

For the second derivatives similarly

∂2φ̂(pppn)

∂ξ∂ζ
=
∂2ϕϕϕk(pppn − pppn)T

∂ξ∂ζ
ααα(pppn); ξ, ζ ∈ {x, y}, (5.11)

with

∂2ϕϕϕ

∂x2
=




0
0
0
2
0
0



,

∂2ϕϕϕ

∂x∂y
=




0
0
0
0
1
0



,

∂2ϕϕϕ

∂y2
=




0
0
0
0
0
2



. (5.12)
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with the derivatives

∂2φ̂(pppn)

∂x2
= 2α4,

∂2φ̂(pppn)

∂x∂y
= α5,

∂2φ̂(pppn)

∂y2
= 2α6. (5.13)

Considering a general partial differential equation with L as an arbitrary
differential operator and B as an operator imposed for a chosen boundary
condition we can write

∂φ(ppp, t)

∂t
= Lφ(ppp, t) + f(ppp, t); ppp ∈ Ω, B φ = g(ppp, t); ppp ∈ Γ. (5.14)

The solution of equation (5.14) is obtained by iterative procedure, with ap-
propriate replacement of differential operator L by α-s obtained from MLS
approximation. An example of the explicit solution of the Laplace equation
is given below.

Example: Solution of the Laplace equation The Laplace equation is
defined as

∇2φ(ppp) = 0. (5.15)

In the explicit time scheme, the solution should be obtained by a false tran-
sient such as

∂φ(ppp)

∂tf
= ∇2φ(ppp). (5.16)

Operator L in the Laplace equation from equation (5.14) is in 2D then

L =
∂2φ(ppp)

∂x2
+
∂2φ(ppp)

∂y2
(5.17)

After determination of initial and boundary conditions the solution procedure
is the following:

1. From the values defined by the initial conditions obtain coefficients αk

in the first node, say in ppp1 from domain of influence 1Ω.

2. Calculate new value, e.g. φτ+1(ppp1) = φτ (ppp1) + ∆tf
(

α4

2
+ α6

2

)
.

3. Go to the next node, say ppp2.

4. Repeat this procedure until the last node in calculation domain N .

5. Update old value φτ (pppn) = φτ+1(pppn), n = 1, 2, ..., N .

6. Repeat until max{|φτ (pppn) − φτ+1(pppn)|} < η is met, where η is the
convergence criterion.
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5.2.1 Treatment of boundary conditions

The boundary can in general be divided into ΓD, ΓN , and ΓR Dirichlet, Neu-
mann and Robin type boundary conditions, respectively. These boundary
conditions are at boundary node ppp with normal nΓ defined through known
functions φD

Γ , φN
Γ , φR

Γ , and reference value φR
Γ, ref

φ(ppp, t) = φD
Γ (ppp, t); ppp ∈ ΓD (5.18)

∂φ(ppp, t)

∂nΓ

= φN
Γ (ppp, t); ppp ∈ ΓN (5.19)

∂φ(ppp, t)

∂nΓ

= φR
Γ (ppp, t)[φ(ppp, t) − φR

Γ,ref (ppp, t)]; ppp ∈ ΓR. (5.20)

Dirichlet boundary conditions Dirichlet boundary conditions do not
need any special treatment since the values φ(ppp); ppp ∈ ΓD are prescribed.
Usually they are omitted from the calculation in order to save CPU time.

Neumann boundary conditions With Neumann boundary conditions,
however, the derivatives of the function φ(ppp) over the normal are known.
From the given derivatives, we need to obtain the function values. Functional
(5.2) is thus rewritten to

I(αk(ppp)) =
I∑

i=1

[
nŴ (‖ppp− pppi‖)

K∑

k=1

αk(ppp)
∂ϕk(‖ppp− pppi‖)

∂nΓ

− φ̂(pppi)

]2

, (5.21)

with left hand side matrix A now being

nAjk =
I∑

i=1

∂ϕj(pppi − pppn)

∂nΓ
nŴ (pppi − pppn)

∂ϕk(pppi − pppn)

∂nΓ

, (5.22)

and right-hand side vector nbj

nφ̂j =
I∑

i=1

∂ϕj(pppi − pppn)

∂nΓ
nŴ (pppi − pppn)φN

Γ (pppi). (5.23)

Function value φ(ppp) in each node is then represented as α1.

Robin boundary conditions Robin boundary conditions can be imple-
mented in two ways. The first way is to implement them as Neumann bound-
ary conditions. Left-hand side matrix A is constructed the same as in equa-
tion (5.22). The right-hand side vector, however, is constructed from the
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relation described in (5.20)

nφ̂j =
I∑

i=1

∂ϕj(pppi − pppn)

∂nΓ
nŴ (pppi − pppn)φR

Γ (pppi)[φ(pppi) − φR
Γ,ref (pppi)]. (5.24)

Since the value φ(pppi) in this case can only be the value from the previous
iteration, it is necessary to obtain the solution iteratively. To circumvent this
problem the Robin boundary conditions can be derived similar to the one
explained in equation (5.2)

I(αk(ppp)) =
I∑

i=1

nŴ (‖ppp− pppi‖)
K∑

k=1

[
φR

Γ (αk ϕk(‖ppp− pppi‖) − φR
Γ,ref )− (5.25)

αk(ppp)
∂ϕk(‖ppp− pppi‖)

∂nΓ

]2

.

By the derivation of equation (5.26) the left-hand side expression is obtained

nAjk =
I∑

i=1

(
∂ϕj(pppi − pppn)

∂nΓ

+ φR
Γ ϕj(pppi − pppn)

)
nŴ (pppi − pppn) · (5.26)

·
(
∂ϕk(pppi − pppn)

∂nΓ

+ φR
Γ ϕk(pppi − pppn)

)
,

and the right-hand side vector

nφ̂j =
I∑

i=1

(
∂ϕj(pppi − pppn)

∂nΓ

+ φR
Γ ϕj(pppi − pppn)

)
nŴ (pppi − pppn)φR

Γ φΓ,ref . (5.27)

In the latter case no iterating is required. The drawback, however, is that
the left-hand side matrix AAA has to be updated in each iteration.



6 Numerical examples

Several cases are presented in this section to provide an idea of the accuracy,
stability and ability of DAM to solve a large spectrum of physically and
numerically involved transport problems. In each selected example a certain
property of DAM is exposed.

In the first example the level of numerical diffusion is analyzed. Next, the
solution of unconfined flow through porous media is shown and compared
to a commercial package in order to prove the consistency of the method.
Transport of decaying species is the next problem that gained our atten-
tion. On this simple 1D problem the stability of different time stepping
schemes is analyzed and compared against the analytical solution. In addi-
tion the behavior of different methods in terms of grid density is analyzed.
The combination of two previously mentioned problems, unconfined flow and
radionuclide transport, gives a basis for a more realistic case of performance
assessment and safety analysis of the radioactive waste repository. Next, the
porous media flow is coupled to the energy equation. The problem of natu-
ral convection in a rectangular enclosure is often used for the verification of
numerical methods. The two already mentioned momentum-mass conserva-
tion coupling algorithms are compared. Finally, the momentum, energy, and
species conservation equations for calculation of the double diffusive natu-
ral convection in a composite fluid-porous layer are considered in the last
example.

All considered numerical examples in this chapter use uniform node ar-
rangements. This is done for the reason of comparison of the results, because
often the results are compared to FVM-based solutions. All nodes are ar-
ranged as shown in Figure 6.1. The grid in Figure 6.1 is denoted through the
whole work by 3×3 although the overall number of nodes is Nx×Ny+2NxNy

where Nx and Ny represent the number of nodes in x and y direction of Carte-
sian coordinate, respectively. Thus for the shown 3× 3 problem the number
of nodes is 9 + 4 · 3 = 21.

When more appropriate, the distance between nodes is given. For a
uniform grid, the spacing is denoted in length units ∆x = ∆y. For the

49
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Figure 6.1: Definition of uniform 3×3 grid in DAM.

geometry in Figure 6.1, the spacing is ∆x = ∆y = 0.25 (the units of ∆x
and ∆y are the same as the units of x and y). The number of nodes in the
domain of influence is 9 in all cases and the corresponding free parameter
c used in Gaussian weight function exp(−c r) is 15 where r is the radius of
influence.

In most cases, especially in radionuclide transport calculations, a com-
parison is made with a commercial package [Porflow, 2001]. The Porflow
code was used on the computer hardware of ARAO within the framework
of the PA/SA assessment for the Slovenian LILW repository. Porflow is an
FVM-based software tool for solution of multi-phase fluid flow, heat transfer,
and mass transport problems in variably saturated porous or fractured me-
dia. The pre-processor is designed to allow control of data input and output
through simple, format-free, English-like commands. Porflow can be used to
simulate transient or steady state problems in Cartesian or cylindrical geom-
etry. The geologic medium may be anisotropic and heterogenous, and may
contain distinct embedded elements such as discrete fractures or boreholes
within a porous matrix. The method of Nodal Point Integration is employed
for integration of the governing differential equations by temporal and spatial
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discretization over each control volume (polygon) of the physical domain. It
leads to solutions that automatically conserve fluid, heat, and mass locally
within every polygon, as well as for the entire flow domain. The source
terms are approximated by a modified Newton-Raphson method. The poly-
gons used to define the problem geometry can vary in size, but their shape
is restricted to that of a quadrilateral, hexahedral or segment of a cylinder.
For our reference solutions only quadrilateral elements are used.

For comparison of 1D radionuclide transport a Hydrus-1D package was
used [Simunek et al., 1999]. The Hydrus program is an FEM-based code
for simulating the one-dimensional movement of water, heat, and multiple
solutes in variably saturated media. The program numerically solves the
Richard equation for saturated-unsaturated water flow and Fickian-based
advection dispersion equations for heat and solute transport. The govern-
ing flow and transport equations are solved numerically using Galerkin-type
linear finite element schemes. Integration in time is achieved using an im-
plicit (backwards) finite difference scheme for both saturated and unsaturated
conditions. Additional measures are taken to improve solution efficiency for
transient problems, including automatic time step adjustment and adher-
ence to preset ranges of the Courant and Peclet numbers. The water content
term is evaluated using the mass conservation method proposed by [Celia
et al., 1990]. Possible options for minimizing numerical oscillations in the
transport solutions include upstream weighing, artificial dispersion, and/or
performance indexing.
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6.1 Smith and Hutton problem for examina-

tion of numerical or artificial diffusion

Numerical or artificial diffusion is the unintentional smoothing of gradients
associated with the discretization of the transport equations. Numerical dif-
fusion leads to unphysical gradient smoothing, which is cumulative over time
and is an irreversible process. The study of numerical diffusion is a very im-
portant issue. Its importance is based on the fact that all advective transport
processes (excluding processes in a vacuum) include molecular diffusivity and
dispersivity. In many cases, especially in slow processes such as radionuclide
transport, physical diffusion plays a key role in transport. If the numerical
diffusivity is in the same range or even larger than the physical diffusivity,
the errors can be considerable. Therefore it is essential to determine the
influence of numerical diffusion. In traditional methods numerical diffusion
is larger if the direction of advection is not aligned with the orientation of
polygon boundaries. The usual observation is that numerical diffusion is
proportional to the grid size. The level of numerical diffusion in meshless
methods is analyzed by the Smith and Hutton problem. FVM and DAM
calculations are performed and compared for different grid densities.

6.1.1 Problem description

A good numerical test problem to evaluate various advection-diffusion schemes
is posed in [Smith and Hutton, 1982]. The Smith and Hutton problem is to
find the steady-state solution of the convection-diffusion equation

∇φ =
1

Pe
∇2φ (6.1)

on the rectangular region shown in Figure 6.2. The amount of diffusion is
controlled by the Peclet number (Pe), defined as

Pe =
LV

αth

, (6.2)

with characteristic length L, velocity V and thermal diffusivity αth. The
velocity field is derived from the stream function ψ = (1− p2

x)(1− p2
y). From

the known stream function the velocity component in the x direction

Vx(ppp) = − ∂ψ

∂py

= 2 py (1 − p2
x) (6.3)

and in the y direction

Vy(ppp) =
∂ψ

∂px

= −2 px (1 − p2
y) (6.4)
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Figure 6.2: Schematics of the Smith and Hutton problem.

can be defined. All boundary conditions except the outflow boundary condi-
tion are of the Dirichlet type. The value of variable φ(ppp) is observed at the
outflow boundary, thus having the Neumann boundary condition. The value
of φ(ppp) is specified on the inflow boundary as

φ(ppp) = 1 + tanh[Υ (px + 1)]; py = 0, −1 ≤ px ≤ 0. (6.5)

On all other boundaries, except for the outflow portion, φ(ppp) is specified

φ(ppp) = 1 − tanh(Υ), (6.6)

where Υ is an adjustable parameter that controls the “sharpness” of the rise
of the profile at the inflow boundary. The value Υ = 10 is used in the present
example. Inflow function is rather sharp as shown in Figure 6.3. By the time

Figure 6.3: Inflow function for Smith and Hutton problem, Υ = 10.

the variable φ(ppp) is transported from the inflow to outflow boundary it is
diffused and flattened.
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6.1.2 Numerical results

The present test shows the results for Pe=1000. Physical diffusion at Pe=1000
is small, so the resulting function at the output boundary is shaped very simi-
larly to the input function in Figure 6.3. There is no analytical solution to this
problem, so the results are compared to another numerical solution. In Figure
6.4 the results for three grid densities (Nx = 22, Ny = 12, Nx = 42, Ny = 22,
Nx = 82, Ny = 42) are compared between two methods, FVM and DAM.
The Limited Central Difference Scheme (CDS) is used [Leonard, 1997] in the
FVM, because it provides the lowest numerical diffusion.
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22 x 12 FVM         
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82 x 42 FVM         
22 x 12 DAM
42 x 22 DAM
82 x 42 DAM

Figure 6.4: Smith and Hutton problem solution at inflow and outflow boundary for
Pe=1000 and Υ = 10.
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6.1.3 Conclusions

FVM results in Figure 6.4 proved that the numerical diffusion is strongly
dependent on grid density in traditional polygonization methods. With in-
creasingly finer grids the influence of numerical diffusion decreases. On the
other hand, the results obtained by DAM proved that the numerical diffusion
and flattening is almost negligible even for very coarse grids. For realistic
problems with small physical diffusion this represents an important feature
of meshless methods. The DAM calculations were performed by 9 nodes in
the domain of influence and c =15.
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6.2 Unconfined flow in porous media

Water in nature enters a certain domain at one or more boundaries and leaves
it at the other side. A typical example is groundwater flow, which usually
results from rainfall. Some of that rainfall water is infiltrated into the ground
and flows through different pathways. Usually we are interested only in the
part of the flow path inside a certain domain. Therefore the problem is
defined with a certain influx and outflux from this domain. Determining the
exact pathway is of utmost importance if, for example, some substance is
transported along with the fluid. This example tackles the performance of
DAM for such situations.

6.2.1 Problem description

Consider a 5 m× 5 m domain of saturated porous medium (material 1) with
hydraulic conductivity κ = 10−6 m/s. Inside this domain there is a low
permeable saturated porous layer (material 2) with hydraulic conductivity
κ = 10−9 m/s. The values taken for hydraulic conductivities correspond to
the values for silt (higher permeability) and concrete or rock (lower perme-
ability). At the top boundary the water flux enters with q = 2.55 m/y. At
the bottom boundary the free flow velocity boundary condition is defined.
The left and right boundaries are impermeable, therefore no water can enter
or leave the domain from the side. The domain is defined as a unsymmetrical
as shown in Figure 6.5, because the solution of symmetric problems is usu-
ally simpler. Velocity and pressure boundary conditions are shown in Figures
6.6(a) and 6.6(b), respectively. The bottom pressure boundary condition is
defined through reference pressure Pref = 0 Pa, because it is assumed that
this boundary is at the level of the water table.

6.2.2 Governing equations and solution procedure

The problem of unconfined flow through Darcy porous media is defined by
the mass conservation equation for incompressible fluids

∇ · VVV = 0, (6.7)

and the Darcy momentum conservation equation

∇P = − µ

KVVV . (6.8)

The solution is obtained by CBS algorithm with the simulation parameters
listed in Table 6.1. The solution procedure is explained in Chapter 4.2.
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Figure 6.5: Problem definition for unconfined flow.

Figure 6.6: Boundary conditions: velocity (left) and pressure (right).

6.2.3 Numerical results

It is expected that most of the water flow entering the domain is diverted
away from the domain with lower hydraulic conductivity. A small part of the
water flows through the low permeability region as well. In Figure 6.7 the
obtained flow structure is presented. The velocity vectors in the low perme-
ability region are very short since the velocities in this region are almost three
orders of magnitude smaller than the water flux around this low permeability
region. For the sake of comparison, the results are compared at the middle
of the domain height, namely at 2.5 m. There is no known analytical solu-
tion to this case, therefore the DAM results are compared to Porflow. The
comparison is conducted on two grid densities with a uniform distribution of
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Table 6.1: Simulation parameters for unconfined flow problem.

parameter label value
time step ∆t 0.001 s

internal convergence criteria ηint 0.000001 m/s
total convergence criteria ηcon 0.00001 m/s

domain of influence I 9
weight function free parameter c 15

x [m]

y
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]
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0

1

2

3

4
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Figure 6.7: Calculated flow structure.

nodes. Grid densities used are ∆x = ∆y = 10 cm and ∆x = ∆y = 5 cm for
coarser and finer grid, respectively, in both x and y directions. Results are
presented in Figure 6.8.

6.2.4 Conclusions

From the results presented in Figure 6.8 it can be seen that the large velocity
differences resulting from the material properties involved are frequent in flow
calculations. The velocities in the low permeability region are several orders
of magnitude removed from those in the high permeability region. Therefore
the numerical method used must be well adapted for coping with strong non-
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Figure 6.8: Comparison of the results over the cross-section at the mid height of the
domain.

linearities. The qualitative comparison shows a good agreement between our
results and the results obtained by the commercial package. In addition we
can see that the flow structure and the qualitative results are not strongly
dependent on the grid density. The results converge toward the same values
for both methods used. The consistency of DAM is therefore demonstrated
with the presented case.
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6.3 Radionuclide transport

The third case under consideration is the transport of decaying species, taken
from [Mallants, 2004]. Consider one-dimensional vertical transport of a sorb-
ing species through a water-saturated concrete bunker. This test case is
presented for several reasons. First, the consistency of DAM is compared
against other numerical methods. Second, different time-stepping procedures
are used and compared. And finally, the accuracy and convergence of results
in terms of the chosen time step is examined.

6.3.1 Problem description

The length of the problem domain is 2.7 m. At 0.5 m from the top of
the bunker, a 0.5 m high waste zone exists as shown in Figure 6.9. In the

Figure 6.9: Radionuclide transport problem definition.

waste zone, the total amount of 226Ra present is 0.0877 moles with initial
activity of 7.25 · 1011 Bq. The half-life t1/2 of 226Ra is 1600 y. We assume the
waste is uniformly distributed in the waste zone, which has a unit length in
horizontal directions x and z. The constant water flux q through the bunker
is 4.53 · 10−4 m/y. Considering a porosity ε = 0.37, the pore water velocity
v = q/ε = 1.224 · 10−3 m/y. The sorption of radium onto the solid phase
is described by the equilibrium distribution coefficient Kd, which is set to
0.653 m3/kg. Bulk density %b=1660 kg/m3, the retardation coefficient R,
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calculated from equation (3.40) results in a value of 2930. In partitioning
the radium between solid and liquid phase, the volumetric activity in liquid
phase is determined from

Cf =
m

V εR =
7.25 · 1011 Bq

0.5 m3 · 0.37 · 2930 = 1.37 · 109 Bq/m3, (6.9)

where V is a volume of 1D waste region. Molecular diffusivity Dp is set to
0.0023 m2/y, while longitudinal dispersion coefficient αL = 0.1 m.

6.3.2 Governing equations and solution procedure

The problem of decaying species is characterized by the species conservation
equation

R
∂Cf

∂t
+ ∇ · (vvv Cf ) = ∇ · (DDD∇Cf ) − λ̄ RCf . (6.10)

Since this simulation is made in 1D, the diffusion tensor DDD is simplified to
scalar value D, defined as

D = Dp + αL v, (6.11)

where Dp, αL, and v are molecular diffusion, dispersion coefficient and pore
water velocity, respectively. The results are tested on different time-stepping
schemes. In this case the final time is defined instead of convergence criteria
(due to decay, the steady state is at 0 Bq/m3). The calculation procedure is
shown in Figure 6.10

define

initial and boundary


conditions


check final

time


calculate

concentration


update values
no


final solution


yes


Figure 6.10: Calculation flowchart for the transport of decaying species.
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6.3.3 Numerical results

The case of a decaying substance is chosen for several reasons. (1) Transport
of radionuclides is characterized by a relatively slow movement. Thus all
errors are accumulated in time. (2) The ratio between the initial source
and observed volumetric activity in some more or less distant nodes can
be and usually are of several orders of magnitude apart (easily up to 20).
Numerically, this is not an easy task, because the numerical error can play a
key role in the accuracy of the results. (3) The large source term originating
from the decay can cause consequent instability of a numerical solution.

The volumetric activity is observed at the point positioned at 1.55 m
from the top boundary. The comparative solution is obtained by the FVM-
based commercial package Porflow and the FEM-based commercial package
Hydrus. The results are calculated on four grid densities with spacing ∆y=5
cm, 1.25 cm, 1 cm, and 0.5 cm and compared against the analytical solution
given in [van Genuchten and Alves, 1982]. An analytical 1D solution for
the volume-averaged species equation (3.41) is obtained for a semi-infinite
system with the lower Neumann boundary condition

∂Cf (∞, t)

∂nΓ

= 0; y ∈ ΓN . (6.12)

The top boundary conditions for a pulse-type injection using a well-mixed
input solution is defined as a third-type or Robin boundary condition with

(
Cf − D

V

∂Cf

∂n

)
y=0+

= C0; 0 < t ≤ t0(
Cf − D

V

∂Cf

∂n

)
y=0+

= 0; t > t0,
(6.13)

where t0 is pulse duration and y = 0+ denotes the approaching of y toward
y = 0 from the positive direction. In case of single step the initial condition
becomes

Cf (y, 0) =

{
C1 0 ≤ y < y1

C2 y ≥ y1,
, (6.14)

with y1 denoting the length of the concentration field with the concentration
C1. For the particular case, the concentration C1 is the actual concentration
in liquid phase Cf . At initial time the concentrations around this region are
zero i.e. C2 = 0. The analytical solution is

Cf (y, t) =

{
CiA(y, t) + C0B(y, t); 0 < t ≤ t0
CiA(y, t) + C0B(y, t) − C0B(y, t− t0); t > t0

,
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where

A(y, t) = exp

(
λ̄ t

R

)
·
(

1 − 1

2
erfc

[
Ry − V t

2 (DR t)1/2

]
(6.15)

−
[
V 2 t

π DR

]1/2

exp

[
(Ry − V t)2

4DR t

]

+
1

2

[
1 +

V y

D
+
V 2 t

DR

]
exp

[
V y

D

]
erfc

[
Ry + V t

2 (DR t)1/2

])

and

B(y, t) =
V

V + U
exp

(V − U) y

2D
erfc

[
Ry − V t

2 (DR t)1/2

]
(6.16)

+
V

V − U
exp

(V + U) y

2D
erfc

[
Ry + V t

2 (DR t)1/2

]

+
V 2

2 λ̄ D
exp

(
V y

D
− λ̄ t

R

)
erfc

[
Ry + V t

2 (DR t)1/2

]
,

with

U = V

√
1 +

4 λ̄ D

V 2
. (6.17)

The calculations are performed using three different numerical methods on
all grid densities. The behavior of different methods in terms of accuracy is
shown in Figure 6.11. The results shown for DAM are calculated by explicit
Euler time scheme and time step ∆t = 50 y, 9 nodes in the domain of in-
fluence and weight function free parameter c =15. Comparison shows that
the DAM and FVM solutions are increasingly accurate with finer grids with
overestimation of the results on coarser grids. Results obtained by FEM
are less dependent on grid density. In the case of coarser grids, however,
the solution is underestimated, which is problematic from the point of view
of conservativity of the results. Conservativity is important in radionuclide
transport calculations because the volumetric activity or flux obtained must
be reflected in larger or equal results to those in reality and not lower. The
exact peak volumetric activity at y=1.55 m resulting from the analytical so-
lution is 575 Bq/m3 at 15000 y. The relative errors at peak value are shown in
Table 6.2. The next thing analyzed is the stability of different time-stepping
schemes. Only the explicit schemes are analyzed. The results are presented
on 1 cm node spacing for explicit Euler scheme, Adams-Bashforth scheme,
Runge-Kutta scheme and explicit CBS scheme in terms of stability (maxi-
mum time step) and total calculation time. The calculation times in Table
6.3 are presented for maximal time step of each scheme and final time 40000
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Figure 6.11: Volumetric activity versus time at y=1.55 m.

Table 6.2: Relative errors at the peak value.

Relative errors [%]
node spacing

10 cm 5 cm 1.25 cm 1 cm

FVM 158.85 15.02 10.57 0.57
FEM -34.78 8.52 7.65 -
DAM 148.52 10.90 6.73 0.60

y. Another useful comparison between different time-stepping schemes con-
cerns the accuracy in relation to the chosen time step. In Figure 6.12 the
DAM results for 1 cm spacing between nodes and different time schemes are

1All calculations are performed on personal computer with 3 GHz CPU and 1 GB of
RAM.



RADIONUCLIDE TRANSPORT 65

Table 6.3: Maximal time step for different time-stepping schemes and total calculation
time.

Scheme
Explicit Adams-Bash. Runge-Kutta Explicit CBS

Max. ∆t [y] 50 20 80 50
Time [s]1 9.73 15.22 15.67 10.90

shown at various time steps. Maximal relative error is calculated as
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Figure 6.12: Maximal relative error versus time step.

ηC = sign

(
C(t) − Cref (t)

Cref (t)

)
maxt

∣∣∣∣
C(t) − Cref (t)

Cref (t)

∣∣∣∣ . (6.18)

6.3.4 Conclusions

From the results shown in Table 6.2 we can see that DAM gives more accurate
results than FVM and sometimes also than FEM. Calculation time is hard
to compare between the methods, since both commercial packages are well
optimized for radionuclide transport while our code is in the testing stage.
In addition, we didn’t make a separate 1D method, therefore the domain
is still 2D containing 3 nodes in the x direction. For pure 1D simulation
the calculation times are expected to be considerably lower than they are
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now. Computing times needed for the time period of 40000 y with time
step ∆t = 10 y are 23 s, 14 s and 3 s for DAM, Hydrus 1D and Porflow,
respectively.

In Table 6.3 the comparison of different time-stepping schemes are pre-
sented. The most stable explicit scheme is the 4th order Runge-Kutta
scheme. The Runge-Kutta procedure, however, needs four evaluations in
one time step and is thus slower than the explicit Euler scheme. Adams-
Bashforth schemes are supposed to be more stable than the pure explicit
scheme, but it is shown in our case that this is quite different. We used a
2nd order Adams-Bashforth scheme for comparison. Also a 3rd order scheme
was used, but it turns out to be even less stable than the 2nd order scheme.
The reason for this is not known. Perhaps it is due to the type of problem
or due to the specific numerical technique.

In addition, accuracy versus time is tested for different time schemes.
The results presented in Figure 6.12 show strong dependence of errors on the
time step chosen for the explicit Euler scheme. Lower dependence is obtained
by explicit CBS. The lowest dependence is for Adams-Bashforth and Runge-
Kutta schemes. The Adams-Bashforth scheme, however, allows only small
time steps in comparison to the Runge-Kutta scheme.
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6.4 Combined water flow and radionuclide trans-

port

This is a more realistic example of radioactive waste release from the proposed
repository, described in details in [Petkovšek et al., 2002] and [Železnik et al.,
2003]. The procedure used in this example is typical for the direct calcula-
tions made for performance assessment and safety analysis of the radioactive
waste repository.

6.4.1 Problem description

The repository consists of a multi-barrier system in a vault-type repository,
where the following barriers prevent the waste from interacting with the en-
vironment: the waste packages, concrete fill (inside and outside the package),
concrete structure (vault) and the geosphere (soil).

Realistic model

Solid radioactive wastes are packed in 200 l or 320 l (over-pack) steel drums,
steel canisters 2×2×2.8 m, and further in 864 l tube-type containers (TTC).
Waste within the packages are sealed with concrete.

Figure 6.13: Aerial view of surface radwaste repository.
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The TTCs are placed inside a concrete disposal container - concrete block,
of dimensions 2.5×2.5×3.2 m. After emplacement of the TTC, the concrete
block is filled with poured concrete and covered with a prefabricated concrete
lid. The drums are sealed in blocks of 8 × 8 × 3 m.

All concrete blocks are disposed in 10 vaults, with dimensions 20×20×10
m, with a 0.6 m thick bottom plate and 0.4 m thick walls. Gaps between
blocks are backfilled with a mixture of native sand or bentonite clay and the
whole vault is covered with a reinforced concrete plate. The whole repository
structure consisting of 10 vaults is 135 m long, 43 m wide and 10 m high.
An aerial view of the surface repository is depicted in Figure 6.13.

Numerical model

In reality the problem is, of course, defined in three dimensions. From the
numerical point of view, 3D problems are usually too cumbersome, especially
if the time frames considered are large. Therefore, the level of dimensionality
is decreased by at least one dimension. Here the reduction to 2D is considered
as sketched in Figure 6.14. The problem domain in Figure 6.14 is symmetrical

Figure 6.14: 2D scheme of radwaste repository.

with respect to the x coordinate. Further reduction of the calculation domain
can be made then by taking only a half of one vault as depicted in Figure 6.15.
Discretization of the domain is uniform with ∆x = ∆y =10 cm spacing in
both directions for easier comparison with the commercial package Porflow.

Materials considered are soil, concrete walls, backfill and concrete con-
tainers, marked in Figure 6.15 by numbers 1, 2, 3 and 4, respectively. The
material properties of steel drums, TTC and concrete container are aver-
aged. All together are considered as fine concrete with low permeability. The
physical parameters are set as realistically as possible and were provided by
SCK-CEN in Belgium [Mallants et al., 2003].
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Figure 6.15: Schematic representation of the calculation domain.

Flow calculation In reality, the first engineered barrier for a surface repos-
itory is a cover which prevents the majority of the water from being infiltrated
into the repository itself. In this work, however, the water flux that enters
the calculation domain is assumed to be equal to the infiltration. Consider-
ing a rainfall of 1000 mm/y, 300 mm/y evapotranspiration and 100 mm/y
runoff gives us 1000 mm/y-300 mm/y-100 mm/y=600 mm/y (0.6 m/y) infil-
tration. This water infiltrates at the top, as shown in Figure 6.5. So the top
velocity boundary condition is of Dirichlet type with prescribed water flux.
The velocity boundary conditions on the left and the right side are Neumann
boundary conditions, because of the symmetry. The bottom boundary is
characterized by free flow boundary condition with Neumann velocity and
Dirichlet pressure boundary condition. The velocity and pressure boundary
conditions are shown graphically in Figure 6.16(a) and in Figure 6.16(b),
respectively. Assuming saturated conditions, the saturated hydraulic con-
ductivities, porosities and bulk densities for each material are as listed in
Table 6.4.

Radionuclide transport calculation Two radionuclides are considered
for the comparison, short-lived 3H with half-life t1/2=12.3 y and long-lived
14C with half-life t1/2=5700 y with hypothetical initial total activity of 104

Bq for 3H and 109 Bq for 14C. Assuming the homogeneous distribution of
each radionuclide over the whole repository, the corresponding volume per
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Figure 6.16: Velocity, pressure and concentration boundary conditions.

Table 6.4: Parameters for flow calculations.
Material Hydraulic cond. [m/s] Porosity [-] Bulk density [kg/m3]

1 10 0.42 1540
2 10−8 0.16 2230
3 10−7 0.36 1700
4 10−9 0.16 2230

unit depth and half repository is V = 67.2 m3. Tritium transport is not
retarded while the transport of carbon is much slower due to retardation.
The retardation factors are calculated from bulk density in the waste area,
the distribution coefficient and from porosity in this area.

R
3H = 1 +

K
3H
d %b

ε
= 1, (6.19)

R
14C = 1 +

K
14C
d %b

ε
= 1 +

2 m3/kg · 2226 kg/m3

0.16
= 27826. (6.20)

As a consequence of different retardation factors, the peak value of carbon
takes place later than the peak value of tritium. From known retardation
factors we can calculate volumetric activities in water

C
3H
f =

m

V εR3H

=
1.0 · 103 Bq

67.2 m3 · 0.16 · 1 = 93 Bq/m3, (6.21)

C
14C
f =

m

V εR14C

=
1.0 · 109 Bq

67.2 m3 · 0.16 · 27826 = 3342 Bq/m3. (6.22)

It should be emphasized here, that volumetric activity can be used only in
cases of single decaying species. However, if a multi-species decay chain is
considered, the amount or mass (in moles) per unit volume of radionuclides
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have to be used. The relation between activity and amount of material is
made through molar activity as

Nr =
A

Am

=
A

NA λ
=

A t1/2

NA ln 2
, (6.23)

where Nr is amount of radionuclide in mole, A is activity in Bq, As is spe-
cific activity in Bq/mole and NA is Avogadro’s number. Physical properties
for transport are listed in Table 6.5. Boundary conditions for radionuclide

Table 6.5: Physical parameters for radionuclide transport calculations.

Material Diffusion dispersion [m] Distribution
[m2/y] longitudinal transversal coefficient [m3/kg]

3H
1 2.14· 10−4 0.01 0.001 0

2-4 2.14· 10−4 0.001 0.001 0
14C

1 4.42· 10−4 0.01 0.001 0.02
2-4 4.42· 10−4 0.001 0.001 2.00

transport are of Dirichlet type for top and left boundary with value C = 0
Bq/m3, i.e. no radionuclides enter the domain. Bottom and right bound-
ary conditions are of Neumann type due to the symmetry on the right side
and due to free discharge of the radionuclides on the bottom. Appropriate
concentration boundary conditions are shown in Figure 6.16(c).

6.4.2 Governing equations and solution procedure

Since the flow field is not affected by the concentration field, it can be cal-
culated separately. In the case of radionuclide transport this detail is very
important, because the time scale for calculation of the flow field is much
different from the time scale of radionuclide transport. A steady-state flow
field is achieved after a few years or after a few tens of years, whereas the
time frames for peak concentrations can be measured even in several hundred
thousand years.

For this reason the first flow field is determined and after that this flow
field is applied or superimposed to the radionuclide transport calculations as
shown in Figure 6.17. The problem of unconfined flow through the Darcy
porous media is defined by Darcy momentum conservation equation

∇P = − µ

KVVV . (6.24)
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Figure 6.17: Calculation flowchart for combined water flow and radionuclide transport
problem.

Table 6.6: Simulation parameters for water flow calculation.

parameter label value
number of nodes Nx ×Ny 120 × 124

node spacing ∆x = ∆y 10 cm
time step ∆t 0.001 y

internal convergence criteria ηint 0.000001 m/y
total convergence criteria ηcon 0.00001 m/y

domain of influence I 9
weight function free parameter c 15

The solution is obtained by CBS algorithm with the following parameters.

The problem of decaying species is characterized by the species conserva-
tion equation

R
∂Cf

∂t
+ ∇ · (vvv Cf ) = ∇ · (DDD∇Cf ) − λ̄ RCf . (6.25)

The solution is obtained by explicit algorithm using the parameters from
Table 6.7.
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Table 6.7: Simulation parameters for radionuclide transport through repository.

parameter label value
number of nodes Nx ×Ny 120 × 124

node spacing ∆x = ∆y 10 cm
time step (3H) ∆t 0.001 y
time step (14C) ∆t 10.00 y

domain of influence I 9
weight function free parameter c 15

6.4.3 Numerical results

Numerical results are given for both the flow field and radionuclide annual
discharge. Comparison, however, is made only on the final results, that is
for radionuclide discharge through the bottom boundary.

Flow calculation

Four materials are considered in the presented problem. Each is character-
ized by different saturated hydraulic conductivities. The first material (soil)
has the largest hydraulic conductivity. When water “hits” the concrete walls
of the repository, the concrete walls offer much more resistance to flow, char-
acterized by lower hydraulic conductivity. Inside the repository there are
containers with even lower hydraulic conductivities, but the backfill around
them is more permeable. Therefore the majority of the flow flows in these
thin gaps between the containers. The described flow structure is shown in
the top part of Figure 6.18. Because the water flux inside the containers
is considerably smaller than outside repository, the velocity profile is better
seen in the bottom part of Figure 6.18. The velocity profile is made across
the middle of the repository height. Here we can clearly observe the behav-
ior of the water flow. As described earlier, the water flux is naturally higher
around the repository and lower inside. In the gaps, the water flux is higher
towards the middle of the repository length.

Radionuclide transport calculation

Radionuclide transport is characterized by several mechanisms, in general by
diffusion, advection and retardation. Molecular diffusion is characteristic of
each species, the host medium, which is water in this case and of the type of
porous media through tortuosity. Often the data about tortuosity for differ-
ent porous media is not known, therefore we assume that molecular diffusion
is constant for all materials. Dispersion, on the other hand is characterized
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Figure 6.18: Flow structure in the repository (top) and flow at the middle of the repos-
itory (bottom).

by the movement of the species and from the type of porous media. The
level of retardation is a function of material and the transported species. So
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the number of involved parameters that effect the time of the peak and the
peak value is relatively high. In addition the results are very sensitive to the
initial position of the wastes. When the repository geometry is discretized,
special care has to be taken on the waste placement. For this reason the grid
is constructed in the same way in FVM and DAM calculations. Calculation
results are given in terms of output annual discharge from the bottom (exit)
boundary and are given in Figure 6.19.

Figure 6.19: Annual discharge from the repository.

6.4.4 Conclusions

This test case is presented for several reasons. Perhaps the most important
reason is the lack of realistic problem modelling using meshless methods.
In the literature the problems are usually defined by dimensionless numbers
on simple geometries using one homogeneous and isotropic material. In this
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case a more realistic problem is considered, using primitive variables and real
values. Four materials are considered with different properties. Simulation of
radionuclide transport is numerically difficult because the initial concentra-
tion exhibits very intense jumps from zero outside to large concentrations in
the waste region. Another problem is the large difference between input and
output concentrations. So we are faced with a combination of large gradients
which can cause numerical instabilities and great sensitivity of the system
to the output results. The compared results are in excellent agreement with
the solution obtained by the Porflow package.
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6.5 Natural convection in porous media

Natural convection in porous media is a standard test case for code verifica-
tion. Although the exact analytical solution is not known, some benchmark
tests are available for comparison. From the first calculations of natural con-
vection in the enclosure made by [Chan et al., 1970] and [Shiralkar et al.,
1983], with the improvement of the hardware and computational capabili-
ties, the results on a finer grid (50×50) are published by Ni and Beckermann
in 1991 [Ni and Beckermann, 1991]. Natural convection in porous media in
the square enclosure was calculated using mesh reduction DRBEM in 2000
[Šarler et al., 2000] and by RBFCM in 2004 [Šarler et al., 2004b]. In [Sadat
et al., 1996] a solution using DAM was presented in 1996. Much as the prob-
lem was calculated by several authors and using different numerical methods,
we introduced it for the reason of comparison between the standard Pressure
Poisson and CBS algorithm for the solution of a coupled pressure-velocity
equation.

6.5.1 Problem description

The problem of natural convection in Darcy porous media under considera-
tion is based on porous media Rayleigh (Ra∗) and the aspect ratio between
height and length of the cavity A dimensionless numbers, defined as

Ra∗ =
K g β∆T H

ν αth

, (6.26)

A =
H

L
, (6.27)

where K is permeability, g is the magnitude of gravitational acceleration, H
is height of the enclosure, L is width of the enclosure, ∆T is temperature
difference, ν is viscosity and αth stands for thermal diffusivity

αth =
λ

% cp
, (6.28)

with thermal conductivity λ. A graphical presentation of the problem is
shown in Figure 6.20. Due to thermal gradients arising from the temperature
difference between the hot and cold walls the fluid is subjected to buoyancy
forces, here described by Bousinesq approximation

% = %0 [1 − βT (T − T0)], (6.29)

where βT is the coefficient of thermal expansion, and T0 and %0 are reference
temperature and density, respectively. Further assumptions and simplifica-
tions are:
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Figure 6.20: Geometry of the enclosure for natural convection in porous media.

• flow obeys Darcy behavior

• porous matrix is homogeneous and isotropic

• all physical properties are constant

The natural boundary conditions for Darcy flow are slip boundary condi-
tions. In other words, the boundaries are impermeable for flow in the normal
direction, but fluid can flow freely in the tangential direction. Velocity, pres-
sure and temperature boundary conditions are shown in Figure 6.21.

Figure 6.21: Velocity, pressure and temperature boundary conditions for the natural
convection problem.
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6.5.2 Governing equations and solution procedure

Since this case is defined by dimensionless numbers we can rewrite the mass
conservation equation for incompressible fluid

∇ · ṼVV = 0 (6.30)

and Darcy equation (3.11) in dimensionless form

∇̃P̃ = −ṼVV + Ra∗ T̃kkk, (6.31)

with kkk being the vector of the direction of gravitational acceleration and with
other relations as follows. Dimensionless pressure is

P̃ =
H2

αth µ
P, (6.32)

dimensionless velocity

ṼVV =
H

αth

VVV , (6.33)

and dimensionless temperature

T̃ =
T − Tref

(Tmax − Tmin)
, (6.34)

with reference temperature Tref = 1/2 (Tmax − Tmin). The adjacent steady-
state energy equation is

∇̃ · (ṼVV T̃ ) = ∇̃2T̃ . (6.35)

The solution procedure is as described in flow chart 6.22. Simulation pa-
rameters used are listed in Table 6.8. False time step is used in both CBS
algorithm and pressure Poisson algorithm.

6.5.3 Numerical results

The calculation is performed for porous media Rayleigh number Ra∗=100
and aspect ratio A=1. A graphical presentation of the results is given in
Figure 6.23, where the vectors show flow pattern and the lines represent
isotherms. The results are compared for three grid densities, 30×30, 50×50
and 70 × 70 against the reference solution provided by Gobin et al. (can
be found in [Šarler et al., 2000]). The reference solution was assessed by
fine-mesh FVM. The validation of the FVM code was performed over a large
range of parameters for purely thermal natural convection in fluids or in
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Figure 6.22: Calculation flowchart for natural convection.

porous media. The reference simulation presented here is based on the Darcy-
Brinkman version of the code using a very low Darcy number, Da=10−8. The
FVM calculations were performed on a Cray-98 vector mainframe.

Temperature profiles for all three grid densities and reference solution
along the insulated boundary are shown on the top of Figure 6.24. Velocity
profiles are compared along the middle of the domain height for y compo-
nent and along middle of the domain width for x velocity component. The
comparison is shown only for one grid density (see bottom Figure 6.24) be-
cause optically we cannot distinguish between the results on different grids.
As explained above, the solution is provided using two algorithms for coping
with pressure-velocity equations. The first one is the classical pressure Pois-
son algorithm, which was used extensively in the past. The relatively new
CBS algorithm is tested against the pressure Poisson algorithm. The results
can be better compared in terms of maximal stream function ψmax, maximal
overall Nusselt number Numax, and maximal velocities on the middle of the
domain. Stream function is calculated from

ψmax =

∫ py

p−y

Vx dpy = −
∫ px

p−x

Vy dpx, (6.36)
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Table 6.8: Simulation parameters for natural convection.

number of nodes parameter label value
30×30 false time step ∆tf 0.001

velocity convergence criteria
internal ηint,Ṽ 10−6

steady state ηcon,Ṽ 10−5

temperature convergence criteria ηT̃ 10−6

50×50 false time step ∆tf 0.0001
velocity convergence criteria
internal ηint,Ṽ 10−6

steady state ηcon,Ṽ 10−5

temperature convergence criteria ηT̃ 10−6

70×70 false time step ∆tf 0.00005
velocity convergence criteria
internal ηint,Ṽ 10−7

steady state ηcon,Ṽ 10−6

temperature convergence criteria ηT̃ 10−7

domain of influence I 9
weight function free parameter c 15

where p−y and p−x are positions on the bottom and the left side of the enclosure,
respectively. Overall Nusselt number is defined as:

Nu =

∫ p+
y

p−y

∂T (p−x ,py)

∂x
dy

A ∆T
, (6.37)

while the local Nusselt number is

Nu(py) =
H ∂T (p−x ,py)

∂x

A ∆T
, (6.38)

where p−y and p+
y are positions at the bottom and the top coordinates of the

enclosure. The integration is made numerically using trapezoid rule. Maxi-
mal velocities are compared along the vertical for x component and along the
horizontal middle cross-section for y component velocities. Reference values
are given in Table 6.9. The reference values [Ni and Beckermann, 1991]
and [Shiralkar et al., 1983] were found in [Sadat et al., 1996], where only
data about Nusselt number is given. Previous calculations with DRBEM

1All calculations were performed on personal computer with 3 GHz CPU and 1 GB of
RAM.
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Figure 6.23: Results for Darcy natural convection for Ra∗=100 and Pr=1.

Table 6.9: Reference values for natural convection in Darcy porous media for Ra∗=100,
A=1.
reference grid Nuref ψref V ref

x,max V ref
y,max

[Šarler et al., 2000] (DRBEM) 30×30 3.149 4.7168 - -

[Šarler et al., 2004b] (RBFCM) 30×30 3.103 4.6201 - -
[Gobin and Bennacer, 1996b] (FVM) 200×200 3.102 4.7357 35.8899 17.3805
[Sadat et al., 1996] (DAM) 41×41 3.098 - - -
[Ni and Beckermann, 1991] 50×50 3.103 - - -
[Shiralkar et al., 1983] - 3.115 - - -

and RBFCM showed that the most sensitive results are those of local Nus-
selt number. In Figures 6.25 the convergence of local Nusselt numbers for
two grid densities (coarser 30×30 and finer 70×70) is presented. Results
calculated with DAM are given in Table 6.10 for three grid densities and for
both algorithms.
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Figure 6.24: Temperature profile at the insulated boundary along x coordinate (top)
and velocity components along the middle of the domain (bottom).
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Table 6.10: Calculated results for natural convection in porous media (Ra∗=100, A=1).

Algorithm Grid Nu ψ Vx,max Vy,max time [min]1

Poisson 30×30 3.033 4.7001 36.7584 16.9354 3.5
Poisson 50×50 3.056 4.7185 36.7083 17.2745 43
Poisson 70×70 3.077 4.719 36.72 17.3512 150
CBS 30×30 3.032 4.704 36.9457 16.8509 6
CBS 50×50 3.066 4.716 36.7625 17.2279 40
CBS 70×70 3.100 4.721 36.6724 17.3683 190

Figure 6.25: Local Nusselt number with 30×30 and 70×70 grid. Reference solution is
denoted by solid line.



NATURAL CONVECTION IN POROUS MEDIA 85

Natural convection on irregular geometry

A similar problem of natural convection in Darcy porous media is introduced
on a domain containing holes in the shape of the letters PhD as shown in
Figure 6.26. The boundary conditions are the same as defined in Figure 6.21.
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porous media

Figure 6.26: Problem geometry for natural convection in porous media on a domain with
holes.

Other calculation parameters are given in Table 6.11. Because in this case
the geometry is more difficult, the corners of the holes are given in tabular
form. The coordinates are tabulated in anti-clockwise direction, because of
the definition of normals in our code. Nodes that fall into the hole region
are deleted. This case is meant just to show the capability of meshless meth-
ods for coping with the problems defined on irregular domains. The velocity
boundary conditions for the holes are slip boundary conditions, and Neu-
mann boundary conditions are used for the temperatures. The appropriate
vector field and isotherms are shown in Figure 6.27. Temperature profiles
are shown at top insulated boundary (p+

y ) and bottom insulated boundary
(p−y ) in Figure 6.28. Results in terms of Nusselt number and maximal stream
function are given in Table 6.13.
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Table 6.11: Simulation parameters for natural convection in porous media on irregular
geometry.

parameter label value
Rayleigh number Ra 100
Aspect ratio A 1/1.1
Number of nodes Nx ×Ny 50×55
false time step ∆tf 0.00001
velocity convergence criteria (internal) ηint,Ṽ 10−6

velocity convergence criteria (steady-state) ηcon,Ṽ 10−5

temperature convergence criteria ηT̃ 10−5

Figure 6.27: Solution of natural convection in porous media on irregular geometry for
Ra∗=100.
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Table 6.12: Coordinates of internal holes.
P H D

px py px py px py

0.18 0.75 0.45 0.53 0.75 0.76
0.18 0.19 0.45 0.19 0.75 0.2
0.275 0.19 0.52 0.19 0.8 0.2
0.275 0.46 0.52 0.31 0.89 0.31
0.36 0.56 0.58 0.31 0.89 0.635
0.36 0.66 0.58 0.19 0.8 0.76
0.275 0.75 0.65 0.19 0.75 0.76
0.18 0.75 0.65 0.53

0.58 0.53
0.58 0.415
0.52 0.415
0.52 0.53
0.45 0.53
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Figure 6.28: Nonsymmetric temperature profiles at the top and the bottom boundary.

Table 6.13: Calculated results for natural convection in porous media (Ra∗=100) with
holes.

Nu ψ

2.7615 4.0923
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6.5.4 Conclusions

Although the problem of natural convection in a Darcy porous media has
been solved many times and also by the same numerical method, it is pre-
sented here for the sake of comparison between two algorithms. It was shown
that the accuracy is almost the same for the pressure Poisson as well as for the
CBS solution procedure. The calculation time for steady-state solution with
CBS algorithm, however, is larger than in the case of the pressure Poisson
procedure. For the calculation of Darcy porous media flow this observation
is logical, since one derivative more has to be evaluated. For the problems
using extended Darcy equation e.g. Darcy-Brinkman equation or even where
a porous-liquid layer is involved, the calculation time would be very similar or
even smaller than the one for the pressure Poisson algorithm. In addition, the
CBS algorithm is compact and the determination of artificial compressibility
is straightforward, as opposed to finding the best relaxation factor in the
pressure Poisson equation. It should be also noted that the procedures are
not entirely comparable. While the code for the pressure Poisson equation
solves the steady-state Darcy equation, the CBS procedure uses the Darcy
equation in time-dependent form as defined in equation (4.59).

If DAM is compared to other mesh-reduction (DRBEM) and meshless
(RBFCM) methods we can conclude that the DAM results are more accurate
than those obtained by RBCFM at the same grid density. DRBEM results
are a little bit more accurate than DAM results. However, the calculation
time for the same problem calculated on a 30 × 30 grid takes a few minutes
for DAM, while the calculation time for RBFCM is on the order of a few
hours and on the order of several days for DRBEM.

At the end, a problem with irregular geometry is presented. The intention
of the described geometry is to present the ability of meshless methods to
cope with more complicated geometries. At this point we should emphasize
that the distribution of domain and boundary nodes have to be carefully
positioned. Otherwise the convergence of the simulation is very difficult to
achieve.
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6.6 Double diffusive natural convection in a

composite fluid-porous layer

In nature fluids are not always pure, but composed of more than one sub-
stance. When such a fluid is subjected to thermal and compositional gradi-
ents, natural convection is induced by combined thermal and solutal buoy-
ancy forces. This physical phenomena is called double diffusive natural con-
vection. Both can drive the fluid in the same direction, or they can work
in the opposite direction thus slowing down the movement of the fluid. In
many industrial or environmental applications, a fluid can occupy a domain
which is also partly characterized by porous media and thus termed a com-
posite fluid-porous layer . As an example, in a solidification process there is a
mushy zone between solid and liquid phase. The mushy zone is characterized
by columnar or dendritic forms which can be macroscopically described as
a saturated porous media. A good understanding of heat and mass transfer
between the mushy and fluid regions may be of great importance in mate-
rial processing because the internal structure and mechanical properties of
the solid results from this coupling [Prescott and Incropera, 1996]. Similar
problems are observed in nature for solute exchange in sediments in coastal
fields, where transport phenomena take place at an interface between a fluid
phase and a porous medium [Webster et al., 1996]. The flow structure can
vary greatly in such systems, depending on the governing parameters. The
problem is characterized by a large number of parameters with interdepen-
dent influences. Therefore, the influences cannot be analyzed individually.
The aim of this study, more thoroughly described in [Gobin et al., 1998] and
[Neculae, 2003], is to analyze the effect on heat and species transfer of a bi-
nary solute in a composite fluid-porous layer enclosed in a rectangular cavity.
Until now, similar problems have been numerically analyzed for single porous
Darcy-Brinkman [Goyeau et al., 1996] or fluid layer [Gobin and Bennacer,
1996a] alone. The only results for double diffusive convection in a two layer
cavity, which are also used for comparison, are provided by [Gobin et al.,
1998].

To avoid the uncertainties linked to programmers or computational errors
it is important to have other results possibly provided by different authors
and even better by different numerical methods. Therefore, the motivation
for choosing the problem of double diffusive natural convection in a composite
fluid-porous layer lies in its physical as well as numerical complexity.
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6.6.1 Problem description

The binary fluid occupies a two-dimensional rectangular cavity, which is filled
with porous media along the left vertical wall. The thickness of the porous
layer is denoted by the dimensionless distance p̃por

x . The porous layer is
assumed to be isotropic and homogeneous and saturated with binary fluid.
Different and uniform temperatures and concentrations are specified at the
vertical walls and zero fluxes at the horizontal walls of the enclosure (see
Figure 6.29). Further assumptions and simplifications are:

Figure 6.29: Geometry of enclosure for double diffusive natural convection in a composite
fluid-porous layer.

• the flow is laminar

• the fluid is incompressible and Newtonian

• the porous matrix is in thermodynamic equilibrium with the fluid

• buoyancy forces are approximated by the Boussinesq approximation

% = %0 [1 − βT (T − T0) − βC (C − C0)], (6.39)

where βT > 0 and βC < 0 are the coefficients of thermal and solutal expan-
sion, respectively, and T0, C0 and %0 are reference temperature, concentration,
and density, respectively.

The problem is defined by coupled momentum, energy and species con-
servation equations. Furthermore, the physical problem is governed by the
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different macroscopical properties of each layer. In this case two different
domains and consequent possible strong non-linearity at the porous/fluid
interface exist. Two different approaches are generally proposed: the two-
domain approach and the one-domain approach. In the two-domain approach
the fluid layer and the porous layer are considered separately. The Navier-
Stokes equation is written in the fluid, while the flow in the porous medium
is governed by the Darcy law (or one of its extensions; the Darcy-Brinkman
formulation is used in the present work). In this case one must write the con-
tinuity of the velocity and of the shear stress at the interface. On the other
hand we can use the one domain approach, where the fluid is considered as a
pseudo-fluid and the composite region is treated as a continuum. This leads
to solving only one modified Navier-Stokes equation, which also includes the
Darcy term. The Darcy term in one-domain formulation dominates over
other terms with lower permeability of porous medium. In this equation,
the transition from the fluid to the porous medium is achieved through spa-
tial variation of the permeability. This formulation has been widely used in
previous numerical computations since it avoids explicit consideration of the
conditions at the fluid/porous interface. In our case and in the reference case
the one-domain approach was used.

6.6.2 Governing equations and solution procedure

Again, the case of double-diffusive natural convection in a composite porous-
fluid layer is defined in dimensionless formulation. Since the one-domain
approach was chosen, the appropriate momentum equation (3.15) with as-
sumed incompressible fluid defined by

∇̃ · ṼVV = 0 (6.40)

can be re-cast into dimensionless form

1

Pr

[
1

ε

∂Ṽ

∂t̃
+

1

ε2
(ṼVV · ∇̃)ṼVV

]
= − 1

Pr
∇̃P̃ − 1

Da
ṼVV + Λ∇̃2ṼVV + RaT (T̃ + N C̃)kkk.

(6.41)

The definitions for P̃ and ṼVV are listed in Chapter 6.5. Dimensionless time is

t̃ =
αth t

H2
(6.42)

and dimensionless viscosity Λ is defined as

Λ =
µeff

µ
. (6.43)
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The energy conservation equation in dimensionless form is

∂T̃

∂t̃
+ ∇̃ · (ṼVV T̃ ) = ∇̃2T̃ , (6.44)

with dimensionless temperature

T̃ =
T − Tref

(Tmax − Tmin)
, (6.45)

and reference temperature Tref = 1/2 (Tmax−Tmin). In addition this problem
is characterized by the dimensionless species conservation equation

∂C̃

∂t̃
+ ∇̃ · (ṼVV C̃) =

1

Le
∇̃2C̃. (6.46)

Dimensionless concentration is defined as

C̃ =
C − Cref

(Cmax − Cmin)
, (6.47)

where Cref = 1/2 (Cmax − Cmin) is reference concentration. Other dimen-
sionless numbers are:

RaT =
g β∆T H3

ν αth

, (6.48)

Pr =
ν

αth

, (6.49)

Sc =
ν

D
, (6.50)

Da =
K
H2

, (6.51)

N =
βC ∆C

βT ∆T
, (6.52)

Le =
αth

D
, (6.53)

p̃por
x =

ppor
x

L
, (6.54)

(6.55)

where RaT is thermal Rayleigh number, Pr is Prandtl number and Sc is
Schmidt number, Da is Darcy number, N is buoyancy ratio, Le is Lewis
number, p̃por

x is dimensionless width of porous medium, K is permeability of
the porous medium, respectively, αth is thermal diffusivity, D is diffusivity,
H is height of the cavity, L is the width of the cavity, and ppor

x is dimensional
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Figure 6.30: Calculation flowchart for double diffusive natural convection in fluid-porous
layer.

Figure 6.31: Velocity, temperature, and concentration boundary conditions for double
diffusive natural convection in fluid-porous layer.

width of porous medium. The solution procedure is as described in flow chart
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Table 6.14: Simulation parameters for double diffusive natural convection in fluid-porous
layer.

parameter label value
number of nodes Nx ×Ny 80×160
false time step ∆t̃ 2 · 10−7

velocity convergence criteria (internal) ηint,Ṽ 10−6

velocity convergence criteria (steady-state) ηcon,Ṽ 10−6

temperature convergence criteria ηT̃ 10−8

concentration convergence criteria ηC̃ 10−8

domain of influence I 9
weight function free parameter c 15

6.30. Simulation parameters used are listed in Table 6.14. All equations are
solved using the CBS algorithm. Velocity, thermal, and concentration bound-
ary conditions are presented in Figure 6.31. Pressure boundary conditions at
all boundaries are derived from equation (6.41) multiplied by the boundary
normal nnn.

The problem of double diffusion natural convection in a composite fluid-
porous layer is characterized by many parameters. Flow structure depends on
the variation of all parameters, but it has been shown in [Gobin et al., 1998]
that variation of permeability in the porous layer has the most interesting
and strong influence. For this reason, two sets of calculations are made based
on the following parameters:
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Table 6.15: Parameters for double diffusive convection in a composite porous-fluid layer.

Ra=106, Pr=10, Le=100, A=2, p̃por
x =0.1

N=1 N=10
Da=10−2 Da=10−5 Da=10−8 Da=10−2 Da=10−5 Da=10−8

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

6.6.3 Numerical results

6 different cases are calculated in this chapter. All are characterized by the
same Ra, Pr, Le, and p̃por

x numbers and aspect ratio A as can be seen in Table
6.15. The first set (Cases 1 to 3) is characterized by the equal influence of
temperature and concentration field on buoyancy, i.e. N number is set to 1.
Concentration buoyancy forces in the second set (Cases 4 to 6) are 10 times
larger than for thermal forces. Both sets are characterized by three different
values of Da numbers, Da=10−2, Da=10−5, and Da=10−8. At Da=10−2 the
porous layer gives almost no resistance to flow, while Da=10−8 represents
a nearly impermeable layer. In this range both limiting cases are covered.
Results are compared in terms of Nusselt and Sherwood numbers along the
vertical walls which represent the dimensionless heat and mass transfer. The
Nusselt number Nu is defined in (6.37). Similarly, the Sherwood number is

Sh =

∫ p+
y

p−y
D ∂C(p−x ,py)

∂x
dy

AD∆C
, (6.56)

with p−y and p+
y denoting minimum and maximum coordinate in the y di-

rection, respectively, p−x the minimum coordinate in the x direction, and A
is the aspect ratio defined in Chapter 6.5. In Figure 6.32 comparisons of
stream lines, concentration and thermal field are shown for Case 2 and Case
3. The comparison shown in Figure 6.34 describes good agreement between
the results obtained by DAM and FVM although the number of calculation
nodes is approximately three times lower in the case of DAM. At N=1 no
change of flow pattern is observed (see streamlines in Figure 6.32).

It has been shown in [Gobin et al., 1998] and [Neculae, 2003] that more
complex flow patterns are observed at N=10, where the flow structure is mod-
ified with increasing permeability of the porous layer. At Da=10−8 (Case 6)
the flow is organized in one cell. While the Sherwood number is increas-
ing monotonically with the most intense transition between Da=10−7 and
Da=10−3 (Figure 6.35a), the Nusselt number undergoes one or more min-
ima. The first local minimum is observed at approximately Da=1.5·10−7

and the second at Da=1·10−5 (see Figure 6.35b). Along with the local min-
ima of Nusselt numbers flow also is reorganized into a larger number of cells.
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The streamlines obtained by DAM are presented at Da=1·10−5 (Case 5),
where flow pattern is reorganized from one cell into two cells (Figure 6.33b)
and at Da=1·10−2 (Case 4) where a transition from two to three cells has
occurred (Figure 6.33c). Tabulated results are listed in Table 6.16.
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Figure 6.32: Comparisons of streamlines (left), temperature fields (mid), and concen-
tration fields (right) for N=1 at Da = 10−5 (top) and Da = 10−8 (bottom). Solid lines
represent DAM solutions and dashed lines FVM solutions.
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Figure 6.33: Streamlines for N=10 at Da = 10−8 (a), Da = 10−5(b), and Da = 10−2

(a). Contours range from values ψ =-10 to ψ =0 with equal spacing ∆ψ.

Table 6.16: Tabulated results for RaT = 106, Pr=10, Le=100, A=2, p̃por
x =0.1.

N=1
Nusselt number Sherwood number
DAM FVM DAM FVM

Da=10−2 9.62 9.62 49.80 50.50
Da=10−5 6.37 6.40 29.93 29.00
Da=10−8 6.25 6.19 14.25 14.66

N=10
Nusselt number Sherwood number
DAM FVM DAM FVM

Da=10−2 7.58 7.72 59.30 63.53
Da=10−5 4.59 4.71 45.90 48.18
Da=10−8 5.56 5.65 14.25 14.67
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(a)

(b)

Figure 6.34: (a) The influence of the Darcy number on the average mass transfer, (b)
The influence of the Darcy number on the average heat transfer at N=1.
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(a)

(b)

Figure 6.35: (a) The influence of the Darcy number on the average mass transfer, (b)
The influence of the Darcy number on the average heat transfer at N=10.
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6.6.4 Conclusions for physical part

From the calculations shown in this chapter it can be observed that the flow
structure can change considerably according to the conditions. However, the
conditions for more complex flow structures are met only in a narrow spec-
trum of parameters. At buoyancy ratio N=1 the conditions for flow change
are not met. With increasingly intense conditions (at higher N number and
consequently larger RaC number) the flow pattern is modified to several cells.
The full understanding of the problem is still not very clear. However, the
explanation of [Gobin et al., 2004] is that the evolution of the convective
flow with increasing permeability results from the competition between two
opposing effects. First, the higher permeability results in a better pene-
tration of the flow into the porous layer and larger effect of the advection
of the imposed temperature and concentration difference in the layer. The
effective temperature and composition gradients governing the buoyancy is
expected to grow and consequently force the flow to be accelerated. This
results in higher heat and mass transfer which can be described by the Sher-
wood number (Figure 6.35(a)). On the other hand, due to larger thermal
diffusivity over mass diffusivity, the central recirculation loop driven on the
scale of the thermal boundary layer thickness is driven by a relatively smaller
temperature difference. Locally, the thermal buoyancy force decreases and
so does the intensity of the internal thermal loop and consequently average
heat transfer. In the neighborhood of the first minimum in Figure 6.35(b)
one may observe that the decrease in the Nusselt number is caused by a de-
crease of the main recirculation cell, due to the formation of a low velocity
zone seen in Figure 6.33(b), where the heat transfer is mainly conductive.
This stagnant zone is compositionally stratified as in typical double diffusive
problems [Gobin and Bennacer, 1996a], while the heat transfer in this region
is mainly conductive. With the increasing height of the stagnant zone, the
local vertical concentration gradient decreases and becomes destabilized by
the lateral temperature gradient, resulting in the formation of a secondary
co-rotative cell and a sudden increase of the Nusselt number. With the
decreasing permeability, again the formation of a stagnant cell and the con-
sequent transition to three cells (Figure 6.33(c)) with corresponding increase
of Nusselt number at Da≈ 2 · 10−7 is observed. The evolution of the process
is illustrated in Figure 6.35(b).

6.6.5 Conclusions for numerical part

The problem in question is important for this work because it also deals
with the problems connected with environmental issues. In addition to heat
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transfer, the species transfer is included as well. Although in many cases
the species transport does not affect the flow structure (i.e. radionuclide or
pesticide transport), it sometimes plays an important role as for example in
estuaries. From the numerical point of view the problem is characterized
by high Rayleigh numbers (RaT =106, RaC=109) and also very thin solutal
boundary layers (high Schmidt number). These conditions are very likely
to induce computational instabilities. The minimal number of grid points
needed for simulation to converge for N=10 and Da=10−2 is 80×160 (A=2).
This by itself shows the complexity of the problem. For N=10 and at higher
Darcy numbers, the flow structures are quite complex and differences be-
tween methods are more visible. Still, the Nusselt number exhibits the same
behavior and comparisons between the two methods show quite good agree-
ment. Results for N=10 should be calculated on a finer grid to improve
accuracy and to achieve better agreement with the reference solution.



7 Advanced topics on DAM

In Chapter 6 we presented the capability of DAM to solve complex and
large scale physical problems. Nevertheless, the involved discretization of
the physical domain was simple and can be calculated by any traditional
method with the exception of the case of natural convection in the domain
with holes. The main objective or advantage of meshless methods, however,
is to solve problems on geometrically complex geometries and by arbitrary
discretization of the physical domain. To achieve this goal, several issues
typical for DAM (which can be extended to other meshless methods as well)
are elaborated in this chapter. One of the most influential on stability and
accuracy is certainly the choice of weight function. In addition, weight func-
tion is always characterized by a free parameter which is user-defined. For
all previous cases, calculated on uniform grids or on slightly non-uniform
grids, the value of the free parameter is the same in each subdomain nΩ.
The idea about finding the most optimal weight function free parameter for
non-uniform grids is presented and tested for different node arrangements.

The shape functions of local meshless methods are constructed from the
nodes in the domain of influence or support. For this reason, the impact of
the number of nodes in the domain of influence in terms of stability, accuracy
and CPU time is studied.

In contrast to some traditional methods (FVM), meshless methods are not
locally conservative. Therefore, some possible implementations of diffusive
and advective terms are given at the end of this chapter.

103
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7.1 Weight function

Weight functions Ŵ play an important role in meshless methods. The influ-
ence of neighboring nodes pppi on the calculated node pppn is expressed in terms
of weight function in each n’th subdomain nΩ which has a strong influence
on the accuracy, stability and conditioning of matrix A in (5.3). In general,
the weight function has to satisfy the following four conditions

1. nŴ (ppp− pppi) > 0; ∀ppp over nΩ

2. nŴ (ppp− pppi) = 0; ∀ppp outside nΩ

3. Ŵ is a monotonically decreasing function

The first condition, namely positivity, is not a mathematical function rep-
resentation requirement, but is important to ensure a stable presentation of
physical phenomena [Liu, 2003]. The second condition, compactness, is im-
portant because it enables the approximation to be generated from a local
representation of nodes, i.e. from the neighboring nodes. The last condition
is, again, not a mathematical requirement, but it is imposed on the physical
consideration that more distant nodes have less influence than the nodes in
the vicinity.

The choice of the weight function is more or less arbitrary as long as
the weight function satisfies the conditions of positivity and compactness for
local numerical methods. In the literature several different types of weight
functions are given. Explicitly for DAM, the most extensively used (see for
example [Sadat et al., 1996], [Sophy and Sadat, 2002], ...) weight function is
Gaussian

Ŵ (ppp− pppn) =

{
e−c

‖ppp−pppn‖2

σ2 ; ‖ppp− pppn‖ ≤ σ
0 ; ‖ppp− pppn‖ > σ

, (7.1)

where c is user-defined free parameter and ‖ppp−pppn‖ is the Euclidian distance
between two nodes ppp and pppn. Parameter σ is defined as the largest Euclidian
distance between node ppp and all other nodes considered in nΩ. [Belytscko
et al., 1996a] also used non free parameter splines: cubic spline and quadratic
spline, defined as

Ŵ (ppp− pppn) =





2
3
− 4

‖ppp−pppn‖
2

σ2 + 4
‖ppp−pppn‖

3

σ3 ;
‖ppp−pppn‖

σ
≤ 1

2
4
3
− 4

‖ppp−pppn‖

σ
+ 4

‖ppp−pppn‖
2

σ2 − 4
3

‖ppp−pppn‖
3

σ3 ; 1
2
<

‖ppp−pppn‖

σ
≤ 1

0 ;
‖ppp−pppn‖

σ
> 1

(7.2)



WEIGHT FUNCTION 105

for cubic spline and

Ŵ (ppp−pppn) =

{
1 − 6

‖ppp−pppn‖
2

σ2 + 8
‖ppp−pppn‖

3

σ3 − 3
‖ppp−pppn‖

4

σ4 ;
‖ppp−pppn‖

σ
≤ 1

0 ;
‖ppp−pppn‖

σ
> 1

(7.3)

for quadratic spline. In fact the spline functions as well have a free param-
eter although it is hidden in the scaling factor. In this work the Gaussian
weight function is used because of its simple adaptivity. Until now the scal-
ing parameter c was usually heuristically defined by authors and it depended
mostly on the grid density and on the distribution of nodes. In the case of
randomly distributed nodes the parameter value can vary substantially. In
the literature the range of proposed free parameter values vary from author
to author. Explicitly for DAM, the heuristically defined c parameter ranges
from ln 100 ≈ 4.6 [Prax et al., 1998] to 6.25 found in [Belytscko et al., 1996a]
or almost 7 [Sadat and Couturier, 2000]. In general, for non-uniform grids,
the free parameter may vary from one set of nodes to another. In addition, if
the nodes are distributed non-uniformly, the free parameter can be different
in different directions. For example consider a 2D problem with 9 support
nodes. In figure 7.1a uniform distribution is presented. The most appropri-
ate weight function for this case is intuitively radially symmetrical, as shown
in Figure 7.1b. In Figure 7.2a uniform distribution of nodes is still shown,

(a) (b)

Figure 7.1: Uniform distribution. (a) Node distribution, (b) Weight function schematic.

but the grid spacing is different in the x and y directions. To obtain better
conditioning of the matrix and consequently more accurate derivatives the
weight function for this case should be different in each direction. In other
words, the parameter c has to be larger in the x direction than in the y
direction as shown in Figure 7.2b. Formulation of the weight function (7.1)
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(a) (b)

Figure 7.2: Uniform non-equidistant distribution. (a) Distribution of nodes, (b) Weight
function schematic.

for the described case can be extended into

Ŵ (ppp− pppn) =

{
e−cx

(px−px n)2

σ2 −cy
(py−py n)2

σ2 ; ‖ppp− pppn‖ ≤ σ
0 ; ‖ppp− pppn‖ > σ

, (7.4)

7.1.1 Optimization of weight function free parameter

The main problem of the construction of proper shape function is the local
selection of free parameters cx and cy. In previous Chapter 6 single value of
parameter c = 15 was used. Here, the focus is on finding the optimum c value
for arbitrary grid. All cases consider 9 nodes in the domain of influence. The
idea to adjust free parameters locally in each subdomain is developed here
for the first time.

The procedure consists of three main steps. First, the measure against
which the parameters are compared to has to be found. This measure is
called the reference quality function. The reference quality function is used
for evaluation of its numerical derivatives on uniform and non-uniform grids.
Second, a function called the object function, which needs to be minimized,
has to be constructed. The object function is constructed from the derivatives
found by the evaluation of the reference quality function. And finally, the
parameter values are evaluated using the appropriate optimization procedure.
A schematic of the entire procedure is given in Figure 7.3. All steps are
explained in more details below.

Reference quality function

The reference quality function F has to be a positive definite function on
subdomain nΩ. The reference quality function should not be any of the used
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Figure 7.3: Free parameter optimization procedure flowchart.

basis functions. In this work we define F in such a way that F(ppp − pppn) =

1/Ŵ (ppp − pppn) inside nΩ and 0 outside nΩ. Explicitly, the reference quality
function is

F(ppp− pppn) =

{
ecx

(px−px n)2

σ2 +cy
(py−py n)2

σ2 ; ‖ppp− pppn‖ ≤ σ
0 ; ‖ppp− pppn‖ > σ

. (7.5)

The specific reference quality function in this work is chosen because the
right-hand side values cancel and only basis functions remain. Because the
domain of influence usually contains a relatively low number of nodes and
because the chosen reference quality function is relatively steep, the second
derivatives of F calculated on a given non-uniform grid cannot be compared
to the analytically calculated partial derivatives. For this reason our second
partial derivatives are obtained via least squares approximation of the refer-
ence quality function calculated on a uniform grid. The approximation of the
reference quality function on the uniform grid is denoted by Funi, while the
approximation of the reference quality function calculated on the posed ir-
regular grid is marked by Firr. Both approximations of the functions and the
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partial derivatives are obtained from equations (5.1-5.11). The dependence
on grid density is alleviated by scaling of Euclidian distance between nodes
in the basis functions by the radius of influence domain in each subdomain

nΩ. Coefficients α are thus calculated from (5.3) by the least square approx-
imation, where the right-hand side vector is due to our choice of reference
quality function reduced from

nφ̂j =
I∑

i=1

ϕj((pppi − pppn)/σ) nŴ (pppi − pppn) · 1

nŴ (pppi − pppn)
, (7.6)

to

nφ̂j =
I∑

i=1

ϕj((pppi − pppn)/σ). (7.7)

The approximation of the reference quality function on the uniform grid Funi

is calculated with cx = cy = 12.5 on the grid shown in Figure 7.4. This value
is chosen because it gave the most optimal results on all grids tested. The

Figure 7.4: Scaled uniform node distribution (σ =
√

2).

evaluation of second derivatives on the uniform grid gives the single value
∂2Funi

∂x2 = ∂2Funi

∂y2 = 6400.

Object function

J is a function which needs to be minimized. The object function proposed
in this work seeks for the minimum difference between the second partial
derivatives of the reference quality function calculated on the uniform grid
and the second partial derivatives of the same function found on the real grid.
Thus we seek for a minimum of a functional min{J (Φuni,Φirr)}, where Φuni

and Φirr are values or n’th derivatives of Funi and Firr, respectively. The
fact is that when solving PDE with meshless methods, the accuracy of the
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solution will increase with better reproduction of the surface from known
field variables, which leads to more accurate derivatives afterward applied to
the given PDE. Therefore if the difference between derivatives of the known
reference quality function and reproduced shape function are minimal then
the solution of PDE will be most accurate.

The selection of object function has a strong influence on optimization
results. However, finding the most appropriate one is not an easy task.
Therefore, our object function is constructed from two parts. The first one
is based on the assumption that the most accurate derivatives are obtained
on a locally uniform grid. All results obtained on arbitrarily arranged grid
nodes are then compared to the solution on the uniform grid. The second
condition which should be satisfied is that second derivatives with respect
to free parameter in the x and y directions are equal. Because errors of the
second derivatives due to the truncation are larger, our object function is
built only using second derivatives as follows

J =

(
∂2Firr

∂ x2
− ∂2Funi

∂ x2
ω4

x

)2

(7.8)

+

(
∂2Firr

∂ y2
− ∂2Funi

∂ y2
ω4

y

)2

+ 16
(
ω2

x + ω2
y

)2 ·
(
∂2Firr

cx ∂ x2
− ∂2Firr

cy ∂ y2

)2

.

Object function forcing parameters ωx and ωy are introduced to prevent the
free parameters from being too different and too extreme and are defined as
ωx = cy/cx and ωy = cx/cy. The first two terms in equation (7.8) are used to
minimize the error between the second derivatives obtained on the uniform
grid and the second derivatives obtained on the arbitrary grid. The third
term in equation (7.8), however, is used to force the second derivatives to
be equal with respect to cx and cy. Equivalence of the second derivatives is
forced more intensively when cx and cy are farther apart. The constant 16
is set as a weight between the first two terms and the last term. For one
parametric formulation, equation (7.8) simplifies to

J =

(
∂2Firr

∂ x2
− ∂2Funi

∂ x2

)2

(7.9)

+

(
∂2Firr

∂ y2
− ∂2Funi

∂ y2

)2

+ 64

(
∂2Firr

c ∂ x2
− ∂2Firr

c ∂ y2

)2

.
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The goal is to minimize the object function (7.9) for one parametric weight
function or (7.8) for two parametric weight function.

Optimization procedure

The optimization procedure can be chosen by the user. There are many al-
gorithms available [Fortran, 2003]. In cases where J consists of more than
one local minima, special precaution and/or special optimization procedures
should be used. The choice of optimization procedure also has a great influ-
ence on the optimization time. For testing purposes a simple but robust tree
procedure is used:

1. Set the initial value of free parameter c0.

2. Search for minimum around initial value with large step λ1: c1min =
c0 ± λ1.

3. Search for minimum around c1min with step λ2: c
2
min = c1min±λ2; λ2 =

λ1$/2.

4. Refine search around c2min: c3min = c2min ± λ3; λ3 = λ2$/2.

5. Update new minimum (c2min = c3min).

6. Return to Step 4 if c3min < c2min.

7. Exit when condition in Step 6 is not satisfied.

λ1 is a user-defined step and $ ≈ 0.618 is the golden section value. One
parametric and two parametric weight functions are used in optimization
procedure in this work. In the latter case the weight function (7.4) has two
free parameters, therefore free parameters c and λ are second-order vectors.
The starting position is set to c0 = {15, 15} and initial step λλλ1 = {10, 10}.
This procedure can be even expanded to four degrees of freedom for opti-
mization of each weight function quadrant in possible future work.

7.1.2 Numerical examples

The procedure proposed above is tested on a single convective-diffusive PDE
using Dirichlet boundary conditions.
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Problem description

The optimization procedure is tested on the 2D Burger PDE which describes
the wave propagation in 2D domain. The Burger PDE is chosen because it
contains first and second order derivatives and is time dependent which is
important for the calculation of real convection-diffusion physical problems.
The second important feature of the Burger equation is that the analytical
solution is known. The dimensionless time period considered for calculation
is t̃max=4. In this time the “wave” propagates through the whole domain,
stretching from 0 to 1 in x and y direction, which has two effects. The first
is that each node is subjected to the strong nonlinearity of the propagating
wave in a certain time. The second is that errors from one time step to
another in an iterative process are accumulated. The Burger PDE is defined
as

∂φ

∂t̃
+ φ

(
∂φ

∂x
+
∂φ

∂y

)
= ν

(
∂2φ

∂x2
+
∂2φ

∂y2

)
; (x, y) ∈ Ω (7.10)

where ν = 0.05 is the dimensionless diffusion constant. The analytical solu-
tion is

φ(p̃x, p̃y, t̃) =
1

1 + exp
(

p̃x+p̃y−t̃

2 ν

) . (7.11)

Boundary conditions are Dirichlet boundary conditions with values from
(7.11) at the boundary.

Solution procedure

At initial time t0 = 0 values for φ are taken from the analytical solution, thus

φ(p̃x, p̃y, 0) =
1

1 + exp
(

p̃x+p̃y

2 µ

) . (7.12)

From this initial condition equation (7.10) is temporarily discretized in an
explicit manner. Variable φ(p̃x, p̃y) at time tτ+1 is calculated explicitly from
variable φ at time tτ as

φτ+1 = φτ +
1

∆t

(
ν

(
∂2φτ

∂x2
+
∂2φτ

∂y2

)
− φτ

(
∂φτ

∂x
+
∂φτ

∂y

))
, (7.13)

where the derivatives are calculated as described in equations (5.1-5.11).
Time step ∆t is 0.001.
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t=0.25

t=0.5

t=0.75

t=1.0

t=1.25

Figure 7.5: Analytical solution of the Burger equation at times 0.25, 0.5, 0.75, 1, and
1.25.

Grids used

The solution of the Burger equation is sought on different node distributions.
First, the tests are carried out on random node distribution, and later on grids
with finer discretization at the boundaries. Random grids are constructed
here in a way that nodes are initially distributed uniformly with fill distance
δfill,uni. From this initial position each node is displaced randomly by δx

in the x direction and δy in the y direction. Displacement is described by
δ = 0% for no displacement (δfill = δsep), i.e. uniform grid and δ = 50%
for maximal displacement to half of the initial distance δfill,uni/2 between
the original neighboring nodes (δsep = 0, δfill = δfill,uni/2). In latter case
the nodes can coincide at the same position. Grids with 30 × 30 domain
nodes for δ = 0(%) and δ = 45% are shown in Figure 7.6 and Figure 7.7,
respectively. For the sake of comparison the same seed number is used in
the random generator (Fortran RANDOM NUMBER routine) in all cases
[Fortran, 2003].

In practice random grids are not used very frequently. Usually grids are
regular, but still non-uniform as presented in Figure 7.8. An example of such
grid with finer node distribution near the boundary for improving calcula-
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tion accuracy and for better representation of boundary layers is described
for example in [Sadat and Couturier, 2000] and here expanded for variable
stretching with

ppp = pppmin +
pppmax − pppmin

2


1 +

tanh

(
2 χpppr−

pppmax+pppmin
2

pppmax−pppmin

)

tanhχ


 , (7.14)

where pppr corresponds to the position of the nodes on an N ×N uniform grid,
χ is stretching factor and pppmax and pppmin stand for maximum and minimum
positions in the domain Ω, respectively.

Figure 7.6: 30 × 30 with δ = 0% (uniform) grid.
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Figure 7.7: 30 × 30 with δ = 45% random grid.

Figure 7.8: 30 × 30 with stretching factor 1.3 grid.

The following tests have been employed on:

• Random grids, defined by maximal possible displacement δ parameter
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– 20×20 grid with δ = 0%

– 30×30 grid with δ = 0%

– 40×40 grid with δ = 0%

– 20×20 grid with δ = 25%

– 30×30 grid with δ = 25%

– 40×40 grid with δ = 25%

– 20×20 grid with δ = 35%

– 30×30 grid with δ = 35%

– 40×40 grid with δ = 35%

– 20×20 grid with δ = 45%

– 30×30 grid with δ = 45%

– 40×40 grid with δ = 45%

• Stretched grid

– 30×30 grid with χ = 1.3

Errors are calculated in terms of maximal relative error between analytical
and numerical solution over the whole domain in each time step

η(t) = max

{
|φn

analytic − φn
numeric|

φn
analytic

}
, (7.15)

where t ∈ {0, tmax} is time, and n = 1, ..., N , where N is number of nodes.
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Example 1: Uniform grid

In the literature, most of the calculations are performed on uniform grids. It
turns out that the results are quite insensitive on a wide range of parameter c
(roughly from 10-30) although the error decreases with increasing c as shown
in Figure 7.9. The results in terms of η(t) are presented for four cases of
uniform c parameters and for optimized parameters cx and cy. Optimized
results are inside this range with value 12.5 as set for the reference solution.
Naturally, in this case cx and cy are equal after the optimization. Therefore
both one parametric and two parametric optimizations gave the same results.

Example 2: Slightly non-uniform grid (δ = 25%)

Nodes are displaced from the initial uniform distribution by up to 25% in this
case. η(t) is roughly twice the error on the uniform grid. Still, one can observe
the same tendency of lower errors for larger c parameter values (Figure 7.10).
Again optimized results are very close to the best uniform value of c. The
variation of parameter cx and cy values is small, since the grid is not strongly
non-uniform. However, the difference in the results between one parametric
(denoted by Optimized 1P) and two parametric (denoted by Optimized 2P)
weight functions is visible.

Example 3: Non-uniform grid (δ = 35%)

Behavior η(t) in Figure 7.11 indicates that the spectrum of uniform free pa-
rameter values with converged numerical solution is drastically narrowed and
the best free parameter value is around 10. At this point the optimized solu-
tion is better than any other solution obtained by the uniform free parameter
value.

Example 4: Extremely non-uniform grid (δ = 45%)

The range of valid free parameters at δ = 45% is further narrowed to values
between 9 and 10 (Figure 7.12) (Note that curves are now marked with the
same signs for different c values). Therefore, in real cases, when dealing
with strongly unstructured grids, it is quite difficult to determine the most
appropriate free parameter value. Again, the optimized solution gave better
results than any other solution obtained by unique free parameter value. The
range of free parameters cx and cy in this case is between 5 and 20 and the
variation of values in different subdomains is large.

For more scattered grid nodes the solution can not be obtained by any free
parameter value. With the optimization proposed in this work the stability
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of the solution is provided also for larger displacements for the same seed
number.

Figure 7.9: Uniform grid, i.e. 30 × 30 with δ = 0% grid.
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Figure 7.10: 30 × 30 with δ = 25% grid.

Figure 7.11: 30 × 30 with δ = 35% grid.
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Figure 7.12: 30 × 30 with δ = 45% grid.

Maximal relative errors for three different grid densities are presented in
Tables 7.1-7.3. Tabulated results are given for larger spectra of free parame-
ters and for different grid densities, 20×20, 30×30, and 40×40, respectively.
Errors marked bold are the smallest. The tendency of free parameter c to

Table 7.1: Maximal relative errors (in %) on 20×20 grid

c 0% 25% 35% 45%
5 16.210 24.015 27.831 26.643
7 11.015 18.540 23.032 23.885
8 9.665 16.936 21.570 -
9 8.806 15.797 20.486 -
10 8.266 14.957 19.632 -
11 7.930 14.301 19.454 -
15 7.474 13.320 24.771 -
20 7.419 12.553 - -
Opti 1P 7.631 14.444 21.023 22.583
Opti 2P 7.631 14.032 20.398 22.358

be smaller for a larger degree of non-uniformity is clearly seen. The best
stability in this case is observed to be between 5 and 7 for the uniform free
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parameter value, which is the range given in the literature. Similar behavior
is observed for the finer 30×30 grid in Table 7.2. The best stability is assured

Table 7.2: Maximal relative errors (in %) on 30 × 30 grid

c 0% 25% 35% 45%
5 5.997 8.680 9.817 -
7 3.739 6.642 8.373 34.310
8 3.157 6.602 8.056 13.580
9 2.790 6.274 7.852 9.442
10 2.557 6.021 7.530 10.910
11 2.421 5.856 7.639 -
15 2.227 5.444 9.560 -
20 2.202 5.215 - -
Opti 1P 2.299 5.708 7.462 8.862
Opti 2P 2.299 5.555 7.256 8.952

for c around 10. For the even finer 40×40 grid the range of valid parameters
is narrowed down. Here results are presented only for up to δ = 0.35, because
for δ = 0.45 the simulation diverged for all cases due to the larger probability
of achieving the given theoretical limit δsep.

Table 7.3: Maximal relative errors on 40×40 grid

c 0% 25% 35%
5 2.459 3.895 3.916
7 1.237 2.779 3.135
8 1.189 2.474 3.135
9 1.161 2.275 3.194
10 1.145 2.153 3.366
11 1.136 2.084 -
15 1.127 2.094 -
20 1.144 2.172 -
Opti 1P 1.138 1.976 3.034
Opti 2P 1.138 1.891 3.418
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Example 5: Structured non-uniform grid (χ = 1.3)

This is a more realistic node arrangement used in practice. Similar structured
but non-uniform grids are obtained for example with Delaney triangulation,
remeshing of grids, etc. Errors are again smaller for larger values of c as
observed in Example 1 and Example 2, but for larger values than 10 the sim-
ulation diverges (Figure 7.13), which is similar to critical values in Example
3 and Example 4. The variation of parameters can be presented graphically.

Figure 7.13: Regular non-uniform 30 × 30 grid with stretching factor χ = 1.3.

Figure 7.14 represents the spatial distribution of free parameters cx and cy.
The parameters are symmetrical with respect to the x and y axis and range
from 7.5 to 18.5. Similar results are obtained by using one parametric opti-
mization.
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Figure 7.14: Free parameter values c for one parametric optimization (top), and two
parametric cx (center) and cy (bottom).
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Statistical comparison

For the sake of comparison, the results in Tables 7.1-7.3 are calculated on
the node distribution with the same seed number, which determines the
sequence of quasi-random numbers. As a consequence the node distribution
is the same, only the displacement is bigger for larger δ values. For real
comparison several runs have to be performed with random seed number and
same δ parameter. Naturally maximal overall error will vary from one node
distribution to another. In Table 7.4 results are presented for 100 runs and
are given in terms of average error, standard error deviation and percentage
of diverged runs. Maximal errors over 10% are excluded from the calculation
of average error and standard deviation and are treated as diverged and listed
separately as diverged. Parameter c for δ = 25% is set to 15 which is the
average value between c = 20 in Table 7.2 and c = 11 in Table 7.3). For
δ = 35% the free parameter c is set to 10.

Table 7.4: Average overall maximal error, standard deviation and number of diverged
simulations.

average standard % div-
error deviation erged

opti 1P 4.89 0.412 0
grid opti 2P 4.75 0.363 0

δ= 30 × 30 c=15 4.63 0.539 0
25% opti 1P 1.95 0.150 0

grid opti 2P 1.90 0.141 0
40 × 40 c=15 1.97 0.261 2

opti 1P 6.60 0.83 4
grid opti 2P 6.57 0.77 3

δ = 30 × 30 c=10 6.65 0.85 14
35% opti 1P 3.21 0.845 6

grid opti 2P 3.13 0.932 6
40 × 40 c=10 3.30 0.831 15

Table 7.4 clearly shows that stability of the optimized weight function is
greatly improved. Although the average errors are sometimes just a little bit
bigger in case of optimized parameters than for uniform parameter, optimized
free parameters still give smaller standard deviation. While for δ = 25%
and grid density 30 × 30 the optimized and non-optimized solutions have
100% convergence of calculations, on the finer 40×40 grid the non-optimized
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solution diverged in 2% of cases. For c = 20 (which showed the best accuracy
for the same conditions in Table 7.2) on the 30 × 30 grid, the simulation
diverged in 14% of cases.

With strongly non-uniform grids (δ = 35%) the differences in the number
of converged simulations is much larger for both grid densities. In the case of
the 30×30 grid there are almost 4 times more converged results in the case
of optimized free parameters and in the case of the 40×40 grid more than 2
times.

The difference in the number of converged results between one parametric
and two parametric optimization is negligible. However, the average accuracy
and standard deviation is smaller in case of two parametric optimization.

7.1.3 Conclusions

From the results shown above one can conclude that the free parameter values
have indeed a strong influence on the accuracy and the stability of a simula-
tion. The idea developed in this work is original from two standpoints. First,
the optimization procedure is set locally on each subdomain nΩ. Therefore
each node is optimized by the same local reference quality function accord-
ing to the specific node distribution in nΩ. Second, this idea is extended to
two parametric optimization. Non radially symmetric weight functions have
already been presented in [Prax and Sadat, 1996] for flows in channels, but
the idea about different values cx and cy in each nΩ is introduced here for
the first time.

As described previously in this chapter, the optimization time depends
mostly on the choice of optimization procedure. The results show that the
accuracy and stability of one parametric optimization is usually not much
worse than two parametric optimization. Therefore the decision between the
two choices (and possibly even between multi parametric optimization) is
up to the user. Optimization time, however, increases with the number of
the optimization degree of freedom as shown in Table 7.5. The time for 100
calculation nodes and one parametric optimization (tref = 1.81 s)1 is taken
as reference and all others are calculated as

ηt =
t

tref

, (7.16)

1Pentium III, 500 MHz.
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Table 7.5: Relative optimization time for one parametric (1P) and two parametric opti-
mization (2P).

Number of nodes 1P 2P
100 1 2.65
400 3.66 11.54
900 8.13 26.38
1600 15.48 49.33
2500 27.61 84.39
10000 173.62 404.47

7.2 Size of the domain of influence

Another property of local meshless methods is that the representation of
the problem domain is made via construction of a shape function, which
is formed from I neighboring nodes in the subdomain nΩ, which usually
contains a much smaller number of nodes, than the whole discretized domain,
i.e. I � N , and N is the total number of nodes. The neighboring nodes can
be chosen based on two principles. In the first principle, the total number
of neighboring nodes I is set. In the second principle, the shape and the
size of the subdomain nΩ is set. The shape is usually chosen to be a sphere
(3D) or a circle (2D) with the radius (size) σ centered around the node pppn.
In former case nΩ is denoted as domain of influence (DOI), while in latter
case nΩ is called support [Liu, 2003]. In DAM the number of interpolating
nodes is the same for each interpolation patch, therefore the term domain
of influence is used. The size of the domain of influence is a user choice. In
general it can embrace the whole calculation domain including boundaries
Ω+Γ. Such methods are called global representation methods. Their common
disadvantage is in fully populated matrices, which lead to large CPU time
consumption. Another disadvantage is lower ability to interpolate strong
non-linearities or even discontinuities in the calculation domain. On the
other hand, the lowest number of nodes in the domain of influence is the
number of the closest neighbors (i.e. 2 in 1D, 4 in 2D, 6 in 3D). Accuracy
and stability is usually lower for the same grid density in the case of smaller
domain of influence, but calculation speed drastically increases. Methods
based on MLS have additional limitation, namely that the number of nodes
in the domain of influence cannot be lower than the number of support
functions. As an example in DAM the lowest number of nodes in 2D is 6 due
to Taylor truncation of the polynomial at the second order.
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As we can see from the above-mentioned behavior, we seek for a kind of
optimum between accuracy, stability, and calculation speed. The investiga-
tion of the behavior of calculation results is again carried out on the Burger
equation (7.10) on a 30 × 30 grid. The properties of unstructured grids are
the same as defined in Section 7.1.

In order to find the optimum number of nodes in the DOI, the simulation
results must be represented and compared in terms of

• accuracy

• stability

• CPU time

This is not an easy task since the accuracy and stability are determined
through at least two interconnected properties, namely number of nodes in
the DOI and free parameter c value. CPU time, however, is related only
to the number of nodes in the DOI. For this reason two sets of calculations
have been introduced. In the first set, uniform free parameter value c = 15 is
used for all runs in combination with different number of nodes in DOI. The
purpose of this first set is to investigate the stability and calculation time of
the simulations.

The second set is characterized by the fixed number of nodes in the DOI
with different values of free parameter c.

7.2.1 Numerical results

Results of testing for the first set of calculations are given in Table 7.6.
In the first column the number of nodes inside the domain of influence are

Table 7.6: The effect of the number of support nodes in the domain of influence on
accuracy and stability.

No. of nodes relative Maximal relative errors in [%]
in DOI time δ = 0 δ = 25% δ = 35% δ = 45%

6 1 2.213 - - -
7 3.89 2.191 5.826 - -
8 6.80 2.248 5.312 - -
9 8.03 2.319 5.445 9.560 -
10 14.40 3.396 5.773 7.533 -
15 33.13 4.640 6.586 8.156 -
20 50.43 4.690 7.725 9.167 10.138
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listed. We started from the minimum possible number (6) and took 20 as the
largest number of nodes. The time for 6 nodes is taken as reference and all
others are calculated as in equation (7.16), where t is the CPU time of each
simulation and tref is the time needed for calculation with a minimal number
of nodes. Errors are calculated in terms of maximal relative error between
analytical and numerical solutions over the whole domain in each time step
as in equation 7.15 and the analytical solution is defined in equation (7.11).
As explained in Section 7.1 the level of non-uniformity is indicated by δ. The
most accurate results are written in boldface, whereas diverged simulations
are indicated by −. Table 7.6 clearly shows that the stability improves with
an increasing number of nodes in the domain of influence. In Table 7.6 it
can also be observed that the results obtained with a larger number of nodes
are not the most accurate and are dependent on the number of nodes in the
DOI. There are at least two reasons for this. The first one is that the optimal
free parameter c is the same as shown for 9 nodes in the DOI. The second
reason is that the calculated derivatives are “smeared” when a larger number
of nodes in the DOI is used.

The second part of the test is dedicated to the investigation of the influ-
ence of the free parameters for 15 nodes in the domain of influence. Results
are presented in Table 7.7. From Table 7.7 we can conclude that most opti-

Table 7.7: Maximal relative error with respect to free parameter c for 15 nodes and
δ = 35%.

c Maximal Relative error in [%]
10 10.100
15 8.156
20 7.812
25 8.079

mal parameter at 15 nodes in the domain of influence is 20, which is twice as
much as for 9 nodes. The answer for this lies in the fact that the influence
of more distant nodes should be diminished for good representation of large
derivatives involved in the Burger equation because with a larger number of
nodes in the domain the results are more smeared.

7.2.2 Conclusions

What is the final answer about the optimal number of nodes in the DOI? For
moderately unstructured grids it is better to use a lower number of nodes
from the accuracy point of view as well as from the time consumption point
of view. Only in the case of a highly unstructured grid is the use of a higher
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number of nodes justified. The most optimal number of neighboring nodes
included in the domain of influence is - on our knowledge - 9. The reason for
this is that time consumption is only 10% larger than in case of 6 nodes and
accuracy and stability are assured. Intuitively this number is most usually
taken because for uniform grids this represents the neighboring nodes on the
left, right, up, down, and all diagonal nodes in 2D.
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7.3 Notes on implementation of diffusive and

advective term

With calculations of physically involved problems (e.g. double diffusive natu-
ral convection, radionuclide transport) some issues about the implementation
of advective and diffusive terms into DAM (and possibly to other meshless
methods) became more pronounced. Similar observations can be found in
[Sophy, 2002]. Although the physical description of advective and diffusive
terms is very clear, their numerical implementation is far more ambiguous.

7.3.1 Diffusive term

Consider first the diffusive term. In conservative form for a general scalar
variable φ the diffusive term is defined as

∇ · (DDD∇φ), (7.17)

where DDD is the diffusion tensor. It turns out that the evaluation of the diffu-
sive term in the described form is not very effective, because it is constructed
by two evaluations of the first derivatives. From practical testing we have
shown that the numerical error from two evaluations of the first derivative
is larger than from one evaluation of the second derivative. Therefore better
results are provided by mathematical expansion of equation (7.17) to

∇ · (DDD∇φ) = (∇ ·DDD) · ∇φ+DDD : [(∇2φ) III], (7.18)

where III is identity tensor

III =




1 0 0
0 1 0
0 0 1


 (7.19)

and double dot product is

DDD : (∇2φIII) =



Dxx Dyx Dzx

Dxy Dyy Dzy

Dxz Dyz Dzz


 :




∂2φ
∂x2 0 0

0 ∂2φ
∂y2 0

0 0 ∂2φ
∂z2


 = (7.20)

= Dxx
∂2φ

∂x2
+Dyy

∂2φ

∂y2
+Dzz

∂2φ

∂z2

In the case of constant diffusion D equation (7.18) simplifies to

D∇2φ. (7.21)
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7.3.2 Advective term

As in the case of the diffusion term, the application of the advective term
needs more attention as it was observed on more intensive problems with
thin boundary layers, e.g. double diffusive natural convection. The partial
derivatives of the advective term in conservative form

∇ · (VVVφ) (7.22)

have to be evaluated in the transport equation with advection term. One
can calculate the derivatives from equation (5.8) by coefficients α calculated
from the system of equations (5.3) where in the right-hand side vector (5.5)
φ̂ is replaced by φVξ

nφ̂j =
I∑

i=1

ϕj(pi − pn) nŴ (pi − pn)φ(pi)Vξ(pi), (7.23)

where ξ ∈ {x, y}. The described formulation has two weaknesses. Consider
the case of incompressible fluids (which is the most usual simplification).
When the steady-state simulation is performed sometimes the condition of
incompressibility (∇ · VVV = 0) is not obtained during the simulation. If a
transport equation is coupled using non-converged velocity field, this would
act as a source or a sink. In the case of meshless methods this happens quite
often, since they are not locally conservative. The solution to the mentioned
problem with incompressible fluids with ∇·VVV = 0 is to recast equation (7.22)
to

∇ · (VVVφ) = VVV · ∇φ, (7.24)

and use only the derivatives of the scalar variable φ. This formulation works
fine only when the fluid is assumed to be incompressible and when the prob-
lems are not very intense, because the stability of the simulation is lower
than with the conservative formulation.

However, the same problem emerges near boundaries. If the calculated
subdomain contains the boundary nodes, the result may be not correct, es-
pecially when the boundary layers are thin. The reason for this is shown in
Figure 7.15. First consider the domain of influence denoted by case 1. Visu-
ally it can be seen that velocity partial derivatives ∂Vx

∂x
are of the same order

as ∂Vy

∂y
which insures incompressibility. In the second case, denoted by case 2

in Figure 7.15, the domain of influence contains domain and boundary nodes.
Due to the influence of boundary nodes with Vx = Vy = 0 the approximated

absolute value of partial derivatives
∣∣∂Vx

∂x

∣∣ is larger than
∣∣∣∂Vy

∂y

∣∣∣. This problem

is more pronounced when a coarser grid is used. The mentioned problem can
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Figure 7.15: Description of incompressibility issue for advective term.

be solved by expanding equation (7.22) to

∇ · (VVVφ) = φ (∇ ·VVV) + VVV · ∇φ (7.25)

and using this relation instead of variable φ̂ in the right-hand side vector
(5.5). In this way partial derivatives are calculated locally in each node only
for variable φ. The solution of equation (7.25) is much more stable than the
one described by equation (7.24) due to averaging (smearing) of derivatives.
However, the previous statement holds only for approximation methods with
absence of the Kronecker delta property.
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8 Conclusions

This chapter is devoted to recapitulation of the work carried out and to rec-
ommendations for future research. In the beginning we should emphasize
that much work has already been accomplished in the field of meshless nu-
merical methods. However, there is a very limited number of contributions
where meshless methods have been used for the simulation of realistic or even
industrial problems. This lack of involvement in more realistic problems is
related to the ongoing development of meshless methods. Consequently the
developers of meshless methods try to develop the most effective way of solv-
ing (partial) differential equations and not to implement certain method to
more complicated and hard-to-verify problems. In other words, we are faced
with fast development of the tool, but very poor transfer of this tool to users
without extensive knowledge of a certain meshless method. The reason lies
in the relatively broad spectra of methods, but usually quite shallow under-
standing of the details of each meshless method. Nevertheless, the “devil” is
in the details.

Our primary intention in this work is to pick out one promising meshless
method and to make an analysis of as many as possible of its properties.
DAM has been selected on the basis of previous work with several mesh-
reduction and meshless methods. DAM in many cases proved to be effective
for solving large-scale and more complicated problems. However, many ques-
tions remained unanswered. To fill this gap, several properties of DAM are
systematically analyzed. The acquired conclusions can be (with some care
in interpretation) extrapolated to other meshless methods as well. Our con-
tributions are summarized below.

Free parameters: The most important property which is responsible for
the accuracy and stability of several meshless methods is the evaluation and
determination of free parameters. Free parameters are associated with either
basis functions or the weight function. The latter is used in the Diffuse Ap-
proximate Method. In our opinion, the inability to determine free parameter
values in a simple and straightforward manner is the largest reason for the
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absence of meshless methods in the engineering world. A way of determining
the free parameter has been worked out and tested in Chapter 7.1. Tests
show an improvement of the accuracy and stability of the method against
non-optimized free parameters. Perhaps the whole optimization algorithm is
not the absolutely best chosen, but it provides a possible way of tackling this
problem. In addition to radially symmetric weight function (one parametric
optimization), radially nonsymmetric weight function is also implemented
and optimized (two parametric optimization) for the first time in meshless
methods.

Size of the domain of influence: The next previously unexplored field
is the size of the domain of influence. This, to our knowledge, has never
been analyzed before. The tests in Chapter 7.2 are performed on the Burger
equation for domains of influence containing from 6 up to 20 nodes. It is
shown that the accuracy and the stability are situated on opposite banks.
While the accuracy is better with a lower number of nodes considered, the
stability improves with a higher number of nodes. So the answer cannot
be given just in terms of a single number. It depends on the intensity of
the involved physical problem as well as on the uniformity of the grid. The
more intense the problem is (i.e. the derivatives are high) and the more
non-uniform the grid, the more we are forced to focus on the stability (larger
number of nodes in the DOI). On the other hand if the problem is not intense
and the grid is uniform, a lower number of nodes can be used in the domain
of influence.

Numerical or artificial diffusion: In traditional methods, where the
polygonization of the problem geometry is necessary, the numerical diffusion
is strongly related to grid density, i.e. a finer grid provides lower numerical
diffusion. It is shown here probably for the first time that the meshless meth-
ods do not exhibit the same behavior to such extent. We can almost state
that the effect of numerical diffusion is negligible in meshless methods. This
feature is very important in the simulation of transport phenomena. Espe-
cially in cases where molecular diffusion and dispersion in nature is low, this
proves the great advantage of meshless methods against traditional methods.

Time-stepping procedures: On the problem of 1D radionuclide trans-
port in Chapter 6.3 different time-stepping procedures are applied. Several
implicit schemes, namely Euler explicit, explicit CBS, Adams-Bashforth and
Runge-Kutta are tested. It is shown that the best stability is obtained by
the fourth-order Runge-Kutta procedure. Due to evaluation of half-time-step
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derivatives, however, CPU time is larger than for the Euler explicit method.
The explicit CBS procedure was shown to be as stable as the Euler explicit
procedure, but the order of accuracy is larger. The stability of Adams-
Bashforth methods proved, against our expectations, to be lower than that
of the Euler explicit, but the order of accuracy is higher.

Pressure-velocity coupling: Until now many algorithms such as SIM-
PLE, SIMPLER, PISO, etc. have been presented for the solution of velocity
fields. However, it is hard to state which one is the most effective. Most of
the algorithms are used solely for incompressible fluids. One of the newest al-
gorithms developed for the solution of compressible and incompressible fluids
is the CBS algorithm. Up to now it has been used in connection with FEM
only. In this work the CBS algorithm is implemented and tested for the first
time on any meshless method. On the case of natural convection in porous
media in Chapter 6.5 it is shown that it provides good accuracy, although the
calculation time for the Darcy equation is a little bit longer. Nevertheless,
the algorithm is quite robust for application and its use is preferred over the
use of the pressure Poison algorithm because the stability of the simulation
is improved. The improvement of the stability in the context of meshless
methods is not as large as the authors claim it to be in the context of FEM.
However, since the algorithm is of second-order accuracy, the influence of
time step truncation error is smaller than in the explicit pressure Poisson
algorithm.

Application to physically more involved problems: While testing
of numerical methods is performed on simple cases with constant material
properties, regular grids, etc. the goal of the whole development of numer-
ical methods is its application to real problems. Real problems, in general,
involve complex geometries, nonhomogeneous and anisotropic physical prop-
erties. An example of a more realistic problem is shown in Chapter 6.4
dealing with the groundwater flow and radionuclide transport through a rad-
waste repository. The physical properties are still simplified due to the lack
of measured data, but they are as realistic as possible. The repository ge-
ometry is also realistic. The comparison of radionuclide fluxes transported
to groundwater show excellent agreement with the commercial package. Al-
though the DAM calculations took considerably more CPU time than the
calculations made by the commercial package, the results are very promis-
ing. This case shows the ability of DAM to cope with step-function initial
conditions (initial concentration field) and good calculation accuracy which
is necessary for such calculations where the difference between input values
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and output values can be 20 orders of magnitude or even more.

Application to numerically more involved problems: Usually the
problems used for testing of a certain method are not numerically very pro-
found. Therefore it was a challenge to make a complex simulation with thin
boundary layers and intense heat and mass transfer, which is a hard nut to
crack even for highly developed traditional methods. Such a case of double
diffusive natural convection in a composite fluid-porous layer is presented in
Chapter 6.6. The purpose of this problem is to examine the effect of the
permeability of the porous layer on flow structure and on heat and species
transfer. The comparison with results obtained by FVM shows good agree-
ment to DAM results despite the high complexity of the flow structure.

Other features: In addition to the above-mentioned work, important con-
clusions about the specific implementation of advective and diffusive terms
into DAM are presented in Chapter 7.3. Another new feature is the imple-
mentation of Robin boundary conditions. Unfortunately, the physical scope
of this work isn’t broad enough to present the implementation of Robin
boundary conditions. However, the results can be seen in [Šarler et al.,
2004c].

Future work: Although we tried to reasonably describe and analyze all
important properties of DAM, several questions remained unanswered and
left for future work. In this work a lot of effort is devoted to the development
of an optimization algorithm for the optimization of the free parameter of
the weight function. However, relatively little emphasis is put on the optimal
search algorithm for the construction of subdomains. Perhaps the optimal
distribution of nodes in a subdomain has as much impact on accuracy and
stability as the optimal weight function. Therefore, more sophisticated anal-
ysis should probably be carried out in this field.

All calculations given in this work are made by explicit time-stepping
schemes. In some cases it would also be valuable to include semi- or fully-
implicit schemes, especially for steady-state calculations.

Despite the fact that DAM proved to be an accurate and stable method
which can easily compare to traditional methods, it also has a few disad-
vantages. The most obvious disadvantage is the lack of the Kronecker delta
property. In other words, the function value in a calculated node after ap-
proximation is not the same as the function value used. The effect of the
Kronecker delta property mostly affects the boundary. In the absence of
the Kronecker delta property the nodes with Dirichlet boundary conditions
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should be left out of the calculation or must be treated separately by imposing
given values after each iteration. In addition, the accuracy of Neumann and
Robin boundary conditions can also be lower. This issue should be tackled
in the future.
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Appendix A

A.1 Conservation equations in the form of

the general transport equation

All equations used in this work can be written in form of the general transport
equation 3.7

∂

∂t
[% C(φ)] + ∇ · [%vvv C(φ)] = −∇ · (−DDD∇φ) + S (A.1)

Appropriate values for φ, C(φ), S and DDD are give in Table A.1

Table A.1: Values of φ, C(φ), S and DDD for the general transport equation.

conservation equation reference φ C(φ) S DDD

mass 3.9 1 ε 0 0

Darcy 3.11 0 0 −∇P − µ
KVVV + FFF 0

Darcy-Brinkman 3.13 VVV 1 −∇P − µ
KVVV+FFF µeff

Navier-Stokes+Darcy 3.15 VVV VVV /ε −∇P − µ
KVVV + FFF µeff

Darcy-Forchheimer 3.16 0 0 −∇P − cf K1/2 % |VVV |VVV + FFF 0

Energy 3.19 T cp T ST λλλ

Species 3.25 C C −λ̄2R2C2 + λ̄1R1C1 DDD
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A.2 Dimensionless numbers

The dimensionless numbers and variables used in this work are summarized
here.

Aspect ratio A
H
L

Buoyancy ratio N
βC ∆C
βT ∆T

Darcy number Da
K
H2

Dimensionless distance p̃
p

∆p

Dimensionless pressure P̃
H2

αth µ
P

Dimensionless velocity Ṽ
H
αth

V

Dimensionless temperature T̃
T−Tref

∆T

Dimensionless viscosity Λ
µeff
µ

Lewis number Le
αth
D

Local Nusselt number Nu(y) H
∂T (y)/∂x
A∆T

Local Sherwood number Sh(y) H
∂C(y)/∂x
A∆C

Prandtl number Pr
ν
αth

Rayleigh number Ra
% g β∆T H3

αth µ

Porous media Rayleigh number Ra∗ %K g β∆T H
αth µ

Schmidt number Sc
ν
D
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