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Abstract

ABSTRACT

Bioinformatics is not only about processing more and more biological data but also about
interpreting and classifying increasingly complex and heterogeneous data with
computational tools. Most of current data interpretation (“data annotation”) tasks are
carried out by automated classifier algorithms, yet there are very few methods that enable
one to compare the efficiency of classification algorithms in bioinformatics tasks. With this

introduction in mind I have chosen the following areas:

1) How can we benchmark a data-interpretation method? I have approached this subject via
the analysis of the protein classification problem and the development of a benchmark
database of 6405 classification tasks, applicable to test structural and functional annotation
of proteins. [ illustrate the use of this collection by developing an algorithm based on a

Committee of Classifiers.

1f) How can we integrate similarity data obtained from various data-sources? One of the
most general schemes to define data-similarities is called a similarity space that can be
represented as a network of similarities. I have developed Multi-Netclust, a straightforward
algorithm that can combine similarity data from different sources and have showed that this

approach can lead to better recognition as well as substantial data compression.

iii) How can we compate complete annotations, such as domain architectures predicted by
various domain prediction algorithms? I have approached this problem by developing a
general framewotk of comparison principles and numerical indices of similarity by which I
could compare various protein domain annotation schemes. I show that similarity-based
domain prediction performs as well, sometimes even better than generative models based

on learning algorithms.

iv) Finally, how do we apply these principles to practical problems? I carried out the
structural analysis and classification of the newly determined "H-NMR solution structure of
an epidermal growth factor (EGF) domain encoded by exon 6 of the JAG1 protein. T have
found that this domain has an atypical structure and is encoded by an atypical exon/intron

arrangment which is conserved throughout evolution. I also cartied out a systematic and
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comprehensive analysis of mutations found in EGF domains and showed that specific
residue requirements for folding, structural integrity and cotrect post-translational

processing may provide a rationale for most of the disease-associated mutations.
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Abstract

Integracija heterogenih podatkovnih virov pri klasifikaciji proteinov

POVZETEK

Bioinformatika se ne ukvarja le s procesiranjem vedno stevilénejsih bioloskih podatkov, pa¢
pa vkljucuje tudi interpretacijo in klasificiranje vedno bolj kompleksnih in heterogenih
podatkov z racunskimi orodji. V zadnjem ¢asu vedina interpretacije podatkov (“data
annotation”) poteka z avtomatskimi klasifikatorskimi algotitmi, obstaja pa tudi nekaj metod,
s katerimi lahko primerjamo ucinkovitost teh algoritmov v bioinformatiki. Na osnovi teh

dejstev je bilo moje raziskovalno delo razdeljeno na naslednje sklope:

1) Kako oceniti uspesnost dolo¢ene metode za interpretacijo podatkov? Te teme sem se
lotila z analizo problema klasifikacije proteinov, pri ¢emer sem razvila ocenjevalno databazo
6405 klasifikatorskih opravil, s katerimi lahko testiramo struktutno in funkcijsko anotacijo
proteinov. To zbirko sem uporabila za razvoj algoritma, ki temelji na “komisiji

klasifikatorjev” (Committee of Classifiers).

if) Kako lahko integriramo podatke o podobnostih, ki so bili pridobljeni iz razli¢nih
podatkovnih virov. Ena od splo$nih shem za predstavljanje podatkovnih podobnosti se
imenuje vesolje podobnosti , kar si lahko predstavljamo kot mrezo podobnih podatkov.
Razvila sem enostaven algoritem z imenom Multi-Netclust, ki lahko primetja podobne
podatke iz razlicnih virov. Poleg tega sem pokazala, da ta algoritem omogoca boljse

prepoznavanje in tudi obéutno kompresijo podatkov.

iif) Kako lahko primerjamo kompleksnejse anotacije, kot je na primer zgradba proteinskih
domen, ki je predpostavljena na osnovi razli¢nih napovednih algoritmov. Za resitev tega
problema sem razvila osnovni okvir primerjalnih principov in Stevilénih ocen podobnosti, s
katerimi je mogoce primerjati razli¢ne sheme za anotacijo proteinov. Dokazala sem, da je
strukturo proteinskih domen mogoce uéinkovito napovedati tudi na osnovi podobnosti, kar
je v€asih celo bolj uspesno kot z uporabo generativnih modelov, ki temeljijo na logaritmih

ucenja.
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iv) Kako lahko zgoraj navedene principe apliciramo na reSevanje prakti¢nih problemov?
Naredila sem strukturno analizo domene epidermalnega rastnega faktorja (epidermal
growth factor; EGF), ki jo kodira exon 6 proteina JAG, in ki je bila pred kratkim dolodena v
raztopini z metodo 'H-NMR. Ugotovila sem, da ima ta domena neobiéajno strukturo ter da
jo kodira neobicajno prerazporejanje intronov in eksonov, ki je ohranjeno skozi evolucijo.
Opravila sem tudi sistemati¢no in poglobljeno analizo mutacij, ki jih najdemo v domenah
EGF. Ugotovila sem, da so specifi¢ne aminiokisline zahteve za pravilno gubanje, strukturno
integriteto in post-translacijske modifikacije verjetna podlaga za vecino mutacij, ki so

povezane z boleznimi.
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Foreword

Foreword

Bioinformatics is a broad field of research that escapes easy definition. Various definitions
agree that bioinformatics uses mathematical tools and computer technology in order to
derive knowledge from biological data. However this broad definition tells experimental

biologists little about how this goal can be achieved.

The starting point of my research at the Protein Structure and Bioinformatics Group of
International Centre for Genetic Engineering and Biotechnology (ICGEB), Ttieste, was the
need of a unifying framework that would help biologists to undetstand how “biological
knowledge” is formalized in bioinformatics and what the fundamental techniques are. The
approach we adopted was to start from the simple facts of bioinformatics, namely from a
broad ovetview of sequence and structural databases which are perhaps the most visible
items that have been produced by bioinformatics. In the beginning, sequence databases
contained only sequences provided by names and a literature reference (Doolittle, 1995).
Gradually, the scope of added information started to expand and its form became more and
more organized. For instance, eatlier versions of the Swiss-Prot database (Boeckmann et al.,
2003) included specific sections of protein function, cross references to genetic diseases as
well as a feature table, containing local descriptors of the sequence in terms of structural
and functional domains. These added sections of a protein sequence record was termed the
annotation part, and producing the annotation part became a field of its own, highly used
but rarely appreciated by end-users. As a subfield branching out of database annotation,
secondaty databases started to appear already in the eatly 90’s, such as the Prosite (Bairoch,
1991), SBASE (Pongor et al., 1993) and Prodom (Cotpet et al., 1998; Sonnhammer and
Kahn, 1994) that concentrated on protein domain sequences, or SCOP (Murzin et al., 1995)
and CATH (Orengo et al., 1997) on domain 3D structure. The common philosophy of the
derived databases was to cluster the (sub-structural) data into similarity-based subgroups.
This new, curated information was however soon mapped back to the original sequence
collections, and databases such as UNIPROT (Apweiler et al., 2004) now also contains data
on drug actions, genetic diseases etc. while others concentrate on protein architectures,
exon and intron information(Schultz et al., 1998). These data are now integrated at higher

levels, into genome-wide databases(Hubbard et al., 2002). This brief overview tells us that

ix
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the histoty of bioinformatics is not only about more and more data, but also about deeper
and more integrated knowledge, which, in our view, is perhaps a bigger challenge. Simply
put, the development of computer technology appears to cope with the data storage
problems of the life sciences, and also, the primary data processing needs (sequence
assembly, gene identification, and simple proteome annotations) are well covered by the
emerging multiprocessor technologies. But the in-depth interpretation data has a high — and
largely unexplored — complexity. The current status of bioinformatics is characterized by a
very strong tendency of data-integration. Formats are unified, vocabularies are formalized
into ontologies, etc. As more and more new data-collection technologies appear, there is a

very strong need for automated computational methods that minimize human intervention.

Taken together, bioinformaticians have to be prepated to applying in-depth data
interpretation methodologies to newer and newer kinds of data. Machine learning methods
are becoming a standard in many areas, however they are like black boxes to practicing
biologists, and even bioinformaticians not working in the very same field are often clueless

when having to choose between alternative methodologies.

The subject of my thesis was established with this introduction in mind. We have chosen

four areas:

1) How can we benchmark a data-interpretation method? I approach this subject via the
analysis of the protein classification problem and the development of a benchmark database
comprising of 6405 classification tasks, applicable to test structural and functional
annotation of proteins. I illustrate the use of this collection by developing an algorithm

based on a Committee of Classifiers.

i) How can we integrate similarity data obtained from various data-sources? One of the
most general schemes to represent data-similarities is called a similarity space that can be
represented as a network of similarities. I developed Mult-Netclust, a straightforward
algorithm that can combine similarity data from different sources and showed that this

approach can lead to better recognition as well as substantial data compression.

1f) How can we compare complete annotations, such as domain architectures predicted by
various prediction algorithms? I approached this problem by developing a general
framework of comparison principles and numerical indices of similarity by which I could

compare various protein domain annotation schemes. I show that similarity-based domain
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prediction performs as well, sometimes even better than generative models based on

learning algorithms.

iv) Finally, how do we apply these principles to practical problems? I carried out the
structural analysis and classification of the newly determined "H-NMR solution structure of
an epidermal growth factor (EGF) domain encoded by exon 6 of the JAG1 protein. T found
that this domain has an atypical structure and is encoded by an atypical exon/intron
atrangment which is conserved throughout evolution. I also cattied out a systematic and
comprehensive analysis of mutations found in EGF domains and showed that specific
residue requirements for folding, structural integrity and correct post-translational

processing may provide a rationale for most of the disease-associated mutations.

This thesis is structured as follows: There is a general introduction that describes the
theotetical principles underlying the projects. This is followed by four sections, each of
them provided by a brief introduction and a results and a summary section. The thesis

finishes with a brief section of conclusions.

My thesis research is largely based on following publications:

Sonego, P, Pacurar, M., Dhir, 8., Kertész-Farkas, A, Kocsor, A, Gaspari, 7., Leunissen, J.A.M., and Pongor,
S. (2007) A Protein Classification Benchmark collection for machine learning, Nucl. Acids. Res., 35,
1D232-236.

Kertész-Farkas, A., Dhir, S., Sonego, P., Pacurar, M., Netoteia, S., Nijveen, ., Leunissen, J. A. M., Koesor,
A., Pongor S. (2008): A comparison of random and supervised cross-validation strategics and benchmark
datascts for protein classification, Journal of Biochemical and Biophysical Methods, in, 35, 1215-1223 .

Pintar, A., Guarnaccia C., Dhir 8., Pongor S. (2009) Exon 6 of human JAG1 encodes a conserved structural
unit, BMC Structural Biology, 9, 43.

Guarnaccia C., Dhir 8., Pintar A., Pongor 8. (2009) The Tetralogy of Fallot-associated (G274D mutation
impaits folding of the second epidermal growth factor repeat in Jagged-1, FEBS Journal, 276, 6247-6257

Franklin ID., Dhir S., Pongor S. (2009) Analysis of Kernel Based Protein Classification Strategies Using
Pairwise Sequence Alignment Measures, Computational Intelligence Mcthods for Bioinformatics and
Biostatistics, Lecture Notes in Computer Science, 5488, 222-231.

Dhir 8., Pacurar M., Franklin D., Gaspéri 7., Kertész-I'arkas A, Kocsor, A., Fisenhaber IF., Pongor S.(2010)
Detecting atypical examples of known domain types by sequence similarity searching: The SBASE
domain library approach. (in press)

Gaspad Z., z\ng)rén A, Dhir S, Franklin D., Perczel A, Pintar, A., Pongor S.(2010) Probing dynamic protein
ensembles with atomic proximity measures. (In press)

Kuzniar A., Dhir 8. ct al, (2010) Multi-Netclust: A tool for finding connected clusters in multi-parametric data
networks, Bioinformatics (ix press)
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Introduction Machine Learning

1. Introduction

This thesis focuses on some of the basic problems pertinent to how heterogeneous data
sources are used to create new knowledge in bioinformatics. This is a far too general
definition of the topic, so in order to make it more coherent, we selected all the examples
from one field, that of protein classification and the annotation of protein domains in
protein sequences. The rationale is that protein similarity searching is actually a
classification problem; we assign proteins to known classes. Moreovet, since protein
domain similarities are especially difficult to deal with, a large part of the pertinent
bioinformatics techniques were developed in the framework of protein domain analysis.
For this reason, this introductory chapter focuses on the general subjects of the
bioinformatics of protein domains, machine learning, and protein classification. Due of
space constraints, fundamental bioinformatics techniques, such as BLAST or CLUSTAL
which are subjects of many good textbooks have not been included as a part of this

introduction.

1.1. Machine Learning and Protein Classification

Machine learning can be defined as the study of computational methods and the
construction of computer algorithms and programs capable of learning from their own
previous experience, in order to improve their performance for a defined task(Mitchell,
1997). The major focus of machine learning research is to extract information from data
automatically, by computational and statistical methods. This multi-disciplinary field is
closely related not only to data mining and statistics, but also to theotetical computer
science. Machine learning has a wide spectrum of applications that include natural language
processing, pattern recognition, search engines, medical diagnosis, brain-machine interfaces
and cheminformatics, speech and handwriting recognition and object recognition in

computer vision.

Shavik and collegues (Shavik et al., 1995) described the field of molecular biology as tailor-
made for machine learning approaches. Approaches of machine learning are suitable for
application to bioinformatics because the subjects of investigation are highly complex
biological systems. Generally, the basic concept of applying machine learning in

bioinformatics research is to discover meaningful knowledge from the existing biological
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databases and presented in a meaningful and understandable pattern. There are several
biological domains where machine learningtechniques are applied for knowledge extraction

from data (Figure 1.1).
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Figure 1.1: Machine leatning in Bioinformatics.
Classification of the application where machine learning methods are applied in
bioinformatics (Larranaga et al., 2006).

Pattern recognition, a subclass of machine learning, is the study of how machines can learn
to distinguish patterns of interest based on either a priori knowledge or on statistical
information extracted from the patterns, and make sound and reasonable decisions about

the categoties of the patterns. Watanabe (Watanabe, 1985) defines a pattern ‘as opposite of
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a chaos; it is an entity, vaguely defined, that could be given a name.” For example, a pattern

could be the amino acid sequence of a protein domain.

The design of a pattern recognition system essentially involves a few general aspects. These
are, (1) data acquisition and pre-processing which basically involves collecting data (variables
and features) and performing feature selection (for instance removing irrelevant and
tedundant features), (ii) selecting the right learning algorithm depending on the task at hand
(fot instance evaluating several alternatives), (iif) training the classifier (or model), and finally

evaluating the performance of the classifier (usually done on a separate test set).

A pattern recognition method can be carried out in several ways, the most common being,
the supervised, unsupervised, semi-supervised and reinforcement learning. In the following
paragraphs, I briefly describe the supervised and unsupervised leatning methods, as they

have been used extensively in this dissertation.

Supervised learning techniques attempt to leatn associations from a manually curated data
(Duda et al.,, 2000). This technique is cartied out by partitioning the dataset into distinct
classes. A class selected for an experiment is called a positive class while the complementer
class within the database is called negative class. These classes are further divided into two
distinct, non-empty classes called train and test set, thus resulting in a fourfold division of
the dataset to yield, we get positive train, positive test, negative train, and negative test sets
and such a division of the database is called a classification task. The train set consists of
pairs of input objects (typically vectors) and desired output. This output could be a class
label (in classification) or a continuous value (in regression). A supervised learning
algorithm then adjusts its parameters according to the train set and its performance is

determined on how well it predicts the output labels of the test set elements.

In an unsupervised learning approach, there is no outcome measute and the goal is to
uncover trends, correlations, or patterns among a set of input measures(Hastie et al., 2003).
Since all the data are unlabeled in unsupervised learning, the learning procedure consists of
both defining the labels and associating objects with them. In other words, unsupervised
learning tries to unveil natural groupings in the data. Clustering, principle component
analysis and dimensionality reduction are some of the examples of unsupetvised learning
techniques. Clustering, an important process in pattern recognition and machine learning, is

a process of identifying natural clusters of the data over some kind of similarity (eg.
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Euclidean distance) measure. Central to all of the goals of cluster analysis is the notion of

the degree of similarity (or dissimilarity) between the individual objects being clustered.

Assessing and evaluating classification algorithms

In many pattern recognition applications, it is not adequate to characterize the petformance
of a classifier by a single number, e.g. classification etror rate. In a binary (two-class)
classification problem, which maps an object (such as an un-annotated sequence of 3D
structure) into one of two classes, the sequences with significant scores (above the set
threshold value) are positive instances while the sequences with insignificant scores are
negative instances, which we usually denote by “+” and -’ respectively. Based on the prior
classification of samples, there are four possible outcomes: true positive, true negative, false
positive, false negative (Duda et al., 2000). If an object is positive and it is classified as
positive, it is counted as a true positive (I'P); if it is classified as negative, it is counted as a
false negative (FN). If the object is negative and it is classified as negative, it is counted as a
true negative (TN); if it is classified as positive, it is counted as a false positive (FP). This
can be summarized in a two-by-two contingency table also called a confusion matrix

(Figure 1.2).
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Figure 1.2: The confusion matrix and a few petformance measures.
TP, TN, FP, FN are the number of true positives, true negatives, false positives and false negatives
1n a test set, respectively.

For binary predictions, the simplest measure of prediction accuracy from the confusion
matrix is the proportion of cases that are classified cotrectly, termed as accuracy. However,

it is possible to derive many other measures. Sensitivity and specificity ate commonly used
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to evaluate predictive accuracy., While sensitivity (also called true positive or recall rate)
measures the proportion of actual positives that are correctly identified, specificity measures
the proportion of negatives that are correctly identified. These quantities have values that lie
between 0 and 1 and can be interpreted as probabilities. For instance, the false positive rate
1s the probability that a negative instance is incorrectly classified as being positive. Many

similar indices are reviewed in (Baldi et al., 2000)

The goal behind developing classification models or classifiers is to use them to predict the
class membership of new samples. With the expansion of machine learning methods in
bioinformatics and other fields, researchers are frequently faced with the problem of
evaluating the accuracy of a particular classifier. It is important to note that, accuracy as
measured on the training set and accuracy as measured on unseen data (the test set) are
often very different. It is the accuracy on the unseen data, when the true classification is
unknown, that is of practical importance. In other words, it is important to have some idea
about how well the classifier will perform with new data. This is known as generalization
and it is linked to both classifier design and testing. It is important because the accuracy
achieved with the original data is often much greater than that achieved with new data
(Henery, 1994). Thus, in order to have a reliable estimate of the future classification
performance, not only should the training set and the test set be sufficiently large, but the
training samples and the test samples must be independent. There are no good guidelines
available on how to divide the available samples into training and test sets; Fukunaga

provides arguments in favour of using more samples for testing the classifier than for

designing the classifier (Fukunaga, 1990).

Cross-validation procedures

Cross-validation is a commonly used and widely accepted technique in the fields of machine
learning for estimating the generalization performance, model comparison and optimizing
learning model parameters (Duda et al., 2000). This is one of the several approaches to
estimate how well the model that just learned from some training data will petform on

future as-yet-unseen data.

Hold-Out 1V alidation: This method randomly split the available data into a training dataset

and a test dataset. The model is trained on the training dataset, and predictive performance

is assessed using the testing data. Hold-out validation avoids the overlap between training
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data and test data, yielding a more accurate estimate for the generalization performance of
the algorithm. The drawback is that this procedure does not use all the available data and

the results are highly dependent on the choice for the training/test split.

K-fold cross walidation: In this approach, all samples are partitioned randomly
(independently and evenly) into £ equal sized subset or folds with., Of the 4 subsets, a
different single subset is held-out as the test data for testing the model, and the rematning
4—1 subsets are used for learning. The cross-validation process is then repeated £ times
(the folds), with each of the & subsets used exactly once as the test data. The £ results from

the folds then can be averaged to produce a single estimation.

I eave-One-Out: Leave-One-Out cross-validation is a special case of k-fold cross-validation
where £ is the number of data points. The main drawback to the leave-one-out method is
that it is expensive - the computation must be repeated as many times as there are training

set data points.

ROC curve

Particularly useful for evaluating sequence and structure comparison algorithms, the
Recetver Operating Characteristic (ROC) analysis (Egan, 1975; Zweig and Campbell, 1993)
is the most widely used evaluation method in bioinformatics today (Sonego et al., 2008), as
it is, both a visual and numeric method. It is a two dimensional measure of classification
performance depicting the relationship between the true positive rate (sensitivity) and false

positive rate (1 - specificity) at various thresholds T.

An ROC curve is formulated by plotting the sensitivity and specificity of the classifier
against each other as a function of the thresholdcriterion, T. Figure 1.3 shows an example
of how to calculate a ROC curve. With the output of a classifier which is a ranked list as
shown on the left hand side of figure, one can plot the ROC curve shown at the bottom
left of the figure by varying the decision threshold between the minimum and maximum of
the output values and plotting the FPR (1 - specificity) on the x-axis and the TPR
(sensitivity) on the y-axis. Onecan tune the threshold of decision T, to change the number
of true positives versus false positives. Increasing the number of true positives alsoincreases
the number of false alarms; decreasing the number of false alarms also decreases the

number of hits. Depending on how good/costly these ate for the particular application we
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have, we decide on a point on this curve. For example, in Figure 1.3, when the threshold is

set to 0.6, the TPR is 0.7, and the FPR is 0.1.
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Figure 1.3: Constructing a ROC curve from ranked data.

The TP, TN, FP, FN values are determined by comparing them to a moving threshold, an example
being shown by an arrow in the ranked list (left). Above the threshold + data items are TP, - data
items are FP. Thus a threshold of 0.6 produces the point FPR=0.1, TPR=0.7 as shown in inset B.
The plot is produced by moving the threshold through the entite range. The data items were
randomly generated based on the disttibutions shown in inset A. (Sonego et al., 2008)

The ROC curve thus presents graphically the trade-off between false posidves (FP) and
false negatives (FN) in the classification process. The Area Under the ROC curve (AUC)
provides a scalar value that reflects the overall quality of the classifier and is a value between
0 and 1. While a perfect classifier has a rectangular shape with an AUC equal to 1, a random
classifier that returns random answers irrespective of the input is approximately a diagonal
line and the integral of this curve is 0.5. A correct classifier has a ROC curve above the

diagonal and an AUC > 0.5.
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Protein Classification

The field of protein classification is a varied landscape and a large variety of methods have
been used to approach this highly complex problem. When a new genome is sequenced
perhaps, the first key question is the structure and function of the encoded proteins. The
primary objective of protein classification is to automate the labotious task of functional

annotation and functional prediction.

Proteins can be classified according to similarities in theit sequences, in their structures and
in their functions. The reladonship between such levels of description makes them
complementary and in practice, the best approach to protein classification utilizes several

systems, in an attempt to leverage the advantages of each system.

General methods of protein classification fall into four broad categoties:

® Nearest Neighbor based methods work by comparing an unknown object (protein
sequence ot structure) with members of an a priori classified database of protein objects.
The results are ranked according to the similarities and the strongest similarities are
evaluated in terms of biological or statistical significance, after which a query is assigned

to the class of the most similar object.

® Generative models are based on consensus (or aggregate) descriptions of protein
groups. Methods for preparing consensus descriptions include regular expressions,
frequency matrices, profiles and Hidden Markov Models. The unknown quety is then
compared to a collection of generative models and the strongest similarities are
evaluated and used to assign the protein to the given class.

¢ Discriminative models seek to determine a2 boundary between a class (positive group)
and its immediate similarity neighbourhood (negative classes). Such boundaries are
established with learning algorithms, among which kernel methods, in patticular
support vector machines are extremely popular.

¢ Network models use a graph-like representation in which proteins are the nodes and
similarities are the (weighted) edges. Such a network can be evaluated by simple local
statistics (Murvai et al., 2001) or by propagation algorithms such as the PageRank
algorithm (Brin and Page, 1998) used in the Google search engine that was successfully

applied later to protein similarity searching (Weston et al., 2004).
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1.2. Protein Domains

Itis long known that proteins exhibit a modular architecture comprising of several building
blocks, known as domains. Generally speaking, domains are the structural and functional
building blocks of proteins, but definitions vary according to the field of study. Structural
biologists prefer 3D definitions based on compactness which provides a stable globular
core, while the domain concept of molecular biologists is sometimes nothing more than
that of a sequence segment that plays some functional role and/or is associated with a
conserved exon/intron structure. According to PROSITE, protein domains or motifs are
ideally defined by a specific combination of secondary structures that has a particular
topology and is organized into a characteristic three dimensional (3D) structure (Sigrist et
al., 2010). However, as this definition can obviously not be used in the absence of a known
3D structure, domains more commonly correspond to a region of sequence homology
identified in otherwise apparently unrelated proteins. In this case, the conserved region is
supposed to fold into a similar secondary and tertiary structure, independent of the context
in which it is found. Domains not only share acommon structure but also often have similar

function that contributes to the global activity of the protein that contains it.

All proteins, with exception to certain disordered proteins, consist of one ot more domains.
Several different domains, representing structural and functional units, can be found in the
so-called modular or mosaic proteins (Bork, 1992; Doolittle and Bork, 1993). As proteins
have variable multi-domain architectures, particulatly in complex eukaryotes, one particular
domain is not always found associated with the same surrounding domains, but can be
found in various combinations in seemingly untelated proteins. Moreover it is now known
that domains differ in their propensity to form multi-domain proteins. While some domains
are present only in specific combinations, others participate in diverse domain architectures.
Such domains which occur with many different domains are termed ‘promiscuous’ or
mobile domains, and are important in creating the observed diversity in protein domain
architectures (Basu et al., 2008; Tordai et al., 2005). A well-known example of 2 domain that
is found in modular proteins is the epidermal growth factor (EGF) module (Baron et al.,
1992). The EGF protein itself is a small soluble peptide hormone that causes cell division in
the skin and connective tissue. It is generated by proteolytic cleavage between repeated
EGF domains in the EGF precursor protein that contains an additional membrane-

spanning domain. The EGF domain is also found among others in association with
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chymotryptic, immunoglobulin, fibronectin or kringle domains, in modular proteins
involved in blood coagulation, fibrinolysis, neural development and cell adhesion (Campbell

and Bork, 1993).

Accordingly, the presence of various combinations of domains can be used to classify
proteins in a hierarchical way into superfamilies, families, subfamilies, etc. In addition, the
domains themselves can be classified following their structural relationships (Bork and
Koonin, 1996; Thornton et al., 1999). Evolutionarily, it is believed that protein domains
could act as "units of evolution’ (Thornton et al,, 1999). As domains are often flanked by
introns, it is supposed that middle repetitious sequences in introns may create hotspots for
recombination to shuffle exonic sequences. Hence, chimeric proteins with totally new
combinations of pre-existing domains would arise. Because of the individual contribution
of each domain, a protein with a potentially new function would be created. Interestingly,
modular proteins are mainly, although not exclusively, found in multi-cellular animals. It
has been proposed that the metazoan radiation was made possible by exon shuffling that
led to the rapid construction of multi-domain extracellular and cell surface proteins, that are

indispensable for multi-cellularity (Patthy, 1999).

Representation of Protein Domains

The concept underlying domain representation is the similarity group. Broadly speaking, a
similatity group is a group of objects that share common propetties that distinguish them
from the rest of a database (Agoston et al., 2005). There is a large variety of quantitative and
qualitative similarity measures that can be applied to define groups of molecules based on
structure, function, citations, ontological terms etc. Protein domains (as well as protein
tolds) refer to structural similarity groups whose members share commonalities defined either
in terms of sequence or in terms of three-dimensional concepts such as secondary
structures, backbone representations etc. A common description of the similarity group is
called a comsensus description that can take the form of regular expressions, consensus
sequences, frequency matrices, Gribskov profiles (Gribskov et al., 1987), Hidden Markov
Models (HMM) (Krogh et al,, 1994) etc. (Attwood, 2000). The consensus description
usually does not cover the entire structure of the molecules that constitute the similarity
group; it is rather a partial representation, a pattern that includes only those features of the

structure which are common to all or most of the members.
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Domain Annotation

Finding domains in a protein refert to two types of problems: i) De novo or ab initio detection
refers to finding domains in 3D structures irrespective of the already known domains or
folds. i) Domain annotation on the other hand refers to finding instances of known
domain types in newly determined sequences of structures. This approach — the subject of
this section — relies on a database of known domains, defined in terms of sequences and/or
3D structure. Sequence based domain annotation methods could be roughly categorized
into four major types: Nearest-Neighbor compatison algotithms, generative models,
discriminative classifiers and network based models. As the methods ate usually associated

with a database, below I describe a few examples of domain databases.

Nearest-Neighbor comparison based methods

These methods make use of pairwise similatities for detection of protein domains. The
query sequence is compared against members of priori classified protein domain database.
Among such algorithms, the Smith—Waterman dynamic programming algorithm (Smith and
Waterman, 1981) is the most sensitive, whereas heurstic algorithms such as BLAST
(Altschul et al., 1990) and FASTA (Pearson and Lipman, 1988) trade sensitivity for speed.
Potential domains are evaluated by analyzing the distribution similarity scotes provided by
the selected pairwise algorithm and similar to the “Nearest-Neighbot” paradigm for
supervised learning, the query sequence is then assigned with the domain nearest to it in the

domain database.

The SBASE (Pongor et al.,, 1993; Simon et al., 1992; Viahovicek et al., 2005) project was
initiated in order to develop a prediction scheme that can automatically recognize instances
of known protein domains in the newly determined sequences, using similarity seatch on a
reference domain sequence database. The motivation behind the SBASE project was to use
pairwise alignments directly for finding known domains, without the necessity to construct
and curate MAs and /or generative models. It uses a curated collection of domain
sequences — the SBASE domain library — and standard similarity search algorithms,
followed by post-processing which is based on a simple statistics of the domain similarity
network (http://hydra.icgeb.trieste.it/sbase/). Since SBASE uses a faitly simple strategy to
construct domains by performing simple BLAST (Altschul et al., 1990) searches against a
manually annotated database of subsequences, it heavily relies on good annotation of

domains in primary databases. The SBASE approach is especially useful in detecting rare,
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atypical examples of known domain types that are sometimes missed by more sophisticated
methodologies. Today, SBASE is refreshed only once a year and contains curated subset of
InterPro collection (Hunter et al., 2009) that is complemented with established domain
types from other sources Pfam (Sonnhammer et al., 1997), SMART (Letunic et al., 2009),
Swiss-Prot annotations (Boeckmann et al., 2003). The curtent size of the SBASE collection

1s approximately 736 thousand domain sequences.

ProDom (Bru et al., 2005; Corpet et al., 1998; Sonnhammer and Kahn, 1994), is a domain
family database containing comprehensive set of protein domain families automatically
generated by clustering homologous segments from the Swiss-Prot and TrEMBL
(Boeckmann et al., 2003) sequence databases. ProDom is based on an algotithm originally
developed by Sonnhammer and colleagues (Sonnhammer and Kahn, 1994) and extended to
MKDOM2 (Gouzy et al., 1999) which exploits the features of the recursive PSI-BLAST
homology search algorithm. One can query the ProDom by accession number (Display a
ProDom entry),SWISS-PROT/TrEMBL identifier/accession number, keyword searchor
selecting the display of all proteins belonging to one ot several ProDom families. Moreover,
it also allows for BLAST searches in ProDom, suggesting a possible domain arrangement
for any query protein. The output is either information on a given domain family or
cartoons displaying the domain arrangements of all proteins matching the query. Since,
PrpDom also includes the use of three-dimensional (3D) information from the SCOP
database (Murzin et al., 1995), the ProDom graphical intetface also provides an option for

the display of ProDom domains on 3D structures.

Generative Approaches

This methodology involves building a model or pattern from each group of protein
domains and then evaluating each input candidate sequence to see how well it fits the

model. The input is then classified according to the model it fits best.

Pfam (Sonnhammer et al., 1997) and SMART (Letunic et al., 2009), which use Hidden
Markov Models (HMM) of protein families, domains and repeats, as well as PROSITE
(Sigrist et al.,, 2010) which uses regular expressions and profile-based methods of domain
classification are databases that fall under this category. These methods allow the
computational biologist to infer nearly three times as many homologies as a simple pairwise

alignment algorithm (Park et al., 1998).
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PROSITE (Sigrist et al., 2010), initially termed as a ‘signature’ database was the first
domain-related database, created by Amos Bairoch in 1988. PROSITE uses two kinds of
signatures or descriptors to identify conserved regions, i.e. patterns and generalized profiles.
The patterns are built from alignments of related sequences collected from well
characterised protein families, from the literature, from the sequence searches against Swiss-
Prot and TrEMBL. The alignments generated are then checked for conserved regions and a
core pattern is created in the form of a regular expression. Since patterns have limitation
across whole sequence, PROSITE also creates generalized profiles. The profile structure
used in PROSITE is similar to but slightly more general than the one introduced by
Gribskov and co-workers (Gribskov et al., 1987) .Each pattern and profile in PROSITE is
linked to an annotation document where the user can find information on the protein
family or domain detected by the signature, such as the origin of its name, taxonomic
occurrence, domain architecture, function, 3D structure, main characteristics of the
sequence, domain size and literature reference. They are also complemented by ProRule
(Sigrist et al.,, 2005), a collection of rules which contain information for the automated
annotation of domains in the UniProtKKB/Swiss-Protdatabase that help to reliably identify

to which known family of protein (if any) a new sequence belongs.

Pfam (Sonnhammer et al.,, 1997), a collection of multiple protein sequence alignments and
HMMs, is a excellent repository of models for identifying domains, protein families and
repeats. The starting point is manually curated multiple sequence alignments also known as
the seed alignments, with each alignment containing a representative set of sequences that
are relatively stable between releases of the database. The seed alignments are used to build
profile hidden Markov models (HMMs) that can be used to search any sequence database
for homologues in a sensitive and accurate fashion. Those homologues that score above the
curated inclusion thresholds are aligned against the profile to make a f#// alignment. Pfam
comes in two flavors, Pfam-A is a set of 11912 manually curated and annotated models and
is found in approximately three quarters of known proteins. To be comprehensive and
increase the coverage further, curated families in Pfam-A are augmented by Pfam-B, which
is a set of automatically generated families built from homologous sequence clusters detived
from the ADDA domain collection (Heger et al., 2005). ADDA has been used from Pfam
release 23.0 onwards and is a method for automatically predicting protein sequencedomains

from protein sequence alignments alone.
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Simple Modular Architecture Research Tool (SMART) (Letunic et al., 2009) contains
manually curated HMMs for the annotation and identification of genetically mobile
domains and analysis of domain architectures. Originally, it focused on eukaryotic signalling
domains, as these were under-represented in other domain databases. Today, SMART
contains a wider spectrum of protein domains from all kingdoms of life, with the current
release containing manually curated models for 784 protein domains. The undetlying
protein database based on completely sequenced genomes was greatly expanded and now
includes 630 species. The models rely on hand curated multiples sequence alignments of
representative family members, based on tertiary structures (wherever available) otherwise
found by PSI-BLAST. Users looking at genome wide domain counts often end up with
wrong and highly inflated numbers due to the high redundancy in existing protein
databases. SMART remedies this problem by making use of two search modes, namely, a
‘genomic’ analysis mode, which uses only those proteins that are from the completely
sequenced genomes and a ‘normal’ analysis mode which uses the non-redundant protein
database created by SMART. The main source of protein sequences is Uniprot (Apweiler et

al., 2004), complemented with the full set of stable genomes from ENSEMBI..

A common difficulty of these approaches comes from the fact that a multiple alignment is

necessary which requires human intetvention.

Discriminative Approaches

In the case of discriminative approaches, protein sequences are seen as a set of labeled
examples (for examples, positive if they are in the group of interest and negative otherwise).
The learning algorithm then attempts to learn the distinction between the classes, creating a
decision boundary between the positive and negative examples. Unlike the generative
approaches, both positive and negative examples ate used in the training process for a
discriminative approach. One of the earliest examples in protein classification is the work of
the Fisher kernel method (Jaakkola et al., 1999). Later applications include versions of SVM
predictions. At present there are no domain collections based explicitly on discriminative

approaches, but the methodology is used by several protein classification resources.

SVM-Fold (Melvin et al., 2007) is a resource that uses SVM search to complement PSI
BLAST searches. The SVM predictors ate trained on groups of the SCOP database. SVM-
Prot (Cat et al., 2003) contains SVMs trained on 54 Pfam families. SVM predictors trained
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on BLAST output parameters were also developed for SBASE. This is an approach that
builds not on sequence inputs but on propetties of protein alignments such as score

coverage, length coverage, score/HSP length (Vlahovicek et al., 2005).

Neural networks, another classical example of discriminative models have been used in
several experimental resources. Murvai and associates used this approach in the SBASE
evaluation pipeline for several years but the method was abandoned due to the large

updating overheads.

Integrated Databases for Protein Domains

While the databases described above have significant ovetlaps in the protein families and
domains they predict, they arrive at these overlaps by different means. While, using just one
of the databases to analyze a query sequence makes one vulnerable to any limitations the
chosen database may have, trying to use all of them at the same time but from the separate
sites may lead to confusion in trying to rationalize the different results obtained at each.
Thus, Meta databases (database of databases) which integrates several databases into one
coherent database have been compiled to catalog and categotize these databases. These
integrated database resource include, InterPro (Hunter et al.,, 2009), Metafam (Silverstein et
al,, 2001), iProClass (Wu et al., 2004), CDD (Marchler-Bauer et al., 2009) and ProGMap
(Kuzniar et al., 2009) .

The InterPro collection (Hunter et al, 2009) integrates together predictive models or
‘signatures’ representing protein domains, families and functional sites from multiple,
diverse source databases: Gene3D (Lees et al,, 2010), PANTHER (Mi et al., 2010),
Pfam(Finn et al., 2008), PIRSF (Nikolskaya et al., 2006), PRINTS (Attwood et al., 2003),
ProDom (Bru et al,, 2005), PROSITE (Sigrist et al., 2010), SMART (Letunic et al., 2009),
SUPERFAMILY (Wilson et al., 2007) and TIGRFAMs (Selengut et al., 2007). Signatures
from these databases that describe the same domain, family, repeat, active site, binding site
or post-translational modification, are grouped into single comprehensive format of
IntetPro entries with unique accession numbers. Two general types of relationships can
exist between Interpro entries: the parent/child and contains/found-in relationships. While
the contains/found-in relationship is used to indicate domain composition and generally
refers to the presence of genetically mobile domains, the patent/child relationship is used

to describe a common ancestry between entries. If one InterPro entry is described as the
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child of another InterPro entry, this implies that the child entry is more specialized
sequence than the parent, and that in all cases a protein sequence match to the child entry
implies a match to the parent as well. Signatures for the parent and child entries must
overlap. Integration is performed manually and approximately half of the total ~58,000
signatures available in the source databases belong to one InterPro entty. InterPro consists
of nearly 5,000 entries. Each InterPro entry contains high-quality manual annotation
providing useful information on the protein family, domain etc. in question. InterPro is
implemented using Oracle relational database and is accessible using text ot sequence

searches.

MetaFam (Silverstein et al., 2001), is a comprehensive relational database of protein family
information. This web-accessible resource creates supersets of ovetlapping families Pfam
(Sonnhammer et al., 1997), PROSITE (Sigrist et al., 2010), SBASE (Vlahovicek et al., 2005),
PRINTS (Attwood et al., 2003), DOMO, BLOCKS (Henikoff et al., 2000) and ProDom
(Bru et al., 2005) databases. This is achieved using set theory to compare database with one
another. Users can attempt to classify their own sequences from the MetaFam server

(http://metafam.ahc.umn.edu/)

Conserved Domain Database (CDD) (Marchler-Bauer et al., 2009) from NCBI, was
established to annotate protein sequences with footptints of ancient conserved domains. It
is a collection of multiple sequence alignments and detived database search models, which
represent protein domains conserved in molecular evolution. CDD is a database of
domains from numerous information resources that provide computational annotation for
protein sequences and protein domains. These include, Pfam (Sonnhammer et al,, 1997),
SMART (Letunic et al., 2009), COGs (Tatusov et al., 2003), Protein Clustets (Sayers et al.,
2009). CDD uses a Reverse Position Specific BLAST (RPS-BLAST) for comparing a quety
sequence to a set of many Position specific scoting matrices. CDD's collection of models
can be queried with novel protein sequences via the CD-Search (Marchler-Bauer and

Bryant, 2004) service at http://www.ncbi.nlm.nih.gov/Structure/cdd/wipsb.cgi.

ProGMap (Protein Group Mappings), is a single-entry web-tool which unifies the
classification information present in the current protein databases that can be quetied viaa
single interface (Kuzniar et al., 2009). It is designed to help researchers and database
annotatots to assess the coherence of protein groups defined in various databases thereby

facilitating the annotation of newly sequenced ptoteins. ProGMap is based on a non-
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redundant dataset of over 6.6 million protein sequences which is mapped to 240,000
protein group descriptions collected from UniProt (UniProt, 2010), RefSeq (Pruitt et al.,
2009), Ensembl (Kersey et al., 2010), COG and KOG (Tatusov et al., 2003), OrthoMCIL-
DB (Chen et al., 2006), HomoloGene (Sayers et al., 2009), TRIBES (Enright et al., 2003)
and PIRSF (Nikolskaya et al., 2006). Instead of creating a new classification scheme,
ProGMap combines the underlying classification schemes via a network of links
constructed by a fast and fully automated mapping approach otiginally developed for
document classification. The web interface (http://www.bioinformatics.nl/progmap)
enables queries to be made using sequence identifiers, gene symbols, ptotein functions ot
amino acid and nucleotide sequences.

The iProClass (Wu et al, 2004) database is an integrated resource that provides
comprehensive family relationships, structural and functional classifications and features of
proteins. It provides rich links to over 50 databases of protein sequences, families,
functions and pathways, post-translational modifications, protein—protein interactions,
protein expressions, structures and structural classifications, genes and genomes, ontologies,
taxonomy and literature. The curtent vetsion consists of about 830,000 non-redundant
PIR-PSD, SWISS-PROT, and TrEMBL proteins organized with more than 36 000 PIR
superfamilies, 145,000 families, 4000 domains, 1300 motifs and 550,000 FASTA similarity
clusters integrates PIR superfamilies and PROSITE motifs. Implemented in the Oracle
object-relational database system, iProClass employs an open and modular architecture for
interoperability and scalability. The integrative data warchouse approach like iProClass
allows systematic detection of genome annotation errots, comparative studies of protein
function and evolution, and provides sensible propagation and standardizaton of protein
annotations. The database is freely accessible from the web site at
http://pir.georgetown.edu/iproclass/. Protein entties can be retrieved using a single
protein ID or one of many other sequence database identifiers. It provides two types of
summary report for the information retrieved: Protein summary report, which contains
information about protein ID and name, source organism taxonomy, sequence annotations,
data cross-references, family classification, and graphical display of domains and motifs on
the amino acid sequence. The second type of information, known as the Family summary
report, is available for PIRSF families and contains information about PIRSF number and
general statistics, family and function/structure relationships, database cross-references, and

graphical display of domain and motif architecture of seed members or all members.
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The SCOP and CATH Classification Schemes

SCOP (Murzin et al., 1995) and CATH (Orengo et al., 1997) are the two well documented
protein 3D classification schemes representing the most significant efforts to classify
structural information available from the Protein Data Bank (PDB) (Berman et al., 2002).
CATH and SCOP are based on hierarchical classification of protein domains into structural
groups. They are widely used as gold standards to benchmark novel protein structure
comparison methods as well as to train machine learning approaches for protein structure
classification and prediction. Both SCOP and CATH pattition the protein structure
universe hierarchically (nested groups), proceeding from coarse-grained to fine-grained
pattitions. The top levels of the hierarchy are defined by the three-dimensional structure,
whereas lower levels are identified on the basis of sequence similarity and functional

considerations.

SCOP was among the earliest efforts to classify protein structutes into folds. It aims to
provide a detailed and comprehensive description of the structural and evolutionary
relationships between all protein structures by manually labelling them (Murzin et al., 1995).
The SCOP database uses four-level taxonomy: class, fold, superfamily, and family (Figure
1.4). Each domain in a protein structure is assigned to one category in each of these four
levels. There are three additional levels, namely, protein domain, species, and entry domain.
‘The topmost level of SCOP, ¢/ass, defines 11 different classes. Four of these are not true
classes; these are short peptides, low resolution structures, and engineered proteins. The
four major classes, ones where the majority of structures reside, are "all o, ’all B, ‘o/f}” and
"o+’ roughly describing the content of secondary structure elements in the domain. The
three remaining actual classes are multi-domain, membrane, and small proteins. Proteins in
a common fold have the same major secondaty structures in the same arrangement with the
same topological connections. The superfamilylevel groups together structures with a probable
common evolutionary origin. Proteins with low (insignificant) sequence similarity, but whose
structural and , in many cases, functional features suggest a common evolutionary otigin,
are grouped in the same superfamily. Domains clustered in the same faily are likely to have
a common evolutionary origin based on sequence similarity or functional evidence.
Generally the sequence identities (between the sequences for structures belonging to the
same family) are above 30%. However, in some cases structural and functional features can

provide the evidence alone, in spite of lower sequence similarity.
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Figure 1.4: The SCOP hierarchy

Unique identifier of a domain in SCOP contains concatenation of 4 subparts, a letter ‘d’,
the PDB ID of the protein that the domain is a part of, the chain letter, and a digit
indicating its domain number within the chain. For instance, the second domain from chain
C of the protein with PDB ID 1F]G, is assigned the SCOP identifier ‘d1fjgc2’. The latest
release (1.73) contains 92,927 domains organized into 3464 families, 1777 superfamilies and
1086 folds. The SCOP domains correspond to 34,495 entries in the PDB. The actual part
of a PDB file corresponding to a SCOP domain can be retrieved from the ASTRAL

database.
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As compared to the SCOP, the building process of CATH contains more automatic steps
and less human intervention. Recognized fold groups and families are stored in the CATH
database, so-called because the organization of the database reflects the hierarchy of protein
(Olass, (A)rchitecture, (T)opology or fold group, and (H)omologous superfamily.
Analogous to SCOP, CATH starts at the class level defining three major classes of
secondary structure content (all o', “all B* and "a—f’ and proteins with few secondary
structures (FSS)). Domains within each class are then assigned the next level of
classification, called *Architecture’ based on the similarities in their architecture, i.e. the
shape created by the relative orientation of the secondary structure units in 3D space, the
connectivity is not taken into account though. These shape families are chosen according to
a commonly used structure classification (e.g., barrel, sandwich, roll, etc.). The first two
levels of the hierarchy are phenetic, and do not say anything about the evolutionary
relationship between domains in the same group The "Topology’ level is analogous to the
SCOP “fold’ level and groups structures that have a similar number and arrangement of
secondary structure elements with the same connectivity. The last (major) level,
’Homologous superfamily’, clusters proteins with highly similar structures, sequences
and/or functions, which suggest that they may have evolved from a common ancestor.
Both the topology and homologous superfamily levels are assigned by thresholding a
calculated structural similarity measure (SSAP) at two different levels. In addition to these
four levels of classification, the CATH classification system also includes five ‘SOLID’
sequence levels. While, S, O, L, I further divides domains within the H-level using multi-
linkage clustering with successively higher sequence identity cut-offs (35, 60, 95 and 100%),
the leaves of the hierarchy 'D' are individual domains and is a simple countet appended to
the T level to ensure that every domain in CATH has a unique CATH solid identification

code.
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Figure 1.5: The CATH hierarchy

A particular node in the CATH hierarchy is referenced using a number for each level above
and including that node. For example there is a superfamily of setine proteases domains
denoted 3.40.50.200. Here the class is 3 («/@), the architecture is 40 (3-layer «Bo sandwich),
the topology is 50 (Rossman fold) and the superfamily is 200 (setine protease). The latest
telease of CATH (v.3.2) comprises of 1233 fold groups and 2178 homologous

superfamilies.

Dali Fold Classification
Dali Fold Classification (http://www.ebiac.uk/dali,(Holm and Sander, 1994)) provides

domain classification using structure-structure alignment of proteins. The classification is
based on an exhaustive all-against-all structure compatison using Dali (Holm and Sander,

1998) structure comparison. Each domain is regarded as a point in a high-dimensional fold
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space, and a multivariate scaling method is used to find the groups of proteins sharing
common features. Dali Database is updated twice a year and contains precomputed
structural alignments of PDB90 against the full PDBPDBI0 is a representative subset of
the PDB. This is a non-redundant subset in which no two chains share more than 90%
sequence identity). The query structure is mapped to the closest representative in PDB90
and the structure comparison scores are recomputed using the transitive alignment via the

representative.

Sequence Databases
Until now this chapter this chapter provided a description of the existing systems for

protein classification based on the underlying methodology: domain/motif-based and
structure-based which has been used extensively in this dissertation. In the following
paragraph I would like to provide a brief description of the frequently used public protein
sequence database, Swiss-Prot and TrEMBL (Boeckmann et al., 2003). Recent years have
seen explosive growth in publicly available biological data and protein sequence databases
play a vital role as a central resource for storing this data, and making them available to the
scientific community. Depending on the type of data they contain, these databases can be
categorized into two classes: universal and specialized. While universal databases store
sequences from all species, specialized databases focus on specific families of proteins, or
proteins from a specific organism. Major universal protein database archives include Swiss-
Prot (Boeckmann et al., 2003), TtEMBL (Boeckmann et al., 2003), PIRSF (Nikolskaya et
al., 2006), NCBI’s Entrez Protein and RefSeq (Pruitt et al., 2009).Here we focus on the

Swiss-Prot and TrEMBL used extensively in this dissertation.

The most commonly cited protein database is Swiss-Prot (Boeckmann et al., 2003), which is
an annotated protein sequence database established back in 1986 and maintained
collaboratively by the Swiss Institute of Bioinformatics and the European Bioinformatics
Institute (EBI). The Swiss-Prot database strives to provide a high level of annotation
through a process of literature-based manual curation and this allows the addition of as
much accurate and up-to-date information as possible about each protein. The database is
non-redundant, merging all reports for a given protein into a single entry, thus summarizing
many pages of scientific literature into a concise yet comprehensive repott. It also provides
a high level of integration with other databases in the form of cross-teferences to other

sequence databases as well as to specialized data collections.

22



Introduction Protein Domains

Since maintaining the high quality annotation of Swiss-Prot limited its growth, a
supplement database called TrEMBL (T'ranslation of EMBL nucleotide sequence database)
was introduced in 1996 (Boeckmann et al., 2003). TreMBL consists of computet-annotated
entries automatically derived from the translation of all coding sequences in the
EMBL/GenBank/ DDBJ nucleotide sequence databases that are not yet included in Swiss-
Prot. To ensure completeness, it also contains a number of protein sequences extracted
from the literature or submitted directly by the user community.

Both TrEMBL and SWISS-PROT are internally maintained in a relational database. Both
the databases store data in a highly structured and uniform manner, which simplifies data
access for users and data retrieval by computer programs. The databases are distributed in
flat-files, which is a textual representation of the database in a format. They consist of a
large number of structurally homogeneous entries, each representing one protein sequence
together with its annotation. The annotation describes the function of the protein, post-
translational modifications (phosphorylation, acetylation...), domains, and sites, secondary
and quaternary structure, similarities to other proteins, diseases associated with deficiencies,

sequence conflicts, variants and further information when considered most relevant.
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1.3. Kernel methods in bioinformatics

Learning from Diverse Types of Data

The large volume and complexity of biological data being generated represenfs both a
challenge and an opportunity for bioinformatics research and development. As biology is a
knowledge-driven discipline, access to information is of utmost importance and the process
of successfully gaining insight into complex biological mechanisms increasingly depends on
a complementary use of a variety of resources. Availability of new high-throughput data
acquisition methods and advances in computing, communications and digital storage
technologies has paved the way for growth in the generation and storage of large and
diverse biological data sets. These large data sets are usually stored in different,
autonomously structured, and relational data repositoties. Mining information from these
dispersed database entries of hundreds of genes/proteins is notably inefficient and shows
the need for higher-level integrated views that can be captured more easily by an expert’s

mind.

Conceptual data integration is concerned with combining data from different databases, in
different formats, into a global (conceptual) scheme. However, the growing influx of
biological databases on the internet has made manual integration of relevant biological

information a seemingly impossible task.

In the practice of protein bioinformatics, combinations of various methods such as
sequence comparison, structure comparison, phylogenetic information is routinely used, but
mainly on an intuitive basis. In the practice of machine learning, there are well established
methods to combine heterogeneous sources. In many practical cases, no single method is
able to provide the acceptable reliability of classification and intuitively, it makes sense that
combination classifiers might be able to harness the complementaty information provided
by different methods and to improve the generalization performance of the resulting
classifier. The goal of combining methods is the extension of the information contained in
the data used as the training set. In bioinformatics we may use as classifiers sequence
compatison, structure compatison, etc. Combining can occur at different levels of the
analysis, namely, Sensor or the data level (catly integration), Classifier score level
(intermediate) and Decision level (late integration) (Mottl et al., 2007) as shown in Figure

1.6. The different stages of integration cortrespond to the different stages of knowledge
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to infer new biological knowledge.

of a vector.

acquisition into the pipeline of extracting meaningful information from experimental data

a) Sensor level combination is the fusion of the signals or features obtained ditectly from

the data objects, like for instance, using propetties such as size, composition, as dimensions

independent scores that are then combined.

) Decision level implies fusing final decisions made separately by single classifiers.

b) Classifier score level, which presupposes classifiers for the various features producing

Thus these methods provide a potential framewortk for integrating vatious sources of data

in various ways. Still, at present, there is little work done on systematically applying them to

bioinformatics problems.

Data / Features

Sensor / Datya
Level

Clagsifier Score
Laovel

Decision Level

Kernel Matrix

Decision

C

e

=
) INTEGRATION

Figure 1.6: The different stages of data integration
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Kernel methods

Consider an object in the real life which has many propetties, entities in a database can have
long lists of functions, attributes represented in a vectorial form, structural coordinates, etc.
The attributes assigned to database objects and there ensemble is known as the feazure space.
However, many algorithms do not use the feature representation directly; they exploit just
the relation between the objects, for instance similarity relations that numerically express
how similar the objects are to each other. Using a similarity measure, we simplify this
picture, as if we transferred the data into a simpler wotld whete there ate no properties, just
similarities between the objects. This is the simélarity space and it can also be depicted as a
network of similarities (Figure 1.7). Such a network is a graph which by definition has a
matrix form that stores the similarity measures resulting from all pairwise comparisons
between the data objects. One of the basic problems in Bioinformatics is the comparison of
DNA or protein sequences and structures and there are many algorithms specially designed
for the purpose, such as BLAST (Altschul et al., 1990), PSI-BLAST (Altschul et al., 1997),
FASTA (Pearson, 1990), and the Smith-Waterman algorithm (Smith and Waterman, 1981),
DALI (Holm and Park, 2000), PRIDE (Gaspari et al., 2005) etc. These algorithms return a
numeric similarity score expressing how similar or different the two sequences or structures

are.

Many computational methods (like classification, prediction, noise filter methods, etc.)
require additional properties from this similarity matrix, that is, it has to be symmetric and
positive semi-definite. Support vector machines (SVMs) (Vapnik, 1998) are the most
popular in this category of methods. Other methods operating on positive semi-definite
matrices include Gaussian processes, Fisher's Linear Discriminant Analysis (LDA),
Principal Components Analysis (PCA), Canonical Correlation Analysis (CCA), ridge
regression, spectral clustering, linear adaptive filters and many others. The most common

tool to obtain a positive, sem-idefinite mattix is the innet product of vectors.
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Figure 1.7: Representation of objects in the real space and in the similarity-space.
The similarity matrix will be kernel matrix if similarity function is a ketnel function.

Kernel functions are symmetric, semi-definite functions that provide another alternative to
produce positive, semi-definite matrices. Kernel functions have two important advantages
over the simple inner product: 1) they provide a convenient way to extend linear methods
to non-linear ones (for example linear classifiers to non-linear ones) without raising the
complexity. 2) Ketnel functions can be applied directly to non-vectorial data, like
collections of trees, graphs, images, DNA and protein sequences, microarray gene
expression chips, etc. These have made kernel methods very popular in bioinformatics over

the last few years.

The Fisher kernel (Jaakkola et al., 1999; Jaakkola et al., 2000)derived from a Hidden Matkov
Model (HMM) was one of the first application of kernels to protein sequence compatison.
Since then there have been improvements on the performance of the Fisher kernel. The
Local Alignement kernel (Saigo et al., 2004) is a convolution of all the possible gapped local
alignment and it can be considered as the “kernelized” version of the Smith-Waterman. The
Spectrum kernel (Leslie et al., 2002) which compares all possible &-mers with a sequence
and the Mismatch kernel (Leslie et al., 2002) which compares &-mers and considers them
identical if they have at most 7 mismatches, both gave state of the art petformance when

used within a support vector machine.

While classical kernel-based algorithms are based on only one kernel, tecent applications
(Lanckriet et al., 2004b) have shown that multiple kernels can enhance interpretability of
the decision function and improve classifier petrformance This can be fulfilled due to the

fact that the class of kernel functions are closed under the positively weighted addition. The
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idea behind these multi-kernel methods is to represent a set of heterogeneous features via
different types of kernels and to use the resulting combined kernel as an input to machine

learning algorithms (Figure 1.8).
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Figure 1.8: Applying kernel fusion to combine molecular biology data.

The crucial point is to convert data into relations (such as similarities, concept-distances in
ontologies, interactions determined by experiment, etc.) that can in turn be represented as matrices.
These matrices are normalized to the kernel form and then combined using the kernel fusion
principle.

Recently, several methods have been described for handling heterogeneous data sets by
combining kernels in the context of SVM learning. Pavlidis and associates used un-weighted
sum of kernels to combine kernel matrices generated from microatray gene expression data
as well as phylogenetic profiles, and trained SVMs to recognize functional categoties of
yeast genes (Pavlidis et al., 2002). Vert and co-workers proposed a “mettic learning pairwise
kernel” for biological nietwork inference (Vert et al., 2007), whereas Ben-Hur and Noble
predicted PPIs using pairwise kernel and simple linear combination with sequence kernels
(Ben-Hur and Noble, 2005). All the above mentioned approaches used simple, unweighted
linear combination of kernels with an equal weight given to all the data sources. Efforts

were also made in combining multiple kernels using optimal weights, Lanckriet and
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assoctates formulated a multiple kernel learning (MKI) problem which optimizes kernel
weights by training a SVM classifier using semi-definite progtamming problem(Lanckriet et
al., 20044). This approach was further improved by Sonnenburg (Sonnenburg et al., 2006)
who proposed multiple kernel learning based on linear semi-infinite programming, as well
as by Bach and associates who suggested an algotithm based on sequential minimal

optimization (SMO) (Bach et al., 2004).
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2. Protein Benchmark Collection

2.1. Background

One of the fundamental tasks in bioinformatics is the structural and functional annotation
of proteins. In a typical application, proteins of a newly sequenced genome are to be
classified into one of the several thousand a priod knowan structural or functional categories
and in view of the large number of new genomes sequenced this task is carried out to a

large extent, by automated machine learning methods.

Application of machine learning techniques to proteins is a delicate task and is usually
hampered by the fact that the clusters in the protein universe are highly variable in most of
their characteristics (e.g. average sequence length, number of known members, within-
group similarity, etc.). Despite the fact that application of machine learning algorithms to
protein classification is a frequent topic in the literature, comparing the performance of a
new classification method with the figures published on other methods often becomes
quite difficult. In our opinion this is mainly because (i) the published results are often based
on different and sometimes obsolete databases and program versions, (ii) the fine-tuning of
the program parameters is sometimes not described in sufficient detail and finally, (iii) the
classification performance is characterized by vatious, often ad hoc chosen performance

measures and validation protocols.

In the practice of machine learning, cross-validation techniques are used to assess the
accuracy of classification methods which involves making the algorithm learn from one
randomly picked part of the data and then testing its classification ability on another part.
However this approach is not very suitable in the case of protein classification because of
the biological nature of the problem itself. Namely, most genomes contain novel variants of
the known proteins, i.e., the similarity distribution of a known protein family in a newly
sequenced genome is in fact expected to be different from rather than similar to that of its
known variants. So, the foremost question then becomes, how well a given algorithm
generalizes to novel subtypes and how one can assess the generalization capability of a

classifier algorithm making use of some additional knowledge on the protein class.
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Haussler and co-workers suggested the use of benchmarking datasets (Jaakkola et al., 2000)
that were 4) difficult enough to show differences between various methods and 4) well
enough populated so as to provide robust statistics. For example, taking into consideration
the hierarchical schemes in which the protein universe is organised, if it is known that a
given group consists of subgroups, one can then use one subgroup as the positive test set
and pool the others as the positive training set. One can repeat this procedure for each of
the subgroups. With this method each of the subgroups is considered one-by-one as a
“newly discovered” subtype, so the method will estimate the classifiet's average ability to
discover new variants. Thus this “knowledge based cross-validation” as opposed to the
random cross-validation techniques gives a more realistic estimate of the generalization

capability of a classification algorithm.

In view of the above difficulties and the number of new genomes sequenced, it is critically
important to define benchmark datasets for assessing the accutracy of classification
algorithms. Knowledge-based or supervised cross-validation, i.e., selection of test and train
sets according to the known subtypes within a database has been successfully used eatlier in
conjunction with the superfamilies and families of the SCOP database (Dong et al., 2006;
Jaakkola et al., 1999; Jaakkola et al., 2000; Liao and Noble, 2003; Lindahl and Elofsson,
2000). The goal of the Protein Classification Benchmark collection, desctibed in this
chapter, was to extend this principle to other databases and devise standardized sets of
protein data and procedures that make it easier to compatre new methods with the
established ones. Primarily meant for those interested in developing sequence or structure
comparison algorithms and/or machine learning methods for protein classification, the

collection is based on two general ideas:

(i) since, protein groups are highly variable, the performance of an algorithm has to be
tested on a wide range of classification tasks, such as the recognition of all the protein

families in a given database;

(it) the utility of a classifier is determined by its ability to recognize novel subtypes of the

existing proteins.
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2.2. Overview of methods and data used to create
the Benchmark Protein Collection

This section provides a description of the methods involved in designing and creation of

the Protein Benchmark Collection:

Selection of the source data.

The collection contains datasets of protein sequences, 3D structures and in a few cases,
reading frame DNA sequences of the same molecules. The sequences are deposited in
concatenated FASTA format (http://www.ncbinlm.nih.gov/ blast/fasta.shtml), the
structutres are in PDB format (http://

www.rcsb.org/static.do?p=file_formats/pdb/index.html or http:// www.pdb.org/).

Protein Sequence Data

SCOPI5. The sequences were taken from the SCOP database 1.69 (Andreeva et al., 2004)
and were downloaded from the ASTRAL Compendium (Chandonia et al., 2004) http:
/ /astral.berkeley.edu. ASTRAL has available sequence files filtered to different levels of
residue identity. For this dataset, sequences with less than 95% identity to each other were
selected. In ASTRAL, domains that are non-contiguous in sequence, i.e. parts of the
domain separated by the insertion of another domain, are marked with separators between
the fragments representing regions belonging to other domains. Of the 12065 domain
sequences downloaded, 121 non-contiguous domains were discarded, resulting in a total of
11944 entries in the dataset. The domain sequences included in this dataset are variable in
terms of length and often there is relatively little sequence similarity between the protein

families.

SCOP40 mini database. This small dataset comprised of sequences taken from the SCOP
database 1.69 (Andreeva et al., 2004). The entties of the SCOP40, with less than 40%
identity to each other were downloaded from ASTRAL. Removal of 53 non-contiguous
domains resulted in 7237 entries.

Only those protein families were selected for this set that had least 5 members within the
family and at least 10 members outside the family but within the same superfamily in

SCOPY5 thus resulting in 1375 sequences. The SCOP40mini dataset is even more difficult
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since here sequences more similar to each other than 40% are represented by a single

prototype sequence.

CATHY5. The sequences were taken from the CATH database v.3.0.0 (Greene et al.,
2007). The entries of the CATHI5 (>95% identity) selection were downloaded from the
ftp:// ftp.biochem.ucl.ac.uk/pub/cathdata/v3.0.0/ site. 1648 non-contiguous domains were

discarded and 11373 were retained for this dataset.

3PGK. The dataset was constructed from evolutionarily related sequences of a ubiquitous
glycolytic enzyme, 3-phosphoglycerate kinase (3PGK, 358 to 505 residues in length) found
in Archaea, Bacteria, and Eukaryota (Poliack et al, 2005). 131 3PGK sequences were
selected which represent various species of the archaean, bacterial and eukaryotic kingdom
(Pollack et al, 2005). The Archea consist of Euryarchaeota(llof species) and
Crenarchaeota(4) phylums, the Bacteria consist of 4 phylums, namely Proteobacteria(30),
Firmicutes (35), Chlamydia(3), Actinobacteridae(5) and finally the Eucaryota sequences
wete obtained from 7 phylums, namely Metazoa(12), Euglenozoa(5), Fungi(10),

Alveolata(4), Mycetozoa(1), Viridaeplantae(8) and Stramenopiles(3).

COG. This dataset is a subset of the COG database of functionally annotated orthologous
sequence clusters (Tatusov et al., 2003). In the COG database, each COG cluster contains
functionally related orthologous sequences belonging to unicellular organisms, including
archaea, bacteria, and unicellular eukaryotes. For a given COG group, the positive test set
included the yeast sequences, while the positive training set was the rest of the sequences.
Of the over 5665 COGs we selected 117 that contained at least 8 eukatyotic sequences and

16 additional prokaryotic sequences. This dataset contains 17973 sequences.

Protein Structure Data

SCOPI5. 3D structures were taken from the SCOP database 1.69 (Andreeva et al,, 2004).
Domain structures with less than 95% identity to each other were downloaded from the
ASTRAL Compendium (Chandonia et al., 2004) site http://astral.betkeley.edu/pdbstyle-
1.69.html. Of the 12065 domain sequences downloaded, 121 non-contiguous domains were
discarded, resulting in a total of 11944 entries in the dataset. Table 2.1 provides a

distribution of the sequences/structures included in this dataset.
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SCOP40 mini database. This small dataset comprised of 3D structures were taken from
the SCOP database 1.69 (Andreeva et al., 2004). The entries of the SCOP40 (<40%
identity) were downloaded from the ASTRAL (Chandonia et al, 2004) site
http:/ /astral.berkeley.edu/pdbstyle-1.69.html. Removal of 53 non-contiguous domains
resulted in a total of 7237 structures.

Only those protein families were selected for this set that had least 5 members within the
family and at least 10 members outside the family but within the same superfamily in
SCOPY5. This resulted in a total of 1375 structures in this dataset. Table 2.2 provides a

distribution of the sequences/structures included in this dataset.

Table 2.1 Cldsszﬁc”c’zﬁéﬁ: ofSCOP95 sequences/structures -

SCOP95 Classes #Sequences #Families #Superfamilies #Folds
o 2141 607 375 218

B 3077 559 289 143
o/B 2801 629 222 136
o+f 2612 711 407 278
Mulitdomain 204 60 45 45
Membrane and cell surface 222 98 87 47
Small 887 170 107 74
Total 11944 2834 1532 941

Table 2.2: Classz‘ﬁca't’ioh: 0fSCOP40mini seq,dengéﬁ/siiébtuzfes .

SCOP40mini Classes #Sequences #Families #Superfamilies #Folds
o 258 102 5 4

B 377 65 6 5

o/p 679 113 11 11

o+ 23 5 1 1
Mulitdomain 20 6 1 1
Membrane and cell surface 0 0 0 0

Small 0 0 0 0

Total 1375 291 24 22
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CATHUY5. 3D structutes of CATHI5 (>95% identity) were taken from the CATH database
v.3.0.0 (Greene et al,, 2007). The entries of the selection were downloaded from the
http://cathwww.biochem.ucl.ac.uk/staticdata/v3_0_0/dompdb/ site. The 1648 non-
contiguous domains were discarded thus retaining 11373 domain structures. Table 2.3

provides a distribution of the sequences/sttuctures included in this dataset.

Table 2.3: Clas.s:z'ji‘zv‘:cdiiobyr;;of CATH ’Seéuéﬁqes/&iruétufé ”

CATH #Sequences #H Groups #T Groups #A Groups

a 2672 628 279 5
B 3334 393 176 19
o-p 5107 839 445 14
Iiew $S 260 100 89 1
Total 11373 1960 989 39

b) Protein comparison data. Dataset vs. dataset comparison were performed using
several sequence and structure comparison methods. The methods include sequence
comparisons such as BLAST (Altschul et al, 1990), Smith-Waterman (Smith and
Waterman, 1981), Needleman—Wunsch (Needleman and Wunsch, 1970), compression-
based distances (Kocsor et al., 2006) and the local alignment kernel (Saigo et al., 2004). The
structure comparison algorithms included are PRIDEZ2 (Gaspati et al., 2005) and DALI
(Holm and Park, 2000). Data were deposited in the form of distance matrices stored as tab-
delimited ASCII files. These data can then be used directly in nearest neighbor classification

schemes as well as for the training of kernel methods.

Protein Sequence Comparison Methods

Basic Local Alignment Search Tool (BLAST). An all against all comparison was carried
out using BLAST (Altschul et al, 1990) version 2213 downloaded from
http:/ /www.ncbi.nlm.nih.gov/BLAST/download.shtml The BLOSUMG62 matrix was used
with a gap opening penalty of 11 and a gap extension penalty of 1 (default parameters). The

results were then stored in a compressed, tab-delimited ASCII file.
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Smith-Waterman (SW). All against all compatison was cartied out using the Smith-
Waterman algorithm (Smith and Waterman, 1981) as implemented in the water program of
EMBOSS (Rice et al, 2000). The program was downloaded from
ftp:/ /ftp.bioinformatics.org/pub/biobrew/. The BLOSUM62 matrix was used with a gap
opening penalty of 10 and a gap extension penalty of 0.5 (default parameters). Results were

stored in a compressed, tab-delimited ASCII file.

Needleman-Wunsch (NW). An all against all compatison was carried out using the
Needleman-Wunsch algorithm (Needleman and Wunsch, 1970) as implemented in the
needle program of EMBOSS (Rice, et al., 2000). The program was downloaded from
ftp:/ /ftp.bioinformatics.org/pub/biobrew/. The BLOSUMG2 mattix was used with a gap-
opening penalty of 10 and a gap extension penalty of 0.5 (default). The results were stored
in a compressed, tab-delimited ASCII file.

Local Alignment Kernel (LAK). The Local Alignment Kernel program version 0.3 of
Saigo and associates (Jean-Philippe Vert, 2004) was downloaded from
http://cg.ensmp.fr/~vert/. The following run parameters were used: Default compatison
matrix found in the parameters.h file. Gap opening penalty = 11 (default), Gap extension

penalty = 1 (default), Scaling parameter = 0.5.
Protein Structure Comparison Methods

PRobability of IDEntity (PRIDE). Designed to compare the fold (backbone
conformation)of protein structures, PRIDE is based on representing protein structures in
terms of alpha-carbon distance distributions, and comparing two sets of distributions
(representing two protein structures, respectively) via contingency table analysis. The

progtam was provided by Zoltan Gaspart.

Distance-matrix ALIgnement (DALI). A protein structure comparison algorithm
proposed by Holm and Sander, DALI is based on the alignment of 2-dimensional distance
matrices, representing all intra-molecular alpha-carbon distances of a protein structure. In
order to evaluate the DALI method the program a standalone package of the Dali
algorithm known as DALI-lite version 2.4.2 (Holm and Park, 2000) was downloaded from
http://ekhidna.biocenter. helsinki.fi/dali_lite/downloads.
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c) Classifier algorithms. Results of various machine leatning algorithms are also a part of
this collection. Results are deposited for Nearest Neighbor (1NN), Support Vector
Machines (SVM) (Vapnik, 1998), Artificial Neural Networks (ANN) (Bishop, 1995),
Random Forest (RF) (Bretman, 2001) and Logistic Regression (LogReg) (Rice, 1994)
learning algorithms. In general, the input of these algorithms is a feature vector whose
parameters are compatison scores calculated between a protein of interest and the members

of the training set.

d) Evaluation of classifier performance. The primary evaluation protocol used here is
standard receiver operator characteristic (ROC) analysis (Egan, 1975 ). This method is
especially useful for protein classification as it includes both sensitivity and specificity, and it
is based on a ranking of the objects to be classified (Gribskov and Robinson, 1996). The
ranking variable is a numerical value, such as a BLAST score, or an output variable
produced by a machine-learning algorithm. For nearest neighbor classification, the ranking
variable is the similarity/distance between a test example and the nearest member of the
positive training set, which corresponds to one-class classification with outlier detection. As
a benchmark test contains several ROC experiments, one can draw a cumulative
distribution curve of the AUC values. The integral of this cumulative cutve, divided by the
number of the classification experiments is in [0,1], the higher values represent the better
classifier performances (Jaakkola et al., 1999). Alternatively, the average AUC can be used
as sumimary characteristics for a database, and this value is given for each benchmark test

within the database.
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2.3. Results

A system capable of testing and comparing machine learning algorithms should include (i)

datasets and classification tasks; (i) sequence/structure compatison methods;(iii)

classification algorithms; and (iv) a validation protocol.

The most important and critical part of this research is centred on the design and creation
of standardized benchmark datasets and classification tasks based on atbitrary—hierarchical
schemes using which one can train a classifier and further evaluate its performance. In this

process we had to create new definitions and concepts described in the following section.

Supervised Cross-Validation

A classification task is the subdivision of a dataset into positive train, positive test, negative
train and — test groups. Training a classifier algorithm involves subdividing the database
into positive and negative groups. These two groups are then further subdivided into test
and train sets resulting in a subdivision of the dataset into positive train, positive test, —
train and — test groups that will be used for training and testing a classifier algorithm. We
will term this fourfold subdivision a “classification task”. In order to get a reliable estimate
of the performance of a machine-learning method on an entire database, the algorithm
needs to be tested on not only one but many protein groups selected from within the
database. In other words, one can choose to conduct a test at different levels of a
classification hierarchy, and within each of these levels one can define many different
classification tasks. We term the ensemble of the classification tasks as benchmark test, which

may be defined as a collection of several classification tasks defined on a given database.

Since the aim was to design benchmark tests for data arranged in a tree structure, let us
begin with a few words on classification hierarchies. Hierarchical classification trees of
protein categories provide a simple and general framework for designing supervised ctoss-
validation strategies for protein classification. Making use of simple graph-theoretic
distance, benchmark datasets can be designed at various levels of the concept hierarchy.
The resulting datasets provide lower and in our opinion more realistic estimate of the

classifier performance than do random cross-validation schemes.
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Let us assume that a database consist of objects that are defined according to terms
arranged into a hierarchical classification tree. The dataset can then be represented as a
rooted tree with the root being the database itself and the leaves are protein entties of the
database. Each of the other nodes defines a subgroup of protein entties that are the leaves
connected to the given node. Let D(e, /) be the distance between node ¢ and node f, which is
defined here as the number of edges on the shortest path between ¢ and /. The distance of a
node from the root is called the depth of the node. We call a tree a balanced tree, if all the

depth of the leaves are the same, and this distance is called the height of the tree, denoted

by H.
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Figure 2.1: Application of supervised cross-validation scheme to an arbitraty classification
hierarchy.

(A) Definition possibilities for positive and negative sets within a classification hierarchy. The
hierarchy is a schematic and partial representation of that of the SCOP database. The positive set is
defined at the superfamily level, the +test and -+train sets are defined at the undetlying family level.
{B) The boundaries of the negative set can be fixed in terms of the number of steps within the tree
hierarchy, calculated with respect to the positive set 4. For instance, K(4, 4) defines a
neighborhood (a) whose memberts are 4 steps apart from the members of group A4.

Figure 2.1shows a typical example of a balanced tree. Any set of nodes at depth 7 or level /

is denoted by L(7) and these nodes in L(z) represent a partition of the database into disjoint
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groups labelled by the categories at level 2. The tree hierarchy thus provides a supervised
way to partition the database as one can define group neighborhoods by applying the De, /)
distance as a proximity measure over proteins (ie., the leaves).Constructing supervised
classification tasks for a given database needs the subdivision of the data at least two
adjacent hierarchical levels (e.g. superfamily/family) with the positive and negative groups
defined at the higher lever L(7), while the training/test subdivision is defined at the lower
level L(; + 1). This is depicted in Figure 2.1, where various subgroups are defined based on
the number of steps between two proteins within the hierarchy. As shown in the figure,
members of the same family form the positive sets, which atre two steps away from each
other. On the other hand, members of the negative set are at least 4 steps away from any
member of the positive set. Because of its generality, this principle can be applied to other

levels of this hierarchy and to any other tree hierarchies.

Representation of classification tasks

From the implementation point of view, a classification task is described as a ‘cast-vector’
that assigns a membership code (positive test, positive train, negative test, negative train) to
each entry in a given database. Thus, a benchmark test would be an ensemble of such cast-
vectors which is represented in the form of a ‘cast-matrix’ or membership table. In a cast-
matrix each column vector represents a classification task. In the Protein benchmark
collection, for each benchmark test a cast-matrix is deposited as a tab-delimited ASCII files,
with headers. The header line contains the names of the classification experiments that are
represented by a column of the cast matrix. The classification expetiments are named
according to the group used as positive set and the subgroup used as positive test set using
the general form "group_subgroup". For example, a.1.1_a.1.1.1 denotes a classification
experiment where the positive set is the a.1.1. group of the database, and the positive test
set is a.1.1.1 group. Similarly, Archaea_Euryarchaeota denotes a classification experiment
wherein the positive set are the Archaea sequences and the positive test set are those of

Euryarchaeota. The first name in a header line is "ID".

A screenshot of a cast-matrix has been provided in Appendix-A, Figure Al. Each line of
the cast matrix corresponds to a sequence or structure specified by the row-name (first
column). The row-names are those used in the corresponding sequence (*.fasta) or
structure (*.pdb) file, and the serial order of the rows is identical with that used in those

files. The values stored in the cells of each column (classification experiment, specified by
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the column header) are integers that denote a role that a sequence plays in the given
experiment. "0"= no role in the classification experiment; "1"= positive train; "2"= negative

train; "3"= positive test; "4"= negative test;

The Protein classification Benchmark Collection

Based on this principle we have designed a simple program that can divide a hierarchically
organized dataset into classification tasks. The input to the program is the classification
hierarchy supplied in the form of a tab-delimited file, containing information about the each
protein domain and its position in the hierarchy; the choice of the hierarchical level that is
used in the classification and the minimal size of the positive training set desired. The later
is necessary so as to avoid statistical bias caused by too small groups. As an example, we
may want to create classification tasks of the SCOP database, at the superfamily level, so
that there should be a minimum of 5 proteins in the positive training set. We will use the
non-redundant SCOP95 dataset (version 1.69) in which sequences more than 95% identical
are represented by one member of the group. The program will identify 246 classification

tasks from this dataset, each corresponding to a family within a given superfamily.

We have applied this principle to databases of structures, protein sequences, DNA

sequences, where a hierarchical classification scheme was available or could be designed.

Currently, the benchmark collection contains classification tasks for the following type of

data:

® Protein 3D: SCOP (Andreeva et al, 2008) and CATH (Greene et al, 2007)
(grouped according to structural hierarchy).

® Protein sequence: SCOP (Andreeva et al., 2008) and CATH (Greene et al., 2007)
(grouped according to structural hierarchy).

¢ Protein and DNA sequence: 3PGK (Pollack et al., 2005) (grouped according to
phylogenetic hierarchy).

¢ Protein sequence and function COG (Tatusov et al., 2003) (grouped according to

functional hierarchy).

Altogether, the collection now contains a total 34 benchmark tests spread over 6405

classification tasks, 3297 on protein sequences, 3095 on protein structures and 10 on
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protein coding regions in DNA. These tests were designed so as to represent vatious

degrees of difficulty and complexity.

Protein Classification Benchmark Collection
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Figure 2.2: A screenshot of the benchmark database.

For the SCOP95 database, there are 6 benchmark tests defined at the family, superfamily, fold,
class levels of the hierarchy, comprising of a total of 3258 classification tasks. Table 2.4

summarizes the distribution of proteins in benchmatk tests defined on the SCOP95 dataset.
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_ Table 2.4: The dzstrzburzon of protems in benchmark tests def ned on

- SEOPYS dataset

Classes into folds

Supcrfamilics into Folds into
SCOP95 Familics supetrfamilies

A B A B A B
a 614 43 522 145 1899 453
B 1507 55 1727 178 2921 466
/B 1392 86 734 150 2675 557
o+p 503 41 583 134 2300 505
Multidomain 33 4 0 0 148 24
Membrane & cell 0 0 27 5 167 62
sutface
Small 274 17 308 38 817 120
Total 4323 246 3901 650 10927 2187

A = No. of positive test sequences; B= no. of positive test families

Similarly, one could define 8 benchmark tests on the CATH hierarchy (defined at the

homologous superfamily, topology, architecture and class Levels, respectively) with 2828 classification

tasks on the CATH95 dataset. Table 2.5 summarizes the distribution of proteins in

benchmark tests defined on the CATHO5.

. Table 2.5: The dzstrlbutzon of protems in benchmark tests def ned on CA TH95

daz‘aset

CATH95 (1) Homology (2) Topology (3)Architecture (4) Classcs into
into sequence into homology into topology architecture
similarity groups
groups

A B A B A B A B

o 503 198 1277 403 2329 594 2590 617

B 498 134 1508 262 2896 360 3253 390

a—p 773 282 2370 578 4478 800 5009 833

Few 8§ 58 35 133 67 235 92 251 99

Total 1832 649 5288 1310 9938 1846 11103 1939

A = No. of positive test sequences; B= no. of positive H-groups

The collection also contains a small dataset meant for those interested in benchmarking of a

new machine learning method. As the calculations are repeated many times during program

development, the SCO40mini database was created. It is a small subset of SCOP

compiising of 55 classification tasks (corresponding to 8 all-ai, 15 all-f3, 30 o/ and 2 other

classes).
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Designing classification tasks on the COG database (Tatusov et al., 2003) of protein
functions represents another level of granularity. COG contains mostly well-characterized
protein sets classified by orthology and presents a case where there is a strong sequence
similarity between the members of a group but very weak similarity within groups. The
recognition tasks were designed to answer the following question: can we annotate
genomes of unicellular eukaryotes based on prokaryotic genomes? The collection contains a
total of 189 classification tasks spread over two types of benchmark tests designed on the
COG database, namely, the Taxonomic classification (Classification of Archaean protein
sequences of the COG database) and Functional classification (functional annotation of

unicellular eukaryotic proteins based on prokatyotic sequences in the COG database).

The 3PGK (Pollack et al., 2005) presents a case where both the within-group and the
between-group sequence similarities are very high. Sequences in the 3PGK dataset are
uniform in length and are closely related to each other. Despite its small size, this set is
quite difficult to handle because the groups greatly differ in the number of members, and
the average similarity within and between groups with any particular sequence similarity
method. Two benchmark tests with 10 classification tasks each have been designed on this
dataset. The benchmark tests for 3PGK fall under the taxonomic classification, involving
tests such as classification of 3PGK DNA sequences (teading frames) into kingdoms of life
(Archaea, Bacteria, Fukaryota) based on phyla and classification of 3PGK protein

sequences into kingdoms of life (Archaea, Bacteria, Eukatyota) based on phyla.

Database Structure

The database consists of records. Each record contains a benchmark test, which consists of
several (10-490) classification tasks defined on a given database. Each record contains at
least one distance matrix (an all versus all compatison of the dataset) as well as performance
measures (typically ROC analysis results) for all the classification tasks for at least one

classification algorithm. The details are included in Table 2.6.
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Benchmark tests

Data

Classification tasks

Comparison
methods

Classification of protein
domains in SCOP
[PCBO001, PCBO0003,
PDBO005]|

Classification of protein
domains in CATTI

[PCBO0007, PCBO000Y,
PCB00011, PCBO0013]

ClLassification of phyla
based on 3 phospho-
glycerate

kinase (3PGK) sequences.

[PCB00031, PCB00032]

Punctional annotation of
unicellular cukaryotic
scquences based on

11 944 Protein scqucnccs/or
protein structures from
SCOP95

11 373 Protein scqucnccs/or
protein structures from

CATH

131 3PGK Protein and
DDNA sequences

17 973 Scequences of
prokaryotes and unicellular
cukaryotes from the COG

Superfamilies subdivided
mto families............. 246

lFolds subdivided into

superfamilies............. 191
Classes subdivided
into folds................. 377

H groups subdivided

I’ groups subdivided into I1

groups........ooeevennn. .. 199
A groups subdivided

into T groups............ 297
Classes subdivided into A
BIOUPS. . eevvnriiiiinnen 33

Groups of kingdoms (Archaca,
Bacteria, Hucarya) subdivided
tnto phyla........... 10

Orthologous groups
subdivided into prokaryotes
and cukaryotes. ..., 119

BLAST, Smith—Waterman,
Needleman—Wunsch,
L.A—kernel, PRIDE2

BLAST, Smith-Watcrman,
Needleman—Wunsch,
LA-kernel, PRIDIE2

BLAST, Smith—Watcerman,
Needleman—Wunsch,
LA~kcernel, LZW, PPMZ

BLAST, Smith—-Watcrman,
Necedleman—Wunsch,
LA~kernel, LZW, PPMZ

prokaryotic orthologs. databascs
[PCB00031]
The accession numbers of the records are given in square brackets. The number of classification tasks for each benchmark

test 1s shown in bold.

Random vs. supervised cross-validation

This section is meant to illustrate the difference between random and knowledge based ot
supervised cross-validation of data, which is the primary reason behind creating the
benchmark collection. Neatest neighbour classification on the Smith-Waterman
comparison was used for evaluating a patticular task, the Lipocalin superfamily from the
SCOPY5 dataset. The superfamily consists of 58 sequences which is considered as positive
set, this includes 27 sequences which belong to the fatty acid binding family, 28 sequences
fall under the retinol-binding family and 3 further sequences that, in the supervised case,

were not used as members of the positive test group.

We first apply two traditional machine learning approaches of random subdivision of the
dataset, namely, the leave-one-out method and the 5-fold cross-validation strategy. Using
the leave-one-out method, each member was used as positivetest and the rest of the

superfamily was used as positivetrain. For the 5-fold cross-validation strategy, a randomly
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chosen one fifth of the group was used as positive test with the remaining four fifth being
used as positive train, The negative group was the rest of the SCOP95 database which was

randomly subdivided either into equal test and train groups.

Table 2.7 summarises the performance of the strategies mentioned above along with that
of the knowledge based cross-validation. As it can be seen, the two random cross-validation
tests give rather high results (AUC values are close to 1.00), whereas dividing the samples in
a supervised manner, i.e., according to the known subgroups (lines 3—4 of the table), we get
substantially lower AUC values. This can be better understood if we focus our attention on
the number of the subgroup members included in the positive test and positive train groups

(columns D and E, respectively).

: Table 2.7; Comparzson of random and supervzsed cross-valzdatzon sfrategzes on

 the example of the Lipocalin superfamily of the SCOP. database.

[family No. of No. of Area under curve  Average area
family family under curve
members in members in
+test +train

A B C D E F
(1) Leave one out Retinol- 1 27 0.9908 0.9908
binding

Fatty acid 1 26

binding

(2) 5-Fold cross- Retinol- 3.7 19-20 0.9906,0.9982,1,  0.999127 (0.99-
validation binding 0.9979 1.0)

Fatty acid 4.7 19-23 1.000

binding

Retinol- 28 0 0.8635

binding

(3) Supervised cross- Fiatty acid 0 27 (.8243 (0.79-
validation binding 0.86)

Retinol- 0 28 0.7851

binding

Fatty acid 27 0

binding

In the two random subdivisions, members of the retinol binding and the fatty-acid-binding
subgroups are included in both the positive test and the positive train sets, so the
compatison scores will be high. On the other hand, in the case of supervised subdivisions,
members of the subgroups make part either of the positive test or of the positive train
group, so the comparison scores will be lower, resulting in lower AUC values. Thus the two

supervised calculations refer to situations where we attempt to predict one subgroup based
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on the other one, Le., they estimate the generalization capability of a method on this

particular classification task.

Figure 2.3 compares supervised and the random cross-validation methods at various levels
of the SCOP and CATH hierarchies. It can be seen that the AUC values of tandom cross-
validation tests are substantially higher than the supervised values, i.e., the qualitative
picture obtained on the example shown in Table 2.7 is in fact general to all the
classification levels of SCOP and CATH. At all levels of the hierarchies there is a clear
tendency in the ranking: leave-one-out test ~5-fold cross-validation scores higher than

knowledge based cross-validation.

This tendency indirectly explains why an excellent petformance obtained with random
cross-validation techniques does not necessarily guarantee good performance on sequences
from new genomes. In other words, random cross-validation techniques may grossly
overestimate the predictive power of a method on new genomes. The tendencies shown in
Figure 2.3 confirm the well-known fact that the prediction at the lower levels of the
hierarchy is more efficient than at the higher levels. It is also apparent that the difference
between the random and the supervised subdivision is larger at the higher levels of the
hierarchy, in spite of the fact that the domain definitions and the hierarchies of SCOP and
CATH are different. On the other hand, the differences of the two databases are reflected

by the different shapes of the cotresponding curves.

48




Benchmark Results
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Figure 2.3: A comparison of supervised and random ctoss-validation schemes.

A comparison of supervised and random cross-validaton schemes on the SCOP and CATH
databases benchmark tests at various levels of the classification hierarchy, using Smith-Waterman
(top), BLAST (middle) fot sequence compatison and PRIDE (bottom) for structure compatison.
Categories on the X axis are the levels of the classification (In SCOP: SF: superfamilies; FO: folds
divided; CL; classes; In CATH: HO: homology groups; TO: topology groups; AR; architecture
groups; CL: classes), the Y axis shows the average ROC scotes in a benchmark test. KB=supervised
(knowledge-based); L10=leave-one-out; 5-fold=5-fold cross-validation. Note that the random
subdivisions give higher values than the supetvised (knowledge-based) ones.

Similarly one can also vary the way how the negative test is subdivided (this is not in the
scope of this thesis). For instance, subdivision by superfamily means that members of a
superfamily can be either —train or —test. This subdivision would then cotrespond to a
hypothetical situation where a newly sequenced genome contains only novel superfamilies
that have not been used for training, This is a stringent test, since subdivision at the fold
level would mean that the new genome contains only novel folds, which is not a likely
event. Subdivision by sequence, on the other hand corresponds to the random subdivision

strategy employed in the general practice of machine learning.
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Application example: Optimizing BLAST-based predictions

The Benchmark Database allows one to study subtle differences between predictors in a
statistically well-determined environment. Sequence similarity seatch is by far the most
frequently used methodology for predicting any property (function, domain-type etc.) from
sequence. The question we are asking is whether we can leverage the efficiency of the
prediction by including more the one parameter from the BLAST search, i.e. in addition to

the score/e-value. A BLAST seatch yields the parameters shown in the following sketch:

From To
—— Lhap ——

Juery
(name, length, self-score)
_r___,_..f—’?
Pattarn o , .
o Bubject
N Lhsp YN (name, length, self-score)
From i To R
“ - .
I—IEP { Kaw Seore, Eil zoore,

alus

a—__—

Figure 2.4: Parametets of a pairwise alignment as used by BLAST.
It is to be noted that the apparent length of the HSP may be different on the quety and on the
subject, as the number of gaps introduced is different in each case.

Previous studies have showed that various other detived parameters can prove to be useful

predictors (Vlahovicek et al., 2005):
Length coverage = hsp/query length or hsp/subject length.
Score coverage = raw score/query self scote or raw score/subject self score.

In other earlier studies we found that NSD, the number of significant hits found between
the query and a group of proteins (in this case, the positive train group) is also an efficient
prediction parameter (Mutvai et al., 2001). These calculations were petformed on two
datasets from the Protein Benchmark Collection, namely, SCOP40mini with 55

classification tasks and the larger dataset of SCOP, SCOP95 with 246 classification tasks.
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We carried out the calculations with the simple nearest neighbour algorithm, in two ways, 1)
using the maximal score to the positive train as the measure of similarity (“#ax””) and i1)

using the average score to the positive train as the measure of similarity (“azg”).

| Table 2.8: Classification efficiency (44 UC) calculated uszng INN

| derived from BLAST output parameters

Combined BLAST output SCOP40mini SCOP95
(55) (246)
Avg(rs/ rs(qrnery) 0.8187 0.685
Avg(rs/ len(gnery)) 0.8135 0.685
Avg(rs/ len(subject) 0.7942 0.6949
Max(hsp/ len(subject)) 0.7828 0.6976
Avwg(hsp/ len(subject) 0.7802 0.6946
NSD # 0.7774 0.6975
Max(rs/ len(subject) 0.7744 0.6976
Mac(rs/ rs(qrery) 0.7738 0.6976
Max(hsp/ len(qrery)) 0.7086 0.6934
Avg(hsp/ len{guery)) 0.69 0.6892
Max(rs/ rs(query) 0.5935 0.6873
Max(rs/ len(query)) 0.5909 0.6872

* NSD means number of neighbors. Max and A4»g mean maximal and average aggregation. /s ()
is for the sequence length of subject or query.

From these data, it is apparent that there is variation between the various parameters. We
note that averaging or maxtmum selections are aggregation operation, and in terms of data-
integration they correspond to “sensor-level integration” (Section 1.3 of the Introduction)

since the input of the predictor is an aggregate of several values.
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Figure 2.5: Boxplot of AAUCs (INN) for some single and combined BLAST output
parameters for the SCOP40mini.
The boxes for the combined output parameters are shown in light gray.

In earlier studies we used some of the parameters as input to train Support Vector Machine
classifiers, which were used in the SBASE WWW-server. Now, as a control, we constructed

a simple committee of nearest neighbour classifiers, based on the following categories:
a) protein (in the training set) which has higher raw-score (7s);

b) protein which has higher high-scoring segment pairs (hsp);

¢) proteins which have the five highest bit-score (bs).

The predictor uses the categories, i.e. functions of (a) and (b) as votes. A third vote comes
from an aggregate feature that is given by the majority function from the five proteins in
(c). The third vote is a variation of the NSD approach, adapted in such a way that
categoties with few instances are not underweighted. The basic idea is that the majority vote
suggests the query function. If no majority is obtained, the Committee Classifier follows the
NSD vote, because it has yiclded the best results during tests in SBASE (Murvai ct al,,
2001). In terms of data-integration, this strategy corresponds to decision-level integration,

as discussed in the general introduction (Section 1.3 of the Introduction). The
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computational efficiency of this Committee Classifier is very good as it needs no training —
in contrast to SVM and other machine learning algorithms. On the other hand, it is as

accurate as the SVM classifier (Table 2.9)

Since the Committee Classifier can not be assessed by ROC Curve, the classifiers
performances are compared in terms of True Positive Rate (TPR) and True Negative Rate
(I'NR). It can be seen that the Committee Classifier gives a slightly worse TPR but better
TNR values, in other words the results indicate that it is possible to design a simple and

efficient protein classifier using a combination of separate classifiers into a voting system.

 Table2.9: Average Classification in terms of True Positive and Negative Rate for a
| SVM classifier (Viahovicek et al., 2005) with 6 BLAST output parameters as mput,
vs. the simple Committee Classifier for the SCOP40mini dataset.

Classifier TPR TNR
SVM 0.5532 0.9446
1 NN-Committee Machine 0.5067 0.9777

2.4. Summary

In this chapter, we have described the method of supervised cross-validation, which 1s a
strategy that allows one to estimate the capability of an algorithm to recognize novel
subtypes of known categories. As novel protein types abound in newly sequenced genomes,
generalization capability of an algorithm is crucial for genome annotation. One can design
classification tasks in a supervised way if there are known subclasses within the classes to be
studied. If the categories are hierarchically organized, one can define classification tasks at

various levels of the hierarchy.

Here we have presented a method that can be used to construct classification tasks (positive
train, positive test, negative train, negative test groups) on any database that has a category
hierarchy (such as protein domain databases, protein family databases, phylogenetic
hierarchies etc.). The distinctive feature of this method is the explicit subdivision termed

“supervised cross-validation” which is based on two successive classification levels. The
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positive and negative groups are defined at the higher level (i), while the learning/test
subdivision is at the lower level (i+1). We created a collection of protein and DNA
sequences and protein DNA structures classified according to structural, functional, and
phylogenetic similarity. Altogether, the collection has 6405 classification tasks spread over
42778 protein sequences and 24674 structures (Table 2.10). The Protein Classification
Benchmatk and a collection of documents and help files can be accessed at

http:/ /hydra.icgeb.trieste.it/benchmark/.

Table 2.10: Summary of the Protein Benchmark Collection.

Database Classification Number of Number of
Tasks Sequences structures

SCOP95 3258 11944 11944

SCOP40mini 110 1357 1357

CA'TH95 2828 11373 11373

COG 189 17973 -

3PGK 20 131 -

Total 6405 42778 24674

The collection has been used to test and compare the performance of the main types of
machine learning algorithms in protein classification (P. Sonego, PhD thesis in preparation).
Here we also show that it is possible to design a simple and efficient protein classifier using
a combination of BLAST-based classifiers into a voting system. Since its publication in

2007, the collection was cited in nine publications.
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3. Integration of heterogeneous data
sources using a multi-parametric
network model

3.1. Background

Biomedical research uses heterogeneous data sources —a researcher often needs to handle,
say microarray, protein interaction, and DNA sequence data in one experiment. The
datasets are not only varied but also large and often noisy: high throughput methods
typically provide large numbers of inaccurate data that cover an entire genome or proteome,
and a researcher first has to pick “coherent groups” of genes or proteins on which to work
further. Finding such groups usually includes human intetvention and background
knowledge to which new experimental data can be mapped. The problem can appear
untrivial at the first sight since, for instance, one may have expression data on some genes,
interaction data on others, and very few genes on which we have both kinds of data. The
general task can thus be formulated: how to find coherent groups in large heterogeneous

datasets?

In homogeneous datasets, such problems can be approached by one of the many clustering
techniques. Classical clustering algorithms have difficulties in handling large data sets used
in bioinformatics owing to high demands on computer resources. Fast heutistic algorithms
have been developed for specific tasks, for example BLASTClust from the NCBI-BLAST
package (Altschul et al., 1990), Tribe-MCIL (Earight et al, 2003) or the CD-HIT (Li and
Godzik, 2006) that can delineate protein or gene families in a large network of sequence
similarities (e.g. BLAST e-values). However, there are no apparent tools that could
efficiently handle large multiple datasets, such as those necessaty to group proteins using

more than one similarity criterion (e.g. based on sequence, structure and/or funcdon).

I propose to approach this problem using two simple ideas borrowed from machine

learning and kernel methods.

1) Representing data as a network of relations. As mentioned in the introduction, many

machine learning methods and kernel methods in particular, do not use the actual pro-
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-petties (“features”) of the objects, but the relationships between objects. These relations
can be depicted as a network, for instance a database of protein sequences (or structures)
can be transformed into a network of sequence (ot structural) similarities. When we convert
heterogeneous data into networks, we create a multi-parametric network that can be best

pictured as a graph where several edges of different colour can exist between nodes.

1) Fusing relation-matrices. A network can also be represented as a matrix (containing, for
instance, as many rows and columns as there are proteins in the database) in which the
individual cells represent a numerical index between two proteins. In kernel computations,
it is required that this matrix should have specific mathematical properties in order to be
called a kernel matrix, here we are not directly concerned with these limitations, so we
simply speak about similarity matrices or relation matrices. In graph-theoretical terms, these

are the adjacency matrices of a weighted network.

Transforming data into relational (or kernel) matrices have a simple advantage:
heterogeneous data on the same object can be transformed into matrices of the same size.
Such matrices can be then added, averaged, aggregated in various ways. In kernel

computations, this is called kernel combination or ketnel fusion.

A ketnel combination process is usually comprised of two phases, first being, constructing
the individual matrices whereas the second phase comprises of combining these individual
kernel matrices into one. In the first phase, various models can be adopted to construct
different kernel matrices, ot they can be consttucted on different features or from different
sample datasets. In the second phase, the kernels are combined by fixed or trained rules.
The simplest way to combine kernels is by averaging them. But not each kernel matrix
should receive the same weight in the decision process, and therefore the main force of the

kernel combination study is to determine the optimal weight for each kernel.

These mathematical formalisms provide us with a straightforward way to combine
heterogeneous data. Given a set of proteins represented as sequences ot structures, one can
easily compute a kernel matrix based on various pairwise similarity measures available. The
sum or product of various such kernels would be a new kernel, which is an extension of the
incorporating kernels. Two cases emerge when we try to combine kernels, namely, the
kernels are either built on the same feature space or they work on different feature space.

The operations of linear combination are valid for both the cases. We did not mention
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the computational load associated with large multiple netwotks. We have already mentioned
that conventional clustering algorithms have difficulties in handling large bioinformatics

dataset. This problem is further aggravated if we use multple networks.

The aim of this chapter is to design a simple algorithm and tool that overcomes these
difficulties and allows one to handle heterogeneous data (latge biological networks). In
particular, I present an efficient pre-processing tool that can aid explotatory analyses of

large biological networks using an ordinary computer.

3.2. Informal Description of the Algorithm

We developed a heuristic algorithm, Multi-Netclust that takes the usets' empirical
knowledge of cut-off values into account. Below these threshold values interactions or
similarity data can be neglected. As a result, multiple thresholded datasets are created and
combined together using an averaging or ketnel fusion method (Kittler et al., 1998). The
resulting combined network can then be queried for connected components using an
efficient implementation of the UNION find algorithm (Tatjan, 1975). Connected
components cotrespond to groups of nodes that are connected eithet by any or by all of the
constituent network datasets, depending on the form of the weighted averaging used
(Figure 3.2, B and C, respectively). Connected-component seatch has been widely used in
grouping proteins into protein families or orthologous groups owing to its simplicity,
scalability and biological soundness(KKoonin et al., 2004). There ate two distinct algorithmic
approaches to this problem. The first approach tequites an entire graph to be stored in
computer's memory prior to detecting the clusters using either depth-first search or
breadth-first search algorithms(Grimaldi, 1999). This approach also denoted as 'in core' is,
however, memory-expensive particulatly for large graphs of millions of nodes and/or edges
(O(E) or O(N’) space-complexity depending on the implementation, F=number of edges,
N=number of nodes). The second, mote memory-efficient approach (denoted as 'external-
memory' from here on) does not need the entire graph to be stoted in computet's memory
but instead, the clusters are constructed gradually while reading-in the graph from a hard
disk, hence saving a lot of memory space which can be achieved using family of UNION-
FIND algorithms. In order to adapt this method to large heterogeneous datasets, we
combined the thresholding, aggregation as well as connected component seatch into a
single, memory and time efficient tool, Multi-Netclust that uses external-memory (Chiang,

1995) for matrix manipulations so that the size of the datasets is not a limiting factor.
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The calculations are carried out in the following steps:

1) Pre-processing and filtering of the data: The data are transformed into a network/matrix
format. Sequence data can be transformed into similarity matrices using a BLAST similarity,
or a word-composition similarity. Some data, such as protein interaction data, are already in

a network/matrix format.

To take into account the very different sizes of the feature space, matrices can be

normalized (clement-wise) in the following way,

Ky

A KiKjj W

Here K is the matrix and 7 and /' denote row and column of the matrix respectively.

Filtering of the matrices involves the use of thresholds, below (or above) which the

elements of the matrices are ignored.

2) Combination of network data: Let K, K3 | K, be a set of normalized and filtered

matrices, we can then make use of the following two methods to combine them.

The atithmetic mean,
1 1]

Ksum = ""Z WiKi . (2)
ni-

Geomettic mean,

n n

Kproduct - H (K i )W’ . (3)

i=1
where, w; is the weighting factor used for K; and # denotes the number of matricies to be
combined. The sum of weights (W) should be equal to 1. The weights provide a degree of

freedom as one can assign more importance to one matrix than the other thus controlling

the participation of each matrix in the decision process.
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3) Finding connected components: An efficient, external-memory implementation of this
algorithm is a key element of our program. This was achieved by implementing the
asymptotically optimal UNION find algorithm variant with (nearly) linear time- and space-
complexity (O(E * apha(E)) time-complexity in the worst-case scenatio, E=number of
edges,alpha=inverse Ackerman's function; O(IN) space-complexity, N=number of nodes),
hence enabling the analyses of very large data sets in almost real-time. The undetlying
algorithm has three abstract operations: (i) populate singletons, (1) find group
memberships, and (i) merge groups sharing at least one member. The (preliminary)
clusters are stored as rooted trees, which are then subjected to two post-processing steps.
First, each tree is "compressed" so that all nodes (membets) of a tree point directly to the
root of that tree. Second, the resulting trees (clusters) are sorted by size and labelled by

increasing integer values.

Matrices
(N=1)

Preprocessing
{sort & kernel fuston)

" matrix

Indexing .

{netindex;

4

Indexed ‘
matrix v

Cluster detection
(netclust)

4

Figure 3.1: The principle of Multi-Netclust.
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3.3. The Multi-Netclust Program

Multi-Netclust is a program that filters and combines biological network data and extracts
connected groups. Multi-Netclust has been implemented in the C++ programming
language and provided with a CGI interface written in Pet] that setves for inputting the

data.

1

23

mie
.’\ [[ .‘}‘ e

12

Figure 3.2: The principle of Multi-Netclust.

The principle of Multi-Netclust is illustrated on a two-parameter netwotk ot hypergraph (a)
consisting of red and gray edges. Dotted lines denote edges that are below the respective threshold
and hence are omitted from the netwotks. (b) Aggregation by weighted arithmetic averaging (“sum
rule") gives connected components that ate connected within either of the two networks. (c)
Aggregation by weighted geometric averaging (“product rule”) gives connected components
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connected within both netwotks. M;;denotes the value assigned to the edges, w is the weighting
factor of the two matrices, and in the above example n=2.

The code, sample datasets, explanations, and petformance data are available on the project’s
website http://www.bioinformatics.nl/netclust/. There is also a web-based application

suitable to run smaller test-sets.

Input to the Multi-Netclust program are (un)directed weighted graphs (networks) in sparse
matrix format along with weight and threshold/ cutoff values associated with each netwotk.
The so-called sparse matrix format is used for the data which can be regarded as ankedge list
of a weighted graph. This representation was chosen in order to minimize the storage
requitements as well as the time necessary to access matrix elements. The fact that a
separate threshold value and combining weight can be assigned to each mattix, ensures that
the user can control the participation of each kernel in the decision process and can thus
control the sensitivity and specificity of results. For example, sputious similarities can be
filtered out by choosing an appropriate cutoff value, which usually requires domain
knowledge. Generally, a permisstve cutoff may produce one large cluster while a strict
cutoff may yield many singletons. Prior to the cluster detection, the input graph must be
indexed using the netindex utility to speed-up the the downstream processing. The steps
involved in the Multi-netclust workflow are schematically depicted in Figute 3.1
Moreover, the speed of the algorithm allows selecting the most appropriate weighting
factor through a standard grid search. Data to the Multi-Netclust can be entered either viaa
CGI interface, or from the command line (Figure 3.3). The output is a list of the

connected clusters given in a structured text format.
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Multi - Netelust

et
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S d i,

Figure 3.3: The Multi-Netclust.
(A) Screenshot of the Multi-Netclust web intetface. (B) Screenshot of the Multi-Netclust form
based mtetface.

3.4. Performance

The CPU-time of Multi-Netclust subsumes a) preprocessing time needed for reading-in the
data, thresholding and aggregation (>99.9%), and b) finding the connected components
and writing the results (0.1%). The below mentioned case studies gives the idea of how
Multi-Netclust can be used and the improvement one gets upon combining information

from multiple sources.

3.5. Application example 1

The task was to use Multi-Netclust to combine BLAST and DALI similarity data on a
protein dataset and cluster proteins belonging to the same superfamily defined in the SCOP

database (Andreeva et al., 2004).

Dataset and similarity matrices:

The validation dataset used for this experiment was taken from the Protein Classification
Benchmark database (Sonego et al., 2007). It consists of 1357 proteins belonging to 24

superfamilies.
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BLAST matrix:
An all against all comparison of protein sequences belonging to the above mentioned
dataset was calculated using BLAST (Altschul et al.,, 1990) version 2.2.13. BLOSUMG62

matrix was used with default parameters. The results wete stored into a sparse matrix.

DALI matris:
Structural similarity in the form of DALI similarity score (taw score) was calculated by the
DALI-lite program for pairwise structure compatison and database seatching, version 2.4.2

(Holm and Park, 2000). Results wete stored into a spatse matrix.

Results:

The analysis took 4 seconds on a 2 GHz processor. The influence of thresholds on the

purity of connected clusters is apparent from the data (Table 3.1).

Dst o Weight Cortect  Incotrrect Singletons
BLAST (0) 1 0 1356 1

DALI (0) 1 0 1352 5

BLAST (0.1) 1 66 1101 190
BLAST (0.4) 1 36 0 1321
DALI (0.4) 1 798 468 91

BLAST (0.4) + DALI (0.4) 0.5 803 469 85

BLAST (0.1) X DALI (0.4) 0.5 888 0 469

Numbers in parentheses denote the similarity cutoffs used. 'x' and “+' refer to the product and sum aggregation rules,
respectively. Correct = proteins connected only to members of the same SCOP superfamily, Incorrect = proteins connected
to members of other SCOP superfamilies. Weight = the weighting factor assigned to each network.

An interesting example in this case-study is the Immunoglobulin supetfamily (SCOP
Superfamily Id b.1.1) which has 125 members in the benchmark dataset. Using DALI alone
as an input, clusters them with the E set domains (SCOP Supetfamily Id b.1.18), which is
an "Early" Ig-like fold families possibly related to the immunoglobulin and/or fibronectin
type III superfamilies. With BLAST, they are clustered with a number of other
superfamilies whereas, the combination of the two (BLAST (0.1) * DALI (0.4)) made 94%

of the group cluster correctly.
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3.6. Application example 2

The task was to use Multi-Netclust to combine Smith-Waterman and DALI similarity data

on a protein dataset and cluster proteins belonging to the same SCOP supetfamily.

Dataset and kernel matrices:

The dataset used for this experiment was the same as in Example 1. Sequence similarity
used for this example was calculated using the Smith-Waterman algorithm (Smith and
Waterman, 1981). BLOSUMO2 matrix was used with default parameters. Structural
similarity in the form of DALI similarity score (taw score) was calculated by the DALI-Lite
program for pairwise structure comparison and database searching, version 2.4.2 (Holm

and Park, 2000). The results were stored into a sparse mattix.

Results:

The analysis took 6 seconds on a 2 GHz processor, the influence of thresholds on the

purity of connected clusters is apparent from the data (Table 3.2).

Dataset Weight Cotrect Incorrect Singletons

DALI (0) 1 0 1352 5
SW (0) 1 0 1357 0
SW (251) 1 316 0 1041
SW (448) 1 74 0 1283
DALI (251) 1 56 1266 35
DALI (448) 1 336 782 239
SW (251) x DALI (251) 0.5 910 0 447
SW (448) + DALI (448) 0.5 843 0 514

Numbers in parentheses denote the similarity cutoffs used. '%' and '+' refer to the product and sum
aggregation rules, respectively. Correct = proteins connected only to members of the same SCOP
superfamily, Incorrect = proteins connected to membets of other SCOP supetfamilies. Weight = the
weighting factor assigned to cach network.
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SCOP supetfamily of NAD(P)-binding Rossmann-fold domains (SCOP Superfamily Id
c.2.1), which has 149 members in the benchmark dataset, using Smith-Waterman alone as an
input to the Multi-Netclust, clusters 30% of the group correctly. With DALI, they are
clustered with a number of other superfamilies, whereas the combination of the two (SW *

DALI) and (SW + DALI), correctly clustered 94% and 97% of the group, respectively.

3.7. Summary

In this chapter, I have described the Multi-Netclust program that allows one to filter and
combine biological network data. The program builds on the user’s knowledge on the data,
for instance, the user has to define which data can be ignored, and what data-sources are

more treliable than the others.

Multi-Netclust has two key components that I consider essential for time and memory
efficient functioning: the use of sparse matrices and external memory-based programming

of the connected component search.

Spatrse mattices ate the main data structures in large-scale scientific and engineering
applications for representing linear systems of equations. Biological networks are usually
huge with the number of non-interacting pairs far exceeding the number of interacting
paits. Rather than allocating space for every element in a matrix, sparse matrix data
structures try to minimize the amount of memory used by only allocating memory for the

non-zero elements and elements that are used directly by an algorithm.

‘The external memoty-based, connected component search algorithm is a fast as compared
to single-linkage based clustering methods and in-memory graph algorithms used for similar
purposes within the bioinformatics community. The strength of Multi-Netclust is more
obvious when we deal with large data that cannot be handled with other algorithms. For
example, a dataset of 2,713,908 nodes and 781,328,458 edges took less than 5 minutes on a
standard desktop processor. Of the other algorithms tested (see case studies on the
website), orﬂy BLASTClust was able to handle a dataset of similar size, however its use is
limited to BLAST similarity networks (and at greater expense of CPU time and memory
required), whereas Multi-Netclust is generally applicable. To conclude, Multi-Netclust is an
efficient preprocessing tool that can aid exploratory analyses of large biological networks

using an ordinary computer. Specifically, the potential applications include any task where
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network data of heterogeneous sources are to be combined, such as merging microarray
and protein-protein interaction data, or combining gene ontology data with various
similarity data. Constructing similarity matrices from these data may not be a trivial task,

this is a major challenge for future applications of Multi-Netclust.
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4., Comparing protein domain
architectures assigned to protein
sequences

One of the first steps in analysing proteins is to detect their constituent domains. Prediction
of known domain types within a protein can be regarded as a special subcase of protein
classification. Namely, while general classification methods assign a general, global
descriptor (annotation) to an entire protein sequence, domain prediction methods use
similar computational techniques to assign local descriptors to a specific segment of a

protein sequence.

From our computational point of view, a domain type is a special kind of an identifier
assigned to a segment of a protein sequence, such as an item in the feature-table of a
sequence database like Swiss-Prot. Such an assignment has a scope, 1.e. a starting and an
end-point within the sequence, an attribute-identifier: “domain” and an identifier that can
take any of the about 6-8 thousand domain names known today. A domain architecture is
then the ensemble of such, non-overlapping segment annotations, that are defined. A few
comments are in place: 1) this is a general definition that covers not only domains and
domain-architectures but any kind of sequence annotation. This description falls into the
broad class of the Entity-Attribute-Value models and it can accommodate a large variety of
annotated structures that are used in bioinformatics (such as protein or DNA structures,
genome descriptions, etc., data not shown). if) Non-overlapping annotations are the norm
for the same identifier type. For instance, protein chains of a poly-protein are not supposed
to overlap with each other, but a segment annotated as a particular domain can be the part
of a protein chain. However, even some of the best curated sequence databases contain a

few ovetlapping domain annotations.

Why is compatison of protein domain annotations different from the protein/domain
classification tasks described in the previous chapter? Benchmarking machine learning
algorithms on protein/protein domain sequences is a well defined problem wherein both
the members of the positive/negative, train/test groups and the boundaries of the domain

sequences are exactly defined. Assigning protein domain architectures to a large
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dataset, like a proteome, is much less accurately defined. The first, trivial difference is that
for domain-annotations, we need to determine the boundaries of the domain, and
automated methods of domain annotation usually give slightly different results. Second,
domain annotation often relies on carefully trained machine-learning algotithms (HMMs,
sequence profiles) that were optimized by human intervention. As a result, assigning protein
domain architectures is a complex process, which necessarily involves human judgement, so
the process cannot be realistically repeated for statistical purposes, and it is generally
believed that there is no “gold standard of truth”. Consequently, it is not so straight-
forward to answer, whether or not the annotation schemes of Pfam or SMART are “better”
or “worse”, and this is not our goal. What we can do, on the other hand, is to compare the
results with each other, and ask the question whether or not the domain assignments of
Pfam are more similar to Swiss-Prot or to SMART. In other words we can define
comparison principles and numerical indices of similazity for annotated proteins and use

them on a comparative basis.

For the purposes of this comparison, we selected a few domain architecture assignment

schemes that represent different approaches:

Swiss-Prot/Uniprot (Boeckmann et al., 2003) is considered the most accurately curated

database that contains domain-assignments curated by human experts.

SMART (Letunic et al., 2009) takes its domain-assignments partly from Swiss-Prot, pattly
from machine-learning algorithms, and adds a variety of further pieces of information, such
as exon/intron boundardies checked by human experts. As a result, the SMART domain
assignments can be considered a further refined version of the Swiss-Prot annotations.
SMART has not only ready annotations but also prediction tools based on HMM which can

predict protein domains from sequence.

Pfam (Sonnhammer et al., 1997) is a comprehensive collection of domain sequences that
are used to train Hidden Markov Model (HMM) predictors. The Pfam website uses the

trained HMM predictors to assign protein domains to sequence queties.

SBASE (Vlahovicek et al., 2005)is a collection of domain sequences collected from various

other sequence databases, and the SBASE website uses sequence similarity search to pre-
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-dict domains in proteins. The SBASE method of domain prediction does not include a
training step and uses the BLAST 2.2 algorithm, i.e. a simple and computationally

inexpensive method for domain assignment.

In this section we ask the question, how the protein domain architectures produced by the
above approaches compare to each other. The approaches are vastly different in their scope
as well as the amount of human intervention required for their maintenance, so the
comparison can give us a feeling regarding how far one can go without investing human
expertise. The additional question we are asking is how a method based on sequence

similarity searching compares to more advanced methods of domain assignment.

4.1. Designing the assessment scheme

In order to define a framework for comparing protein domain architectutes, we first have
to define the criteria for considering two protein architectures as identical. We use a

plausible hierarchy of statements:

a) Presence-absence level: This is the basic and most permissive level of assessing the
quality of domain prediction. A protein that has a certain domain type and is predicted to
have at least one is a TP (true positive). So, if we predict one single Ig-like domain in Tidn

(152 Ig-like domains) it counts already as a positive hit.

b) Composition level: This level checks the domain abundancy and assessing domain
annotation methods at this level involves a higher level of stringency as opposed to the
presence-absence level. A protein that has » number of copies of a certain domain type
should be predicted as having at least the same number of domains in order to qualify as

TP. If less domain copies are predicted, the prediction is considerted to be incorrect.

¢) Domain-boundary level: A domain assignment is considered to be in agreement
between two annotations if the corresponding boundaries are within say within 5 amino

acids. This is the most rigid test in this ter.

Of these, level a) is very permissive, all methods are expected to perform almost equally

well at this level. On the other hand, it is not easy to find a gold standard for levels b) and
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c), because the known collections differ in many details, the number of domains often

differs, atypical domains are frequently missing, etc.

As mentioned eatlier, due to the absence of a “gold standard” this assessment can be
carried out only by comparison between two methods and detect the amount of
match/agreement between the two schemes. When we compare two sets of annotations
(say domains predicted by Pfam and domains annotated in the SMART database), we
compare a large number of domain annotation pairs which leads to a large set of
numerical values. In order to understand the results we need to summarize them and we

can do in two ways:

i) Summary by domain type: We summarize identical/different predictions for each type
of domain in the analysis. In this manner we will get a cumulative number that expresses,
for instance that the EGF domain type is identically predicted in 60% of the cases, noting
however that identity can be defined in terms of presence/absence, domain numbers or
boundaries, as described above. Averaging the domain-type statistics will then provide a

cumulative average of the database, in terms of domain types

il) We can summarize identities within a protein: If all constituent domains of a protein are
identically predicted by two annotation schemes, that is a true positive (TP). Again,
identities can be considered at any of the 3 levels (a,b,c). Averaging the protein statistics

will then provide a cumulative average of the database, in terms of protein architectures.

These definitions can be best understood by imagining protein domain annotations as a
table in which proteins are the columns and domain types are the rows as shown in Table
4.1 In this hypothetical example the dataset contains four proteins (namely,
C1S_HUMAN, BMP1_HUMAN, C1RL,_HUMAN and OVCH1_HUMAN) that contain
a few domain types only. “+” means that a given domain type is identically predicted by

two annotation schemes being compared, “-” means that the annotations are different.
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Table 4.1: Assessment of a protein domain prediction method by “Domain Type” and by
“Protein Architectutre”.
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“+” means that two annotations agree cither a) at the presence/absence, or b) at domain abundance or ¢)
domain boundary level. These identities can then be summed horizontally, to give average identities by
domain type, whose values are written in the rightmost column. A protein’s entire architecture (calculated
vertically) is considered to be correct only if all its constituent domains are predicted by both the
annotation schemes a) at the presence/absence, or b) at domain abundance or ¢) domain boundaty level,,
30 it can either be 10001 0., and these scores are written in the bottom row of the table. Finally, we can
calculate datasct-averages by averaging the values in the bottom row and in the rightmost column, as
shown by the atrows.

Comparing the two annotation schemes at the level of “Domain Type” would involve
checking for the presence of elements in the column label for each element in the row
label. This means checking the list of all those proteins that contain the particular domain
type, for example in Table 3.1, three of the four proteins in the Swiss-Prot have an
annotations for the CUB domain whereas the Trypsin-like setine protease is annotated by

only two proteins (C1S_HUMAN and C1RL._HUMAN).

4.2. Designing and constructing the core dataset

To assess the correctness of predicted domain architectures, we manually curated a dataset
of multi-domain proteins belonging to the human proteome. Prediction of multi-domain
proteins poses to be a major challenge in protein classification mainly due to its higher-
order organizaton. They represent a substantial fraction of the proteome: about 27% of
proteins in bactetia and 39% of proteins in metazoans are multi-domain proteins (Tordai et
al., 2005). Moreover, these proteins are involved in a plethora of functions (Ben-Shlomo et
al,, 2003; Lander et al, 2001; Miyata and Suga, 2001; Patthy, 2003). Recently, the

establishment of several comprehensive databases of protein domains has been undertaken,
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including Pfam (Sonnhammer et al., 1997), SUPERFAMILY (Wilson et al., 2009), SMART
(Letunic et al., 2009), SBASE (Vlahovicek et al., 2005), InterPro (Hunter et al., 2009), and
CDD (Marchler-Bauer et al., 2009). Using the testing procedure outlined above, we
compare established collections of domain architectures (Pfam, SMART, Swiss-Prot) as
well as compare them with results of simple similarity search (BLAST), using a subset of

multi-domain proteins from the human proteome as an example.

The Multi-domain Protein dataset

The dataset used in the present work was constructed using SMART (Letunic et al., 2009),

Pfam-A (Sonnhammer et al., 1997) and Swiss-Prot (Boeckmann et al., 2003) database.

Complete human protein sequences were extracted from the Swiss-Prot Release 57.9,
yielding 20,272 protein sequences. SMART and Pfam domain architecture for these
proteins were obtained by writing a client-server socket program in Petl. These three
datasets (SMART, Pfam-A and Swiss-Prot) were then scanned for proteins containing at
least two domains. Only those proteins were considered from the resulting data that were

common to all the three sets, thus resulting in a common subset of 4011 proteins.
Mapping Protein domains and families

Evaluation and comparison of domain predictors becomes a complicated task due to the
existence of several domain datasets/databases that sometimes conflict with each other (Liu
and Rost, 2004). To achieve correspondence between the domain types defined by various
annotation paradigms we used the InterPro (Hunter et al.,, 2009) as the basis for data
integration. The InterPro database is an integrated resource for protein families, domains

and functional sites diverse source.

Each domain type occurting in the three datasets was mapped to the corresponding
InterPro Domain Signature. Mapping SMART and Pfam domain was a straightforward task
as IntetPro provides a direct mapping between the SMART/Pfam domains that are

integrated into the InterPro and the corresponding InterPro domain signatures.

As there is no such mapping available between the domains in Swiss-Prot and the IntetPro
domain signatures, we approached this problem using an indirect method. We made use of

the index of  protemn domains and families downloaded from
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http://www.uniprot.org/docs/similar. This file enlists domains, repeats and zinc fingers
along with the protein entries that contain the specified annotation. The domains, repeats
and zinc fingers listed in this file are mapped to relevant PROSITE accession numbers.
Since IntetPro provides a mapping of the PROSITE profiles and patterns integrated into

the InterPro, Swiss-Prot domains could be mapped to corresponding InterPro Ids.

To remove any discrepancy that might occur in the statistics due the various relationships
existing between the InterPro entries, all the entries belonging to the PARENT/CHILD
relationship were mapped to the PARENT.

Proteins sequences were broken down into domains based on the annotated domain
boundaries and stored in a MySQL table. The dataset thus consisted of 4011 proteins with a
total of 75105 annotations. A set of 278 domain types common to all three domain
architecture collections was used as the representative dataset for domain types (Appendix-

B, Table B1).

In addition to the domain annotations that can be downloaded from vatious databases, I
also retrieved predicted domain architectures using the default prediction parameters of
SMART, Pfam and SBASE servers, using client-server socket programs written in Petl .
noted however a few differences since the server programs sometimes predicted domains in
regions where the curated annotations contain predicted signal peptides (Nielsen et al.,
1997), transmembrane regions (von Heijne, 1992) and coiled/coil regions (Lupas et al,
1991). So in order to keep predictions at an equal footing, I used the signal sequences,
transmembrane and coiled-coil regions as calculated in the SMART database, and predicted

the domains only in the remaining regions of the protein.
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4.3. Comparing annotations

We calculated the agreement between two annotation schemes as briefly outlined about at

Table 3.1. A more detailed description is found in Appendix-B.

An important feature of our calculations is that we consider only those identities that occur
in either or both the annotations compared. So if neither of the annotations contains a CUB
domain, this fact is not counted as an identity. An interesting consequence of this fact is

that our % identity is becomes analogous with the popular F-measure.

In practical terms, one can calculate pairwise comparisons between annotations and present
the data in the form a similarity matrix whose rows and columns are the annotations to be
compared, and the contents of the cells are the values of pairwise comparisons. One can
calculate such matrices for individual domain types, for the averages of domain types, for

individual protein architectures, and for the averages of all architectures.

For example, the prediction of the domain type, EGE_CA (EGF-like calcium-binding)
between Swiss-Prot annotations (SW), SMART annotations (SMA), SMART predictions
(SMP), Pfam prediction (PFP) and SBASE prediction (SBP) is shown in Table 4.2.

SwW SMA SMP PFP SBP
SwW 100
SMA 93 100
SMP 93 100 100
PFP 80 77 77 100
SBP 75.53 75.78 75.77 90.03 100

The values represent % identities between the various annotation schemes. Comparisons
made at the presence/absence level, so identity is assigned if two proteins compared both
contain an LEGI' domain. SW=Swiss-Prot annotation, SMA=SMART prediction,
SMP=SMART Prediction, PEFP=Pfam prediction, SBP=SBASE prediction

A compatison of the vatious annotations in terms of all domain types is shown in Table

4.3. The values in this similarity matrix are the average percent values calculated for all
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domain types, i.e. this table is the average of 278 tables similar to Table 4.2. Finally, a

cumulative compatison of annotations in terms of proteins is shown in Table 4.4.

Table 4.3 Comparison of various annotation and prediction

 schemes in terms of all domain types (average identity values)
SW SMA SMP PFP SBP

SW 100
SMA 9566 100
Ptesence-Absence  gMp 9539 9991 100
PFP 9148 9384 9356 100
SBP 9238 9133 9178 9287 100

100

9482 100

9446  99.83 100

86.26  90.12 9465 100

91.5 90.78 9138  92.09 100

SW 100
SMA  50.26 100
Boundary SMP 5066 100 100

PFP 43.04  48.47 50.51 100
SBP 50.10 61.49 64.07  61.79 100

The values represent % identities between the vatious annotation schemes. The values
represent the average calculated for all the 278 domain types. SW=Swiss-Prot annotation,
SMA=SMART prediction, SMP=SMART Prediction, PFP=Pfam prediction,
SBP=SBASE prediction
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SW SMA SMP  PFP SBP

SW 100

SMA 64.5 100

SMP 64.7 95 100
Presence-Absence PFP 585 60 59.7 100

SBP 59.43  64.59 64.65 6258 100

100

40.71 100

41.14 9374 100

18.57  24.51 23.88 100

34.87 4039 40.59  27.89 100

SW 100
SMA 1112 100
Boundary SMP 1142 9097 100

PFP 3.42 6.93 6.86 100
SBP 9.53 17.87 1822 9.32 100

The values represent % identities between the various annotation schemes. The
values represent the average calculated for all the 4011 proteins in the dataset.
SW=Swiss-Prot annotation, SMA=SMAR' prediction, SMP=SMART Prediction,
PFP=Pfam prediction, SBP=SBASE prediction.

From the above tables it is apparent that that the degree of similarity between vatious
annotation schemes vary, with some annotations being more closer to each other than
others. For example, the SMART annotations are near to those of Swiss-Prot. Interestingly,
the BLAST-based predictions of SBASE are not farther from Swiss-Prot than Pfam
predictions which are based on a much more sophisticated algorithm. The same trend is
followed at all the levels of compatison, though the percentage of identities are in fact
much lower at the composition and domain boundary level. These data thus confirm that
the various annotation schemes are in good agreement, even though there can be
discrepancies in smaller details, especially at the domain boundary level. For example, even

SMART predictions differ from SMART annotations to some extent.

Finally, I present an example demonstrating how this statistics can be used to tune a
Y L P 1% g
predictor on an entire database. In the SBASE prediction scheme, there ate a few tuneable

thresholds that are used to reject weakly predicted domain assignments. These thresholds
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are either database-wide (i.e. applied to all domain types), or group-specific that are
different for each domain-type. Table 4.5 shows how the inclusion of several weak
thresholds increases the efficiency of the prediction what is manifested by the fact that the

predictions come closer to the curated SMART annotations.

SMART annotations vs SBASE/BLAST predictions % identities by protein
architecture
1 No thresholds 15.47
2 Sequence coverage threshold (group average) 28.29
3 Scorc threshold (group average) 51.55
4 Score and sequence coverage (2 and 3) 56.59
5 Score, sequence, coverage and e-value 64.59

4.4. Summary

In this chapter, I presented a general method to compate sequence annotations. Briefly, I
consider sequence annotations as a generalized form of a Swiss-Prot feature table, in which
there can be an arbitrary number of assignment types (e.g. domains, exons, repeats, protein
chains, etc.) and assignments can be ovetlapping. A specific example, protein architecture,
contains the same assignment types (“domain”) that are defined in a non-ovetlapping
fashion. I outlined three levels to compare domain-assignments (presence/absence level,
abundance level and domain/boundary level), and introduced two plausible ways to sum up
the comparisons according to either domain-types or proteins, to obtain single qualitative
indices for a complete dataset. I constructed a model dataset of human multi-domain
proteins that contained 278 domain types that are present in Swiss-Prot, Pfam, SMART,
SBASE, i.e. databases that employ very different principles of assignment, curation and/or
prediction and compared the annotated architectures and the predictions between these
data-sources One of the biggest problem of this comparison was to find an unequivocal
mapping of domain names between data-sources. When this problem was resolved I found

that there are minor but consistent differences even between curated annotations and
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automated predictions coming from the same database. On the other hand there are
tendencies that are apparent at all levels of comparison, for instance SMART annotations
and predictions are closer to Swiss-Prot than SBASE and Pfam, but similarity based
predictions are as close to Swiss-Prot even closer then HMM/based predictions. I also
presented an example of how to tune prediction parameters based on the
annotation/comparison principle. I wish to mention that the compatison method outlined
here is general so it can be applied without modifications to entire genomes or other,

sequentially aligned data.

And finally, even though a simple pairwise comparison of two annotations may not allow
one to tell which one is better, a few comments are in place regarding the general
tendencies apparent from the vatious compatisons shown in Table 4.3 and Table 4.4.
First, it is apparent that domain boundaries are not easily predicted, and even the high-
quality, HMM-based predictors of Pfam do not do very well in terms of boundaries even
though they tend to find the domains quite well. Second, the HMM-based predictors of
SMART, that are trained on high quality, manually curated set of domain sequences,
petform better and give predictions close to the manual annotations (in Swiss-Prot and in
SMART). In other words, manual curation is still a prerequisite of accurate domain
predictions. On the other hand, a simple similarity-based prediction could sometimes
outperform Pfam HMM-s, which is somewhat surprising. Especially, since in these
experiments I used the basic BLAST tool for similarity search(Altschul et al,, 1990), not
PSI-BLAST or any of the more refined similarity search tools. In other words, similarity-
based annotations can be improved well beyond the performance shown in these

comparisons.
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3. Structural Analysis and
Classification of an atypical EGF: A Case

Study

5.1. Background

The Notch signalling pathway is an evolutionatily conserved, intercellular interaction
mechanism, essential for proper embryonic development in all metazoan organisms.
Originally identified in Drosophila, whete the mutant allele gave rise to a notched wing,
proteins of the Notch pathway have been studied extensively in flies, worms, and mammals.
Thus unravelling a broad spectrum of roles of the Notch signalling in cell fate specification,
patterning and morphogenesis through effects on differentiation, proliferation,
neurogenesis, miogenesis, hematopoiesis, sutvival and apoptosis (Bray, 2006; Fiuza and

Arias, 2007; Lewis, 1998).

Mammalian Notch receptors and ligands

Notchreceptors Notch ligands
EGF-lke repeats LN Rad ANK TaD PEST (R EGF-fie repeats el

et WMMMM%B:MEM igelln

Bxtraceliular portion Intraceliufar portinn

Figure 5.1: Notch receptors.
There are four mammalian Notch receptors (Notch1-Notch4 and five Notch ligands, Jagged-1,
Jagged-2, Delta-like 1 (DLL1), DLL3 and DLL4 (Osbotne and Minter, 2007).
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The cell contact based pathway in Notch signaling occurs as a result of interaction between
a ligand on a signal sending cell and a receptor on a signal receiving cell. In mammals, four
different Notch receptors (NTC1, NTC2, NTC3, NTC4) have been identified, which bind
to five canonical Notch ligands belonging to two distinct families: homologues of Drosophila
delta protein (DLL1, DLL3, DLL4) and homologues of Drosgphila Serrate, Jagged-1 and -2
(JAG1, JAG2) (Beatus and Lendahl, 1998) (Figute 5.1).

Notch Receptors

Notch receptors are non-covalently assembled heterodimetic membrane-spanning
glycoproteins involved in transducing specific extracellular signals to the nucleus upon
ligand binding. Notch receptors are synthesized, as large pre-proteins comprised of

extracellular and intracellular domains (Figure 5.2).

P
™~
- N1 T™
EGF-like repeats repeais &

) (¥

TAD

ICN
Proteolytic sites[ 52 ¢

Figure 5.2: Domain organization of Notch receptots.

Human Notchl (NTC1) is shown as an example. Proteolytic cleavage by furin at site S1 produces
two subunits, ECN and N'TM, which temain non-covalently associated at the cell surface. EGF-like
modules 11 and 12, implicated in ligand binding in Drosophila Notch, are shaded. S2 and S3
identify the sites of proteolytic cleavage induced upon activation by the ligand. ICN, intracellular
domain of Notch; NLS, nuclear localization signal; PEST, proline, glutamate, serine, threonine rich
sequence; T'AD, transactivation domain; TM, transmembrane.
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The polypeptide encoded by Notch gene is proteolytically cleaved in the Golgi during the
transport to the cell surface, to give an extracellular (ECN) and a transmembrane subunit
(NTM). The ECN part of this receptor contains an array of ~29-36 EGF tandem repeats,
followed by three LIN-12 repeats that maintain the heterodimeric structure of the
functional receptor by disulphide bridges (Sanchez-Irizarty et al., 2004). Proper folding of
EGF like repeats have been shown to be Ca”" dependant (Rao et al., 1995) and it has also
been shown that EGF-like repeats 11 and 12 are necessary for ligand binding (Rebay et al.,
1991). The intracellular region of the NTM contains several functional domains, which
includes a RAM domain, followed by seven ankyrin repeats, a TAD domain, and a PEST
region. The ankyrin repeat region is the most highly conserved portion of the Notch
(Stifani et al., 1992) and functionally significant mutations that map to the ANK repeats
show that it is essential for signalling (Kopan et al., 1994; Lieber et al., 1993; Rebay et al,,
1993; Roehl et al., 1996).

Jagged and Delta ligands

Ligands for Notch are members of the DSL (Delta, Serrate, Lag-2) family of
transmembrane proteins. All the ligands of the DSL (Delta/Serrate/Lag-2) family share the
same architecture (Letunic, et al., 2004) (Figure 5.3). They are type I membrane spanning
proteins composed of a N-terminal, cysteine rich region that includes a DSI. domain, a
variable number of EGF-like repeats, a transmembrane segment, and a relatively short
(~100-150 amino acids) cytoplasmic tail. Ligands of the Jagged group JAG1 and JAG2)
have also a juxtmembrane additional region that is not present in the Delta group ligands.

In mammals, the ligands are expressed in all embryonic tissues.
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9

DLL4 HUMAN

Figure 5.3: Domain architecture of human Notch ligands as depicted by SMART.
MNNL, N-terminal region of Notch ligands (Pfam); DSL, Delta/Serrate/ lag-2 domain; EGF-like
- epidermal growth factor (EGF) domain, unclassified subfamily; EGF_Ca - Calcium-binding EGF-
like domain; VWC - von Willebrand factor (VW F) type C domain; the transmembrane region is
shown as a blue rectangle; low-complexity regions in magenta.
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Jagged-1

Jagged-1, one of the five Notch ligands identified in man, is a single pass type I membrane
protein with a large extracellular region made of a pootly charactetized N-terminal region, a
DSL (Delta/Serrate/Lag-2) domain, a seties of 16 epidermal growth factor (EGF) tandem
repeats, and a cysteine-rich juxtamembrane region (Figure 5.4). The DSL domain, together
with the first two atypical EGF repeats constitutes Jagged-1 receptor binding region (Cordle
etal., 2008; Shimizu et al., 1999). Binding of Jagged-1 to Notch receptors triggers a cascade
of proteolytic cleavages (Weinmaster, 2000) that eventually leads to the release of the
intracellular part of the receptor from the membrane, its translocation to the nucleus, and

the activation of transcription factors (Allman et al., 2002; Iso et al., 2003).
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Figure 5.4: Domain architecture of human Jagged-1.

MNNL, N-terminal domain of Notch ligands; DSL, Delta/Serrate/Lag-2 domain; EGF domains
(green) are numbered progressively; potential calcium binding EGF domains are in lighter green;
VWC, von Willebrand factor type C domain; the transmembrane segment is shown as a blue ba;
the receptor binding region is marked in red. Amino acid number of exon boundaties are shown on
top. The amino acid sequence of J1ex6 and the disulfide bond connectivities are also shown.
Figute 5.4 shows the domain architecture of the protein encoded by the human jagged-1
gene. [t was shown that exon 6 of the 4G/ gene encodes an autonomously folding with a

disulfide bond topology typical of EGF repeats (Guarnaccia et al., 2004) .

Early on in 1978 it was proposed that exons encode "folded protein units", emphasizing the
role of a correct folding process to produce functional proteins or domains (Blake, 1978).
Recent advances in genome sequencing, domain classification, and 3D structure

determination confirmed this hypothesis: a strong correlation between exon boundaries and
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predicted domain boundaries has been found in nine eukaryotic genomes, the correlation
becoming stronger with the increasing genome complexity (Liu and Rost, 2004). Such a
high correlation lead to the suggestion that in certain cases exon boundaries can be used to
predict domain limits more accurately (Liu et al., 2005). In particular, a survey of domain
repeats in seven metazoan species showed that there is a very good correspondence
between exons and EGF repeats (0.93 exon/repeat on the average) (Bjorklund et al., 2006).
This does not hold true for exon 6 of the LAG7 gene as it encodes not only EGF2 but also
a part of EGF1.

Recently the solution structure of the peptide encoded by exon 6 (J1ex6) of the [AG7 gene
was determined by 'H-NMR spectroscopy by the Protein Structure lab at ICGEB. This
provided me with the opportunity to apply various bioinformatics based methods for the
classification and structural analysis of this newly determined structure. Moreover, EGF
repeats are widespread in extracellular proteins and hundreds of missense mutations have
been identified and associated with several genetic diseases. The fact that structural grounds
of these disorders been investigated only in a few cases, we carried out a systematic and

comprehensive analysis of mutations found in epidermal growth factor repeats.

5.2. Methods

Sequence and Structure based classification of Jlex6

Epidermal growth factor, EGF-like domains are extracellular protein modules
approximately 30-40 amino acid residues in length and stabilized by six Cysteine residues

that form three disulphide bonds (Campbell and Bork, 1993).

Figure 5.5: Disulfide signatute of the EGF motif.
Disulfide signature of the EGF motif showing the cross-linked arrangement of half-cystines in the
primary structure and their connectivity
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The Cysteine connectivities within EGF are the first to the third, the second to the fourth,
and the fifth to the sixth or (1-3, 2-4, 5-6: Savage et al., 1973) also defined by the
ABGADBCLCe. annotation (Figure 5.5).

Depending on the location of these half-Cystines in the structure, it was proposed that
EGF domains can be divided in two structural groups, namely the human EGFs (hEGF)

and Clr-like EGFs (cEGF)(Wouters et al., 2005) as described in Table 5.1.

hEGF cEGF
¢ 8-9 amino acids in ex-cc loop e 10+ amino acids in cn-cc loop
® 4+ residues in by-acloop e Subtype 1 has 4+ residues in bx-ac
loop
e  Subtype 2 has 3 residues in bx-ac
loop
e ( residues between tandem e 5 residues between tandem domains

domains of ssame type

With the aim of classifying the EGF2 of the J7ex6 either as hEGF or as cEGF, we tried a
two-way approach, using both the sequence and structure information at hand. Figure 5.6

depicts the approach followed.
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. Classification of the atypical EGF (J1ex6 )
Task into LEGF or cEGF

Dataset 56 EGFs of known structure belonging to
“EGF/Laminin superfamily ™ of the SCOP database,
E

Approach Two Fold

Sequence based

f
e
1

Based on the spacings calculated for various  Based on rigid body superposition
half-Cysteines and clustering the domains using the STAMP package.

based on the sequence descriptor provided ~ (Russell and Barton., 1992}

by Wouters et al.. 2005

Figure 5.6: Classification of Jlex6.
Depiction of the methodology used for the classification of atypical EGE of Jlex6 using
sequence and structure information.

56 domain sequences belonging to the EGF/Laminin supetfamily was taken from the
SCOPY5 dataset of the Protein Benchmark Collection(Sonego et al., 2007). This formed the
dataset used for the sequence-based classification of the atypical EGF. A complete list of

the domains used in this study can be found in Appendix C, Table C1

A Perl script was used to categorize the 56 domains into cEGF or hEGF based on the
sequence descriptor (Wouters et al., 2005). Various frequency distributions of the Cysteine

loop lengths were plotted (like Ay- A By- Beand so on).

For the structure based classification, the same superfamily from the SCOP95 dataset was
used but only those domain structures were considered for this study which were also
present in the EGF-type module of the PALI database (Gowri et al, 2003). PALI
(Phylogeny and ALIgnment of homologous protein structures (Release 2.6)), comprises of
protein structural families in which every member is structurally aligned pairwise with every
other member in that family and multiple structural alignment of all members in the family
is also available. The alignments were made using STAMP (Russell and Barton, 1992) which

encodes a rigid body superposition. This dataset comprised of 36 domain structures.
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Similar to PALL the STAMP (STructural Alignment of Multiple Proteins) program (Russell
and Barton, 1992) was chosen for the construction of structural superpositions. STAMP is
a package for the alignment of protein sequence based on 3D structure. It provides not
only multiple alignments and the corresponding “best-fit” superimpositions based on
structural equivalences, but also a systematic and reproducible method for assessing the
quality of such alignments. STAMP makes extensive use of the Smith-Waterman
algorithm(Smith and Woaterman, 1981). This widely used algorithm allows fast
determination of the best pair through a matrix containing a numetical measure of the
pairwise similarity of each position in one sequence to each position in another sequence.
At the heart of the method is the Argos and Rossmann (Rossmann and Argos, 1976)

equation for expressing the probability of equivalence of residue structural equivalence.

STAMP needs an initial alignment to start from. The SCAN method of STAMP suite was
used to obtain an initial set of superimpositions followed by the final rigid body
superposition by STAMP. Similar to PALIL the structure based phylogenetic tree was
constructed using the KITSCH program from the PHYLIP package of programs (version
3.5) (Felsenstein, 1995). The input to this program was a Structural Distance Mettic (SDM)
(Johnson et al., 1990) calculated for evety pairwise alignment. SOM combines RMSD and

number of equivalent Ca atoms between two proteins and is calculated as,
SDM = -100 *log (wl* PFTE + w2 * SRMS ),
where

wi=1=PFTE +1- SRMS /.

o — (PFTE + SRMS )/
- 5.

_ No. of topologic ally equivalent residues

PFTE
Length of the smallest protein

SRMS =1- (RMSD 3_0)
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Analysis of the Exon/Intron organization of the Jlex6 and the extent
of its conservation

Orthologues of Human |AG1

Amino acid sequences of orthologues of human JAG7 gene were retrieved from
ENSEMBL Release 50 (Hubbatd et al., 2009). This comprised of sequences from 26
different species ranging from fishes to primates, namely, primates (5) and non-primate

mammals (15), birds (1), amphibians (1), and fishes (4).

The protein sequences were then broken down into peptides encoded by exons using the
colour coding scheme used by ENSEMBL (Hubbard et al,, 2009) to depict peptides
encoded by different exons (Figure 5.7).

EXON 1 EXON3

MPIGSKERPTFFEIFKTRCNKADLGP I PYNSERPAEE SEHKNNNY EFNKTKMDQADDVSC

EXON2

Figure 5.7: Peptides encoded by different exons as shown in ENSEMBL.

The ENSEMBL database dematcates peptides encoded by exons using a colour coded scheme. So,
the first exon corresponds to the black amino acids, the second exon cotresponds to the blue
sequence, the third exon is in black and so on.

Identification and Retrieval of Orthologs of Notch Ligands

Swiss-Prot (Boeckmann et al., 2003) was searched for all proteins containing EGF repeats,
entries for which the exon/intron otrganization is annotated in the ENSEMBL (Hubbard et
al., 2009) were collected. The amino acid sequences for these proteins were then broken
down into segments corresponding to exons, and a BLAST search was performed with the
sequence encoded by Jagged-1 exon 6. Apart from the usual orthologs of Jagged-1, namely,
JAG2, DLL1, DLIA4 we identified the non-canonical Notch ligands DLK7 and DLK2
sharing high sequence similarity with [AG7.

Following this, all amino acid sequences annotated in ENSEMBLE as orthologues to
JAGT, JAG2, DLL1, DLI4, DIK1, and DLK2 were collected, and broken down into

segments corresponding to exons. A detailed list of these genes along with the
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corresponding Ensemble Id and the domain boundaties can be found in Appendix C,

Table C2.

Analysis of disease associated mutations in Epidermal Growth
factors

Disease associated mutation in EGF domains

Egf-like domains with disease associated mutation were obtained after searching the
SwissProt database (Boeckmann et al., 2003) Release 55.6 for proteins using the keywords
EGF-LIKE, DISEASE MUTATION and HUMAN. This resulted in a total of 325 disease-
associated mutations from 105 EGF domains in 21 different proteins (Appendix C,

TABLE C4)

Polymorphism in EGF domains

For the neutral mutations, a search using keywords EGF-LIKE, VARIANT and HUMAN
was used to retrieve an initial dataset which was then filtered using a Petl script to obtain
the neutral mutations (polymorphisms). This dataset consisted of a total of 67

polymorphisms from 64 EGF domains in 38 proteins (Appendix CTables C5).

For both the above cases, only EGF domains with three-disulfide bonds were considered,
thus discarding the laminin and integrin-like EGF domains, which have one additional
disulfide bond. An in-house Perl sctipt was used to extract the EGF-Like domains

according to the domain boundary information provided in Swiss-Prot.

Reference Dataset

As areference dataset, we used a collection of all disease-associated mutations described in
the MIM database (Hamosh et al., 2005) and annotated in Swiss-Prot. This dataset
comptises a total of 4236 mutations from 436 genes, regatdless of protein function, cellular

localization and domain type (Vitkup et al., 2003).

Grantham Binning of Mutations

Disease-associated and neutral mutations in EGF domains were analyzed in terms of the

Grantham score (Grantham, 1974) associated with every mutation type. The Grantham
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scote is a composite measure of the chemical distance between two amino acid types based
on assessment of chemical dissimilatity between residues. It takes into account the
molecular volume, polarity and side-chain composition of amino acid pairs. Grantham
scores are in the range 5-215, with a higher number reflecting less conservative changes.
Scores in the Grantham matrix were divided in ascending order into 9 bins each of size 25.
Diseased and neutral mutations were binned according to their frequency/occurrence into

these Grantham bins.

Positional Analysis of Mutations

Disease-associated and neutral mutations were mapped onto the sequence of EGF domains
using a Perl script. The sequence was then broken down into seven windows, wlto w7,
based on half cystines (with w1 comprising the N-terminal residues, w2 to w6 comprising
the residues delimited by disulfide bonds half-cystines, and w7 the C-terminal linker
residues). Mutations were then counted in each of these seven windows. This mutation
frequency was normalized by the average number of residues in each window and was then

plotted.

Mutation Impact Plot

To compare the frequency of each disease-associated mutation type observed in EGE
domains with that in the reference dataset, all disease mutations of the type AA, 2 X,
where X is any amino acid, were collected, summed up for each amino acid type AA, and
divided by the number of occurrences of AA,, to obtain a normalized mutation frequency F,
for the EGF domain dataset and £, for the reference dataset. The ratio F./ f, between these
two frequencies was plotted for each amino acid type. To account for the very different size
of the two datasets, the number of observed mutations in the reference dataset was first

downscaled to the size of the EGF dataset.
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5.3. Results

Classification of EGF repeats based on disulphide bond topology

Sequences belonging to the EGF/Laminin superfamily were categorised into cEGF and
hEGF using the A B AB-CC, annotation to describe the disulfide bond topology, where
AAg BB, C.C are the three disulfides. Based on the various sequence descriptors
(Wouters et al,, 2005), 29 out of the 56 members belonged to the hEGF whereas 27
belonged to cEGF. These two groups display different lengths of the C,-C. loop, of the

By-A¢ loop, and of the linker connecting two EGFs of the same type.

A comparison between different spacings in EGF2 of J1ex6 and in a set of 56 EGFs of
known structure (Figure 5.8) shows that J1ex6 can be clustered together with the hEGF's
for certain characteristics, such as the length of the C-C. loop (8 tesidues), while for others
it clusters neither with cEGFs nor with hEGFs. Notably, the B-B.. loop (10 residues) is
shotter than in cEGFs (most frequently 1213 residues) and in hEGFs (14 residues or
more), as well as the total spacing between the first and the last halfcystine (Ay-C. loop, 27
residues vs. 30 or more in other EGFs) and the linker between EGF1 and EGF2 (2
residues, vs. 5 or 6 in cEGFs and hEGFs, respectively). Overall, this makes the EGF2 of

J1ex6 rather more constrained than both cEGFs and hEGFs.
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Figure 5.8: Classification of EGF repeats based on sequence descriptors.
Different spacings calculated for a dataset of 56 structures classified as cEGF (empty bars) ot hHEGF
(filled bars); spacings in EGF2 are marked by an asterisk.

Similar ambiguity in placing the atypical EGF into either cEGF or hEGF was observed in
the case of structure-based classification. Figure 5.9 shows an unrooted dendrogram,
which was constructed, based on the structure dissimilarity matrix obtained from the
structure-based alignment of the domains belonging to the members of the EGF/Laminin
superfamily and the EGF2 of J1ex6. This structure based tree shows similar ambiguity in
grouping the atypical EGF of the J1ex6 as it neither clusters with the cEGF (depicted by
pink colour) nor with the hEGF (blue).

Moreover, an exhaustive search of structural databases with this EGF of J1ex6 structure did

not produce any hit with a significant score.
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Figure 5.9: Classification of EGF repeats based on structure information.

Phylogenetic tree showing the clustering of the members of the EGF/Laminin superfamily. The
members belonging to the hEGF have been colouted in blue and those belonging to the cEGF
have been coloured pink. The structure based sequence alignment produced by the STAMP package
can be seen in Appendix C, Figure C2.

Recently, the crystal structure of the region encompassing the DSL and the first three EGF
repeats of Jagged-1 has been reported (Cordle et al., 2008) (PDB: 2V]2). A comparison
between the solution structure of J1ex6 and the structure of the same region in the X-ray
structure shows a good agreement in the tracing of the backbone. As can be seen in Figure
5.10, the crystal structure of the DSL/EGF1-3 modules (Cotdle et al., 2008), shows the
presence of a kink between EGF1 and EGF2 in an otherwise linear, rod-like structure.
Because this construct crystallized as a dimer with several interchain contacts, it can be
questioned if packing forces are responsible for the bending of the chain. On the other
hand, the good agreement between the crystal structure and the solution structure, in
particular in the N-terminal overhang, despite the reduced structural context, suggests that

the kink is actually a structural feature that might have some functional relevance.
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Figure 5.10: Structure of the receptor binding region.

The X-ray model the DSL domain and the first three EGFs of Jagged-1 (PDB: 2V]2) superimposed
on the solution structure of J1ex6 (PDB: 2KB9Y, fitst model, in red); exon boundaries and phases are
also shown.

This made us to question if the dephasing of exon boundaries with respect to predicted

domain boundaries in the region comprising these two atypical EGF repeats in the J1ex6 is

accidental, or does there undetlic any common evolutionary origin.

Exon/intron arrangement in this region of the JAGI genes is very
well conserved throughout evolution

The analysis of the exon/intron organization of human JAG1 orthologues in 26 different
species including primates (5), non-primate mammals (15), birds (1), amphibians (1), and
fishes (4) revealed that the exon/intron arrangement in the region encoding the J1ex6 of
JAGT genes was found to be very well conserved throughout evolution, with a single exon

encoding the C-terminal region of EGF1 and the complete EGF2 (Figure 5.11).
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! Pan troglodytes (Chinpanzee) Exon 6 f
Fonga pygmaeus (Bornean oranyulan)  Exon 6
i Hicrocebus murinug (Gray ronise remur) Exon 1
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i Loxodonta africana (African bush elephant}Exon 7 Ry
Canis familiaris (Dog}
. Felis catus {Dorsstic eat)
| Myotis Iucifugus (Little brow bat}
Sorex araneus (Enrasian shrew)
i Dasypus novemcinctus  (Mine-banded armadillo)hxen 6 Y|
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| Echinops telfairi (Lzsser hedgeliog) R
- Ornithorhynchus apatinus(buck-billed platypus) Exon ¢ B
Bird -~ Gallus gallus ~{Red jungle foul)
Amphibian - Xenopus: tropicalis = (western cluved frog) -
Oryzias latipes = {1upancse medaka)
Fish  Tetraodon nigroviridis (Green pufferfish) |
‘Danio rerlo . (Eebmalish)

Figure 5.11: Multiple sequence alignment of the polypeptides encoded by exon 6 of
human JAG1 and its orthologues in 26 different species using CLUSTAL-W.

Exon/Intron organisation preserved in homologues of Notch ligands

The extension of this analysis to all homologues of Notch ligands showed that the same
exonic organization is found not only in [AG7 but also in the [AG2, DIL7, DLI4, DK,
and DLKZ gene families, for a total of 112 genes in species vatying from fishes to primates
as seen in Figure 5.12. Usually, exon 6 (or its equivalent) is flanked by a phase 2 and a

phase 1 intron on the 5' and 3' ends, respectively.
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Results
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Figure 5.12: Multiple sequence alignment of the polypeptides encoded by exon 6 of human
JAGI and its homologues in different species.

All amino acid sequences annotated in ENSEMBLE as otthologues to JAG/, JAG2, DLL1, DLILA4,
DLK7, and DLK2 were collected, broken down into segments cottesponding to exons, and
searched using BLAST with the sequence encoded by exon 6 of human Jagged-1; hits were then
aligned using CLUSTAL-W.
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With all this evidence, one can speculate that the particular exon structure in this region is

dictated by the folding and structural requirements and that this atypically short EGF2

repeat might require the N-terminal extension for its correct folding

It is worthwhile to mention here that three were exceptions found while studying the

exon/intron conservation and all of them occutring in lower organisms. Figure 5.13

displays the outliers having a different exon/intron otganization. In Drosophila Delta

(DL_DROME) exon 6 is encoding not only the C-terminal tegion of EGF1 and the entire

EGF2 but also the following EGTFs; in C. ¢lggans APX1 (APX1_CAEEL) a single exon is
encoding both EGF1 and EGF2; wheteas in zebrafish Delta-like B (DLLB_DANRE) a

single exon is encoding three EGFs (1-3).
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Figure 5.13: Exon/intron organization in outliers.
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Diagrams showing exon/intron organization, intron phase, and domain architecture for the three

outliers., Drosophila  Delta (DL_DROME), Cekgans
(DLLB_DANRE).

(APX1_CAEEL)

and Zebrafish
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The sequence pattern of Jlex6 EGFZ2 is unique

The very low tolerance of Jlex6 to amino acid substitution at position 274 lead us to
investigate whether the sequence pattern associated with EGF2 is found in other proteins.
A pattern search in swiss-prot (http:// www.expasy.org/ prosite/) produced 22 hits, which,
surprisingly, are all related to Notch ligands in different organisms. In this dataset, G at

position 274 was found to be absolutely conserved.

sp|P78504] JAGL HUMAN
5p|Q6DI48| DLLA_DANRE
5p| QSK1E3 | DLK2 MOUSE
5P| QI0V54| JUG1E DANRE
Sp|QSII71|DLL4 MOUSE
5p|Q9Y219| JiaG2_ HUNAN
5p|QIQYES| JAGZ_MOUSE
Sp| Q63722 JAGL RAT
Sp| Q09163 | DLK MOUSE
Sp| 000548 | DLL1_ HUMAN
sp|P97677|DLLL_RAT
sp|QONRE1|DLL4_HUMAN
gp| 057409 | DLLE_DANRE
sp|Q6UY11| DLK2 HUMAN
5p| Q8UWJI4| DLLD_DANRE
5p| Q61483 | DLL1_MOUSE
5p| Q9QXE0| JAGL MOUSE
Sp|Q90YS7| JAGLA DANRE
Sp|P97607| JAGZ RAT
5p| PB0370| DLK_HUMAN
sp|P10041| BL_DRONE
Sp|Q9IATS|DLLC DANRE

Figure 5.14: Multiple sequence alignment of sequences obtained from Swiss-Prot for a

pattern associated with EGF2.
All the 22 sequences are related to Notch ligands in different organisms and Glycine at position 274

(marked in red) is absolutely conserved.

Extending the pattern search to trEMBL, we obtained 115 hits. A plot of Shannon entropy
shows that, apart from Cysteines, there are only two additional positions that display no
variability at all, the first corresponds to G274 in the Jagged-1 sequence, and the second to
G290 (Figure 5.15). Thus supporting the idea that, in this specially constrained type of

EGF, position 274 is not tolerant to substitution.
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Figute 5.15: Shannon Entropy Plot.
Sequence  varability in a  set of 115 EGFs  matching the  pattern

1C-¥(5)-C-X(4)-C-K(5)-C-K-C-H(8)-C} plotted as Shannon entropy versus position. Values
for the Shannon entropy can vary from zero (no variability) to a maximum of 5.3. The amino acid
sequence of Jagged-1 EGF2 (residues 265-293) is shown on the x-axis; amino acids in capital letters
are totally conserved.

Global analysis of disease-associated missense mutations in EGF
containing proteins

Because the EGF domain is one of the most common structural building blocks in
extracellular proteins (Campbell and Bork, 1993; Wouters et al., 2005), we decided to
undertake a global analysis of disease-associated missense mutations found in EGF
containing proteins with the idea of providing an important window to understanding

human disease associated mutations.

To study the effect of change of physico-chemical properties of a specific amino acid, we
compared the disease-associated and neutral mutations in terms of the chemical distance, as
measured by the Grantham score (Grantham, 1974) (Figure 5.16). As mentioned in the
methods section, the Grantham scale scores substitutions based on the based on the

chemical dissimilarity between residues which can be viewed as a distance between two
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amino acids. The greater the distance, the less similar the amino acids are, and the less

exchangeable they become during evolution.

40
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Figure 5.16: Physico-chemical analysis of mutations.
The percentage of disease-associated mutations (black bars) and polymorphism-related mutations
(gray bars) are plotted versus their cotresponding Grantham score.

As can be seen in Figure 5.16, we found that polymorphism-related mutations follow an
almost bell-like distribution centred on relative small values of the Grantham score, whereas
disease- associated mutations show an uneven distribution. Overall, it can be concluded
that mutations with a high Grantham score are highly likely to be disease associated, but the
contrasting case is not true, at least for EGF domains, suggesting that the chemical distance

is not the only determinant.

Next we tried to identify positions in the EGF scaffold that are most sensitive to mutations.
This type of analysis, however, turned out to be problematic because of the very high
variability in the amino acid sequence of EGF domains and in the leagth of the loops,
which together make both sequence and structural alignments unreliable for this purpose.
We thus decided to carry out this type of analysis on a coarser basis, dividing the sequence
of EGFs into seven windows, wl to w7, and partitioning mutations accordingly (Figure

5.17). Polymorphism-related mutations show a relatively homogeneous distribution over
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the sequence, whereas disease-related mutations are mainly found in w1, w3, w4 and, to a
minor extent, in w6. The relatively high frequency of disease associated mutations in the N-
terminal region most likely has no specific structural explanation, but is rather related to the
strict requirement of specific amino acids (D /N) necessary for calcium coordination in

calcium-binding EGF domains.
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Figure 5.17: Positional analysis of mutations.

Disease-associated (black bars) and polymorphism-related (gray bars) mutations in EGF domains
were partitioned according to their position in windows w1 to w7 and normalized for the average
window size. Mutations involving cysteine were not consideted. The six half-cystines atre named
according to the AxBnAcBcCnCe annotation.

On the other hand, mutations in w3 and w4 are more likely to distupt the two-strand
antiparallel B-sheet that is the main (and sometimes the only) secondaty structure element
in EGF domains, ot to involve residues that are required for the correct formation of the

interface between two consecutive EGF repeats.

A separate positional analysis of Cysteine mutations, which are all disease-associated,

showed that they are equally distributed, with no significant prevalence of the six positions.
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It is known that by far the most frequents disease associated mutations found in EGF
domains involve Cysteines, suggesting the high impact of this mutation in causing a disease.
We wanted to see whether in the EGF there are any other amino acids like the Cysteine
which when mutated has a higher impact in causing a disease. For this we calculated the
frequency of each disease associated mutation type in EGF domains with that in the

reference dataset (Figure 5.18).

1t P{Y)

+ {0 s H B # §

WOCFITYYLIHMATRGGOGSMPDEK
Arming acid

Figure 5.18: Disease-associated mutations in EGF domains.

The ratio between disease-associated mutation frequencies in EGF domains and the reference data
setis plotted for each amino acid type. Amino acid types are shown in order of flexibility, as defined
previously (Vihinen et al., 1994), from the least flexible (W) to the most flexible (K). The resulting
amino acid and the number of occurrences for each mutation (in parenthesis) are shown above each
bar. Mutations involving cysteines are shown in bold.

Although normalization drastically reduces the weight of mutations involving Cysteine, it is
apparent that mutations either removing (C — X) or introducing a Cysteine (X — C,
similar to Y = C and R — C) still have a great impact on EGF domains. This effect can be
easily explained by the structural requirements of EGF domains, which, lacking a true
hydrophobic core, are mainly stabilized by the three disulfide bridges. On the other hand,
the introduction of an additional Cysteine is likely to scramble the oxidative folding of EGF
domains in vivo. Oxidation of Cysteines to yield disulfide bonds is the most studied but not
the only post-translational modification found in EGF domains (Hartis and Spellman,

1993).B-hydroxylation of aspartate and asparagine, as well as different types of N- and O-
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glycosylation, has been reported. Although the role of B-hydroxylation remains elusive,
correct O-glucosylation and O-fucosylation of setine/ threonine residues has been shownto
be required for correct signaling mediated by Notch receptors (Haines and Irvine, 2003;

Stanley, 2007).

5.4. Summary

In eukaryotic genomes, there is an overall very good cotrespondence between exon
boundaries and predicted domain limits (Bjorklund et al., 2006; Liu and Grigotiev, 2004;
Liu et al,, 2005). Here, we have reported a case study whete this cottespondence is not
fulfilled. Although it can be argued that in some instances domain limits cannot be defined
precisely, this is not the case of EGF repeats, which are cleatly recognizable by a very
specific pattern of the three disulfide bonds and by the spacing between half-cystines. In
this case study, the overall correspondence is maintained, with exons 5 and 6 encoding
EGF1 and 2, but exon and domain boundaties are cleatly out of phase, with exon 5
encoding a truncated EGF with only four half-cystines and exon 6 encoding the C-terminal

half of EGF1 and the entire EGF2.

How can these results be reconciled with the experimental finding that exon 6 of human
JAGT is encoding an autonomously folding and structural unit? Although from the
statistical point of view this may be one of the rare instances where the 1:1 correspondence
between exons and EGF repeat does not hold, the question remains if this has any
structural or functional significance. It is possible that the particular exon structure in this
region is dictated by folding and structural requirements. In this specific case, the
constraints in the atypically short EGF2 repeat might require the N-terminal extension as
an internal chaperone and a docking template to dtive the correct folding. Moreover, as
mentioned earlier, the presence of a kink at the interface between EGF1 and EGF?2
observed in the crystal structure of the Jagged-1 region comprising the DSL domain and
the first three EGF repeats (Figure 5.10) (Cordle et al., 2008) might not be accidental and
may be required for correct binding to Notch receptors. In calcium binding EGFs, which
are connected by a fairly long linker, the relative orientation of two adjacent domains is
mainly determined by the geomettic constraints imposed by the coordination of the calcium

ion. In EGF1-2, the same objective is achieved by drastically reducing the length of the
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linker region and encoding the C-terminal part of EGF1 and EGF2 in a single, conserved

€xo1n.

The G274D mutation in EGF2 of Jagged-1 despite occurring within the same window (w3
in Figure 5.17) and at a position that is structurally equivalent to G1127 in fibrillin-1 and
G106 in factor IX (Figure 5.19), appears to affect folding in a more drastic way as
compared to the G1127S mutation in fibrillin-1 and the G106S mutation in factor IX
(Whiteman et al., 1998; Whiteman et al., 2001). Again, this can be attributed to the higher
constraints in the structure of this atypical EGF, as indicated by the shorter By-B. loop (10
residues, compared to 13 in fibrillin-1 and 14 in factor IX) and spacing between the first
and last half-cystines (the A —C,. distance is 27 residues in Jagged-1 EGF2, comparedto 35
in fibrillin-1 and 30 in factor IX) and supported by the observation that glycine at that

posttion 1s totally conserved in Notch ligands (Figure 5.15).

Figure 5.19: Structural alignment.

Multiple sequence alignment based on the structural alignment of EGF2 from Jagged-1 (JAGT;
PDB code: 2V]2), cbEGF1 from factor IX (FA9, PDB code: IEDM) and ¢cbEGF13 from fibrillin-1
(FBN1; PDB code: 1LMJ). Despite some discrepancy in the N-terminal region, half-cystines
(boxed) and the mutated glycines (in bold) are aligned. Structure comparison was made using

STAMP .
It is possible that the G274 mutation, introducing a larger charged amino acid, is more

distupting than a G — S mutation (a difference of 94 in the Grantham score, compared to

56 for a G — S mutation; Figure 5.16). However, the misfolding of the G274S and G274A
mutants supports the hypothesis that no amino acid other than glycine can be

accommodated at that position, regardless of the substitution type.

Additional missense mutations reported for exon 6 of JAG1 and expected to induce an
amino acid replacement include G256S in EGF1 (Warthen et al., 2006), P269L (Ropke et
al., 2003), C271R (Warthen et al., 2006), C284F (Boyer-Di Ponio et al., 2007; Boyer et al.,
2005; Crosnier et al., 1999), and W288C (Boyer et al., 2005; Crosnier et al., 1999) in EGF2.
All these six missense mutations share a common feature; they occur at residues that are

either completely (positions 256, 271, 274 and 284) or very highly (positions 269 and 288)
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conserved in the amino acid sequence (Figure 5.15). When considering all the 17 missense
mutations occurring in the 16 EGF repeats of Jagged-1, ten involve either the replacement
or the introduction of a cysteine, and are thus likely to be structurally disrupting (Figure.
5.18). Previously reported mappings of mutations over the Jagged-1 sequence (Crosniet et
al., 1999; Ropke et al,, 2003; Warthen et al., 2006) did not indicate the presence of any hot
spot of critical region. Such mapping, however, was performed considering all types of
possible mutations, including premature termination, and partitioning them over the 26
exons of the [AGT gene. Taking into account only missense mutations, which are likely to
be more informative with respect to structural changes, and partitioning them over
domains, rather than exons, it appears that the segment comprising the N-terminal domain,
the DSL and the first two EGFs is most sensitive to missense mutations (Appendix C
Figure C1 and Table C2). This is consistent with the DSIL/EGF1-2 region being involved in
receptor binding(Cordle et al., 2008; Shimizu et al, 1999) and points to a key role of the N-
terminal domain. From this map, it can be speculated that two additional regions, one
extending over EGF12-14 and the other including the von Willebrand factor type C

domain, might also play a yet unidentified structural or functional role.
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6. Discussion And Conclusions

Advances in experimental methods have generated, and continue to generate,

enormous volumes of biological data that present significant storage, retrieval and

analysts challenges (Slonim 2002).

Two factors dominate current developments in molecular biology :

1. theincreasing amount of highly complex emperical data - in particular molecular
and genetic data.

2. successful application of the data to biomedical research requires carefully and
continuously curated and accurately annotated databanks.

Annotation has thus become a challenging and arguably the limiting, component of

the whole enterprise. Most of current data interpretation (“data annotation”) tasks are

carried out by classifier algorithms. The annotations are then curated by experts and

are added to the databases which are not only the most visible products of

bioinformatics, but also the predominant form of representing biological knowledge

today. This is a new situation that calls for new informatics approaches and as outlined

in the preface, the subjects of my research has been focused towards that fit this

changing scenery.

Iy Even though automated classification methods (machine learning
algorithms) are routinely used in most annotation pipelines, there are few
methods that enable one to compare the efficlency of classification
algorithms in bioinformatics tasks. How can we benchmark a data-
interpretation method? I approach this subject via the analysis of the protein
classification problem and the development of a benchmark database of
6405 classification tasks, applicable to test structural and functional
annotation of proteins. This database contains sequence and 3D structure
data organized into predefined positive/negative train/test groups in such a
way that a known subclass is taken as the test group. This s achieved by
building a set of classification tasks (positive train, positive test, negative
train, negative test groups) for a protein database that has a category
hierarchy (such as protein domains databases, protein family databases,
phylogenetic hierarchies etc.).Although the idea exploiting the hierarchical

structure of protein is not novel, the concepts such as “family' and
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“superfamily', which were first introduced by Dayhoff (1976), are still valid
for the ever-expanding protein universe.This subdivision — termed
supervised cross-validation allows one to get a realistic estimate regarding a
predictor's performance with respect to to hitherto unseen subclasses of the
known classes and is applicable essentially to any datasets wherein the
objects are classified in a hierarchical manner. This is a more stringent test
than the generally known cross-validation principles used in the practice of
machine learning. I illustrate the use of the Benchmark Collection by

developing an algorithm based on a Committee of Classifiers.

How can we compare complete annotations, such as domain architectures
predicted by various prediction algorithms? This task is different from a
simple classification problem as a complete domain atchitecture — or rather,
a complete set of protein architectures annotated within a proteome- is a set
of manually curated data, so the annotation process cannot be realistically
repeated for statistical purposes. And since there are no gold standards, we
can ask questions how different annotations relate to each other, or how
they compare with manually curated annotations. I approached this problem
by developing a general framework of comparison ptinciples and numerical
indices of similarity by which I could compare various protein domain
annotation schemes. I show that similarity-based domain prediction
performs as well, sometimes even better than generative models based on

learning algorithms.

When human database annotators identify groups, they do this by
combining information from vatious sources such function, structure,
protein interaction, in other terms, from large datasets of heterogeneous
data. Human experts use high-level, and ctitical knowledge for this task.
How can we integrate similarity data obtained from various data-soutces by
computational tools? One of the most general schemes to represent data-
similarities is called a similarity space that can be represented as a
network/matrix of similarities. 1 developed Multi-Netclust, a
straightforward algorithm that can combine similarity data from different

sources using a straightforward mixing algorithm borrowed from kernel
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iv)

fusion. To our knowledge, there is no such freely available tool in
bioinformatics that lets user to combine information (represented by
similarity matrix) coming in from various data sources. This approach still
uses human expettise, but instead of the high level background knowledge,
the users only need to have an estimate of the background noise level. I
showed that this approach can lead not only to better recognition but a

substantial data compression as well.

Finally, how do we apply these principles to practical problems? I carried
out the structural analysis and classification of the newly determined 'H-
NMR solution structure of an epidermal growth factor (EGF) domain
encoded by exon 6 of the [AGT7 gene. Apart from classifying this newely
determined structure of the EGF domain we wanted to address a well-
defined question, do the exon boundaties in Jagged-7 coincide with the
boundaries of the defined structural unit? This is relevant because the
dogma says that multiple domain proteins having evolved through a process
of exon duplication and shuffling. Exons that don’t correspond to predicted
domains are relatively infrequent, and such examples have not widely been
studied. I found that this domain has an atypical structure and is encoded by
an atypical exon/intron arrangment which is conserved throughout
evolution. Moreover, since EGF domain is one of the most common
structural building blocks in extracellular proteins, I carried out a systematic
and comprehensive analysis of mutations found in EGF domains and
showed that specific residue requirements for folding, structural integrity
and cottect post-translational processing may provide a rationale for most

of the disease-associated mutations.

And finally, in the various compatisons I have used the examples of one
tecchnique, similarity based prediction of protein domains. This is a
seemingly simple method as compared to learning algorithms (generative
models) such as profiles or HMM. However, as we complement similarity
based predictions with simple thresholds, we convert this method into a
discriminative model which in turn, performs nearly as well as the more

sophisticated, generative models.
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Appendix-A

APPENDIX A

This appendix contains the screenshot for a cast-mattix as mentioned in Chapter-2.

Archaea EwyarchaeotdBacteria Acti Bacteria Fin Eukaryota Al Eukaryota E
PGK_HETTH 1 3 4 4 4 4 {
1 3 4 4 4 4 4
1 3 4 4 4 4 4
1 3 4 4 4 4 4
1 3 4 4 4 4 4
1 3 4 4 4 4 4
1 3 4 4 4 4 4
1 3 4 4 4 4 i
q 1 3 4 4 4 4 4
PGK_METMA 5y 1 3 4 4 4 4 4
{PGK HALVA 1 3 4 4 4 4 4
PGk _suLso 3 1 2 2 2 2 2
JpoK_suLTo 3 1 2 2 2 2 2
PGK_PYRAE 3 1 2 2 2 2 H
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E 4 4 1 1 3 4 4
{POK_TREPA 55 4 4 1 1 3 4 i
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4Pk CHLTE 4 4 1 1 3 4 4

Figure AL Screenshot of a cast-matrix from the Protein Classification Benchmark for the

3PGK (Pollack et al., 2005).
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APPENDIX B

This appendix contains the description of the three metrices: Presence/ Absence, Composition
and Boundary desigined for comparing annotations, as used in Chaprer-4. It also contains a
list of the 278 domain types (provided as InterPro accession numbers along with the entry
Id) used for the study.

The following lines give a description of scheme used for carrying out comparison between
two annotation methods at the level of “Domain Type” and “Protein Architecture”.

Comparison of different domain prediction methods using “Domain Type”

1) Presence / Absence:
TP (cotrect) = Sum of the number of proteins predicted by both
the annotations methods
Incortect = Sum of the number of proteins that are only predicted
by either of the two annotation methods.

2) Composition / Number:
TP (correct) = Sum of the number of cases when the abundance
of proteins having a particular domain type is correctly predicted by
both the annotation methods.
Incorrect = Sum of the number of cases when the abundance of
proteins having a particular domain type does not match between
the two annotation methods being compared.

3) Boundary:
TP = Sum of all those cases where the boundaries predicted by the
two methods for the domain type in question either matches or
falls within a set tolerance level.
Incorrect =Otherwise.
* The tolerance level was set to +10 for this study.

Comparison of different domain prediction methods using “Protein Architecture”
1) Presence / Absence:

TP = Gets a score 1, if all domain types predicted by both the
methods for a particular protein match, neither more nor less.

Incorrect = Gets a score 1, if for a particular protein, either of the
two annotation methods being compared predicts (1) extra domain
type oz (if) fails to predict any. TP becomes 0 in this case.
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2) Composition / Number:

3) Boundary:

TP = Gets a score 1 if the number of all domain types predicted by
the two annotation methods match.
Incorrect =Otherwise. (1P becomes O in this case)

TP = Gets a score 1 if, for a particular protein, all the domains
boundaries predicted by the two methods being compared either
match or fall within a set tolerance level.

Incorrect: Gets a score 1 otherwise. (1P becomes 0 in this case)
* The tolerance level for this study was set to T10.

Table B1: List of InterPro Ids along with their description.

TPRO00010
TPRO00014
IPROG0020
IPR0O00033
TPRO00034
IPRO00O048
TPRO00O58
IPRO00061
IPRO00082
TPRO00083
IPRO00095
IPR0O00157
IPRO0O0195
TPR000197
TPR000203
IPRO00219
IPRO00225
IPR000237
IPRO00242
IPR0O0O270
IPR000294
TPR000313
IPR0O00315
IPRO00327
IPRO00372
IPR0O00433
TPRO00436
IPR0O00449
IPRO0O0467
IPR0O00504
TPR0O00519
IPR0O00555
IPR0O00569

Proteinase inhibitor 125, cystatin

PAS

Anaphylatoxin/fibulin

Low-density lipoprotein receptor, class B (YWTD) repeat
Laminin B type [V

1QQ calmodulin-binding tegion

Zinc finger, AN1-type

SWAP/Surp

SEA

Fibronectin, type 1

PAK-box/P21-Rho-binding

Toll-Intetleukin teceptor

RabGAP/TBC

Zinc finger, TAZ-type

GPS domain

Dbl homology (IDH) domain

Armadillo

GRIP

Protein-tyrosine phosphatase, receptor/non-teceptor type
Octicosapeptide/TPhox/Bem1p
Gamma-carboxyglutamic acid-rich (GLA) domain
PWWP

Zine finger, B-box

POU-specific

Leucine-rich repeat-containing N-terminal domain
Zinc finger, ZZ-type

Sushi/SCR/CCP

Ubiquitin-associated/translation clongation factor KI1B, N-terminal
D111/G-patch

RNA recognition motif, RNDP-1

P-type trefoil

Mov34/MPN/PAD-1

HECT
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IPRO00571
IPRO00601
IPRO00644
IPRO00G51
IPRO0C0OG79
IPR0O00716
IPR0O00727
IPRO0O0O772
IPR0O00782
IPRO00800
IPRO00857
IPRO00859
IPR0O00861
IPR0O008G7
TPRO0O0O884
IPR0O00885
IPR0O009G0
[PR0O00904
TPRO00906
IPRO00909
IPRO00953
TPRO00Y61
IPRO009G7
IPR0O00980
IPRO00998
IPRO0C0999
IPR0O01007
IPRO01012
IPR0O01025
IPR0O01054
IPRO01060
IPR0O01073
IPR0O01092
IPR0O01101
IPRO01156
IPR001158
IPR001164
IPRO01180
IPRO01202
[PRO01206
IPROO1212
IPRO0O1222
IPR0O01251
IPR0O01300
IPR0O01313
IPR0O01357
IPR0O01368
IPRO01370
IPRO01374
IPR0O01401
IPRO01452
IPRO01478
IPR0O01487

Zinc finger, CCCH-type

PKD

Cystathionine beta-synthase, core

Ras-like guanine nucleotide exchange factor, N-terminal
Zinc finger, GA'TA-type

Thyroglobulin type-1

Target SNARE coiled-coil domain

Ricin B lectin

FAST domain

Notch domain

My'1'H4 domain

CUB

HR1-like tho-binding repeat

Insulin-like growth factor-binding protein, IGFBP
Thrombospondin, type 1 repeat

Fibrillar collagen, C-terminal

Nebulin 35 residue motif

SEC7-like

ZU5

Phospholipase C, phosphatidylinositol-specific, X domain
Chromo domain

AGC-kinase, C-terminal

Zinc finger, NI-X1-type

SH2 motif

MAM

Ribonuclease 111

Von Willebrand factot, type C

UBX

Bromo adjacent homology (BALT) domain
Adenylyl cyclase class-3/4/ guanylyl cyclise
Ips/Fes/Ter/CIP4 homology

Complement Clq protein

Helix-loop-helix DNA-binding domain
Plectin repeat

Peptidase S60, transferrin lactoferrin

DIX

Arf G'TPasc activating protein

Citron-like

WW/Rsp5/WWP

Diacylglycerol kinase, catalytic domain
Somatomedin B

Zinc finger, THFIIS-type

Cellular retinaldchyde-binding/triple function, C-terminal
Peptidase C2, calpain

Pumilio RNA-binding repeat

BRCT

TNEFR/CID27/30/40/95 cysteine-rich region
Proteinase inhibitor 132, inhibitor of apoptosis
Single-stranded nucleic acid binding R3H
Dynamin, GTPasc domain

Src homology-3 domain

PD7/DHR/GLGE

Bromodomain
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TPR001496
IPR0O01507
IPR0O01562
IPR0O01606
I[PRO01607
IPRO01609
IPRO01623
IPR0O01650
IPR001680
IPR0OO1711
IPRO01736
[PR0O01752
TPRO0O1762
IPRO01763
IPRO01774
IPR0O01781
IPR0O01810
IPRO01846
IPRO01849
IPRO01876
ITPRO01878
IPRO01881
IPR0O01895
IPR0O0O1909
[PR0O01965
TPRO02004
IPR0O02035
IPR0O02049
IPR002108
IPR0O02110
IPR0O02121
IPR0O02172
IPRO02181
IPR002219
1PR002223
IPR002350
IPR0O02404
IPR0O02466
TPR002483
IPRO02498
IPR0O02558
IPR0O02589
IPR002653
IPRO02713
IPRO02867
TPR0O02889
TPR002913
TPR0O03018
IPR003034
[PR0O03103
IPRO03105
IPRO03107
IPR003109
IPR0O03110

SOCS protein, C-terminal

Eindoglin/CID105 antigen

Zinc finger, Btk motf

ARID/BRIGIHT DNA-binding domain

Zinc tinger, UBP-type

Myosin head, motor domain

Heat shock protein Dnaj, N-terminal

DNA/RNA helicase, C-terminal

W40 repeat

Phospholipase C, phosphatidylinositol-specific, Y domain
Phospholipase D/ Transphosphatidylase

Kinesin, motor domain

Blood coagulation inhibitor, Disintegrin
Rhodanesc-like

Delta/Serrate/lag-2 (DSI) protein

Zinc finger, LIM-type

Cyclin-like I'-box

Von Willebrand factor, type 1D

Pleckstrin homology

Zinc finger, RanBP2-type

Zinc tinger, CCHC-type

HGF-like calcium-binding

Guanine-nucleotide dissociation stimulator CIDC25
Krueppel-associated box

Zinc finger, PHD-type

Polyadenylate-binding protein/Iyperplastic disc protein
Von Willebrand factor, type A

EGE-like, laminin

Actin-binding, cofilin/tropomyosin type

Ankyrin repeat

[Telicase/RNase D C-terminal, HRIDC domain
Low density lipoprotein-receptor, class A (cysteine-rich) repeat
Fibrinogen, alpha/beta/gamma chain, C-terminal globular
Protein kinase C-like, photbol ester/diacylglycerol binding
Proteinase inhibitor 12, Kunitz metazoa

Proteinase inhibitor 11, Kazal

Insulin receptor substrate-1, P1I'B

Adenosine deaminase/editase

Splicing factor PWI
Phosphatidylinositol-4-phosphate 5-kinase, core
I/LWEQ

Appr-1-p processing

Zinc finger, A20-type

I'F domain

Zinc finger, COHC-type

Carbohydrate-binding WSC

Lipid-binding START

GALY

DNA-binding SAP

Apoptosts regulator, Bel-2 protein, BAG
SRA-YDG

RNA-processing protein, ITAT helix

Gol.oco motif

Phosphorylated immunoreceptor signaling TI'AM
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IPRO03112
IPR0O03114
IPR0O03116
IPRO03119
IPRO03123
IPR0O03124
IPRO03126
IPR0O03127
IPR0O03128
IPR0O03306
IPR0O03309
IPR0O03347
IPR003349
IPR0O03409
IPR003533
IPR003593
IPR0O03597
IPR0O03605
IPR0O03607
IPR0O03609
IPR0O03618
IPR0O03619
IPRO03644
IPRO03645
IPR0O03650
IPR003656
IPR0O03659
IPRO03877
TPR0O03886
IPR0O03890
IPR003892
IPRO03903
IPR0O04012
IPR0O04018
IPR0O04043
IPR0O04087
IPRO04092
IPR004148
IPRO04155
IPR0O04170
IPR0O04172
IPRO04179
IPR0O04182
IPR0O04274
IPR0O05018
IPR0O05112
IPRO05113
IPR0O05533
IPR0O05607
IPR005824
[PRO06021
IPRO06164
IPR0O06561

Olfactomedin-like

Phox-associated domain

Raf-like Ras-binding

Saposin type A

Vacuolar sorting protein 9
Actin-binding WH2

Zinc finger, N-recognin
Sorbin-like

Villin headpiece

WIF domain

T'tansctiption regulator SCAN
"I'ranscription factot jumonji/aspartyl beta-hydroxylase
Transcription factor jumonji, JmjN
MORN motif

Doublecortin

ATPase, AAA+ type, cote
Immunoglobulin C1-sct

TG beta teceptor, GS motif
Metal-dependent phosphohydrolase, HID domain
Apple-like

T'ranscription clongation factor S-I1, central domain
MAD homology 1, Dwarfin-type
Na-Ca cxchanget/integrin-betad
I'ollistatin-like, N-terminal

Orange

Zinc finger, BED-type predicted
Plexin/semaphorin/integtin
SPla/RYanodinc receptor SPRY
Nidogen, extracellular domain
MIF4G-like, type 3

Ubiquitin system component Cue
Ubiquitin interacting motif

RUN

RPEL repeat

1.CCL

K Homology

Mbt repeat

BAR

PBS lyase HEAT-like repeat

WWE domain

1.27

Sec63 domain

GRAM

NLI interacting factor

DOMON related

dDENN

ubDFENN

AMOP

BSD

KOW

Staphylococcal nuclease (SNase-like)
DNA hcelicase, ATP-dependent, Ku type
DZE
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IPRO0OG567
IPR0OO6569
IPR0O06573
IPR0O06588
IPR006594
IPR0O06597
IPRO0G600
[PRO06G24
IPRO06634
IPRO06652
IPRO07330
IPRO07728
TPRO07842
TPRO08145
IPR0O08152
IPR0O08197
IPRO08211
IPR0O08936
IPR0O08942
IPRO08957
IPR0O089IT73
IPR0O08974
IPR0O089IT76
IPR0O089I79
IPR0O08984
IPRO0O8985
IPRO08993
IPRO09003
IPRO090O57
[PRO090G0
IPRO09071
IPRO09072
TPR0O10895
IPR0O10919
IPR0O10993
IPRO11009
IPRO11024
IPR0O11029
IPRO11129
[PRO11333
IPRO11705
IPRO11991
IPRO11993
IPR0O12337
[PR0O12989
IPR0O13083
IPR0O13106
IPR0O13517
IPR0O13694
IPR0O13723
IPR0O13806
IPR0O13980
IPRO14012
IPRO14021

PUG domain

RNA polymerase 11, large subunit, CTD
NIUZ

Peptide N glycanase, PAW domain

LisH dimerisation motf

Sell-like

Pogo transposasc / Cenp-B / PDC2, DNA-binding H1T'H domain
Beta-propeller repeat TECPR
TRAM/LAG1/CILNS8 homology domain
Kelch repeat type 1

MIT

Pre-SIV1 domain

FIEPN

Guanylate kinase/L-type calcium channel
Clathrin adaptor, alpha/beta/gamma-adaptin, appendage, Tg-like subdomain
Whey acidic protein, 4-disulphide core
Laminin, N-terminal

Rho G'TPase activation protein
ENTH/VHS

Fibronectin, type 11-like fold

C2 calcium/lipid-binding domain, Cal.B
TRAF-like

Lipasc/lipooxygenase, PLAT/LIT2
Galactose-binding domain-hke
SMAD/FHA domain

Concanavalin A-like lectin/glucanasc
TIMP-like, OB-fold

Serine/ cysteine peptidase, trypsin-like
Homeodomain-like

UBA-like

High mobility group, superfamily
[Histone-fold

CHRD

SAND-like

Sterile alpha motif homology

Protein kinase-like domain
Gamma-crystallin related

DEATH-like

Cold shock protein

BTB/POY fold

BI'B/Kelch-associated

Winged helix-turn-helix transcription repressor DNA-binding
Pleckstrin homology-type

Polynucleotidyl transferase, ribonuclease H fold
SEP domain

Zinc finger, RING/FYVE/PHD-type
Immunoglobulin V-set

[G-GADP

Vault protein inter-alpha-trypsin
Ataxin-1/HBP1 module (AXH)
Kringle-like fold

Seven Cysteines
Helicase/SANT-associated, DNA binding
Ielicase, superfamily 1/2, A'TP-binding domain
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IPR0O14710 RmlC-like jelly roll fold

IPR0O14720 Double-stranded RNA-binding-like
IPRO14756 Immunoglobulin E-set

IPRO14853 Conserved-cysteine-tich domain

IPRO15880 Zinc finger, C2H2-like

IPR0O15898 G-protein, gamma-like subunit

[PR0O15919 Cadherin-like

IPR0O15943 WD40/YV'I'N repeat-like-containing domain
TPRO16024 Armadillo-type fold

IPRO16035 Acyl transferase/acyl hydrolase/lysophospholipase
IPRO16135 Ubiquitin-conjugating cnzyme/RWD-like
IPRO16137 Regulator of G protein signalling supetfamily
IPR0O16146 Calponin-homology

IPRO16177 DNA-binding, integrase-type

IPRO16187 C-type lectin fold

IPR0O17448 Speract/scavenger receptor related
IPRO17868 Filamin/ ABDP280 repeat-like

IPRO17923 T'ranscription factor IIS, N-terminal
IPRO17956 AT hook, DNA-binding motif

IPR0O18159 Spectrin/alpha-actinin

IPR0O18249 LEI-HAND 2

IPRO18392 Peptidoglycan-binding lysin domain
IPR0O18487 Iemopexin/matrixin, repeat

[PR0O18501 DD'I' domain supetfamily

IPRO18502 Annexin repeat

IPRO19734 Tetratricopeptide repeat

IPR0O19955 Ubiquitin supetgroup

IPR0O20067 Ftizzled-like domain

IPR020850 G'1'Pase effector domain, GED

IPR020858 Serum albumin-like

TPR020864 Membrane attack complex component/perforin (MACPE) domain
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APPENDIX C

"This appendix contains various data related to Chapter-5 of this thesis.

Table C1: List of domains belonging to the EGF/Laminin superfamily of the SCOP95

dataset of the Protein Benchmark Collection(Sonego et al., 2007).
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Table C2: List of missense mutations found in JAG1 and associated with Alagille
syndrome
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Figure C1: Plot of missense mutations found in [4G1 and associated with Alagille syndrome
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C2: Multiple sequence alignment based on the structural alignment of EGF2 from Jagged-1
(JAG1; PDB code: 2V]2) and 56 domains belonging to the EGF/Laminin superfamily of the
SCOP95 dataset of the Protein Benchmark Collection(Sonego et al., 2007).

Table C3: List of genes used for the multiple sequence alignmentof the polypeptides
encoded by exon 6 of human [AG7

AG1 6 FHomo sapiens LENSG00000101384 255 299
P
JAG1 6 Macaca mulatta ENSMMUG00000018116 255 299
AG1 6 Pan troglodytes INSPTRGO0000013250 255 299
gody
JAG1 6 Pongo pygmacus ENSPPYG00000010708 255 299
JAG1 7 Microcebus murinus ENSMICG00000005608 255 299
JAG1 6 Rattus norvegicus ENSRNOG00000007443 255 299
JAG1 6 Mus musculus ENSMUSG00000027276 255 299
JAG1 10 Qchotona princeps ENSOPRG0O0000008390 229 273
JAG1 8 Oryctolagus cuniculus [ENSOCUG00000002884 254 298
JAG1 6 Bos l'aurus LINSBTAG00000012817 255 299
AG1 5 Iiquus caballus ENSLECAG00000012993 229 273
9
JAG1 7 Loxodonta Africana ENSLAFG00000018468 256 300
JAG1 6 Canis familiaris LENSCAFG00000005627 255 299
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JAG1 6 Felis catus ENSFCAG00000002195 255 299
JAG1 5 Myotis lucifugus LENSMLUG00000009421 228 272
JAG1 14 Sorex arancus ENSSARGO00000005039 252 296
JAG1 6 Dasypus novemcinctus LENSDNOG00000007593 255 299
JAG1 6 Monodeclphis domestica LENSMODG00000004910 254 298
JAG1 6 Lichinops telfairi LNSETTEGO0000001437 255 299
JAGL 6 Ornithorhynchus anatinus ENSOANG00000008425 254 298
JAG1 5 Gallus gallus LNSGALGO0000009020 229 273
JAG1 6 Xenopus tropicalis ENSXETG00000002340 255 299
JAG1 6 Oryzias latipes FENSORLG00000000972 256 300
JAGI 6 ‘I'etraodon nigroviridis ENSTNIG00000016644 254 298
JAG1 4 Danio rerio ENSDARG0O0000030289 129 173
JAG1 5 Gastcrosteus aculeatus LENSGACG00000004493 233 277
JAG2 6 ITomo sapiens ENSG00000184916 266 310
JAG2 4 Macaca mulatra LENSMMUG00000001276 127 171
JAG2 4 Pongo pygmacus ENSPPYG00000006203 127 170
JAG2 6 Mus musculus ENSMUSG00000002799 264 308
JAG2 5 Rattus norvegicus ENSRNOG00000013927 220 264
JAG2 4 Cavia porcellus ENSCPOG00000008419 127 171
JAG2 4 Equus caballus ENSECAG00000006609 129 173
JAG2 1 Bos Taurus ENSBTAG00000007319 1 45
JAG2 4 Canis familiaris LENSCATIG00000018401 127 171
JAG2 3 Monodelphis domestica ENSMODG00000014707 107 151
JAG2 3 Ornithorhynchus anatinus ENSOANG00000007869 104 148
JAG2 5 Gallus gallus ENSGALG00000011696 235 279
JAG2 6 Gasterosteus aculeatus ENSGACG00000007522 259 303
JAG2 7 ‘l'akifugu rubripes ENSTRUG00000000042 263 307
JAG2 1 Tetraodon nigroviridis ENSTNIG00000012383 1 45
JAG2 6 Oryzias latipes LENSORLGO0000017877 259 303
JAG2 6 Danio rerio ENSDARG00000021389 258 302
DILL1 6 Homo sapiens ENSG00000198719 247 291
DILI1 5 Macaca mulatta ENSMMUG00000021144 197 241
DIL1 6 Pongo pygmacus ENSPPYG00000017189 247 291
DLIL1 6 Pan troglodytes ENSPTRG00000018824 310 354
DILL1 6 Rattus norvegicus ENSRNOG00000014667 246 290
DLIL1 6 Mus musculus ENSMUSG00000014773 246 290
DLIL1 6 Oryctolagus cuniculus ENSOCUG00000013290 246 290
DLI1 6 Bos ‘l'aurus ENSBTAGO0000031476 247 291
DILL1 6 Canis familiaris ENSCARGO0000004094 197 241
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DIIA 3 Felis catus ENSFCAG00000004661 108 152
DI1.J.1 7 Sorex arancus EENSSARG00000007078 126 170
DI 6 Monodelphis domestica ENSMODG00000005607 259 303
DLI.1 2 Lirinaccus curopacus ENSEEUG00000007260 21 65

DIL1 4 Myotis lucifugus ENSMIUG00000005071 130 174
DILI1 6 Gallus gallus ENSGALG00000011182 254 298
DIL1 6 Xenopus tropicalis LNSXIYT'G00000022525 249 293
DIIL1 5 ‘L'upaia belangeri ENSTBEG00000014817 131 175
DIL1 6 ‘T'akifugu rubripes ENSTRUG00000006183 249 293
DII1 6 Oryzias latipes FENSORIG00000010606 249 293
DIL1T 6 Jagterosteus aculcatus LENSGACG00000016131 250 204
DI14 6 [Tomo sapiens ENSG00000128917 317 361
DLL4 7 Pan troglodytes ENSPTRGO0000006937 316 360
DIIA 6 Macaca mulatta ENSMMUG00000014541 243 287
DLIL4 7 Otolemur garnettii FENSOGAG00000001215 244 288
DI14 6 Microcebus murinus ENSMICG00000005797 243 287
DI.14 6 Rattus norvegicus LINSRNOG00000014011 244 288
DI.14 6 Mus musculus LENSMUSG00000027314 244 288
DI.1.4 4 Cavia porcellus LINSCPOG0O0000011383 111 155
DI.L4 11 Qchotona princeps LENSOPRG00000000813 318 362
DII4 7 Oryctolagus cuniculus ENSOCUG00000010756 243 287
D114 6 iquus caballus ENSECAGO0000013434 243 287
DILI4 6 Bos Taurus ENSBTAG00000010361 243 287
DI.14 6 Canis familiarts ENSCAFG00000009401 243 287
DILI4 9 Felis catus ENSFCAG00000014721 316 360
DLI4 3 Myotis lucifugus ENSMLUG00000004545 111 155
DIL4 6 Sorex araneus ENSSARG00000005952 244 288
DI.14 6 Monodelphis domestica ENSMODG00000000198 244 288
DIL14 3 [irinaccus curopacus LNSELUG00000014146 110 154
DI.I4 16 Tupaia belangeri ENSTBEG00000010805 240 284
DI.14 3 Ornithorhynchus anatinus [sNSOANG0O0000012601 61 105
D114 6 Gallus gallus ENSGALG00000008514 243 287
DIL14 5 Xenopus tropicalis LENSXIZTG00000021584 231 275
DI.L4 5 sasterosteus aculeatus LINSGACGO0000005896 218 262
DI.14 6 Danio rerio ENSDARGO0000070425 236 280
DLIA4 8 Oryzias latipes LENSORIG00000016743 250 294
D114 8 Takifugu rubripes LNSTRUG00000012962 236 280
DI1.14 6 ‘I'etraodon nigroviridis LENSTNIG00000010969 233 277
DLK1 3 Homo sapiens LENSGO0000185559 46 90
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DLK1 3 Macaca mulatea LNSMUSG00000040856 46 90
DILK1 3 Pongo pygmacus ENSPPYG00000006146 46 90
DIK1 1 Otolemur garncttit LINSOGAG00000004875 1 44
DLK1 3 Rattus norvegicus ENSRNOGO0000019584 46 90
DIK1 3 Mus musculus FENSMUSG00000040856 46 90
DILK1 3 Ochotona princeps ENSOPRG00000012622 45 89
DILK1 3 Fquus caballus ENSECAG00000012122 46 90
DI1K1 2 Canis familiaris ENSCAFG00000017925 42 86
DILK1 2 Felis catus ENSFCAG00000000458 22 66
DIK1 2 Ornithorhynchus anatinus LENSOANGO00000005731 27 71
DIK1 3 Gallus gallus ENSGALG00000011244 51 95
DIK1 3 ‘l'etraodon nigroviridis LINSTNIG00000017282 46 90
DILK1 3 ‘T'akifugu rubripes ENSTRUG00000009231 48 92
DIK1 3 Gasterosteus aculeatus LENSGACG00000009397 41 85
DILK1 4 Oryzias latipes ENSORLG00000014546 47 91
DILK2 3 ITomo sapiens LINSG00000171462 49 93
DI.K2 3 Pan troglodytes LENSPTRG00000018198 49 93
DIK?2 4 Mus musculus EINSMUSG00000047428 93 137
DIK2 3 Canis familiaris FENSCARG00000001858 49 93
DIK2 3 Bos Taurus LENSBTAGO0000005850 84 128
DIK2 4 Gallus gallus ENSGALG00000010386 46 90

Table C4: List of disease-associated missense mutations found in EGF repeats

CIFC1_HMUMAN EGH-like R112C Visceral heterotaxy (MIM:605376)
CREL1_HUMAN BGE-liket P162A AVSD2 susceptibility
KGE-lke2; calcium-
CREL1_HUMAN binding(Potential) T3 AVSD2 susceptibility
EGF-like2; calcium-
CREL1_HUMAN binding(Potential) R329C AVSID2 susceptibility
CRUMI_HUMAN | EGI-like3 11144V lLeber congenital amaurosis type 8 (MIM:604210)
LEGE-liked; calctum-
CRUMI_IHUMAN | binding(Potential) Al61V Retinitis pigmentosa type 12 (MIM:600105)
LG E-liked; calcium-
CRUMI_TTUMAN | binding(Potential) Vi62M Pigmented paravenous chorioretinal atrophy (MIM:172870)
EGE-like5; calctum-
CRUMI1_HUMAN | binding(Potential) C1958 Retinitis pigmentosa type 12 (MIM:600105)
EGE-like6; calcium-
CRUM1_HUMAN | binding(Potential) C250W Retinitis pigmentosa type 12 (MIM:600105)
CRUMI_ITUMAN | EGF-likel0 C423Y Leber congenital amaurosis type 8 (MIM:604210)
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EGH-like10; calcium-

CRUMI_HUMAN | binding(Potential) Y433C Retinitis pigmentosa type 12 (MIM:600105)
CRUM1_HUMAN | EGI-likell C480G Leber congenital amaurosis type 8§ (MIM:604210)
CRUM1_HUMAN | EGI-likell C480R Leber congenital amaurosis type 8 (MIM:604210)
CRUMI1_HUMAN | EGE-likel2 C681Y Leber congenital amaurosts type 8 (MIM:604210)
CRUM1T_HUMAN | EGE-likel3 C891G Retinitis pigmentosa type 12 (MIM:600105)
CRUM1_HUMAN | EGF-likel3 N8948 Retinitis pigmentosa type 12 (MIM:600105)
CRUMI1_[HUMAN | EGH-likel3 Co02Y Retinitis pigmentosa type 12 (MIM:600105)
CRUM1_IUMAN | EGF-likel3 G9198 Retinitis pigmentosa type 12 (MIM:600105)
EGH-likel6; calcium-
CRUMI_HUMAN | binding(Potential) CI18IR Retinitis pigmentosa type 12 (MIM:600105)
EGH-like16; calcium-
CRUMI_HUMAN | binding(Potential) G1205R Leber congenital amaurosis type 8 (MIM:604210)
CRUMI1_ITUMAN | EGF-likel7 C1218F Leber congenital amaurosis type 8 (MIM:604210)
EGHElikel9; calcium-
CRUMI_HUMAN | binding(Potential) N131711 Leber congenital amaurosis type 8 (MIM:604210)
LG H-likel9; calcium-
CRUMI1_HUMAN | binding(Potential) C13218 Leber congenital amaurosis type 8 (MIM:604210)
CRUM2_ITUMAN LG H-likel V971, in a patient with Leber congenital amaurosis
EGF-like2; caleium-
CRUM2_IUMAN | binding(Potential) P116L in a patient with Leber congenital amaurosis
LG F-liked; calcium-
CRUM2_HUMAN | binding(Potential) E187D in a patient with Leber congenital amaurosis
TLGI-like7; calcium-
CRUM2_HUMAN | binding(Potential) A351T Retinitis pigmentosa (MIM:268000)
Autosomal recessive spondylocostal dysostosts type 1
DLL3_HUMAN EGE-liked G385D (MIM:277300)
EGFE-likel; calcium-
A7 _TTUMAN binding(Potential) S120P Coagulation factor VII deficiency
LEGE-likel; calcium-
FA7_HUMAN binding(Potential) CI21F Coagulation factor VII deficiency
LEGI-likel; calcium-
FA7_HUMAN binding(Potential) 11251 Coagulation factor VII deficiency
LEGE-liket; calcium-
FA7_TTUMAN binding(Potential) Y128C Coagulation factor VII deficicncy
EGE-likel; caleium-
FA7_HUMAN binding(Potential) R139K Coagulation factor VII deficiency
EGFE-likel; calcium-
FA7_HUMAN binding(Potential) R139Q Coagulation factor VI deficiency
KGE-liket; calcium-
FA7_HUMAN binding(Potential) R139W Coagulation factor VII deficiency
FA7_HUMAN LGE-like2 C1518 Coagulation factor VII deficiency
FA7_HUMAN LG E-like2 154K Coagulation factor VII deficiency
FA7_HUMAN EGI-ike2 3157C Coagulation factor VII deficiency
FA7_HUMAN EGI-like2 G1578 Coagulation factor VII deficiency
FA7_HUMAN EGE-like2 G157V Coagulation factor VII deficiency
FA7_HUMAN LGI-like2 Q160R Coagulation factor VII deficiency
EGI-likel; calcium-
FA9_HUMAN binding(Potential) DI3G Recessive X-linked hemophilia B (MIM:306900)
KEGH-lkel; calcium-
FAY9_HHUMAN binding(Potential) QI6r Recessive X-linked hemophilia B (MIM:306900)
EGE-likel; caleium-
FA9_HUMAN binding(Potential) C978 Recessive X-linked hemophilia B (MIM:306900)
EG-likel; calcium-
FA9_HUMAN binding(Potential) P101R Recessive X-linked hemophilia B (MIM:306900)
EGFE-liket; calcium-
FA9_HUMAN binding(Potential) C102R Recessive X-linked hemophilia B (MIM:306900)
BEGF-likel; calcium-
FA9_HUMAN binding(Potential) G106D Recessive X-linked hemophilia B (MIM:306900)
EGH-likel; calcum-
FA9_HUMAN binding(Potential) G106S Recessive X-linked hemophilia B (MIM:306900)
EGH-liket; calcium-
FA9_TTUMAN binding(Potential) C108s Recessive X-linked hemophilia B (MIM:306900)
EGH-likel; calcium-
FA9_HUMAN binding(Potential) D110N Recessive X-linked hemophilia B (MIM:306900)
EGUl-likel; calcium-
FA9_TTUMAN binding(Potential) 11128 Recessive X-linked hemophilia B (MIM:306900)
EA9_HUMAN EGF-likel; calcium- N113K Recessive X-linked hemophilia B (MIM:306900)
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binding(Potential)

HGHE-likel; calcium-

FA9_HUMAN binding(Potential) Y115C Recessive X-linked hemophilia B (MIM:306900)
LG -likel; calcium-
FA9_HUMAN binding(Potential) CI119F Recessive X-linked hemophilia B (MIM:306900)
EGF-likel; calcium-
EA9_IHUMAN binding(Potential) CI19R Recessive X-linked hemophilia B (MIM:306900)
LGPE-likel; calcium-
FA9_TTUMAN binding(Potential) 124K Recessive X-linked hemophilia B (MIM:306900)
[EGli-likel; calcium-
FA9_HUMAN binding(Potential) G125 Recessive X-linked hemophilia B (MIM:306900)
EGF-liket; calcium-
FA9_HUMAN binding(Potential) G125R Recessive X-linked hemophilia B (MIM:306900)
EGF-likel; calcium-
FA9_HUMAN binding(Potential) G125V Recessive X-linked hemophilia B (MIM:306900)
FA9_HUMAN EGFE-like2 C134Y Recessive X-linked hemophilia B (MIM:306900)
FA9_HUMAN EGE-like2 36T Recessive X-linked hemophilia B (MIM:306900)
FA9_HUMAN LGT-like2 G139D Recessive X-linked hemophilia B (MIM:306900)
FA9_HUMAN EGI-like2 G139S Recessive X-linked hemophilia B (MIM:306900)
FA9_HUMAN EGF-like2 C1551F Recessive X-linked hemophilia B (MIM:306900)
FA9_IMTUMAN HGFE-like2 G16018 Recessive X-linked hemophilia 3 (MIM:306900)
FAY9_HUMAN EGF-like2 Q167H Recessive X-linked hemophilia B (MIM:306900)
[FA9_HUMAN LEGI-like2 S169C Recessive X-linked hemophilia B (MIM:306900)
FA9_HUMAN LGP-like2 C1708 Recessive X-linked hemophilia B (MIM:306900)
LEG-like3; calcium-
FBLNS_ITUMAN binding(Potential) V1841, Age-related macular degeneration type 3 (MIM:608895)
HGF-like3; calcium-
FBLN5_ITUMAN binding(Potential) R103Q Age-related macular degencration type 3 (MIM:608895)
LGF-like3; calcium-
FBILNS_HUMAN binding(Potential) 11691 Age-related macular degenceration type 3 (MIM:608895)
EGE-liked; calcium-
FBLN5_ITUMAN binding(Potential) S227P Autosomal recessive cutis laxa type T (MIM:219100)
FBN1_HUMAN EGI-likel C89r Marfan syndrome (MIM:154700)
FBN1T_IHMUMAN LEGI-likel C111R Marfan syndrome (MIM:154700)
FBN1_TTUMAN BGH-like2 S115C Isolated ectopia lentis (MIM:129600)
FBN1_MUMAN LGI-like2 R122C Marfan syndrome (MIM:154700)
FBN1_HUMAN EGI-like2 C123Y Marfan syndrome (MIM:154700)
FBN1_IUMAN EGH-like2 C129Y Marfan syndrome (MIM:154700)
I'BN1_HUMAN LG E-fike3 C1548 Marfan syndrome (MIM:154700)
FBN1_IHUMAN LGI-like C1668 Marfan syndrome (MIM:154700)
FBNI1_ITUMAN BGI-like3 1668 Marfan syndrome (MIM:154700)
FBN1_HUMAN G -like3 C177R Marfan syndrome (MIM:154700)
FBN1_ITUMAN BGF-like6 C476G Marfan syndrome (MIM:154700)
EGF-like7; calcium-
FBN1_HUMAN binding D490Y Marfan syndrome (MIM:154700)
EGF-like7; calcium-
EBNI_TIUMAN binding C5041° Marfan syndrome (MIM:154700)
EGH-lke8; calcium-
IBN1_HUMAN binding Ci41Y Marfan syndrome (MIM:154700)
EGI-like8; calcium-
FBN1_HUMAN binding R545C Marfan syndrome (MIM:154700)
EGFE-like8; calcium-
IBN1_HUMAN binding N5481 Marfan syndrome (MIM:154700)
EGI-lke8; caletum-
FBN1_MUMAN binding G5608 Marfan syndrome (MIM:154700)
EGE-like8; calcium-
FBN1_HUMAN binding C570Y Marfan syndrome (MIM:154700)
1:GH-like9; calcium-
FBN1_MUMAN binding C587Y Marfan syndrome (MIM:154700)
BGE-lkeY; caletum-
FBN1_FIUMAN binding G592D Marfan syndrome (MIM:154700)
EGFEF-like9; calcium-
FBN1_IHUMAN binding C596Y Marfan syndrome (MIM:154700)
EGE-likeY; calcium-
FBN1_IHMUMAN binding C598W Marfan syndrome (MIM:154700)
EGE-likel0; calcium-
FBN1_HUMAN binding R627C Marfan syndrome (MIM:154700)
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EGF-like10; calcium-

FBN1_HUMAN binding C628K Marfan syndrome (MIM:154700)
EGF-like10; calctum-

FBN1_HUMAN binding Y635C Marfan syndrome (MIM:154700)
LGI-likel0; calcium-

I'BN1_HUMAN binding R6361 Marfan syndrome (MIM:154700)
EGFE-likel0; calctum-

FBN1_IMUMAN binding C637Y Marfan syndrome (MIM:154700)
LEGE-like10; calcium-

FBN1_HUMAN binding C6528 Marfan syndrome (MIM:154700)
EGH-likel1; calcium-

FBN1_HUMAN binding D723A Marfan syndrome (MIM:154700)
1EG i-likel1; calctum-

FBN1_IHUMAN binding D723V Marfan syndrome (MIM:154700)
EGE-likel1; calcium-

FBN1_HUMAN binding C734F Marfan syndrome (MIM:154700)
FEGt-likelt; calctum-

IFBN1_HUMAN binding Y746C Marfan syndrome (MIM:154700)
EGL-likel1; calctum-

FBN1_HUMAN binding 748y Marfan syndrome (MIM:154700)
EGE-likel1; calcium-

FBN1_HUMAN binding C750G Marfan syndrome (MIM:154700)
FE.GH-like12; calcium-

FBN1_HUMAN binding C776G Marfan syndrome (MIM:154700)
iGF-likel2; calcium-

FBN1_TITUMAN binding C776Y Marfan syndrome (MIM:154700)
EGE-like12; calcium-

FBN1_HUMAN binding C781R Marfan syndrome (MIM:154700)
EG-ikel2; calctum-

BN1_HUMAN binding C781Y Marfan syndrome (MIM:154700)
EGH-likel3; calcium-

FBN1_HUMAN binding C816S Marfan syndrome (MIM:154700)
LGPF-likel3; calcium-

FBN1_HUMAN binding C832Y Marfan syndrome (MIM:154700)
EGT-ikei4; calcium-

ITBN1_HUMAN binding 913G Marfan syndrome (MIM:154700)
LGI-likel4; calcium-

FBN1_[MUMAN binding C921G Marfan syndrome (MIM:154700)
EGE-like14; calcium-

FBN1_HMUMAN binding C926R Marfan syndrome (MIM:154700)
EGH-like15; calcium-

FBN1_HUMAN binding K1043R Marfan syndrome (MIM:154700)
LG PB-likel5; calcium-

FBN1_HUMAN binding C1044Y Matfan syndrome (MIM:154700)
EGE-likel5; calcium-

FBN1_HUMAN binding 11048T Marfan syndrome (MIM:154700)
LEGE-liket5; calcium-

FBN1_ITUMAN binding C1053R Marfan syndrome (MIM:154700)
[EGE-likel 55 calctum-

FBN1_FIUMAN binding C1055G Marfan syndrome (MIM:154700)
EGF-likel5; calcium-

FBN1_HUMAN binding C1055W Marfan syndrome (MIM:154700)
LEGE-likel5; calcium-

IFBN1_HUMAN binding C1055Y Marfan syndrome (MIM:154700)
EGF-likel5; calcium-

FBN1_HUMAN binding G1058D Marfan syndrome (MIM:154700)
EGF-likel5; caleium-

FBN1_HUMAN binding 51058GC Marfan syndrome (MIM:154700)
LEGI-likel 6; calcium-

IBN1_HUMAN binding D1072G Marfan syndrome (MIM:154700)
EGE-likel6; calcium-

FBN1_ITUMAN binding E1073K Marfan syndrome (MIM:154700)
EGF-likel6; calcium-

FBNT_HMUMAN binding C1074R Marfan syndrome (MIM:154700)
LGE-likel 6; calcium-

FBN1_IHUMAN binding C1086W Marfan syndrome (MIM:154700)
EGH-likel6; calcium-

FBN1_HUMAN binding Y1101C Marfan syndrome (MIM:154700)
EGT-likel7; calcium-

FBN1_HUMAN binding D1113V Marfan syndrome (MIM:154700)
LEGE-likel 7; calcium-

FBN1_HUMAN binding C1117G Matfan syndrome (MIM:154700)

FBN1_HUMAN EGF-likel7; calcium- C1117Y Marfan syndrome (MIM:154700)
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binding

EG-likel7; calcium-

in a mild form of inherited weakness of clastic tissuc that
predisposes to ascending aortic ancurysm and dissection later

FBN1_IMTUMAN binding G11278 in life
EGF-likel7; calcium-

FBN1_HUMAN binding V11281 in a patient with mitral valve prolapse
EG-likel7; calcium-

FBN1_HUMAN binding C1129Y Marfan syndrome (MIM:154700)
EGF-likel7; calcium-

EBN1_HUMAN binding N1131Y Marfan syndrome (MIM:154700)
FLGF-likel7; calctum-

IBN1_HUMAN binding R1137P Marfan syndrome (MIM:154700)
HGE-likel7; calcium-

FBN1_HUMAN binding C1140Y Marfan syndrome (MIM:154700)
EGF-like17; calcium-

FBN1_IMUMAN binding 11538 Marfan syndrome (MIM:154700)
LGF-likel 7; calcium-

FBN1_HUMAN binding C1153R Marfan syndrome (MIM:154700)
EGI-likel7; caleium-

FBN1_HUMAN binding C1153Y Marfan syndrome (MIM:154700)
LGI-likel8; caleium-

FBN1_HUMAN binding D1155N Marfan syndrome (MIM:154700)
EGE-like18; calcium-

FBN1_FUMAN binding R1170H Marfan syndrome (MIM:154700)
EGF-likel 8; calcium-

FBN1_HUMAN binding R1170G Marfan syndrome (MIM:154700)
EGT-likel8; calcium-

FBN1_HUMAN binding CH7TIwW Marfan syndrome (MIM:154700)
LEGI-like18; calcium-

FBN1_HUMAN binding N1173K Marfan syndrome (MIM:154700)
EGFE-likel9; calcium-

FBN1_HUMAN binding 1£1200G Marfan syndrome (MIM:154700)
EGF-likel9; calcium-

FBN1_FIUMAN binding Y1219C Marfan syndrome (MIM:154700)

Marfan syndrome (MIM:154700)

EGEF-likel9; calcium- & Shprintzen-Goldberg craniosynostosis syndrome

IFBN1_HUMAN binding C1223Y (MIM:182212)
EGF-ike20; calcium-

FBN1_ITUMAN binding C1242Y Marfan syndrome (MIM:154700)
LEGI-lke20; calcium-

FBN1_ITUMAN binding 12498 Marfan syndrome (MIM:154700)
HGE-like20; calcium-

I'BN1_IHUMAN binding Y1261C Marfan syndrome (MIM:154700)
KGE-like20; calcium-

FBN1_HUMAN binding Y1261 Marfan syndrome (MIM:154700)
LEG-hke20; calcium-

FBN1_HUMAN binding C1265R Marfan syndrome (MIM:154700)
FEGF-like20; calcium-

FBN1_HUMAN binding C12788 Marfan syndrome (MIM:154700)
HGH-like21; calcum~

FBN1_HUMAN binding C1284G Marfan syndrome (MIM:154700)
LGE-like22; calcium-

FBN1_HUMAN binding 131325Q Marfan syndrome (MIM:154700)
BEGP-like22; calcium-

FBN1_HUMAN binding C13338 Marfan syndrome (MIM:154700)
FGF-like22; calcium-

FBN1_TTUMAN binding C1333R Marfan syndrome (MIM:154700)
[EGT-like22; calcium-

I'BN1_HUMAN binding A1337P Marfan syndrome (MIM:154700)
BEGFE-like22; calcium-

FBN1_ITUMAN binding C1339Y Marfan syndrome (MIM:154700)
LG E-lke23; calcium-

FBN1_TIUMAN binding F1366K Marfan syndrome (MIM:154700)
LG F-like23; calcium-

FBN1_HUMAN binding C1374S Marfan syndrome (MIM:154700)
EGE-like23; calcium-

IFBN1_TTUMAN binding N1382§ Marfan syndrome (MIM:154700)
LG E-like23; calcium-

EBNI1_HUMAN binding CI1389R Marfan syndrome (MIM:154700)
EGE-like23; calcium-

FBN1_IUMAN binding C1402R Marfan syndrome (MIM:154700)
HGB-like24; calcium-

[BN1_HUMAN binding D1404Y Marfan syndrome (MIM:154700)

FBN1_HUMAN LG F-like24; calcium- P1424A Marfan syndrome (MIM:154700)
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Appendix C

binding

EGE-like24; calcium-

EBN1_HUMAN binding 14248 Marfan syndrome (MIM:154700)
LEGE-like24; calcium-

EBN1_HUMAN binding 14298 Marfan syndrome (MIM:154700)
EGR-ike25; calcium-

IFBN1_HUMAN binding 3147514 Marfan syndrome (MIM:154700)
[LGH-like25; calcium-

FBN1_HUMAN binding G14758 Matfan syndrome (MIM:154700)
FEGFE-like26; calcium-

EBN1_FHUMAN binding C1513R Marfan syndrome (MIM:154700)
EGE-like27; calcium-

['BN1_HUMAN binding C1610G Marfan syndrome (MIM:154700)
LGE-ike27; calcium-

FBN1_HUMAN binding C1631G Marfan syndrome (MIM:154700)
EGF-1ke28; calcium-

FBNIT_HUMAN binding C1663R Marfan syndrome (MIM:154700)
LGI-like28; calcium-

FBN1_HUMAN binding C1663Y Marfan syndrome (MIM:154700)
G Ii-like29; calcium-

FBN1_ITUMAN binding 17701 Marfan syndrome (MIM:154700)
LGE-like29; calcium-

IBN1_HUMAN binding R17901 Marfan syndrome (MIM:154700)
EGR-like29; calcium-

FBN1_HUMAN binding R1790L1 Marfan syndrome (MIM:154700)
124G I-1ike29; calcium-

FFBN1_HUMAN binding C1791R Marfan syndrome (MIM:154700)
G-k e29; calcium-

FBN1_HUMAN binding C1791Y Marfan syndrome (MIM:154700)
LG I-like29; calcium-

FBN1_UMAN binding C1793W Marfan syndrome (MIM:154700)
EGR-Jike29; calctum-

IBN1_HUMAN binding G17961 Marfan syndrome (MIM:154700)
EGI-ike29; calcium-

FBN1_HUMAN binding C1806S Marfan syndrome (MIM:154700)
EGH-like29; calcium-

EBN1_ITUMAN binding C1806Y Marfan syndrome (MIM:154700)
EGH-like30; calcium-

BN1_HUMAN binding C18338 Marfan syndrome (MIM:154700)
EGE-ike30; calcium-

FBN1_HUMAN binding C1835Y Marfan syndrome (MIM:154700)
LEGI-like30; caletum-

FBN1_HUMAN binding P18378 Marfan syndrome (MIM:154700)
LGE-like31; calcum-

FBN1_THUMAN binding C1876Y Marfan syndrome (MIM:154700)
LEGI-like31; calctum-

FBN1_HUMAN binding ‘118871 Marfan syndrome (MIM:154700)
LEGP-1ke32; calcium-

FBN1_HTUMAN binding N1893K Marfan syndrome (MIM:154700)
HGH-like32; calcium-

FBN1_HUMAN binding C1895R Marfan syndrome (MIM:154700)
EGE-like32; calcium-

FBN1_HUMAN binding C1900Y Marfan syndrome (MIM:154700)
EGHE-like32; calcium-

IFBN1_HUMAN binding 19091 Marfan syndrome (MIM:154700)
BEGF-like32; caletum-

FBN1_HUMAN binding R19158 Marfan syndrome (MIM:154700)
LG H-like32; calcium-

FBN1_HUMAN binding R1915C Marfan syndrome (MIM:154700)
LGI-like32; calcium-

FBN1_HUMAN binding C1928G Marfan syndrome (MIM:154700)
EGPE-like32; caleium-

EBN1_TTUMAN binding C1928R Marfan syndrome (MIM:154700)
LGI-like32; calctum-

FBN1_HUMAN binding C1928Y Mazfan syndrome (MIM:154700)
EGE-like33; calcium-

FBN1T_HUMAN binding C1971Y Matrfan syndrome (MIM:154700)
LG E-like34; calcium-

FBN1_HUMAN binding C1977Y Marfan syndrome (MIM:154700)
EGE-Jike34; calcium-

EBN1_TTUMAN binding C1998Y Marfan syndrome (MIM:154700)
EGH-like35; calcium-

FBN1_HUMAN binding (C2038Y Marfan syndrome (MIM:154700)




Appendix.C

EGI-like36; calctum-

FBNtT_ITUMAN binding D21271 Marfan syndrome (MIM:154700)
EGFE-like36; calcium-

FBN1_HUMAN binding C2131Y Marfan syndrome (MIM:154700)
LG -like36; calctum-

FBN1_HUMAN binding C2142Y Marfan syndrome (MIM:154700)
EGFE-like36; calcium-

EBN1_HUMAN binding N2144S Marfan syndrome (MIM:154700)
LEGF-like36; calcium-

FBN1_HUMAN binding C2151W Marfan syndrome (MIM:154700)
EGF-like36; caletum-

FBN1_HUMAN binding P2154R Isolated ectopia lentis (MIM:129600)
LGI-like36; calcium-

FBN1_HUMAN binding A2160P Marfan syndrome (MIM:154700)
EGE-like38; calcium-
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