
Learning näıve Bayes regression models with missing data using
mixtures of truncated exponentials

Antonio Fernández
Department of Statistics & Applied Mathematics

University of Almeŕıa
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Abstract

In the last years, mixtures of truncated exponentials (MTEs) have received much attention
within the context of probabilistic graphical models, as they provide a framework for
hybrid Bayesian networks which is compatible with standard inference algorithms and no
restriction on the structure of the network is considered. Recently, MTEs have also been
successfully applied to regression problems in which the underlying network structure is a
näıve Bayes or a TAN. However, the algorithms described so far in the literature operate
over complete databases. In this paper we propose an iterative algorithm for constructing
näıve Bayes regression models from incomplete databases. It is based on a variation of
the data augmentation method in which the missing values of the explanatory variables
are filled by simulating from their posterior distributions, while the missing values of the
response variable are generated from its conditional expectation given the explanatory
variables. We illustrate through a set of experiments with various databases that the
proposed algorithm behaves reasonably well.

1 Introduction

In the last years, mixtures of truncated expo-
nentials (MTEs) (Moral et al., 2001) have re-
ceived much attention within the context of
probabilistic graphical models, as they pro-
vide a framework for hybrid Bayesian networks
which is compatible with standard inference al-
gorithms and no restriction on the structure
of the network is imposed (Cobb and Shenoy,
2006; Rumı́ and Salmerón, 2007). Recently,
MTEs have also been successfully applied to re-
gression problems in which the underlying net-
work structure is a näıve Bayes (Morales et al.,
2007) or a tree augmented näıve Bayes (TAN)
(Fernández et al., 2007). However, the algo-

rithms described so far in the literature oper-
ate over complete databases. In this paper we
propose an iterative algorithm for constructing
näıve Bayes regression models from incomplete
databases. It is based on a variation of the
data augmentation method (Tanner and Wong,
1987) in which the missing values of the ex-
planatory variables are filled by simulating from
their posterior distributions, while the missing
values of the response variable are generated
from its conditional expectation given the ex-
planatory variables.

The rest of the paper is organised as follows.
The MTE model, which is the basis of our work,
is described in Sec. 2. We analyse the back-
ground behind existing regression models using
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MTEs in Sec. 3, and out of that analysis, we
describe our new algorithm that operates over
missing values. The behaviour of the algorithm
is tested through two experiments in Sec. 4.
The paper ends with the concluding remarks in
Sec. 5.

2 The MTE model

We denote random variables by capital letters,
and their values by lowercase letters. We use
boldfaced characters to represent random vec-
tors and their values. The support of the vari-
able X is denoted by ΩX. A potential of class
MTE (Moral et al., 2001) is defined as follows:

Definition 1. (MTE potential) Let X be a
mixed n-dimensional random vector. Let W =
(W1, . . . ,Wd) and Z = (Z1, . . . , Zc) be the dis-
crete and continuous parts of X, respectively,
with c + d = n. We say that a function
f : ΩX 7→ R

+
0 is a Mixture of Truncated Ex-

ponentials potential (MTE potential) if for each
fixed value w ∈ ΩW of the discrete variables
W, the potential over the continuous variables
Z is defined as:

f(z) = a0 +
m

∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(1)

for all z ∈ ΩZ, where ai, i = 0, . . . ,m and b
(j)
i ,

i = 1, . . . ,m, j = 1, . . . , c are real numbers. We
also say that f is an MTE potential if there is a
partition D1, . . . ,Dk of ΩZ into hypercubes and
in each Di, f is defined as in Eq. (1).

Definition 2. (MTE density) An MTE poten-
tial f is an MTE density if

∑

w∈ΩW

∫

ΩZ

f(w, z)dz = 1 .

A conditional MTE density can be specified
by dividing the domain of the conditioning vari-
ables and specifying an MTE density for the
conditioned variable for each configuration of
splits of the conditioning variables (Moral et al.,
2001; Moral et al., 2003).

Example 1. Consider two continuous variables
X and Y . A possible conditional MTE density
for Y given X is the following:

f(y|x) =































































1.26 − 1.15e0.006y

if 0.4 ≤ x < 5, 0 ≤ y < 13 ,

1.18 − 1.16e0.0002y

if 0.4 ≤ x < 5, 13 ≤ y < 43 ,

0.07 − 0.03e−0.4y + 0.0001e0.0004y

if 5 ≤ x < 19, 0 ≤ y < 5 ,

−0.99 + 1.03e0.001y

if 5 ≤ x < 19, 5 ≤ y < 43 .

(2)

3 Regression using MTEs

Assume we have a set of variables Y,X1, . . . ,Xn,
where Y is continuous and the rest are either
discrete or continuous. Regression analysis con-
sists of finding a model g that explains the re-
sponse variable Y in terms of the explanatory
variables X1, . . . ,Xn, so that given a configu-
ration of the explanatory variables, x1, . . . , xn,
a prediction about Y can be obtained as ŷ =
g(x1, . . . , xn). Previous work on regression us-
ing MTEs (Morales et al., 2007; Fernández et
al., 2007) proceeds by representing the joint dis-
tribution of Y,X1, . . . ,Xn as a Bayesian net-
work (näıve Bayes or TAN), and then using
the posterior distribution of Y given X1, . . . ,Xn

(more precisely, its expectation or its median)
to obtain a prediction for Y .

3.1 Constructing a regression model

from incomplete data

In this paper we will concentrate on the use of
the expectation to analyse the regression prob-
lem with missing data. Therefore, our regres-
sion model will be

ŷ = g(x1, . . . , xn) =

E[Y |x1, . . . , xn] =

∫

ΩY

yf(y|x1, . . . , xn)dy ,

where f(y|x1, . . . , xn) is the conditional density
of Y given x1, . . . , xn, which we assume to be of
class MTE.



A conditional distribution of class MTE can
be represented as in Eq. (2), where actually a
marginal density is given for each element of
the partition of the support of the variables in-
volved. Within the context of regression, the
distribution for the response variable Y given an
element in a partition of the domain of the ex-
planatory variables X1, . . . ,Xn, can be regarded
as an approximation of the true distribution of
the actual values of Y for each possible con-
figuration of the explanatory variables in that
region of the partition. This fact justifies the se-
lection of E[Y |x1, . . . , xn] as the predicted value
for the regression problem, because that value
is the one that best represents all the possible
values of Y for that region, in the sense that it
minimises the mean squared error between the
actual value of Y and its predictions ŷ, namely

mse =

∫

ΩY

(y − ŷ)2f(y|x1, . . . , xn)dy , (3)

which is known to be minimised for ŷ =
E[Y |x1, . . . , xn]. Therefore, the key point to
find a regression model of this kind is to ob-
tain a good estimation of the distribution of Y

for each region of values of the explanatory vari-
ables. For the complete data case, the problem
was studied in (Morales et al., 2007; Fernández
et al., 2007), but the estimation of MTE distri-
butions in the presence of missing data has not
yet been addressed, but in the more restricted
setting of unsupervised data clustering (Gámez
et al., 2006). In that case, the only missing val-
ues are on the class variable, which is hidden,
while the data about the features are complete.

Here we are interested in problems where the
missing values can appear in the response vari-
able as well as in the explanatory variables.
A first approach to solve this problem could
be to apply the EM algorithm (Dempster et
al., 1977). However, the application of the
methodology is problematic because the likeli-
hood function for the MTE model cannot be
optimised in an exact way (Rumı́ et al., 2006).
Also, the aim of the EM algorithm is to find
maximum likelihood estimates, which is not our
main goal. From the point of view of regression,

it is more important that the obtained models
provide low values for the mean squared error
rather than high likelihood.

Another way of approaching problems with
missing values is the so-called data augmenta-
tion (DA) algorithm (Tanner and Wong, 1987).
The advantage with respect to the EM algo-
rithm is that DA does not require to directly
optimise the likelihood function. Instead, it is
based on imputing the missing values by sim-
ulating from the posterior distribution of the
missing variables, which is iteratively improved
from an initial estimation based on a random
imputation. The DA algorithm leads to an
approximation of the maximum likelihood es-
timates of the parameters of the model, as long
as the parameters are estimated by maximum
likelihood from the complete database in each
iteration.

However, as we mentioned before, we are not
so interested in the maximum likelihood es-
timates of the parameters of the model, but
rather in reducing the mean squared error for
the estimates of Y . With this aim, we show in
the next proposition that using the conditional
expectation of Y to impute the missing values
instead of simulating values for Y (denoted as
YS in the proposition), reduces the mse even if
we simulate from the exact distribution of Y

conditional on any configuration on a region of
the values of the explanatory variables.

Proposition 1. Let Y and YS be two continu-
ous independent and identically distributed ran-
dom variables. Then,

E[(Y − YS)2] ≥ E[(Y − E[Y ])2] . (4)

Proof.

E[(Y − YS)2] = E[Y 2 + Y 2
S − 2Y YS ]

= E[Y 2] + E[Y 2
S ]− 2E[Y YS ]

= E[Y 2] + E[Y 2
S ]− 2E[Y ]E[YS ]

= 2E[Y 2]− 2E[Y ]2

= 2(E[Y 2]− E[Y ]2) = 2Var(Y )

≥ Var(Y ) = E[(Y − E[Y ])2] .



In the proof we have used that both variables
are independent and identically distributed, and
therefore the expectation of the product is the
product of the expectations, and the expected
value of both variables is the same.

3.2 The algorithm for learning a NB

regression model from incomplete

data

Our proposal consists of an algorithm which it-
eratively learns a näıve Bayes regression model
by imputing the missing values in each iteration
according to the following criterion:

• If the missing value corresponds to the re-
sponse variable, it is imputed with the con-
ditional expectation of Y given the values
of the explanatory variables in the same
record of the database, computed from the
current NB model.

• Otherwise, the missing cell is imputed by
simulating the corresponding variable from
its conditional distribution given the values
of the other variables in the same record,
computed from the current NB model.

As the imputation requires the existence of a
model, more precisely a NB in our context, for
the construction of the initial model we propose
to impute the missing values by simulating from
the marginal distribution of each variable com-
puted from the observed values. In preliminary
experiments we achieved better results using
this alternative rather than pure random initial-
isation, which is the standard way of proceed-
ing in data augmentation (Tanner and Wong,
1987). Another possibility is to simulate from
the conditional distribution of each explanatory
variable given the response, but the drawback is
that the estimation of the conditional distribu-
tions requires more data than the estimation of
the marginals, which can be problematic if the
amount of missing values is high.

Therefore, the algorithm proceeds by im-
puting the initial database, learning an initial
model and re-imputing the missing cells. Then,
a new model is constructed and, if the mean
squared error is reduced, the current model is

Algorithm 1: NB regression model from
incomplete data

Input: An incomplete database D for
variables Y,X1, . . . ,Xn.

Output: A näıve Bayes regression model
for response variable Y and
explanatory variables X1, . . . ,Xn.

for each variable X ∈ {Y,X1, . . . ,Xn} do1

Learn a univariate distribution fX(x)2

from its observed values in D.
end3

Create a database D′ from D by imputing4

the missing values for each
X ∈ {Y,X1, . . . ,Xn} sampling from fX(x).
Create a database Dt from D by discarding5

the records where Y is missing.
Learn a NB regression model M ′ from D′.6

Let srmse′ be the sample root mean7

squared error of M ′ computed using Dt

according to Eq. (5).
srmse←∞.8

while srmse′ < srmse do9

M ←M ′.10

srmse← srmse′.11

Create a new database D′ from D12

filling the missing values as follows:
for each variable X ∈ {X1, . . . ,Xn} do13

for each record z in D with missing14

value for X do

Obtain fX(x|z) by probability15

propagation in model M .
Impute the missing value for X16

by simulating from fX(x|z).
end17

end18

for each record z in D with missing19

value for Y do

Obtain fY (x|z) by probability20

propagation in model M .
Impute the missing value for Y with21

EfY
[Y |z].

end22

Re-estimate model M ′ from D′.23

Let srmse′ be the sample root mean24

squared error of M ′ computed using Dt.
end25

return M26



replaced and the process repeated until conver-
gence. As the mse in Eq. (3) requires the knowl-
edge of the exact distribution of Y conditional
on each configuration of the explanatory vari-
ables, we use as error measure the sample root
mean squared error, computed as

srmse =

√

√

√

√

1

m

m
∑

i=1

(yi − ŷi)2 , (5)

where m is the sample size, yi is the true value
of Y for record i and ŷi is its corresponding pre-
diction through the regression model.

The details are given in Alg. 1. Notice that,
in steps 6 and 23 the näıve Bayes model is learnt
from a complete database, and therefore the ex-
isting estimation methods for MTEs can be used
(Rumı́ et al., 2006; Morales et al., 2007).

4 Experimental evaluation

In order to test the performance of the proposed
method, we have carried out two experiments
over four databases. One database (mte50)
is synthetic, sampled from an MTE distribu-
tion, taken from (Morales et al., 2007). The
other three databases are available in the UCI
(Blake and Merz, 1998) and StatLib (StatLib,
1999) repositories. A description of the used
databases can be found in Tab. 1.

Database Size # Cont. # Disc.
bodyfat 251 15 0
boston 452 11 2
cloud 107 6 2
mte50 50 3 1

Table 1: A description of the databases used in
the experiments, with their size and number of
continuous and discrete variables.

The first experiment was oriented to test
whether the model behaves reasonably, in the
sense that the error is directly related to the
percentage of missing values. With that aim,
each database was divided at random into two
parts, one for training with a 70% of the records,
and one for test, with the remaining records.
Then, we randomly inserted missing values in
the training databases, ranging from a per-
centage of 10% to 50%. Previously, for each

database, we repeated 100 times the same oper-
ation, obtaining the curves displayed in Fig. 1.
The points correspond to the average srmse over
the same test data by the 100 models learnt, and
over each point there is a 95% confidence inter-
val for the mean. The shape of the curves shows
the expected behaviour, with the error increas-
ing, in general, as the rate of missing grows.

The graphs in Fig. 2 show the log-likelihood
corresponding to the learnt models as a func-
tion of the rate of missing values. Even though
the goal of our algorithm is not to find highly
likely models, the behaviour of the curves is still
coherent. As in Fig. 1, the points indicate the
average log-likelihood over the test database for
the 100 runs of the experiment, and the inter-
vals are 95% confidence intervals computed us-
ing the 100 measurements.

The second experiment was oriented to com-
pare the proposed model with the M5’ algo-
rithm. The M5’ algorithm (Wang and Witten,
1997) is an improved version of the model tree
introduced by Quinlan (Quinlan, 1992). The
model tree is basically a decision tree where the
leaves contain a regression model rather than
a single value, and the splitting criterion uses
the variance of the values in the database corre-
sponding to each node rather than the informa-
tion gain. We chose the M5’ algorithm because
it was the state-of-the-art in graphical models
for regression, before the introduction of MTEs
for regression in (Morales et al., 2007). We
have used the implementation of that method
provided by Weka 3.4.11 (Witten and Frank,
2005). Regarding the implementation of the NB
model, we have included it in the Elvira soft-
ware (Elvira Consortium, 2002), which can be
downloaded from http://leo.ugr.es/elvira.

In this experiment we have used 10-fold cross
validation to estimate the srmse. The miss-
ing cells in the databases where selected before
running the cross validation, therefore, in this
case both the training and test databases con-
tain missing cells in each iteration of the cross
validation. We discarded from the test set the
records for which the value of Y was missing.
If the missing cells in the test set correspond to
explanatory variables, algorithm M5’ imputes
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Figure 1: Sample root mean squared error as a function of the percentage of missing values.

them as the column average if the variable is
continuous, or the column mode if it is qualita-
tive (Witten and Frank, 2005). The NB model
does not require the imputation of the missing
explanatory variables in the test set, as the pos-
terior distribution for Y is computed by prob-
ability propagation and therefore, the variables
which are not observed are marginalised out.
The results of the second experiment can be
read in Tab. 2. The values displayed correspond
to the average srmse computed by 10-fold cross
validation. The result of the comparison is a
draw, with NB winning for databases bodyfat

and mte50 and M5’ winning in the other two
cases. Friedman’s test (Demsar, 2006) reports
no statistically significant differences between
both methods, with a p-value of 0.6831. This
result was to be expected, as it is consistent
with the comparison between models when they
are learnt from complete datasets. It is surpris-
ing the error obtained by M5’ for the database
bodyfat with 50% of missing, which is much

better than for lower rates of missing values.
We think that this can be due to randomness.

4.1 Results discussion

The experiments carried out suggest that the
proposed method behaves in a reasonable way.
The graphs corresponding to the first experi-
ment show a tendency of the error to increase
along with the rate of missing values, except in
some cases where it decreases around the 40%
of missing, probably due to overfitting, as men-
tioned in (Friedman, 1997) for the general case
of learning Bayesian networks. Also, we have
similar graphs showing how the likelihood of the
learnt models decrease as the rate of missing val-
ues increases.

Regarding the second experiment, the results
are coherent with the ones obtained for the com-
plete data case. However, we believe that our
proposal should be superior to M5’ in the case
of learning from missing data. The reason is
that we impute taking into account the condi-
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Figure 2: Loglikelihood of the learnt models as a function of the percentage of missing values.

tional distribution of the variable for which the
missing value is going to be imputed, whilst M5’
uses the marginal distribution. Our impression
is that the reason why the results in these ex-
periments are not even better for NB is the lim-
ited size of the used databases. Nevertheless,
the independence assumptions in the NB model
can be a limitation, and therefore more complex
structures, like the TAN, might lead to more
significant differences.

5 Concluding remarks

In this paper we have described a method
for learning regression models from incomplete
data based on the MTE distribution over a
näıve Bayes network structure. The algorithm
is supported by a result on how to minimise
the prediction error and the experiments carried
out, though somehow limited, show a reasonable
performance of the new algorithm, compared to
the robust M5’ scheme, which is not surpris-
ing, as M5’ is mainly designed for continuous

explanatory variables. The behaviour of the al-
gorithm is also good in terms of likelihood, even
though that aspect is not really relevant to the
aim of the method, which is to provide low pre-
diction error.

The algorithm presented here can be im-
proved in various ways, as for instance, by con-
sidering different manners of imputing the ex-
planatory variables.

We think that the ideas contained in this
work can be applied to other regression mod-
els like the TAN. However, the application to a
broader problem like learning a Bayesian net-
work of general purpose, is not straightforward,
since in this case the goal would be to maximise
a score based on the likelihood function, which
requires maximum likelihood estimates of the
parameters of the MTE model.
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