
Dynamic Importance Sampling in Bayesian

Networks Based on Probability Trees ?

Seraf́ın Moral

Dpt. Computer Science and Artificial Intelligence
University of Granada
Avda. Andalućıa 38,

18071 Granada, Spain

Antonio Salmerón ∗

Dpt. Statistics and Applied Mathematics
University of Almeŕıa

La Cañada de San Urbano s/n
04120 Almeŕıa, Spain

Abstract

In this paper we introduce a new dynamic importance sampling propagation algo-
rithm for Bayesian networks. Importance sampling is based on using an auxiliary
sampling distribution from which a set of configurations of the variables in the net-
work is drawn, and the performance of the algorithm depends on the variance of
the weights associated with the simulated configurations. The basic idea of dynamic
importance sampling is to use the simulation of a configuration to modify the sam-
pling distribution in order to improve its quality and so reducing the variance of the
future weights. The paper shows that this can be achieved with a low computational
effort. The experiments carried out show that the final results can be very good even
in the case that the initial sampling distribution is far away from the optimum.

Key words: Bayesian networks, probability propagation, approximate algorithms,
importance sampling, probability trees.

? This work has been supported by the Spanish Ministry of Science and Technology,
project Elvira II (TIC2001-2973-C05-01 and 02)
∗ Corresponding author

Email addresses: smc@decsai.ugr.es (Seraf́ın Moral),
Antonio.Salmeron@ual.es (Antonio Salmerón).

Preprint submitted to Elsevier Science 28 May 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143458437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In this paper we propose a new propagation algorithm for computing marginal
conditional probabilities in Bayesian networks. It is well known that this prob-
lem is NP-hard even if only approximate values are required [7]. It means that
it is always possible to find examples in which polynomial approximate al-
gorithms provide poor results, especially if the distributions contain extreme
probabilities: There is a polynomial approximate algorithm if all the probabil-
ities are strictly greater than zero [8], but its performance quickly deteriorates
when the probabilities approach to zero.

There exist several deterministic approximate algorithms [1–5,13,16,20,21] as
well as algorithms based on Monte Carlo simulation. The two main approaches
are: Gibbs sampling [12,15] and importance sampling [6,8,10,11,18,19,22].

A class of these simulation procedures is composed by the importance sampling
algorithms based on approximate pre-computation [11,18,19]. These methods
perform first a fast but non exact propagation, consisting of a node removal
process [23]. In this way, an approximate ‘a posteriori’ distribution is obtained.
In the second stage a sample is drawn using the approximate distribution
and the probabilities are estimated according to the importance sampling
methodology [17].

In this paper we start off with the algorithm based on approximate pre-
computation developed in [18]. One of the particularities of that algorithm
is the use of probability trees to represent and approximate probabilistic po-
tentials. Probability trees have the ability of approximating in an asymmetri-
cal way, concentrating more resources (more branching) where they are more
necessary: higher values with more variability (see [18] for a deeper discus-
sion on these issues). However, as pointed out in [5], one of the problems of
the approximate algorithms in Bayesian networks is that sometimes the final
quality of an approximate potential will depend on all the potentials, includ-
ing those which are not needed to remove the variable when performing exact
propagation. Imagine that we find that, after deleting variable Z, the result
is a potential that depends on variable X, and we find that this dependence
is meaningful (i.e. the values of the potential are high and different for the
different cases of X). If there is another potential not considered at this stage,
in which all the cases of X except one have assigned a probability equal to
zero, then the discrimination on X we have done when deleting Z is com-
pletely useless, since finally only one value of X will be possible. This is an
extreme situation, but it illustrates that even if the approximation is carried
out locally, the quality of the final result will depend on the global factors.
There are algorithms that take into account this fact, as Markov Chain Monte
Carlo, the Penniless propagation method presented in [5], and the Adaptive

2

Importance Sampling (AIS-BN) given in [6].

In this work, we improve the algorithm proposed in [18] allowing to modify
the approximate potentials (the sampling distribution) taking as basis the
samples obtained during the simulation. If samples with very small weights
are drawn, the algorithm detects the part of the sampling distribution (which
is represented as an approximate probability tree) that is responsible of this
fact, and it is updated in such a way that the same problem will not occur in
the next simulations. Actually, this is a way of using the samples to obtain the
necessary information to improve the quality of the approximations taking into
account other potentials in the problem. Trees are very appropriate for this
task, as they allow to concentrate more efforts in the most necessary parts, i.e.
in the configurations that were more frequently obtained in past simulations
and for which the approximation was not good.

The rest of the paper is organised as follows: in section 2 it is described how
probability propagation can be carried out using the importance sampling
technique. The new algorithm, called dynamic importance sampling, is de-
scribed in section 3. In section 4 the performance of the new algorithm is
evaluated according to the results of some experiments carried out in large
networks with very poor initial approximations. The paper ends with conclu-
sions in section 5.

2 Importance Sampling in Bayesian Networks

Throughout this paper, we will consider a Bayesian network in which X =
{X1, . . . , Xn} is the set of variables and each variable Xi takes values on a
finite set Ωi. If I is a set of indices, we will write XI for the set {Xi|i ∈ I},
and ΩI will denote the Cartesian product ×i∈IΩi. Given x ∈ ΩI and J ⊆ I,
xJ is the element of ΩJ obtained from x by dropping the coordinates not in
J .

A potential f defined on ΩI is a mapping f : ΩI → R
+
0 , where R

+
0 is the

set of non-negative real numbers. Probabilistic information will always be
represented by means of potentials, as in [14]. The set of indices of the variables
on which a potential f is defined will be denoted as dom(f).

The conditional distribution of each variable Xi, i = 1, . . . , n, given its parents
in the network, Xpa(i), is denoted by a potential pi(xi|xpa(i)) for all xi ∈ Ωi

and xpa(i) ∈ Ωpa(i). If N = {1, . . . , n}, the joint probability distribution for the
n-dimensional random variable X can be expressed as

3

p(x) =
∏

i∈N

pi(xi|xpa(i)) ∀x ∈ ΩN . (1)

An observation is the knowledge about the exact value Xi = ei of a variable.
The set of observations will be denoted by e, and called the evidence set. E
will be the set of indices of the variables observed.

The goal of probability propagation is to calculate the ‘a posteriori’ probability
function p(x′

k|e), for all x′
k ∈ Ωk, for every non-observed variable Xk, k ∈ N\E .

Notice that

p(x′
k|e) =

p(x′
k, e)

p(e)
∀x′

k ∈ Ωk ,

and, since p(e) =
∑

x′

k
∈Ωk

p(x′
k, e), we can calculate the posterior probability

if we compute the value p(x′
k, e) for every x′

k ∈ Ωk and normalise afterwards.

Let H = {pi(xi|xpa(i))|i = 1, . . . , n} be the set of conditional potentials. Then,
p(x′

k, e) can be expressed as

p(x′
k, e) =

∑

x∈ΩN
xE=e

xk=x′

k

∏

i∈N

pi(xi|xpa(i)) =
∑

x∈ΩN
xE=e

xk=x′

k

∏

f∈H

f(xdom(f)) ∀x′
k ∈ Ωk (2)

If the observations are incorporated by restricting potentials in H to the ob-
served values, i.e. by transforming each potential f ∈ H into a potential fe

defined on dom(f) \ E as fe(x) = f(y), where ydom(f)\E = x, and yi = ei, for
all i ∈ E , then we have,

p(x′
k, e) =

∑

x∈ΩN

xk=x′

k

∏

fe∈H

fe(xdom(fe)) =
∑

x∈ΩN

g(x) ∀x′
k ∈ Ωk, (3)

where

g(x) =

∏

fe∈H fe(xdom(fe)) if xk = x′
k ,

0 otherwise.

Thus, probability propagation conveys the estimation of the value of the sum in
(3), and here is where the importance sampling technique is used. Importance

4

sampling is well known as a variance reduction technique for estimating inte-
grals by means of Monte Carlo methods (see, for instance, [17]), consisting of
transforming the sum in (3) into an expected value that can be estimated as a
sample mean. To achieve this, consider a probability function p∗ : ΩN → [0, 1],
verifying that p∗(x) > 0 for every point x ∈ ΩN such that g(x) > 0. Then
formula (3) can be written as

p(x′
k, e) =

∑

x∈ΩN ,
g(x)>0

g(x)

p∗(x)
p∗(x) = E

[

g(X∗)

p∗(X∗)

]

∀x′
k ∈ Ωk , (4)

where X∗ is a random variable with distribution p∗ (from now on, p∗ will
be called the sampling distribution). Then, if {x(j)}

m

j=1 is a sample of size m
drawn from p∗, for each x′

k ∈ Ωk,

p̂(x′
k, e) =

1

m

m
∑

j=1

g(x(j))

p∗(x(j))
(5)

is an unbiased estimator of p(x′
k, e) with variance

Var(p̂(x′
k, e)) =

1

m

∑

x∈ΩN

g2(x)

p∗(x)

− p2(x′
k, e)

 . (6)

The value wj = g(x(j))/p∗(x(j)) is called the weight of configuration x(j).

Minimising the error of an unbiased estimator is equivalent to minimising
its variance. As formulated above, importance sampling requires a different
sample to estimate each one of the values x′

k of Xk. However, in [18] it was
shown that it is possible to use a single sample (i.e. a single set of configurations
of the variables XN\E) to estimate the probability for all the values x′

k. In such
case, the minimum variance is reached when the sampling distribution, p∗(x),
is proportional to g(x). In such case, the weights are equal to p(e) for all the
configurations and the variance of the estimation of the conditional probability
for each x′

k ∈ Ωk is:

Var(p̂(x′
k|e)) =

1

m
(p(x′

k|e)(1 − p(x′
k|e)) .

This provides very good estimations depending on the value of m (analogously
to the estimation of binomial probabilities from a sample), but it has the
difficulty that it is necessary to handle p(x|e), the distribution for which we
want to compute the marginals. Thus, in practical situations the best we can
do is to obtain a sampling distribution as close as possible to the optimal one.

5

Once p∗ is selected, p(x′
k, e) for each value x′

k of each variable Xk, k ∈ N \ E
can be estimated with the following algorithm:

Importance Sampling

(1) For j := 1 to m (sample size)
(a) Generate a configuration x(j) ∈ ΩN using p∗.
(b) Calculate the weight:

wj :=

∏

f∈H fe(x
(j)
dom(fe))

p∗(x(j))
. (7)

(2) For each x′
k ∈ Ωk, k ∈ N \ E , compute p̂(x′

k, e) as the sum of the weights
in formula (7) corresponding to configurations containing x′

k divided by
m.

(3) Normalise the values p̂(x′
k, e) in order to obtain p̂(x′

k|e).

The sampling distribution for each variable can be obtained through a process
of eliminating variables in the set of potentials H. An elimination order σ is
considered and variables are deleted according to such order: Xσ(1), . . . , Xσ(n).

The deletion of a variable Xσ(i) consists of marginalising it out from the com-
bination of all the functions in H which are defined for that variable. More
precisely, the steps are as follows:

• Let Hσ(i) = {f ∈ H|σ(i) ∈ dom(f)}.
• Calculate fσ(i) =

∏

f∈Hσ(i)
f and f ′

σ(i) defined on dom(fσ(i)) \ {σ(i)}, by

f ′
σ(i)(y) =

∑

xσ(i)
fσ(i)(y, xσ(i)) for all y ∈ dom(fσ(i)) \ {σ(i)}, xσ(i) ∈ Ωσ(i).

• Transform H into H \ Hσ(i) ∪ {f ′
σ(i)}.

Simulation is carried out in an order contrary to the one in which variables are
deleted. To obtain a value for Xσ(i), we will use the function fσ(i) obtained in
the deletion of this variable. This potential is defined for the values of variable
Xσ(i) and other variables already sampled. The potential fσ(i) is restricted to
the already obtained values of variables in dom(fσ(i)) \ {σ(i)}, giving rise to
a function which depends only on Xσ(i). Finally, a value for this variable is
obtained with probability proportional to the values of this potential. If all
the computations are exact, it was proved in [11] that we are really sampling
with the optimal probability p∗(x) = p(x|e).

However, the result of the combinations in the process of obtaining the sam-
pling distributions may require a large amount of space to be stored, and there-
fore approximations are usually employed, either using probability tables [11]
or probability trees [18] to represent the distributions. Instead of computing
the exact potentials we calculate approximate ones with much fewer values.

6

��� ���

���

�
	

�
�

��� ��� � ��� ��� �

���

�
	

�
�

��� � ��� ��� �

��� �

� � � ��� �
� � � ��� �
� � � ���
� � � ���

� � � ��� �
� � � ��� �
� � � ��� �

� � � 	 � � ��� � ��� � 	�� � ���

��� �

� � � ��� �

Fig. 1. A probability potential φ can be represented either as a table (left) or by an
exact tree (center), and it can be approximated by a tree as in the right side.

Then the deletion algorithm is faster and the potentials need less space. The
price to pay is that the sampling distribution is not the optimal one and the
accuracy of the estimations will depend on the quality of the approximations.
The way in which a probabilistic potential can be approximated by a proba-
bility tree is illustrated in figure (1).

In [11] an alternative procedure to compute the sampling distribution was
used. Instead of restricting fσ(i) to the values of the variables already sampled,
all the functions in Hσ(i) are restricted, resulting in a set of functions depending
only on Xσ(i). The sampling distribution is then computed by multiplying all
these functions. If the computations are exact, then both distributions are the
same, as restriction and combination commute. When the combinations are
not exact, generally the option of restricting fσ(i) is faster and the restriction
of functions in Hσ(i) is more accurate, as there is no need to approximate the
result of the combination of functions depending only on one variable, Xσ(i).

3 Dynamic Importance Sampling

Dynamic importance sampling follows the same general structure as our pre-
vious importance sampling algorithms but with the difference that sampling
distributions can change each time a new configuration x(j) is simulated. The
algorithm follows the option of restricting the functions in Hσ(i) before com-
bining them when computing the sampling distribution for Xσ(i).

Any configuration of values (x
(j)
σ(1), . . . , x

(j)
σ(n)), is simulated in reverse order,

as in the original importance sampling algorithm: Starting with x
(j)
σ(n) and

finishing with x
(j)
σ(1). Assume that we have already simulated the values cj

i =

(x
(j)
σ(n), . . . , x

(j)
σ(i+1)) and that we are going to simulate a value x

(j)
σ(i) for Xσ(i).

Let us denote by f
c
j
i

the result of restricting potential f to the values of cj
i ,

and let f ′
σ(i) be the function that was computed when removing variable Xσ(i)

in the elimination algorithm (i.e. the result of summing the combination of

7

the potentials containing Xσ(i) over all the possible values of that variable).

The procedure to simulate x
(j)
σ(i) makes some additional computations in order

to assess the quality of the sampling distribution. More precisely the following
elements are computed:

• (Hσ(i))c
j
i

= {f
c
j
i
|f ∈ Hσ(i)}: The result of restricting all the functions in

Hσ(i) to the values already simulated.
• qσ(i): The result of the combination of all the functions in (Hσ(i))c

j
i
. This

function can be represented as a vector depending only on variable Xσ(i).

• x
(j)
σ(i): The simulated value for Xσ(i) which is obtained by drawing a value

with a probability proportional to the values of vector qσ(i).
• bσ(i) =

∑

xσ(i)
qσ(i)(xσ(i)): The normalisation value of vector qσ(i).

• aσ(i): The value of potential f ′
σ(i) when instantiated for the cases in cj

i .

The dynamic algorithm we propose is based on the next theorem, which states
that, if no approximations have been made, then bσ(i) must be equal to aσ(i).

Theorem 1 Let aσ(i) and bσ(i) be as defined above. If during the elimination
process all the trees have been computed exactly (i.e. none of them has been
pruned), then it holds that

aσ(i) = bσ(i) .

PROOF. bσ(i) is obtained by restricting the potentials in Hσ(i) to cj
i =

(x
(j)
σ(n), . . . , x

(j)
σ(i+1)), combining them afterwards, and summing out the vari-

able Xσ(i).

On the other hand, aσ(i) is the result of combining the potentials in Hσ(i),
summing out Xσ(i) from the combined potential, and restricting the result to

cj
i .

f ′
σ(i) is computed by combining the potentials in Hσ(i) and then summing

out Xσ(i). It means that the computations of aσ(i) and bσ(i) involve the same

operations but in a different order: The restriction to configuration cj
i is done

at the beginning for bσ(i) and at the end for aσ(i). Nevertheless, if all the
computations are exact the results should be the same, since combination and
restriction trivially commute for exact trees. �

However, combination and restriction do not commute if the potentials in-
volved have been previously pruned, since one of the pruned values may cor-
respond to configuration cj

i .

bσ(i) is the correct value, since in this case the restriction is evaluated before

8

combining the potentials, and thus, no approximation is made when computing
it. Whilst, aσ(i) is the value that can be found in potential f ′

σ(i), which is

combined, and eventually pruned, before being evaluated for cj
i . Potential

f ′
σ(i) is the one that has been used to compute the sampling probabilities of

variables X
(j)
σ(n), . . . , X

(j)
σ(i+1). Therefore, if bσ(i) and aσ(i) are very different, it

means that configuration cj
i has been drawn with a probability of occurrence

far away from its actual value. The worst situation is met when aσ(i) is much
greater than bσ(i). For example, assume an extreme scenario in which bσ(i)

is equal to zero and aσ(i) is large. Then we would be obtaining, with high
probability, a configuration that should never be drawn (its real probability is
zero) 1 . This fact would produce negative consequences, because the weights of
all these configurations would be zero and therefore they would be completely
useless.

If instead of zero values, the exact probability were very small, there would
be a similar scenario, but now the weights would be very small, and the real
impact of these configurations in the final estimation would not be significant.
Summing up, we would be doing a lot of work with very little reward.

Dynamic importance sampling computes the minimum of the values aσ(i)/bσ(i)

and bσ(i)/aσ(i), considering that this minimum is equal to one if aσ(i) = 0. If
this value is less than a given threshold, then potential f ′

σ(i) is updated to

the exact value bσ(i) for the given configuration cj
i = (x

(j)
σ(n), . . . , x

(j)
σ(i+1)). This

potential will be used in the next simulations, and thus cj
i will be drawn with

a more accurate probability in the future. If, for example, bσ(i) is zero, it will
be impossible to obtain it again.

Updating the potential does not simply mean to change the value aσ(i) by
the new value bσ(i). The reason is that we should do it only for configuration

cj
i and a single value on a tree affects to more than one configuration (if

the branch corresponding to that configuration has been pruned and some
variables do not appear) and then we may be changing the values of other
configurations different to cj

i . If bσ(i) = 0, we could even introduce zeros where
the real exact value is positive, thus violating the basic property of importance
sampling which says that any possible configuration must have a chance to
be drawn. For instance, assume that the branches in a tree corresponding
to configurations c1 and c2 lead to leaves labeled with numbers 0 and 0.1
respectively. Now consider that the tree is pruned replacing both branches by
a single number, for instance, 0.05. In this case, if during the simulation it is
found out that configuration c1 should be labeled with 0, if we just replaced

1 If we had stored in f ′
σ(i) the exact value (zero), then, as this value is used to

simulate the values of (Xσ(n), . . . , Xσ(i+1)), the probability of this configuration
should have been zero.

9

the value 0.05 by 0 we would be introducing a false zero for configuration c2.

In order to avoid the insertion of false zeroes, we must branch the tree repre-
senting f ′

σ(i) in such a way that we do not change its value for configurations
for which bσ(i) is not necessarily the actual value. Therefore, the basic problem
is to determine a subset of variables {Xσ(n), . . . , Xσ(i+1)}, for which we have
to branch the node of the tree associated with f ′

σ(i) so that only those leaves

corresponding to the values of these variables in cj
i are changed to the new

value.

The first step is to consider the subset of active variables, Aσ(i) associated
with potential f ′

σ(i). This set represents the variables for which f ′
σ(i) should be

defined if computations are exact, but potentials are represented by probability
trees which are pruned without error when possible (a node such that all its
children are leaves with the same value is replaced by a single leaf with that
value).

This set is computed during the variable elimination phase. Initially, Aσ(i) is
the union of the domains of all the potentials in Hσ(i) minus Xσ(i), which is the
set of variables of potential f ′

σ(i) if we would have applied a deletion algorithm
with potentials represented by probability tables. But this set can be further
reduced: If a variable, say Xj, can be pruned without error from f ′

σ(i) (i.e.
for every configuration of the other variables, f ′

σ(i) is constant on the values
of Xσ(i)) and all the potentials in Hσ(i) containing this variable have been
calculated in an exact way (all the previous computations have only involved
pruning without error) then Xj can be removed from Aσ(i).

Though this may seem at first glance a situation difficult to appear in practice,
it happens for all the variables for which there are not observed descendants
[18]. All these variables can be deleted in an exact way by pruning the result
to the constant tree with value 1.0 and this provides an important initial
simplification.

Taking Aσ(i) as basis, we consider the tree representing f ′
σ(i) and follow the

path corresponding to configuration cj
i (selecting for each variable in a node

the child corresponding to the value in the configuration) until we reach a
leaf. Let L be the label of that leaf and Bσ(i) be the set of all the variables in
Aσ(i) which are not in the branch of the tree leading to leaf L. The updating
is carried out according to the following recursive procedure:

Procedure Update(L,aσ(i),bσ(i),Bσ(i))
1. If Bσ(i) = ∅,

2. Assign value bσ(i) to leaf L
3. Else

4. Select a variable Y ∈ Bσ(i)

10

0.4
X

0.4

0.4 0.6

Y

Z

0.4

0

0

0

1

1

1

Fig. 2. Example of tree updating

5. Remove Y from Bσ(i)

6. Branch L by Y
7. For each possible value y of Y

8. If y is not the value of Y in cj
i

9. Make the child corresponding to y be a leaf with value aσ(i)

10. Else
11. Let Ly be the child corresponding to value y
12. Update(Ly,aσ(i),bσ(i),Bσ(i))

In this algorithm, branching a node by a variable Y consists of transforming it
into an interior node with a child for each one of the values of the variable. The
idea is to branch as necessary in order to be possible to change the value of
f ′

σ(i) only for the values of active variables Aσ(i) in configuration cj
i , leaving the

values of this potential unchanged in other cases. Imagine the case of Figure
2, in which we have arrived to the leaf in the left with a value of aσ(i) = 0.4.
Assume also that the variables in Bσ(i) are X, Y and Z, each one of them
taking values in {0, 1} and that the values of these variables in the current
configuration are 1, 0 and 1 respectively. Finally, consider that we have to
update the value of this configuration in the tree to the new value bσ(i) = 0.6.
The result is the tree in the right side of Figure 2. Observe that the order in
which variables are selected in Step 4 is not relevant, since at the end all the
variables in Bσ(i) are included and the sizes of the trees resulting from different
orders are the same.

It must be pointed out that, unlike standard importance sampling, in the
dynamic algorithm that we propose, the configurations in the sample are not
independent, since the sampling distribution used to draw a configuration may
be modified according to the configurations previously simulated. However, the
resulting estimator remains unbiased, as stated in the next theorem.

Theorem 2 Let Xk be a non-observed variable and e a set of observations.
Then, for each x′

k ∈ Ωk, the dynamic importance sampling estimator of p(x′
k, e),

denoted as p̂(x′
k, e), is unbiased.

PROOF. Assume that the sampling distribution, p∗, has been updated l

11

times, and let p∗i , i = 1, . . . , l, denote the l sampling distributions actually
used in the simulation process.

Given a sample S = {x(1), . . . ,x(m)}, let Si, i = 1, . . . , l, denote the elements
in S drawn from p∗i .

Then, according to equation (5)

p̂(x′
k, e) =

1

m

m
∑

j=1

g(x(j))

p∗(x(j))
=

1

m

l
∑

i=1

∑

x∈Si

g(x)

p∗i (x)
.

According to equation (4), for a fixed p∗
i , E[g(x)/p∗i (x)] = p(x′

k, e), which
means that g(x)/p∗i (x) is an unbiased estimator of p(x′

k, e).

Therefore, p̂(x′
k, e) is the average of m unbiased estimators of p(x′

k, e), and
thus p̂(x′

k, e) is an unbiased estimator of p(x′
k, e). �

Though all the cases in the sample are not independent, this does not imply
that the final variance is higher than when using independent samples. We
must take into account that the dependence lies in the selection of the distri-
bution to sample successive configurations, but once this distribution is fixed,
then the configuration is independent of the previous ones. In order to show
that this reasoning is correct, we are going to simplify the scenario by con-
sidering a simple change of distribution instead of several distributions. This
result can be easily extended to the general case.

In order to simplify the notation, let us write ξS for the unbiased estimation
of p(x′

k, e) obtained from a given sample S. Let us consider a sample of size
2, S = {x(1),x(2)}, in which both occurrences are independent and identically
distributed, according to p∗. Assume now another sample S ′ = {y(1),y(2)} in
which S ′

1 = {y(1)} is drawn from p∗, and that y(1) is used to select a value θ of
random parameter Θ which determines a distribution from the set {p∗

θ}θ∈ΩΘ
.

Let us also assume that S ′
2 = {y(2)} is simulated from distribution p∗θ, which

is independent of y(1) given the value θ of Θ. This is the case of dynamic
importance sampling, in which past cases are used to estimate the parameters
of the sampling distributions, but once the parameters have been estimated,
the cases are selected in an independent way. The next theorem states that if
we manage to choose p∗

θ in such a way that the variance associated with p∗
θ is

less than or equal to the variance associated with p∗, then the variance of the
estimation associated with the new sample S ′ is not greater than the variance
resulting from S.

Theorem 3 Let S = {x(1),x(2)} be a sample of i.i.d. items drawn from p∗.
Let S ′ = {y(1),y(2)} be a sample in which S ′

1 = {y(1)} is drawn from p∗, y(1)

is used to select a value θ of Θ and the corresponding distribution {p∗
θ}θ∈ΩΘ

,

12

where Θ is a random variable that depends on y(1), and S ′
2 = {y(2)} is drawn

from p∗θ, which is independent of y(1) given θ. Under the above conditions, if
for every θ ∈ ΩΘ, Var(ξS′

2
) ≤ Var(ξS′

1
), then

Var(ξS′) ≤ Var(ξS) ,

where ξS′ is the estimator of p(x′
k, e) for sample S ′.

PROOF. Notice that the variance of an importance sampling estimator ob-
tained with an independent sample of size m is equal to K/m, where the
constant K depends on the sampling distribution (see equation (6)). Let us
denote by K and Kθ the constants associated with p∗ and p∗θ respectively.

Then, Var(ξS) = K/2, since in this case the sample size is m = 2 and occur-
rences are independent.

The variance of ξS′ is

Var(ξS′) = EξS′

[

(ξS′ − E[ξS′])2
]

. (8)

Note that ξS′ is a random variable, and so it is ξS′ − E[ξS′]. Furthermore,
Θ is another random variable and it is well known that for any two random
variables V and W , whenever their first order moments exist, it holds that
EW [EV |W [V |W]] = EV [V]. Therefore, it follows from equation (8) that

Var(ξS′)= EΘ

[

EξS′ |Θ

[

(ξS′ − E[ξS′])2 |Θ
]]

= EΘ

EξS′ |Θ

(

ξS′

1
+ ξS′

2

2
− p(x′

k, e)

)2

|Θ

 , (9)

where we have taken into account that ξS′ = (ξS′

1
+ ξS′

2
)/2 and, since ξS′ is

unbiased, E[ξS′] = p(x′
k, e). In the equation above, EΘ means the expectation

operator with respect to the distribution of random variable Θ, and EξS′ |Θ is
the expectation with respect to the sampling distribution of ξS′ conditional
on Θ.

Observe that, taking by notation T =

(

ξS′
1
+ ξS′

2

2
− p(x′

k, e)

)2

, it stands that

T =
1

4

(

ξ2
S′

1
+ ξ2

S′
2
+ 2ξS′

1
ξS′

2

)

+ p2(x′
k, e) − ξS′

1
p(x′

k, e) − ξS′
2
p(x′

k, e)

and thus, taking into account that for every fixed value of Θ the samples are
independent, and that since for every θ ∈ Θ the estimator ξS′

2
is unbiased, it

holds that, for every θ ∈ ΩΘ, EξS′ |θ[ξS′
2
|θ] = p(x′

k, e), it follows that,

13

EξS′ |Θ [T |Θ]=
1

4
EξS′ |Θ[ξ2

S′

1
|Θ] +

1

4
EξS′ |Θ[ξ2

S′

2
|Θ]

+
1

2
EξS′ |Θ[ξS′

1
|Θ]EξS′ |Θ[ξS′

2
|Θ] + p2(x′

k, e)

−p(x′
k, e)EξS′ |Θ[ξS′

1
|Θ] − p(x′

k, e)EξS′ |Θ[ξS′
2
|Θ]

=
1

4
EξS′ |Θ[ξ2

S′
1
|Θ] +

1

4
EξS′ |Θ[ξ2

S′
2
|Θ]

+
1

2
p(x′

k, e)EξS′ |Θ[ξS′

1
|Θ] + p2(x′

k, e)

−p(x′
k, e)EξS′ |Θ[ξS′

1
|Θ] − p2(x′

k, e)

=
1

4
EξS′ |Θ[ξ2

S′
1
|Θ] +

1

4
EξS′ |Θ[ξ2

S′
2
|Θ] −

1

2
p(x′

k, e)EξS′ |Θ[ξS′

1
|Θ]

Now, substituting in equation (9), we find that

Var(ξS′)= EΘ

[

EξS′ |Θ [T |Θ]
]

=
1

4
EΘ

[

EξS′ |Θ[ξ2
S′

1
|Θ]
]

+
1

4
EΘ

[

EξS′ |Θ[ξ2
S′

2
|Θ]
]

−
1

2
p(x′

k, e)EΘ

[

EξS′ |Θ[ξS′
1
|Θ]
]

=
1

4
EξS′

[ξ2
S′

1
] +

1

4
EΘ

[

EξS′ |Θ[ξ2
S′

2
|Θ]
]

−
1

2
p(x′

k, e)EξS′
[ξS′

1
]

=
1

4
EξS′

[ξ2
S′

1
] +

1

4
EΘ

[

EξS′ |Θ[ξ2
S′

2
|Θ]
]

−
1

2
p2(x′

k, e)

=
(

1

4
EξS′

[ξ2
S′

1
] −

1

4
p2(x′

k, e)
)

+
(

1

4
EΘ

[

EξS′ |Θ[ξ2
S′

2
|Θ]
]

−
1

4
p2(x′

k, e)
)

=
1

4
Var(ξS′

1
) +

1

4

(

EΘ

[

EξS′ |Θ[ξ2
S′

2
|Θ]
]

− p2(x′
k, e)

)

Now, since for every θ, EξS′ |Θ[ξS′
2
|θ] = p(x′

k, e), we have that

Var(ξS′)=
1

4
Var(ξS′

1
) +

1

4

(

EΘ

[

EξS′ |Θ[ξ2
S′

2
|Θ] − E2

ξS′ |Θ[ξS′
2
|Θ]
])

=
1

4
Var(ξS′

1
) +

1

4
EΘ

[

Var[ξS′

2
|Θ]
]

=
1

4
K +

1

4
EΘ [KΘ]

Now, since for every θ we have assumed that the variance of ξS′
2

(i.e. Kθ) is

14

less than or equal to the variance of ξS′

1
, we have,

Var((ξS′) =
1

4
K +

1

4
EΘ [KΘ]

≤
1

4
K +

1

4
K =

K

2
= Var(ξS).

�

4 Experimental Evaluation of the New Algorithm

The performance of the new algorithm has been evaluated by means of several
experiments carried out over two large real-world Bayesian networks. The two
networks are called pedigree4 (441 variables) and munin2 (1003 variables). The
networks have been borrowed from the Decision Support Systems group at
Aalborg University (Denmark) (www.cs.auc.dk/research/DSS/misc.html).

The dynamic importance sampling algorithm, denoted (dynamic is) has been
compared with importance sampling without this feature (is), using the same
implementation as in [18]. The new algorithm has been implemented in Java,
and included in the Elvira shell (leo.ugr.es/~elvira) [9].

Our purpose is to investigate whether dynamic is can have a good perfor-
mance even in the case that initial approximations are very poor. Thus, in the
computation of the sampling distributions we have carried out a very rough
approximation: In all of the experiments the maximum potential size has been
set to 20 values, and the threshold for pruning the probability trees has been
set to ε = 0.4. This value of ε indicates that the numbers in a set of leaves
of the tree whose difference (in terms of entropy) with respect to a uniform
distribution is less than 40% are replaced by their average (see [18] for the
details about the meaning of ε and the way in which the potentials are limited
to a maximum size). This is a very poor approximation and implies that it is
highly likely to obtain configurations with very low weights, which will give
rise to a high variance of the estimators.

The experiments we have carried out consist of 20 consecutive applications
of the dynamic is algorithm. The first application uses the approximate po-
tentials computed when deleting variables. We consider a threshold to update
the potentials of 0.95 (see section 3). In each subsequent application of the
algorithm we start off with the potentials updated in the previous application.
In this way, we expect to have better sampling distributions each time.

The sample size in each application is very small (50 configurations). We have

15

chosen such a small sample size in order to appreciate the evolution of the
accuracy of the sampling distributions in each of the 20 applications of the
algorithm. The behaviour of the dynamic algorithm is so good that choosing
a larger sample (for instance, with 2000 configurations) the difference among
the 20 runs of the algorithm would not be significant, because in the first
sample, the algorithm is able to find sampling distributions very close to the
optimal.

The accuracy of the estimated probability values is measured as the average
of the mean squared error of the estimated distribution for each non-observed
variable in the network (denoted by MSE in figures 3 and 4). The mean squared
error of an estimated distribution (p̂) with respect to the exact one (p) is
computed as

MSE =

√

∑

x

(p(x) − p̂(x))2 .

Due to the small sample size, the variance of the errors is high and therefore
we have repeated the series of applications a high number of times, computing
the average of the errors in all of them in order to reduce the differences due
to randomness.

The experiments have been carried out on a Pentium 4, 2.4 GHz computer,
with 1.5 GB of RAM and operating system Suse Linux 8.1. The Java virtual
machine used was Java 2 version 1.4.1. The results of the experiments are
reported in figures 3 and 4, where the error (MSE) is represented as a function
of the number of applications of the dynamic is algorithm (from 1 to 20).
The horizontal line is the optimum error: the error that is obtained when
the optimum sampling distribution is used (the variable elimination phase is
carried out without approximations) and with the same parameters as dynamic

is, i.e. sample size 50.

Since is algorithm uses always the initial sampling distributions without up-
dating them, and these were poorly approximated, its accuracy is far away
from the one shown by dynamic is. With similar computing times, the MSE
for is are 0.22 with the pedigree4 network and 0.14 with the munin2 network,
whilst the worst errors reached by dynamic is are 0.045 and 0.034 respectively.
Furthermore, these errors are constant in successive application of the algo-
rithm. In other words, algorithm is requires a much larger sample size to reach
the accuracy of dynamic is.

16

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 2 4 6 8 10 12 14 16 18 20

M
S

E

Experiment number

Dynamic I.S.
Optimum I.S.

Fig. 3. Evolution of the error in network pedigree4

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0 2 4 6 8 10 12 14 16 18 20

M
S

E

Experiment number

Dynamic I.S.
Optimum I.S.

Fig. 4. Evolution of the error in network munin2

4.1 Discussion of the Results

The experiments show that even with a very bad initial sampling distribu-
tion, dynamic is updates the approximate potentials towards potentials with a
behaviour close to the exact ones, just after simulating a few configurations.
The updating is very fast at the beginning, but afterwards the improvement
is very slow. This fact agrees with the results of experiments reported in [20],
in which it is shown that in general the mass of probability is concentrated in
some few configurations. When the sampling probability is updated for these
configurations, then the performance is good.

In order to achieve the accuracy of the exact distribution we need to update
a lot of configurations with little mass of probability. This is a slow process.
We have observed that initially the updating of a potential is very frequent,
but after a few iterations, the updating of a potential seldom occurs. Another

17

important fact is that updating is propagated: If we update a potential, this
new potential will be the one that will appear associated with the variables
that are deleted afterwards. Then, the new potential will be the one considered
when the condition for updating is evaluated. This usually gives rise to new
updates.

The updating of potentials does not convey an important increase in time.
The dynamic algorithm is slower than is during the first iterations, but very
quickly it becomes faster as the sampling distributions are more accurate and
the updating procedure is rarely called. In fact, the only important additional
step is the restriction of potentials in Hσ(i) and the combination of them.
The restriction of each of the potentials has a complexity proportional to
the number of variables in it. As the resulting potentials depend only on the
variable Xσ(i), the complexity of combination is proportional to the number
of cases of this variable.

5 Conclusions

We have introduced a modification over importance sampling algorithms for
probabilistic propagation in Bayesian networks, consisting of updating of the
sampling distribution taking as basis the configurations we are obtaining dur-
ing the simulation. This allows, with little additional time, for the obtainment
of good quality sampling distributions even if the initial ones are bad. Dy-
namic (or adaptive) sampling algorithms are not new within the context of
Bayesian networks. Perhaps the most known case is AIS-BN [6]. However, the
use of probability trees makes the convergence much faster (in experiments in
[6] thousands of configurations are considered).

In the future, we plan to modify the dynamic is algorithm to carry out the
updating in a first stage, changing to is afterwards. For this task, we should
determine a point in which updating no longer provides a significant improve-
ment because it occurs very rarely, for configurations of little probability which
therefore will appear in very few occasions afterwards. But perhaps, the most
important study will be to evaluate until which point it is worth making more
effort in the initial approximation or it is better to make a very bad ap-
proximation at the beginning leaving to the updating phase the responsibility
of computing better sampling distributions. The results of our experiments
indicate that surely the second option will be better, but more extensive ex-
periments comparing both options will be necessary to give a better founded
answer.

18

Acknowledgments

We are very grateful to Finn V. Jensen, Kristian G. Olesen and Claus Skaan-
ing, from the Decision Support Systems group at Aalborg University for pro-
viding us with the networks used in the experiments reported in this paper. We
are also very grateful to the anonymous referees for their valuable comments
and suggestions.

References

[1] R.R. Bouckaert, E. Castillo, and J.M. Gutiérrez. A modified simulation scheme
for inference in Bayesian networks. International Journal of Approximate
Reasoning, 14:55–80, 1996.

[2] A. Cano and S. Moral. Propagación exacta y aproximada con árboles de
probabilidad. In Actas de la VII Conferencia de la Asociación Española para
la Inteligencia Artificial, pages 635–644, 1997.

[3] A. Cano, S. Moral, and A. Salmerón. Penniless propagation in join trees.
International Journal of Intelligent Systems, 15:1027–1059, 2000.

[4] A. Cano, S. Moral, and A. Salmerón. Lazy evaluation in penniless propagation
over join trees. Networks, 39:175–185, 2002.

[5] A. Cano, S. Moral, and A. Salmerón. Novel strategies to approximate
probability trees in penniless propagation. International Journal of Intelligent
Systems, 18:193–203, 2003.

[6] J. Cheng and M.J. Druzdzel. AIS-BN: An adaptive importance sampling
algorithm for evidential reasoning in large Bayesian networks. Journal of
Artificial Intelligence Research, 13:155–188, 2000.

[7] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artificial Intelligence, 60:141–153, 1993.

[8] P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian
inference. Artificial Intelligence, 93:1–27, 1997.

[9] Elvira Consortium. Elvira: An environment for creating and using probabilistic
graphical models. In J.A. Gámez and A. Salmerón, editors, Proceedings of the
First European Workshop on Probabilistic Graphical Models, pages 222–230,
2002.

[10] R. Fung and K.C. Chang. Weighting and integrating evidence for stochastic
simulation in Bayesian networks. In M. Henrion, R.D. Shachter, L.N. Kanal,
and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 5, pages
209–220. North-Holland (Amsterdam), 1990.

19

[11] L.D. Hernández, S. Moral, and A. Salmerón. A Monte Carlo algorithm for
probabilistic propagation in belief networks based on importance sampling
and stratified simulation techniques. International Journal of Approximate
Reasoning, 18:53–91, 1998.

[12] C.S. Jensen, A. Kong, and U. Kjærulff. Blocking Gibbs sampling in very
large probabilistic expert systems. International Journal of Human-Computer
Studies, 42:647–666, 1995.

[13] U. Kjærulff. Reduction of computational complexity in Bayesian networks
through removal of weak dependencies. In Proceedings of the 10th Conference
on Uncertainty in Artificial Intelligence, pages 374–382. Morgan Kaufmann,
San Francisco, 1994.

[14] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society, Series B, 50:157–224, 1988.

[15] J. Pearl. Evidential reasoning using stochastic simulation of causal models.
Artificial Intelligence, 32:247–257, 1987.

[16] D. Poole. Probabilistic conflicts in a search algorithm for estimating posterior
probabilities in bayesian networks. Artificial Intelligence, 88:69–100, 1996.

[17] R.Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley (New York),
1981.

[18] A. Salmerón, A. Cano, and S. Moral. Importance sampling in Bayesian networks
using probability trees. Computational Statistics and Data Analysis, 34:387–
413, 2000.

[19] A. Salmerón and S. Moral. Importance sampling in Bayesian networks
using antithetic variables. In S. Benferhat and P. Besnard, editors, Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, pages 168–179.
Springer Verlag, 2001.

[20] E. Santos and S.E. Shimony. Belief updating by enumerating high-probability
independence-based assignments. In Proceedings of the 10th Conference on
Uncertainty in Artificial Intelligence, pages 506–513, 1994.

[21] E. Santos, S.E. Shimony, and E. Williams. Hybrid algorithms for approximate
belief updating in Bayes nets. International Journal of Approximate Reasoning,
17:191–216, 1997.

[22] R.D. Shachter and M.A. Peot. Simulation approaches to general probabilistic
inference on belief networks. In M. Henrion, R.D. Shachter, L.N. Kanal, and
J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 5, pages
221–231. North Holland (Amsterdam), 1990.

[23] N.L. Zhang and D. Poole. Exploiting causal independence in Bayesian network
inference. Journal of Artificial Intelligence Research, 5:301–328, 1996.

20

