Factorisation of Probability Trees and its Application to Inference
in Bayesian Networks

Irene Martinez
Dept. Languages and Computation
University of Almeria
La Canada de San Urbano s/n
E-04120 Almeria (Spain)
irene@ual.es

Serafin Moral
Dept. Computer Science and A.I.
University of Granada
Daniel Saucedo Arana s/n
E-18071 Granada (Spain)
smc@decsai.ugr.es

Carmelo Rodriguez and Antonio Salmerén
Dpt. Statistics and Applied Mathematics
University of Almeria
La Canada de San Urbano s/n
E-04120 Almeria (Spain)
{crt,Antonio.Salmeron}@ual.es

Abstract

Bayesian networks can be seen as a factorisation of a joint probability distribution over
a set of variables, based on the conditional independence relations amongst the variables.
In this paper we show how it is possible to achieve a finer factorisation decomposing
the origninal factors when certain conditions hold. The new ideas can be applied to
algorithms able to deal with factorised probabilistic potentials, such as Lazy Propagation,
Lazy-Penniless as well as Monte Carlo methods based on Importance Sampling.

1 Introduction

A Bayesian network can be understood as a rep-
resentation of a multivariate probability distri-
bution, such that the conditional independence
relations induced by the distribution are en-
coded by the structure of the network, accord-
ing to the d-separation criterion (Pearl, 1988).
Usage of Bayesian networks commonly involve
a task known as probability propagation, which
consists of the computation of the posterior
probability distribution for some variables of in-
terest given that some other variables have been
observed.

Several algorithms have been developed for
efficient probability propagation, most of which
rely on the use of an auxiliary structure called
a join tree (Jensen et al., 1990; Lauritzen
and Spiegelhalter, 1988; Madsen and Jensen,
1999; Shenoy, 1997; Shenoy and Shafer, 1990).
However, these algorithms may become un-

feasible if the size of the join tree obtained
from the Bayesian network is too large. This
fact has motivated the development of approxi-
mate algorithms able to provide estimations of
the posterior probabilities in complex problems
(Cano et al., 2000; Cano et al., 2002; Cheng
and Druzdzel, 2000; Dagum and Luby, 1997;
Fung and Chang, 1990; Herndndez et al., 1998;
Jensen and Andersen, 1990; Salmerén et al.,
2000; Salmerén and Moral, 2001; Shachter and
Peot, 1990).

It is known that probability propagation (ex-
act and approximate) is an NP-hard problem
(Cooper, 1990; Dagum and Luby, 1993). This
justifies investing effort in the study of new al-
gorithms with the aim of enlarging the class of
affordable problems. The most recent advances
in propagation have come along with algorithms
that incorporate the ability of dealing with fac-
torised representations of the potentials associ-
ated with the join tree. These algorithms are
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Figure 1: A Bayesian network and a join tree associated with it. Probability propagation is carried

out sending messages throughout the edges.

Lazy propagation (Madsen and Jensen, 1999)
and Lazy-penniless propagation (Cano et al.,
2002).

The Lazy-penniless algorithm has the partic-
ular feature that it uses probability trees (Cano
and Moral, 1997) to represent probabilistic po-
tentials. Probability trees are usually more
compact than probability tables and, what is
more important, provide a flexible way to re-
duce the space required to store a probabilistic
potential, by pruning some of the branches of
the trees. Of course, it can happen that the re-
sulting tree will be just an approximation of the
original potential. In this paper we show how it
is possible to achieve a factorisation finer than
the one used in the Lazy and Lazy-penniless al-
gorithms, and thus the efficiency of this kind of
algorithms can be significantly increased.

From here onwards, the paper continues
with a description of the relationship between
Bayesian networks and probability trees in Sec-
tion 2. Methods for factorisation are proposed
in Section 3 and some aspects of its application
in practice are considered in Section 4. The pa-
per ends with conclusions in Section 5.

2 Bayesian networks and probability
trees

A Bayesian network is defined as a directed
acyclic graph where each node represents a ran-
dom variable, and the topology of the graph
encodes the independence relations among the
variables, according to the d-separation crite-
rion (Pearl, 1988). Along with the graph struc-

ture, a probability distribution is given for each
node conditional on its parents, such that the
joint distribution over all the variables in the
network factorises as the product of the condi-
tional distributions.

We will use the concept of potential to rep-
resent probabilistic information (including ‘a
priori’, conditional and ‘a posteriori’ distribu-
tions). A potential ¢ for a set of variables X is
a mapping ¢ : Ox — ]R[T, where (2x is the set of
possible cases of the set of variables X and IRSr
is the set of non-negative real numbers. From
now onwards, we will consider only discrete vari-
ables with a finite number of cases, and the size
of a potential will be the highest number of val-
ues necessary to completely specify it; i.e. if ¢
is defined on Qx, its size is |Qx].

Probability propagation is seldom carried out
over the Bayesian network, but rather over an
auxiliary structure called a join tree. A join tree
is a tree where each node V is a subset of the
variables in the network, and such that if a vari-
able is on two distinct nodes, V; and Vs, then
it is also on every node in the path between V;
and V5. Every potential in the original Bayesian
network (i.e. every conditional distribution) is
assigned to a node V; containing the variables
involved in the conditional distribution. A po-
tential constantly equal to 1 (unity potential)
is assigned to nodes which did not receive any
conditional distribution. In this way, attached
to every node V; there will be a potential ¢y;
defined over the set of variables V; and which
is equal to the product of all the potentials as-
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Figure 2: A potential ¢, a probability tree representing it and an approximation of it after pruning

some branches.

signed to it.

There are different ways to represent the po-
tentials in the join tree (for instance, probability
tables and probability trees) and it is possible to
keep the potentials assigned to a node as a list
instead of multiplying them initially (Madsen
and Jensen, 1999; Cano et al., 2002). Figure
1 illustrates the process of probability propa-
gation: A join tree (right side) is constructed
from a Bayesian network (left side) and then
propagation is carried out by a flow of messages
through the edges of the join tree. Observe that
the potentials in the nodes are kept as a list.

A message from one node V; to one of its
neighbours, V; is a potential defined for the vari-
ables contained in V; NV}, and is obtained as
the result of marginalising out from the poten-
tials attached to V; all the variables not in V.
A variable is marginalised out by multiplying
the potentials containing it and then summing
the variable out. This is precisely the step in
which the complexity of probability propagation
arises: The domain of the potential resulting
from the product mentioned above may become
so large that a huge amount of memory would
be necessary to store it.

In this paper we are concerned with the rep-
resentation of probabilistic potentials by means
of probability trees. We will introduce some fac-
torisation techniques that can help to overcome
this problem.

A probability tree (Boutilier et al., 1996; Cano
and Moral, 1997; Salmerén et al., 2000) is a di-
rected labeled tree, where each internal node

represents a variable and each leaf node repre-
sents a probability value. Each internal node
has one outgoing arc for each state of the vari-
able associated with that node. Each leaf con-
tains a non-negative real number. The size of
a tree 7, denoted as size(7), is defined as its
number of leaves.

A probability tree 7 on variables X; =
{X;|i € I'} represents a potential ¢ : Qx, — Ry
if for each x; € Qx, the value ¢(xr) is the num-
ber stored in the leaf node that is reached by
starting from the root node and selecting the
child corresponding to coordinate z; for each
internal node labelled with Xj.

A probability tree is usually a more compact
representation of a potential than a table. This
fact is illustrated in Figure 2, which displays a
potential ¢ and its representation using a proba-
bility tree. The tree contains the same informa-
tion as the table, but using five values instead of
eight. Besides, locating a value in a probability
tree is more efficient that in a probability table.
The complexity of this operation is O(n) in the
worst case (the same as in a probability table),
where n is the number of variables in the po-
tential. However, the complexity decreases as
the tree is pruned and becomes O(m) where m
is the number of variables actually contained in
the tree.

Furthermore, trees allow an even more com-
pact representation in exchange of loosing accu-
racy. This is achieved by pruning some leaves
and replacing them by the average value, as
shown in the second tree in Figure 2. The ad-
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vantage of this representation with respect to
others is that pruning can be done following in-
formation criteria, as in decision trees. The or-
der in which the nodes are placed in the tree de-
termines the efficiency of the pruning (the most
informative variables should be placed at the
top of the tree). This issue was discussed in
(Salmeron et al., 2000).

The basic operations (combination and
marginalisation) over potentials required for
probability propagation can be carried out di-
rectly over probability trees, as described in the
next algorithms.

The combination is done recursively and ba-
sically consists of selecting a starting node and
multiplying each of its children by the other
tree. This operation is illustrated in Figure 3,
and the details of the algorithm can be found in
(Cano et al., 2000).

Marginalisation is equivalent to summing out
variables. A variable is summed out from a
probability tree by replacing it by the sum of
its children, as described in Figure 4. The de-
tails can be found in (Cano et al., 2000).

3 Factorisation of Probability Trees

Consider the situation in which we are about to
marginalise out a variable X;. The first step is
to multiply the potentials (probability trees in
this case) containing X;. A gain in efficiency
could be achieved if we managed to decompose
each tree containing X; as a product of two trees
of smaller size, one of them containing X; and
the other not containing it. Then, the prod-
uct would be actually carried out over poten-
tials (trees) with reduced domains and thus, the
complexity of probability propagation would de-
Clearly, it would only be true if the
propagation algorithm is able to deal with lists
of potentials, as Lazy propagation and Lazy-
penniless do. In the next subsections we con-
sider two situations in which such a decomposi-
tion is feasible.

crease.

3.1 Tree splitting

Assume that probability propagation is being
carried out and that Y is the next variable to
marginalise out, and that it is contained in a

potential represented by the tree in the left side
of Figure 5. Observe that Y is in the sub-tree
corresponding to the first case of variable X, but
not in the sub-tree corresponding to the second
case. This is a very common situation in Lazy-
penniless propagation, where it is possible that
a variable disappears from a part of a tree after
a pruning.

This fact allows to decompose the original
tree as the product of two smaller trees, as dis-
played in Figure 5. The advantage of this de-
composition is that the second tree in the de-
composition does not take part in the product
previous to marginalising out Y, because it does
not contain Y, and the first factor is more sim-
ple than the original tree; Therefore, the com-
plexity of the deletion of variable Y is reduced
and thus the efficiency of Lazy propagation in-
creased.

3.2 Proportional sub-trees

Now assume that the next variable to
marginalise out is X, and we find it in the tree
shown in Figure 6. We can see that, within con-
text W = 0, the two children of X are propor-
tional. In this case, it is possible to factorise the
tree as a product of two trees smaller than the
original one (see Figure 7), in such a way that
one of the factors keeps the information affected
by X and the other contains the information not
affected by X. More formally, trees that can be
factorised in this way can be characterised by
the next definition.

Definition 1 Let T be a probability tree. Let
(X =x¢) be a configuration of variables lead-
ing from the root node in T to a variable X;.
We say that T is proportional below X within
context (X = x¢) if there is a x; € Qx such
that for every x; # x; € Qx, Ja; > 0 such that

TR(XC:xC,X:xi) =q;- TR(XC:xO,X::vj) , (1)

where TRXce=xc.X=2) denotes the sub-tree of T
reached following the path determined by con-
figuration (X¢ = x¢,X = x). The values
a = {aj|j # i} are called proportionality fac-
tors.
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Figure 3: Combination of two trees.

Definition 2 Let T be a probability tree pro-
portional below X within context (Xo = x¢),
with proportionality factors . We define the
core term of T, denoted by T(X¢ = x¢, X =
x,a) as the tree obtained from T by replacing
sub-tree THRXc=xc,X=2i) py constant 1 and any
other sub-tree TRXc=xc:X=2j) by constant a;.

Definition 3 Let T be a probability tree pro-
portional below X within context (Xo = x¢),
with proportionality factors . We define the
free term of T, denoted by T (X¢ = x¢, X = )
as the tree obtained from T by replacing sub-tree
ThXo=xc) py TRXc=xc:X=2i) gnd any other
sub-tree TRXD=%D) by g constant 1 for any con-
text (Xp = xp) inconsistent with (X = x¢).

Observe that the core and free terms are both
probability trees with size smaller than 7. In
this point, the next proposition can be proved.

Proposition 1 Let T be a probability tree pro-
portional below X within context (Xo = x¢),
with proportionality factors a. It holds that

T = T(Xe =x0,X =,0q)

XT(XC = Xc,X = :E) . (2)

Proof: The proof is straightforward following
the combination (multiplication) algorithm de-
scribed in Section 2. O

This proposition indicates that any probabil-
ity tree matching Definition 1 can be decom-
posed as a product of smaller trees, with the
special feature that one of them (the free term)
by definition does not contain X.

4 Factorisation in Practice

As we pointed out earlier, practical applications
of factorisation arise when using algorithms as
Lazy propagation (Madsen and Jensen, 1999)
and Lazy-penniless propagation (Cano et al.,
2002). Splitting is specially appropriate for the
second one. But factorisation is not always rec-
ommended, since it may be too costly and pro-
vide no benefit if the trees are not decompos-
able. We can say that then next three con-
siderations must be taken into account before
applying factorisation (either splitting or pro-
portional sub-trees):

e Factorisation must only be used when we
are going to marginalise out a variable that
appears in more than one probability tree.
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Figure 4: Process of marginalising out variable Y.

Otherwise, no multiplications are carried
out and thus the decomposition provides
no benefit.

e The closer to the root the wariable to
marginalise out is, the higher the benefits
will be. The basis of this statement is that
the difference of size between the original
tree and the core term increases as the vari-
able is closer to the root.

e If none of the trees are decomposable, fac-
torisation is useless. This is obvious, be-
cause the time spent on checking factorisa-
tion is not compensated at all.

Regarding this last consideration, it is pos-
sible to consider the possibility of decompos-
ing a tree even if the sub-trees are not propor-
tional, but “almost” proportional. In this case,
the decomposition is not exact, but networks
for which probability propagation is unfeasible,
could be tackled by this method.

In order to see how far this concept can go in
practice, we have implemented the factorisation
as a feature of Lazy-penniless propagation in the
Elvira system (http://leo.ugr.es/~elvira).

We have performed tests with different large
real-world networks. However, we have been
unable to draw clear conclusions. In some of
the networks we have observed benefits but
in some other the use of factorisation clearly
slowed down the programs. The method seems
to be quite promising in very large networks,
where the join tree has nodes with a high num-
ber of variables and involving several potentials
One of these networks is
Muninl, that we borrowed from the Decision
Support System Group at Aalborg University
(Denmark) and for which the results where im-
proved with respect to Lazy-penniless.

in the same node.

5 Conclusions

In this paper we have proposed an idea to in-
crease the efficiency of propagation algorithms
that deal with factorised representations of the
potentials in a join tree. Though the idea is not
yet thoroughly developed, the approach seems
to be promising. It is important now to check
the performance of the algorithms in very dif-
ficult problems. A criterion for approximate
factorisation should be sought, and we are cur-
rently working on it. We think that a way to
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do it is to decompose as long as the increase in
the Kullback-Leibler divergence from the orig-
inal tree and the product of the core and free
terms does not surpass a previously specified
limit.

Furthermore, we believe that the ideas intro-
duced in this paper can be of interest in the
area of learning Bayesian networks from data: a
database can be regarded as a probability tree,
and the factorisation would provide a means to
detect independences.
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