
The K Group Nearest-Neighbor Query
on Non-indexed RAM-Resident Data

George Roumelis1, Michael Vassilakopoulos2, Antonio Corral3(B),
and Yannis Manolopoulos1

1 Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

{groumeli,manolopo}@csd.auth.gr
2 Department of Electrical and Computer Engineering,

University of Thessaly, Volos, Greece
mvasilako@inf.uth.gr

3 Department of Informatics, University of Almeria, Almeŕıa, Spain
acorral@ual.es

Abstract. Data sets that are used for answering a single query only
once (or just a few times) before they are replaced by new data sets
appear frequently in practical applications. The cost of buiding indexes
to accelerate query processing would not be repaid for such data sets. We
consider an extension of the popular (K) Nearest-Neighbor Query, called
the (K) Group Nearest Neighbor Query (GNNQ). This query discovers
the (K) nearest neighbor(s) to a group of query points (considering the
sum of distances to all the members of the query group) and has been
studied during recent years, considering data sets indexed by efficient
spatial data structures. We study (K) GNNQs, considering non-indexed
RAM-resident data sets and present an existing algorithm adapted to
such data sets and two Plane-Sweep algorithms, that apply optimizations
emerging from the geometric properties of the problem. By extensive
experimentation, using real and synthetic data sets, we highlight the
most efficient algorithm.

Keywords: Spatial query processing · Plane-sweep · Group nearest-
neighbor query · Algorithms

1 Introduction

Spatial database is a database that offers spatial data types (for example, types
for points, line segments, regions, etc.), a query language with spatial predicates,
spatial indexing techniques and efficient processing of spatial queries [1]. It has

G. Roumelis, M. Vassilakopoulos, A. Corral and Y. Manolopoulos—Work funded by
the GENCENG project (SYNERGASIA 2011 action, supported by the European
Regional Development Fund and Greek National Funds); project number 11SYN
8 1213.
A. Corral—Supported by the MINECO research project [TIN2013-41576-R].

c© Springer International Publishing Switzerland 2016
C. Grueau and J.G. Rocha (Eds.): GISTAM 2015, CCIS 582, pp. 69–89, 2016.
DOI: 10.1007/978-3-319-29589-3 5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería...

https://core.ac.uk/display/143458691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

70 G. Roumelis et al.

grown in importance in several fields of application such as urban planning,
resource management, transportation planning, etc. Together with them come
various types of complex queries that need to be answered efficiently.

One of the most representative and studied queries in Spatial Databases is the
(K) Nearest-Neighbor Query (NNQ), that discovers the (K) nearest neighbor(s)
to a query point. An extension that is important for practical applications is the
(K) Group Nearest Neighbor Query (GNNQ), that discovers the (K) nearest
neighbor(s) to a group of query points (considering the sum of distances to all the
members of the query group). This query has been studied during recent years,
considering data sets indexed by efficient spatial data structures. An example of
its utility could be when we have a set of meeting points (data set) and a set
of user locations (query set), and we want to find the set of one (K) meeting
point(s) that minimizes the sum of distances for all user locations, since each
user will travel from his/her location to each of the K meeting points. More
specifically, user locations may represent residence locations and meeting points
may represent points of interest (cultural landmarks). Each of the K points is
visited by each user for whole day inspection and the user returns to his/her
residence overnight, before visiting the next landmark on the following day. We
may interested to solve such a problem for a specific pair of data and query
sets only once, but we may face several such problems for different pairs of sets.
Building indexes for the data sets would be needed only if several queries would
be answered for the these sets, which might evolve gradually in the course of
time and not be completely replaced by new ones.

One of the most important techniques in the computational geometry field
is the Plane-Sweep (PS) algorithm, which is a type of algorithm that uses a
conceptual sweep line to solve various problems in the Euclidean plane, E2, [2].
The name of PS is derived from the idea of sweeping the plane from left to right
with a vertical line (front) stopping at every transaction point of a geometric
configuration to update the front. All processing is done with respect to this
moving front, without any backtracking, with a look-ahead on only one point
each time [3]. For instance, the PS technique has been successfully applied in
spatial query processing, mainly for intersection joins [4].

In [5], the problem of processing K Closest Pair Query between RAM-based
point sets was studied, using PS algorithms. Two improvements that can be
applied to a PS algorithm and a new algorithm that minimizes the number of
distance computations, in comparison to the classic PS algorithm, were pro-
posed. By extensive experimentation, using real and synthetic data sets, the
most efficient improvement was highlighted and it was shown that the new PS
algorithm outperforms the classic one.

In this paper, we study (K) GNNQs, considering non-indexed data sets (a
frequent case in practical applications, see the example given previously), unlike
previous research presented in Sect. 2 that consider that one or both data sets are
indexed by structures of the R-tree family. Our target is to design efficient non-
index based algorithms for (K) GNNQs and highlight the most efficient among

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 71

them. Thus, we present three (RAM-based) algorithms1, an existing one adapted
to non-indexed data sets and two novel PS ones, that apply optimizations emerg-
ing from the geometric properties of the problem. Several experiments have
been performed, using real and synthetic data sets, to show the most efficient
algorithm.

The paper is organized as follows. In Sect. 2, we review the related literature
and motivate the research reported here. In Sect. 3, three new PS algorithms for
GNNQs are presented. In Sect. 4, a comparative performance study is reported.
Finally, in Sect. 5, conclusions on the contribution of this paper and future work
are summarized.

2 Related Work and Motivations

GNN queries are introduced in [7] and it consist in given two sets of points
P and Q, a GNN query retrieves the point(s) of P with the smallest sum of
distances to all points in Q. GNN queries are also known as aggregate nearest
neighbor (ANN) queries [8]. In [7], the authors have developed three different
methods, MQM (multiple query method), SPM (single point method) and MBM
(minimum bounding method), to evaluate a GNN query that minimizes the total
distance from a set of query points to a data point. In [8] these methods have
been extended to minimize the minimum and maximum distance in addition to
the total distance with respect to a set of query points. All these methods assume
that the data points are indexed using an R-tree and can be implemented using
both depth-first search and best-first search algorithms.

In general terms, MQM performs an incremental search for the nearest data
point of each query point in the set and compute the aggregate distance from all
query points for each retrieved data point. The search ends when it is ensured
that the aggregate distance of any non-retrieved data point in the database is
greater than the current K-th minimum aggregate distance, that is the K GNNs
are found. It means MQM is a threshold algorithm, since it computes the near-
est neighbor for each query point incrementally, updating different thresholds
according to the target of the (K) GNN. The main disadvantage of MQM is
that it traverses the R-tree multiple times and it can access the same data point
more than once.

The other methods, SPM and MBM, find the K GNNs in a single traversal
of the R-tree. SPM approximates the centroid of the query distribution area
and continues the searching with respect to the centroid until the current (K)
GNNs are determined. During the search, some heuristics based on triangular
inequality are used to prune intermediate nodes and determine the real nearest
neighbors to Q. MBM regards Q as a whole and uses its MBR M to prune
the search space in a single query, in either a depth-first or best-first manner.
Moreover, two pruning heuristics involving the distance from an intermediate
node to M or query points are proposed and they can be used in either traversal
1 This paper is a post proceedings enhanced version of [6], where the last two algo-

rithms of the current paper are presented and compared.

72 G. Roumelis et al.

policy. Experimental results showed that the performance of MBM is better than
SPM and MQM for memory and disk resident query points, since it traverses
the R-tree once and takes the query distribution area into account. Moreover,
according to the comparison conducted in [7], MBM is better than SPM in terms
of node access and CPU cost while MQM is the worst.

In [9], the authors propose two pruning strategies for (K) GNN queries which
take into account the distribution of query points. Such methods employ an
ellipse to approximate the extent of multiple query points, and then derive a
distance or minimum bounding rectangle using that ellipse to prune intermediate
nodes in a depth-first search via an R∗-tree. These methods are also applicable to
the best-first traversal. The experimental results show that the proposed pruning
strategies are more efficient than the methods presented in [7].

A new method to evaluate a (K) GNN query for non-indexed data points
using projection-based pruning strategies was presented in [10]. Two points
projecting-based ANNQ algorithms were proposed, which can efficiently prune
the data points without indexing. This new method projects the query points
into a special line, on which their distribution is analysed, for pruning the search
space.

In [11], a new property in vector space was proposed and, based on it some
efficient bound estimations were developed for two most popular types of ANN
queries (sum and maximum). Taking into account these bounds, indexed and
non-index ANN algorithms were designed. The proposed algorithms showed
interesting results, especially for high dimensional queries.

Other related contributions in this research line have been proposed in the
literature. In [12] an efficient algorithm for (K) GNN query considering privacy
preserving was proposed, and the existing (K) GNN algorithms [8] for point
locations were extended to regions in order to preserve user privacy. In [13], the
(K) GNN query in road networks based on network voronoi diagram was solved.
In [14], the reverse top-K group nearest neighbor search is presented. In [15], the
KNN and (K) GNN queries are extended to get a new type of query, so-called
K Nearest Group (KNG) query. It retrieves closest elements from multiple data
sources, and finds K groups of elements that are closest to a given query point,
with each group containing one object from each data source. And recently, for
uncertain databases, probabilistic (K) GNN query was studied by [16,17].

Therefore, the (K) GNN is an active research line nowadays and most of
the contributions have used indexes (of the R-tree family) for their solutions.
The main motivation of this paper is to exmanine the use of the Plane-Sweep
technique to solve the problem proposed in [7], when neither of the inputs are
indexed. Due to not using indexes, the algorithms proposed in this paper are
completely different to previous solutions. To the best of our knowledge, there are
not any existing solutions for the (K) GNNQ without indexes. The unnecessity
of indexes is not infrequent in practical applications, when the data sets change
at a very rapid rate, or the data sets are not reusable for subsequent queries (see
the example in Sect. 1).

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 73

3 RAM-Based Algorithms for GNNQ

In this section we introduce three RAM-based algorithms for processing GNNQ.
The input of this query consists of a set P = {p0, p1, · · · , pN−1} of static
data points in the Euclidean plane, E2, and a group of query points Q =
{q0, q1, · · · , qM−1}. The output contains the K (≥ 1) data point(s) with the
smallest sum of distances to all points in Q.

The distance between a data point p ∈ P and Q is defined as sumdist(p,Q) =
∑M−1

i=0 dist(p, qi), where dist(p, qi) is the Euclidean distance between p ∈ P
and a query point qi ∈ Q. In the following, dx dist(p, q) represents the dx-
distance (Δx(p, q)) between two points p and q over the X-axis and dy dist(p, q)
represents the dy-distance (Δy(p, q)) over the Y -axis. The sum of distances
(dx-distances) between one given point p ∈ P and all query points of Q

(qi ∈ Q) is defined as sumdist(p,Q) =
∑M−1

i=0 dist(p, qi) (sumdx(p,Q) =
∑M−1

i=0 dx dist(p, qi)).
The first algorithm that we present is called Single Point Method over Non-

Indexed Data (SPMNI) and is a non-indexed data extension/reformation of the
SPM algorithm proposed in [7] (this is the most efficient algorithm of [7] that can
be adapted to non-indexed data, since MBM is based on the MBR concept used
in tree and other indexes). Instead of the sorted list used in the SPM algorithm,
we used a max binary heap (keyed by sumdist and called MaxKHeap) to keep
the K data points with the smallest sum of distances to the query points found
so far (the sumdist of the root of the MaxKHeap is denoted by δ). In order
to sort the points of the P data set acccording to their distance to the centroid
(c) of query points, the SPMNI algorithm uses an array of |P | length named
Centroid Nearest Neighbor List (cNNl). Every element of cNNl is a pair of type
< i, dist(p, c) > where i is the index of the point p of P set and dist(p, c) is the
distance between the point p and the centroid c.

The algorithm works as follows. First, the algorithm, calculates the coordi-
nates of the centroid, computes the sum of distances of the centroid to the query
points (sumdistCQ), and after creates and sorts the cNNl (preparation stage).
For these, SPMNI calls the functions Calculate Centroid Coord(Q) (line 1),
Create CentroidNN List(P, c) (line 5), and Sort CentroidNN List (line 6).

The search process of the KGNN starts and until MaxKHeap is full the
steps bellow are repeated. The index i of the point p of the P set which is the
next NN to the centroid c and the distance to the centroid dist(p, c) is retrieved
from the cNNl list using the value of the index of the cNNl list, j. Next, the
sumdist(p,Q) is calculated and the < p, sumdist(p,Q) > pair is inserted into
the heap. The index j is incremented in order to point to the next NN to the
centroid c, and the iteration is repeated, unless the MaxKHeap has become
full.

When the MaxKHeap is full, the same steps are repeated with a few dif-
ferences. In [7] it was proved that for every data point p with |Q| · dist(p, c) ≥
δ + sumdist(c,Q), p can be ignored, without calculating any distance to the
query points. Since the left part of the previous inequality grows for every sub-

74 G. Roumelis et al.

Algorithm 1. SPMNI.
Input: Two X-sorted arrays of points p[0, 1, · · · , N − 1], q[0, 1, · · · , M − 1], and

MaxKHeap.
Output: MaxKHeap storing the K NNs having smallest sums of distances to all

query points.
1: c(x, y) = Calculate Centroid Coord(Q) � calculate the coordinates of the

Centroid
2: sumdistCQ = 0.0
3: for k = 0; k < M ; k + + do � for each query point q
4: sumdistCQ+ = dist(c, q[k])

5: cNNl=Create CentroidNN List(P,c) � create the list of NN to the centroid
6: Sort CentroidNN List(cNNl) � sort entries of the list cNNl according to their

dist
7: j = 0
8: while MaxKHeap is not full do
9: p = P [cNNl[j].i] � retrieve the point p as current NN of the Centroid c

10: for k = 0; k < M ; k + + do sumdist+ = dist(p, q[k]) � ∀ q, add dist to
current point

11: MaxKHeap.insert(p, sumdist)
12: j = j + 1 � increment index j to the next NN

13: while j < N do
14: p = P [cNNl[j].i] � retrieve the point p as current NN of the Centroid c
15: dpc = cNNl[j].dist � retrieve the distance dist(p,c) from the list cNNl
16: if M · dpc ≥ MaxKHeap.root.dist + sumdistCQ then � termination

condition
17: break � exit j, all other NNs have larger sum of distances

18: for k = 0; k < M ; k + + do sumdist+ = dist(p, q[k]) � ∀ q, add dist to
current point

19: if sumdist < MaxKHeap.root.dist then
20: MaxKHeap.insertFull(p, sumdist)

21: j = j + 1 � increment index j to the next NN

sequent NN to the centroid that is retrieved, all the NNs after the one that
makes this condition true can be ignored. Thus, this condition can be not only
one pruning condition, but termination condition of the process of KGNNQ.
This termination condition is checked in the beginning of every iteration in this
second part of the algorithm. Moreover, for a data point p retrieved from the
cNNl list and after the sumdist(p,Q) has been calculated, this sum of distances
will be compared with the δ value of the MaxKHeap.root.dist. There are 2
cases:

1. Case 1 : If sumdist(p,Q) is larger than or equal to δ, then p will be not
inserted in the heap.

2. Case 2 : If the sumdist(p,Q) is smaller than δ, then p will be inserted in the
heap, after MaxKHeap.root has been deleted (rule 1).

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 75

The next two algorithms that we developped are novel Plane-Sweep algo-
rithms that make use of the median point of the query set Q. A simple application
of Plane-Sweep, assuming that both data sets are sorted in ascending order of
their X-values, would compute the sum of distances of each data point to all the
query points, by examining the data points from left to right, along the sweeping
axis (e.g. X-axis). Let p with sumdx(p,Q) ≥ δ, then, for every p′ with p′.x ≥ p.x,
sumdx(p′, Q) ≥ sumdx(p,Q). Moreover, sumdist(p′, Q) ≥ sumdx(p′, Q). Thus,
sumdist(p′, Q) ≥ δ and we do not need to calculate any distance for p′. Note
that, while the sweep line approaches (moves away from) the median point(s),
sumdx will be decreasing (increasing). This is proved in the Appendix. In the
next two algorithms, we find a data point pi ∈ P that is X-closest to the median
point of the query set Q (in case that the query set contains an even number
of points, we choose the right of the two median points). This data point is
found by binary search. The sweep line is located on pi−1 and moves to left until
a data point p with sumdx(p,Q) ≥ δ is found (termination condition 1).
Then, the sweep line is located on pi and moves to right until a data point p
with sumdx(p,Q) ≥ δ (termination condition 2). At this stage, MaxKHeap
will contain the K data points of P with the smallest sum of distances to the
query points.

As we mensioned above, in [7] it was proved that for every data point p with
|Q| · dist(p, c) ≥ δ + sumdist(c,Q), p can be ignored, without calculating any
distance. In the third algorithm that we have developed, the centroid c of the
query points is also used and the above condition is a pruning condition for
points that saves a significant number of calculations. Moreover, in the third
algorithm, when the sweep line is outside of the area of query points, then for
the current data point p, sumdx(p,Q) = |Q| · |p.x − c.x|. Using this condition,
we save numerous calculations.

In the Appendix, we prove that the sum of dx-distances between one given
point p(x, y) ∈ P and all points of the query set Q (sumdx(p,Q)):

A Is minimized at the median point q[m] (where q[m] is the array notation of
qm),

B For all p.x ≥ q[m].x, sumdx is constant or increasing with the increment of
x, and

C For all p.x < q[m].x, sumdx is increasing while x decreases.

The second algorithm (that is only based on median) is called
GNNPS and it uses the helper algorithm calc sum dist and the function
find closest point. Firstly, it calculates the initial position of the sweeping line
(preparation state). For this, the algorithm must find the first point p[i] ∈ P
which is on the right of the median of query set q[m] (p[i].x > q[m].x), by call-
ing the function find closest point (line 1). After this, the algorithm sets the
sweeping line at the point p[i − 1] (line 3) and continues scanning the points
of P set decreasing the index i until the termination condition 1 will be true
or the points of P set will have finished (lines 3–5). Lastly, the algorithm sets
the sweeping line at the point p[i] and continues scanning the points of P set

76 G. Roumelis et al.

Algorithm 2. GNNPS.
Input: Two X-sorted arrays of points p[0, 1, · · · , N − 1], q[0, 1, · · · , M − 1], and

MaxKHeap.
Output: MaxKHeap storing the K NNs having smallest sums of distances to all

query points.
1: i = find closest point(0, P, q[m]) � STEP 1 : Preperation. q[m] is the median

query set Q
2: j = i − 1
3: while j > −1 do � STEP 2 : Search in the range p[j].x ≤ q[m].x, descending j

(move to left)
4: if calc sum dist(p[j − −], Q, MaxKHeap) == err code dx then �

Termination cond. 1
5: break
6: while i < N do � STEP 3 : Search in the range p[i].x > q[m].x, ascending i

(move to right)
7: if calc sum dist(p[i + +], Q, MaxKHeap) == err code dx then �

Termination cond. 2
8: break

increasing the index i until the termination condition 2 will be true or the points
of the P set will have finished (lines 6–8).

The third algorithm (that is based on median and centroid) is
called GNNPSC and it uses the helper algorithms calc sum dist in and
calc sum dist out and the function find closest point. Firstly, the algorithm
calculates the initial position of the sweeping line and the coordinates of
the centroid (preparation state). For these, the algorithm calls the functions
find closest point (line 1) and Calculate Centroid Coord(Q) (line 3). In the
next step, it continues scanning the points of P set decreasing the index j until
the termination condition 1 will be true or the X-coordinate of the current point
of P set is smaller than or equal to the X-coordinate of the first query point q[0]
(p[j].x ≤ q[0]). In this state, GNNPSC calls the function calc sum dist in to
calculate the sum of distances. After exiting the previous loop and if the termi-
nation condition 1 has not arisen (line 12), the algorithm continues decreasing
j until the termination condition 1 will be true or the points of P set will have
finished (lines 13–15). Lastly, the algorithm sets the sweeping line at the point
p[i] and continues scanning the points of P set increasing the index i just like in
the previous step (lines 17–20 inside query set Q and lines 21–24 outside query
set Q). Note that the calc sum dist in function is the same as calc sum dist,
adding two new parameters (the centroid of Q (c) and its sum of distances to all
query points (sumdistCQ)) and the following statements just after the line 9.

9 : distpc = dist(p, c)
10 : if M · distpc ≥ MaxKHeap.root.dist + sumdistCQ then
11 : return err code dist centroid

And the remaining statements of calc sum dist in from line 12 (12–22) are the
same as calc sum dist.

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 77

Algorithm 3. calc sum dist.
Input: One point p, the sorted array of query points q[0, 1, · · · , M − 1], and

MaxKHeap.
Output: Value successful insertion or err code dx or err code dist and MaxKHeap

updated with p if rule 2 was true.
1: function calc sum dist(p, Q, MaxKHeap)
2: sumdist = 0.0, sumdx = 0.0
3: if MaxKHeap is not full then
4: for k = 0; k < M ; k + + do � for each query point q
5: sumdist+ = dist(p, q[k]) � dist(): the Euclidean distance between p

and q[k]

6: MaxKHeap.insert(p, sumdist)
7: return sucessful insertion
8: else
9: for k = 0; k < M ; k + + do � for each query point q

10: sumdx+ = dx dist(p, q[k]) � dx dist(): the dx-distance between p and
q[k]

11: if sumdx ≥ MaxKHeap.root.dist then � Rule 1
12: return err code dx � exit k, all other points have longer distance

13: for k = 0; k < M ; k + + do � for each query point q
14: sumdist+ = dist(p, q[k]) � add the distance (dist) from the current

point

15: if sumdist < MaxKHeap.root.dist then � Rule 2
16: MaxKHeap.insertFull(p, sumdist)
17: return sucessful insertion
18: else
19: return err code dist � not inserted because of sum of distances

(sumdist)

The following examples illustrate the execution of the algorithms. The point
data P set is defined as P = {p0(1,7); p1(2,4); p2(3,1); p3(3,13); p4(8,2);
p5(8,18); p6(9,10); p7(10,19); p8(12,12); p9(13,4); p10(14,12); p11(16,6); p12(19,8);
p13(19,17); p14(20,3); p15(22,7)}, and the point query set Q is defined as
Q = {q0(9,7); q1(10,11); q2(12,4); q3(17,7); q4(19,11)}. In Fig. 1, P and Q (they
are sorted in ascending order of their X-values), the centroid and the median of
the query points and the initial position of the sweep line are drawn.

SPMNI starts the preparation stage by calculating the coordinates of cen-
troid point c(x, y) = (13.4, 8) and then calculates the sum of distances between
the centroid and the query points sumdist(c,Q) = 23.374. Next, SPMNI cre-
ates the cNNl list of pairs of type < i, dist(p, c) > for all points of P set.
This list is sorted in ascending order for each point in the P set with respect to
dist(p, c). Thus, the final form of the sorted list is: {< 11, 3.280 >,< 9, 4.020 >,<
10, 4.045 >,< 8, 4.238 >,< 6, 4.833 >,< 12, 5.600 >,< 4, 8.072 >,< 14, 8.280 >
,< 15, 8.658 >,< 13, 10.600 >,< 5, 11.365 >,< 7, 11.513 >,< 3, 11.539 >,<
1, 12.081 >,< 0, 12.440 >,< 2, 12.536 >}. In other words, we have one com-
plete list of Nearest Neighbors to the Centroid beginning from the closest one.

78 G. Roumelis et al.

Algorithm 4. GNNPSC .
Input: Two X-sorted arrays of points p[0, 1, · · · , N − 1], q[0, 1, · · · , M − 1], and

MaxKHeap.
Output: MaxKHeap storing the K NNs having smallest sums of distances to all

query points.
1: i = find closest point(0, P, q[m]) � STEP 1 : Preperation. q[m] is the median of

query set Q
2: j = i − 1
3: c(x, y) = Calculate Centroid Coord(Q) � calculate the coordinates of the

Centroid
4: sumdistCQ = 0.0
5: for k = 0; k < M ; k + + do � for each query point q
6: sumdistCQ+ = dist(c, q[k])

� STEP 2 : Search in the range p[j].x ≤ q[m].x, descending j (move to left)
7: cont search = true � initialize the flag
8: while j > −1 and p[j].x > q[0].x do � ∀ p[j] inside the query MBR in sweeping

axis
9: if calc sum dist in(p[j − −], Q, c, sumdistCQ, MaxKHeap) == err code dx

then
10: � Termination condition 1
11: cont search = false
12: break
13: if cont search = true then
14: while j > −1 do � for each point p[j] on the left of the query MBR in

sweeping axis
15: if calc sum dist out(p[j − −], Q, c, sumdistCQ, MaxKHeap) ==

err code dx then
16: � Termination condition 1
17: break

� STEP 3 : Search in the range p[i].x > q[m].x, ascending i (move to right)
18: cont search = true
19: while i < N and p[i].x < q[M − 1].x do � ∀ p[i] inside the query MBR in

sweeping axis
20: if calc sum dist in(p[i + +], Q, c, sumdistCQ, MaxKHeap) == err code dx

then
21: � Termination condition 2
22: cont search = false
23: break
24: if cont search = true then
25: while i < N do � for each point p[i] on the left of the query MBR in

sweeping axis
26: if calc sum dist out(p[i + +], Q, c, sumdistCQ, MaxKHeap) ==

err code dx then
27: � Termination condition 2
28: break

Index j is initially set to 0, that is, to the first element of the cNNl list and
SPMNI continues with main stage. The search process of the KGNNQ starts

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 79

Algorithm 5. calc sum dist in.
Input: One point p, set of query points Q, centroid c, its sum of distances to all query

points sumdistCQ and MaxKHeap.
Output: Value successful insertion or err code dx or err code dist and MaxKHeap

updated with p if rule 2 was true.
1: function calc sum dist in(p, Q, c, sumdistCQ, MaxKHeap)
2: sumdist = 0.0, sumdx = 0.0
3: if MaxKHeap is not full then
4: for k = 0; k < M ; k + + do � for each query point q
5: sumdist+ = dist(p, q[k]) � dist(): the dx-distance between p and q[k]

6: MaxKHeap.insert(p, sumdist)
7: return sucessful insertion
8: else
9: dpc = dist(p, c) � dist(): the distance between p and c

10: if M · dpc ≥ MaxKHeap.root.dist + sumdistCQ then � prune p w/o
computing dists

11: return err code dist centroid; � not inserted because of sum of
distances

12: for k = 0; k < M ; k + + do � for each query point q
13: sumdx+ = dx dist(p, q[k]) � dx dist(): the dx-distance between p and

q[k]

14: if sumdx ≥ MaxKHeap.root.dist then � Rule 1
15: return err code dx � exit k, all other points have longer distance

16: for k = 0; k < M ; k + + do � for each query point q
17: sumdist+ = dist(p, q[k]) � add the distance (dist) from the current

point

18: if sumdist < MaxKHeap.root.dist then � Rule 2
19: MaxKHeap.insertFull(p, sumdist)
20: return sucessful insertion
21: else
22: return err code dist � not inserted because of sum of distances

(sumdist)

with empty MaxKHeap. The first NN is p11. sumdist(p11, Q) = 26.599 is cal-
culated and the pair < p11, 26.599 > is inserted in the MaxKHeap as the
first one (lines 8–11). Index j is incremented and the second and third NN are
retreived sequentially from the cNNl list, while MaxKHeap is not full. The
pairs < p9, 27.835 > and < p10, 30.370 > are inserted in the MaxKHeap. At
the end of the rhird iteration the MaxKHeap is full and MaxKHeap.root.dist
has value 30.370. The second part of the main stage is started executing
lines 13–21. The forth NN is p8 with dist(p8, c) = 4.238. The terminal con-
dition |Q| · dist(p, c) ≥ δ + sumdist(c,Q) is tested (line 16). The condition
5 · 4.238 ≥ 30.370 + 23.374 is false. Therefore, SPMNI continues calculat-
ing sumdist(p8, Q) (line 18). The variable sumdist is set to the value 30.209.
The condition sumdist(p8, Q) < MaxKHeap.root.dist is true and the previous
MaxKHea.root is deleted, because the pair < p8, 30.209 > must be inserted in

80 G. Roumelis et al.

Algorithm 6. calc sum dist out.
Input: One point p, set of query points Q, centroid c, its sum of distances to all query

points sumdistCQ and MaxKHeap.
Output: Value successful insertion or err code dx or err code dist and MaxKHeap

updated with p if rule 2 was true.
1: function calc sum dist out(p, Q, c, sumdistCQ, MaxKHeap)
2: sumdist = 0.0, sumdx = 0.0
3: if MaxKHeap is not full then
4: for k = 0; k < M ; k + + do � for each query point q
5: sumdist+ = dist(p, q[k]) � dist(): the dx-distance between p and q[k]

6: MaxKHeap.insert(p, sumdist)
7: return sucessful insertion
8: else
9: dx = dx dist(p, c) � dx dist(): the dx-distance between p and c (Δx(p, c))

10: if M · dx ≥ MaxKHeap.root.dist then � Rule 1
11: return err code dx; � exit k, all other points have longer distance

12: dy = dy dist(p, c) � dy dist(): the dy-distance between p and c
13: distpc =

√
dx2 + dy2

14: if M · distpc ≥ MaxKHeap.root.dist + sumdistCQ then
15: return err code dist centroid;

16: for k = 0; k < M ; k + + do � for each query point q
17: sumdist+ = dist(p, q[k])

18: if sumdist < MaxKHeap.root.dist then � Rule 2
19: MaxKHeap.insertFull(p, sumdist)
20: return sucessful insertion
21: else
22: return err code dist � not inserted because of sum of distances

(sumdist)

the full MaxKHeap as new root (line 20). So, MaxKHeap.root.dist = 30.209
and the index j is incremented (line 21). The fifth NN is p6 with dist(p6, c)
= 4.833. The terminal condition is tested as above (line 16). The condition
5 · 4.833 ≥ 30.209 + 23.374 is false. Therefore, SPMNI continues calculating
the sumdist(p6, Q) (line 18). The variable sumdist is set to the value 29.716.
The condition sumdist(p6, Q) < MaxKHeap.root.dist is true and the previous
MaxKHea.root is deleted, because the pair < p6, 29.716 > must be inserted
in the full MaxKHeap. The pair < p9, 27.835 > becomes new root (line 20).
So, MaxKHeap.root.dist = 27.835. From the sixth to the tenth NNs (p12 with
dist(p12, c) = 5.6, p4 with dist(p4, c) = 8.072. p14 with dist(p14, c) = 8.280, p15
with dist(p15, c) = 8.658 and p13 with dist(p13, c) = 10.6), the terminal condition
is false (line 16). Therefore, SPMNI continues calculating the variable sumdist
for each point (line 18). The condition sumdist(p,Q) < MaxKHeap.root.dist
is false and the pairs {< p12, 32.835 >, < p4, 43.299 >, < p14, 45.635 >, < p15,
46.089 >, < p13, 55.922 >} must not be inserted in the full MaxKHeap. The
eleventh and final NN is p5 with dist(p5, c) = 11.365. The terminal condition
is tested as above (line 16) and 5 · 11.365 ≥ 29.716 + 23.374 is true. Therefore,

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 81

Fig. 1. The points of P and Q, the centroid, the median of the query points and the
initial position of the sweep line.

SPMNI is terminated (line 17) by breaking the while ... do loop. While execut-
ing this algorithm, we made 71 complete point-point distance calculations, 142
point-point dx-distance calculations, 5 points with their sum of distances were
inserted in the MaxKHeap and 10 of 16 points of P set were fully examined
and their sumdist distances to the query points were calculated. One point of 16
(the last one) has been partially examined. dist(p, c) has been calculated for all
(16) points and all the P set members have been sorted.

In GNNPS, firstly (in Step 1) the algorithm searches for the point of the
P set which is on the right of the median q2(12,4) query point (line 1). That is
p9(13,4) point. In Step 2 (lines 3–5) it starts calculating the sum of distances
between point p8(12,12) and all query points. The result is sumdist(p8, Q) =
30.209 and the point p8 is inserted in the MaxKHeap (calc sum dist:lines 2–7).
In the next iteration the point p7(10,19) is examined. The MaxKHeap is full and
the second part of the calc sum dist function (lines 9–19) is executed. The sum
of distances is sumdist(p7, Q) = 61.108 larger than the MaxKHeap.root.dist =
30.209 (condition in the calc sum dist:line 15 is false), so the point is rejected
(calc sum dist:line 19). In the third iteration the point p6(9,10) is examined and
the sum of distances is sumdist(p6, Q) = 29.716 which is smaller (condition of
calc sum dist:line 15 is true) than the MaxKHeap.root.dist therefore the point
p6 is inserted in the MaxKHeap (calc sum dist:lines 16,17) by replacing the
previous root (p8). In the fourth and fifth iterations for the points p5 and p4 the
sum of distances are sumdist(p5, Q) = 60.317 and sumdist(p4, Q) = 43.299,
respectively; both larger than the MaxKHeap.root.dist and the points are
rejected. In the sixth iteration, the point p3 has sumdx(p3.x,Q) = 52 (con-
dition in calc sum dist:line 11) which is larger than the MaxKHeap.root.dist
and the process (scanning the P set on the left) ends (calc sum dist:line 12)
because it is impossible to find other points of P set on the left of p3 hav-
ing sum of distances smaller than 52. The algorithm continues scanning the

82 G. Roumelis et al.

points of P set to the right of the median q2, starting from the p9 point. Its
sumdist(p9, Q) = 27.835 is smaller than the MaxKHeap.root.dist = 29.716
so it replaces the existing point in the root of MaxKHeap. The next point
p10 has sumdist(p10, Q) = 30.370 and it is rejected. The next iteration will
try the point p11 which has sumdist(p11, Q) = 26.599 the smallest sum of dis-
tances and this point (p11) is inserted in the MaxKHeap replacing the previous
root p9. In the last iteration the algorithm examines the point p12 which has
sumdx(p12, Q) = 28 larger than the MaxKHeap.root.dist = 26.599 and the
process is finally finished. While executing this algorithm we made 46 com-
plete point-point distance calculations, 84 point-point dx-distance calculations,
4 points with their sum of distances were inserted in the MaxKHeap and 10 of
the 16 points of P set were examined.

GNNPSC starts (Step 1) by finding the first point of P set which is on
the right of the median point of query set Q. That is the point p9. After-
wards it calculates the coordinates of centroid point c(x, y) = (13, 8) and then
calculates the sum of distances between the centroid and the query points
sumdist(c,Q) = 23.374. GNNPSC continues with Step 2. In that step, the
points of P set are scanned on the left of the p9 in two particular steps.
First from p8 up to p7 which have X-coordinate larger than q0.x = 9 by call-
ing the calc sum dist in function. There is sumdist(p8, Q) = 30.209 and this
point is inserted in the MaxKHeap as the first point while the MaxKHeap
is empty (calc sum dist in:lines 3–7). The point p7 is examined next and it
is rejected without a need to calculate sumdist(p7, Q) because the condition
of the function calc sum dist in:line 10 is true. Step 2 continues scanning the
points of P set which are on the left (outside) of the q0 query point by call-
ing the function calc sum dist out. The point p6 with sumdist(p6, Q) = 29.716
is inserted (calc sum dist in:lines 9–20), while points p5 and p4 are rejected
with sumdist(p5, Q) = 60.137 and sumdist(p4, Q) = 43.299 respectively, both
larger than the MaxKHeap.root.dist = 29.716 with the point p6. The next
point p3 is the last point to be examined because it has sumdx(p3, Q) = 52
larger than the current MaxKHeap.root.dist. The algorithm continues by exe-
cuting Step 3, scanning the points of P set on the right of the median query
point q2. The algorithm continues scanning the points of P set to the right
starting from the p9 point. Its sumdist(p9, Q) = 27.835 is smaller than the
MaxKHeap.root.dist = 29.716 so it replaces the existing point in the root of
MaxKHeap. The next point p10 has sumdist(p10, Q) = 30.370 and it is rejected.
The next iteration will try the point p11 which has sumdist(p11, Q) = 26.599 the
smallest sum of distances and this point is inserted in the MaxKHeap replac-
ing the previous root p9. In the last iteration we examine the point p12 which
has sumdx(p12, Q) = 28 larger than the MaxKHeap.root.dist = 26.599 and
the process is finally finished. While executing this algorithm we made 42 com-
plete point-point distance calculations, 38 point-point dx-distance calculations,
4 points with their sum of distances were inserted in the MaxKHeap and 10 of
16 points of P set were examined.

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 83

4 Experimentation

In order to evaluate the behaviour of the proposed algorithms, we have used
6 real spatial data sets of North America, representing cultural landmarks (CL
with 9203 points) and populated places (PP with 24493 points), roads (RD with
569120 line-segments) and railroads (RR with 191637 line-segments). To create
sets of points, we have transformed the MBRs of line-segments from RD and RR
into points by taking the center of each MBR (i.e., |RD| = 569120 points, |RR| =
191637 points). Moreover, in order to get the double amount of points from RR
and RD, we chose the two points with min and max coordinates of the MBR of
each line-segment (i.e. |RDD| = 1138240 points and |RRD| = 383274 points).
The data of these 6 files were normalized in the range [0, 1]2. The real data sets
we used are geographical. In order to test the performance of our algorithms
with data appearing in Science, we have created synthetic clustered data sets
of 125000 (125K), 250000 (250K), 500000 (500K) and 1000000 (1000K) points,
with 125 clusters in each data set (uniformly distributed in the range [0, 1]2),
where for a set having N points, N/125 points were gathered around the center
of each cluster, according to Gaussian distribution (this distibution is common
for natural properties of systems within Science). The first real data set (CL) was
used to make the query set (Q) by selecting the appropriate number of points
randomly. Then the coordinates of these points were appropriately scaled in
order to get the MBR of the query points to get a pre-defined size in comparison
to the MBR of the data set (P). The other 9 data sets were used as data sets
(P) within which we were looking for the NNs.

All experiments were performed on a Laptop PC with Intel Core i5-3210M
(2.5 GHz) CPU with 4 GB of RAM and several GBs of secondary storage, with
Ubuntu Linux v. 14.04 64 bit, using the GNU C/C++ compiler (gcc). The perfor-
mance measurements were: (1) the response time (total query execution time) of
processing the (K) GNNQ, not counting reading from disk files to main memory
and sorting of the data sets, (2) the number of points involved in calculations, (3)
the number of X-axis distance computations (dx-distance) and (4) the number
of distance computations.

In every experiment the query set was moved on X-axis in 8 equal size steps
from the top left corner of the area of the data set (P) up to the right corner
and after this, one step down on the Y -axis and so on. The total execution time,
and the other experimentation metrics, for each one experiment, were computed
as an average of all (the 64) queries.

In Fig. 2 (left), we depict the effect of the number of query points, M (the
cardinality of Q), on execution time of all algorithms for the RD data set (the
number of group nearest-neighbors, K, was equal to 8 and the size of query-
set MBR was 8 % of the data set space). In analogous diagrams created for
dx-distance and dist calculations, in most cases, GNNPS had the worse perfor-
mance, SPMNI was next and GNNPSC had the best performance. It is obvi-
ous that the increase of M leads to an increase of the execution time, but with
a smaller rate of increase. GNNPSC needs less time than GNNPS, because of
the use of centroid (the computation of the distance between the centroid and the

84 G. Roumelis et al.

Fig. 2. (Left) Execution time of the algorithms as a function of M (RD data set). #
(Right) Points involved in sumdist calculations of the algorithms as a function of M
(RD data set).

reference point of P set needs one calculation of distance while the computation
of the sum of distances between the reference point and all query points needs
M distance calculations). Moreover, GNNPSC needs less time than SPMNI,
although both algorithms make use of centroid, because SPMNI intially calcu-
lates the distance of the whole P set from the centroid and sorts the whole P set,
while GNNPSC does not access a big part of the P set, due to the termination
condition.

For the same parameter settings and data set, in Fig. 2 (right), we depict
the effect of M on the number of data set points involved in calculations. We
observe that this number of points is reduced as M increases. In SPMNI,
all points of P set are involved in calculations, since this algorithms intially
calculates the distance of the whole P set from the centroid and sorts the whole
P set. Regarding the other two algorithms, note that the sums of distances
of the points of data P set near the median are enlarged to a smaller extent,
compared to the sumdist of the points outside the query-set MBR. This enables
the termination conditions and makes it possible to get nearest to the median
query point. Moreover, we can observe in Fig. 2 that GNNPSC needs more
involved points and it is the fastest. This behaviour could be due to that in
function calc sum dist in we firstly apply the pruning condition of centroid and
next the termination condition 1 or 2 is checked. So it is possible that some
points may be pruned in GNNPSC rather than being the cause of termination
of the scanning.

In Fig. 3 (left), we depict the effect of the size of the query-set MBR, on
dx-distance calculations of all algorithms for the 1000K data set (the number of
group nearest neighbors, K, was equal to 8 and the number of query points was
equal to 128).

Analogous diagrams created for distance calculations had similar appear-
ance. In most of these diagrams, SPMNI had the worse execution time, while
GNNPSC was always the best. It is obvious that the increase of the size of the
query-set MBR leads to an increase of the execution time, but with a smaller

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 85

Fig. 3. (Left) # dx-distance calculations of the algorithms as a function of the size of
MBR M (1000K data set). (Right) # Points involved in calculations of the algorithms
as a function of the size of MBR M (1000K data set).

Fig. 4. (Left) # distance calculations of the algorithms as a function of K (RDD data
set). (Right) # Points involved in calculations of the algorithms as a function of K
(RDD data set).

rate of increase. The size of MBR was increased with a ratio of 4. The execution
time, dx-distance and complete distance (dist) calculations was increased with
ratio in the range 1.2 up to 2 for all data sets of real and synthetic data. For
the same parameter settings and data set, in Fig. 3 (right), we depict the effect
of the size of the query-set MBR on the number of points involved in calcu-
lations. We observe that this numbers of points are increased as the query-set
MBR increases with a ratio smaller than 1.4 for GNNPS and GNNPSC. We
observe in this figure that the number of points involved almost identical and the
lines are for GNNPS and GNNPSC overlapped. In SPMNI, the number of
points involved in calculations is much higher, as explained in the interpretation
of Fig. 2 (right).

In Fig. 4 (left), we depict the effect of the number of group nearest-neighbors,
K, on distance calculations of all algorithms for the RDD data set (the number
of query points, M , was equal to 128 and the size of query-set MBR was 8 % of
the data set space). Analogous diagrams created for distance calculations had

86 G. Roumelis et al.

similar appearance. Regarding execution time, the comments of Fig. 3 (left) hold
for this figure, too. For the same parameter settings and data set, in Fig. 4 (right),
we depict the effect of K on the number of points involved in calculations. We
observe that this number of points is increased so slowly that it is going to be
seen for values of K larger than 64.

From the above experiments, we conclude that:

– The number of data-set points involved in the calculations of GNNPS

and GNNPSC algorithms is almost equal. However, the execution time for
GNNPSC remains always lower than the execution time of GNNPS, due to
the pruning condition and the lower dx-distance calculations cost. This num-
ber is always signifficantly larger for SPMNI, since this algorithms intially
calculates the distance of the whole P set from the centroid and sorts the
whole P set.

– The main advantages of the Plane-Sweep method are the absence of recalcu-
lation, as each point is used in calculations once at most, and the absence of
backtracking.

– The number of points involved in calculations is decreased when the number
of query points is increased, provided that K and the query-set MBR size
remain constant.

5 Conclusions and Future Work

Processing of GNNQs has been based on index structures, so far. In this paper,
for the first time, we present new algorithms that can be efficiently applied on
RAM-based data for processing the GNNQ. Extending [6], we present a compar-
ison of new PS algorithms that we developed with respect to the best algorithm
presented in [7] that can be transformed to work on non-indexed data sets, and
we observe the PS algorithms achieve signifficantly better performance. As the
experimentation that we performed shows, using synthetic and real data sets,
the use of median and centroid in GNNPSC, prunes the number of points
involved in processing and the number of calculations, in relation to SPMNI
and GNNPS.

In the future, we plan to compare the best of our algorithms to existing
index based solutions. Moreover, the algorithms we present could be trans-
formed/extended to work on high volume, disk resident data that are transferred
in RAM in blocks. Additionally, the application of Plane-Sweep to other spatial
queries (like Reverse NNQ) could lead to interesting techniques.

Appendix

Lemma: The sum of dx-distances between one given point p(x, y) ∈ P and all
points of the query set Q (sumdx(p,Q)):

A Is minimized at the median point q[m] (where q[m] is the array notation of
qm),

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 87

*

*

*

*

**

*

x0 x1 xk-1 xk xm xm+1 xM-1

q0

q1

qk-1

qk

qm

qm+1

qM-1

//// //

*

xk -1

qk 1-

//

p

p

x x

Fig. 5. The point p has K query points on the left and the point p′ (p′.x > p.x) has
K′ query points on the left.

B For all p.x ≥ q[m].x, sumdx is constant or increasing with the increment of
x, and

C For all p.x < q[m].x, sumdx is increasing while x decreases.

Proof: Property A has been proved in [18]. To prove property B, for every point

p ∈ P and q ∈ Q, we use Δx(p, q) =
{

p.x − q.xif p.x ≥ q.x
q.x − p.xif p.x < q.x

If the point p has K query points on the left (p.x < q[K−1].x) and M −K query

points on the right (Fig. 5), then: sumdx(p,Q) =
K−1∑

i=0

(p.x−q[i].x)+
M−1∑

i=K

(q[i].x−

p.x) = Kp.x−
K−1∑

i=0

q[i].x+
M−1∑

i=K

q[i]− (M −K)p.x = (2K −M)p.x−
K−1∑

i=0

q[i].x+

M−1∑

i=K

q[i].x

For another point p′ ∈ P with p′.x > p.x which has K ′ query points on the left
(Fig. 5) and M − K ′ query points on the right, it is: sumdx(p′, Q) = (2K ′ −

M)p′.x −
K′−1∑

i=0

q[i].x +
M−1∑

i=K′
q[i].x

The difference between dx-distances of the points p′ and p is: Δsumdx
= sumdx(p′, Q) − sumdx(p,Q) = (2K − M)(p′.x − p.x) + 2⎡

⎣(K ′ − K)p′.x −
K′−1∑

i=K

q[i].x

⎤

⎦. If the set of the query points Q has cardinality M

and this is an even number then there are two medians q[m1] and q[m2], while if
M is odd then there is only one median point q[m].
B.1 M is even and q[m1].x ≤ p.x < p′.x then M ≤ 2K ≤ 2K ′ so (2K −M) ≥ 0,

(p′.x−p.x) ≥ 0 and (K ′ −K)p′.x−
K′−1∑

i=K

q[i].x ≥ 0 because p′.x ≥ q[i].x, whereas

K ≤ i ≤ K ′

88 G. Roumelis et al.

B.2 All of the above apply to M if it is odd and it is only one median point
q[m].x ≤ p.x < p′.x. It is proven that for all points p on the right of the median
query point the sum of dx-distances is increasing.
C For both types of cardinality of the query set Q and for the case p.x < p′.x <

q[m].x it is: Δsumdx = (2K −M)(p′.x− p.x)+2(K ′ −K)p′.x − 2
K′−1∑

i=K

q[i].x ≤

(2K − M)(p′.x − p.x) + 2(K ′ − K)p′.x − 2(K ′ − K)p.x = 2(K − M)(p′.x −
p.x) + 2(K ′ − K)(p′.x − p.x) = (2K − M + 2K ′ − 2K)(p′.x − p.x) = (2K ′ −
M)(p′.x − p.x) < 0. It is proven that for all points p on the left of the median
query point the sum of dx-distances is strictly decreasing. ��

References

1. Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases - with Applications to GIS.
Elsevier, San Francisco (2002)

2. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction.
Springer, New York (1985)

3. Hinrichs, K., Nievergelt, J., Schorn, P.: Plane-sweep solves the closest pair problem
elegantly. Inf. Process. Lett. 26, 255–261 (1988)

4. Jacox, E.H., Samet, H.: Spatial join techniques. ACM Trans. Database Syst. 32, 7
(2007)

5. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: A new plane-
sweep algorithm for the K -closest-pairs query. In: Geffert, V., Preneel, B., Rovan,
B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 478–490.
Springer, Heidelberg (2014)

6. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: Plane-sweep algo-
rithms for the k group nearest-neighbor query. In: GISTAM Conference, pp. 83–93.
Scitepress (2015)

7. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries.
In: ICDE Conference, pp. 301–312. IEEE (2004)

8. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor
queries in spatial databases. ACM Trans. Database Syst. 30, 529–576 (2005)

9. Li, H., Lu, H., Huang, B., Huang, Z.: Two ellipse-based pruning methods for group
nearest neighbor queries. In: ACM-GIS Conference, pp. 192–199. ACM (2005)

10. Luo, Y., Chen, H., Furuse, K., Ohbo, N.: Efficient methods in finding aggregate
nearest neighbor by projection-based filtering. In: Gervasi, O., Gavrilova, M.L.
(eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 821–833. Springer, Heidelberg
(2007)

11. Namnandorj, S., Chen, H., Furuse, K., Ohbo, N.: Efficient bounds in finding aggre-
gate nearest neighbors. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA
2008. LNCS, vol. 5181, pp. 693–700. Springer, Heidelberg (2008)

12. Hashem, T., Kulik, L., Zhang, R.: Privacy preserving group nearest neighbor
queries. In: EDBT Conference, pp. 489–500. ACM (2010)

13. Zhu, L., Jing, Y., Sun, W., Mao, D., Liu, P.: Voronoi-based aggregate nearest
neighbor query processing in road networks. In: ACM-GIS Conference, pp. 518–
521. ACM (2010)

The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data 89

14. Jiang, T., Gao, Y., Zhang, B., Liu, Q., Chen, L.: Reverse top-k group nearest
neighbor search. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.)
WAIM 2013. LNCS, vol. 7923, pp. 429–439. Springer, Heidelberg (2013)

15. Zhang, D., Chan, C., Tan, K.: Nearest group queries. In: SSDBM Conference, p.
7. ACM (2013)

16. Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain data-
bases. IEEE Trans. Knowl. Data Eng. 20, 809–824 (2008)

17. Li, J., Wang, B., Wang, G., Bi, X.: Efficient processing of probabilistic group
nearest neighbor query on uncertain data. In: Bhowmick, S.S., Dyreson, C.E.,
Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part
I. LNCS, vol. 8421, pp. 436–450. Springer, Heidelberg (2014)

18. Ahn, H.-K., Bae, S.W., Son, W.: Group nearest neighbor queries in the L1 plane.
In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876,
pp. 52–61. Springer, Heidelberg (2013)

	The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data
	1 Introduction
	2 Related Work and Motivations
	3 RAM-Based Algorithms for GNNQ
	4 Experimentation
	5 Conclusions and Future Work
	References

