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Abstract. Software factories are a key element in Component-Based
Software Engineering due to the common space provided for software
reuse through repositories of components. These repositories can be de-
veloped by third parties in order to be inspected and used by different
organizations, and they can also be distributed in different locations.
Therefore, there is a need for a trading service that manages all avail-
able components. In this paper, we describe a matching process based on
syntactic and semantic information of software components. This match-
ing operation is part of a trading service which is in charge of generating
configurations of components from architectural definitions. With this
aim, the proposed matching allows us to evaluate and score the possible
configurations, thus guiding a search process to build the architectural
solution which best fulfills an input definition.
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1 Introduction

Software reuse is a topic of ongoing interest in the construction of applications,
especially in the component-based development. In this sense, Component-Based
Software Engineering (CBSE) provides mechanisms for building applications
from the union of pieces [5]. Certain types of component-based software systems
have the need of performing a dynamic management of the elements which can
be part of the applications [6]. In such cases, components are used for building
or adapting software applications at run-time. In this sense, when a new archi-
tectural solution is needed, the most appropriate elements are selected from a
set of available components. The selection of components involved in this pro-
cess requires the existence of accessible repositories which can be inspected and
queried in order to calculate the best possible configuration.

Repositories can be stored locally or can be intended for public use and shared
by different organizations in a distributed environment [15] [16]. This scenario
is usual in systems that build their applications using components developed
by third parties, for example, based on COTS (Commercial Off-The-Shelf ) [1].
Thus, these repositories constitute the existing market of components from which
the software is built. These repositories of components can be managed similarly
to a service directory, which are accessed by certain entities for offering services,
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and by other entities for making use of the available services. With this aim,
trading techniques are useful to facilitate the execution of export and import
operations of services [11]. Furthermore, trading mechanisms can be used to
solve component-based architectures from an architectural definition [10].

In this paper, we present a semantic matching mechanism applied in a search
algorithm for construing architectures of software components at run-time. This
operation is used as part of a trading service which manages repositories of
components developed by third-parties. Specifically, the managed elements are
coarse-grained COTS components, which can be specified by the DSL (Domain-
Specific Language) shown in Figure 1. This language distinguishes between two
levels of representation: abstract and concrete. Abstract components are used for
describing architectural definitions (i.e., the set of features that an architecture
must include) whereas concrete components are utilized for defining architectural
solutions (i.e., the characteristics of an architecture consisting on real software
components). Each specification is divided into four parts, with the aim of de-
scribing functional, extra-functional, packaging and marketing information.

The object implementing this trading service, named as Semantic Trader,
is in charge of building architectural solutions from the input information con-
tained in architectural definitions. With this regard, matching operations be-
tween abstract and concrete components are performed at run-time for scoring
and evaluating the different configurations of components that are taken into
account as possible solutions. Both, the matching operations and the trading
service are part of a methodology for adapting architectures at run-time [3, 4].

The semantic matching of the proposed trading service is based on the fol-
lowing assumption: the possible types that can be used for the description of
the inputs and outputs of the interfaces’ operations are restricted. Therefore, we
propose to create a namespace that groups all possible types, which are iden-

Fig. 1. Specifications of components



tified as trader:typeName. These types are described using an XML schema
syntax, and are referenced from the definition of interfaces, in the corresponding
WSDL [8] fragment of the model that contains the specification of the com-
ponent (see Figure 1). These types are equivalent to complex data types that
provide: (a) information about the name, the type and the cardinality of the
elements composing the complex data type, and (b) information about the op-
erations using this data type and if it is used as input or output. In addition to
the description of interfaces, semantic information is present in the evaluation of
components and architectures used in the heuristics of an A* search algorithm
used for generating the architectural solutions.

The remainder of this paper is organized as follows. Section 2 describes the
semantic matching approach used for building the architectural solutions at run-
time. Section 3 discusses some related work. Finally, Section 4 presents the con-
clusions and the future work.

2 Semantic Matching of the Trading Service

The final goal of the proposed trading service is to build architectural solutions at
run-time. This action is based on a semantic matching between the components
of an input architectural definition and the different configurations which are
evaluated in a search process. This search is performed using an A* algorithm. In
this type of algorithms, a graph represents the search space and its nodes identify
the states to advance in the search. The goal is to find the least-cost path to the
target node from a starting node. Cost calculation is made using an evaluation
function f(x) = g(x) + h′(x). Function g(x) represents a known distance (pre-
calculated) between the initial node and the current node. Furthermore, h′(x)
identifies the estimated value of an admissible heuristic (h(x)) concerning the
distance from the current node to the target node. In order to be admissible, the
heuristic should not overestimate the real value of the calculated distance.

This type of algorithm always find a solution if one exists. In addition, the
search process should not necessarily explore all nodes of the graph to find
this solution. The explored search space and, consequently, the complexity of
the algorithm depends on the quality of the heuristics. In the worst case, the
order is exponential, whereas the order of the best case (where the estimated
heuristic is close to the optimal case) is linear. Another reason for choosing this
type of algorithm is the run-time nature of the calculation of configurations.
The exploration path always moves towards a solution whose distance from the
target node is lower than the previous state. Therefore, we can keep a reference
to the last ‘best solution’ and make use of it if the trading service is forced to
finish the search (for example, due to time constraints or other restrictions).

In our proposal, each graph node represents a configuration of concrete com-
ponents, so that, a node is adjacent to another if its configuration differs in one
component. Thus, each iteration of the A* search algorithm is executed until
a configuration that meets the architectural definition is found. The Semantic
Trader is in charge of executing this algorithm, evaluating each configuration



and building the architectural solution. With this aim, the proposed mechanism
for generating the best concrete architecture is based on the following operations:
(a) select the candidates, (b) calculate the configurations, (c) close the configura-
tions, (d) calculate the configuration which are compliant with the architectural
definition, (e) apply a heuristic function for evaluating the configurations, and
(f) build the concrete architecture. Next, such operations are described.

Select the candidates: before the execution of the algorithm, candidate com-
ponents are grouped using the information of the functional part in order to limit
the search graph. Each group is related to the operations of a component from
the abstract architecture (architectural) and it contains those concrete compo-
nents which have at least one operation (from provided interface) in common.
Thus, graph nodes do not contains more than one component of the same group.

Calculate the configurations: the pseudocode of the developed algorithm is
shown in Figure 2. The algorithm starts from an initial node (source) which is
adjacent to every node created from the components of one group of candidates.
Those are the only existing nodes in the graph and the other nodes are created
dynamically when a new node is explored (line 25 of Figure 2). Furthermore,
new neighbors are created only if the resulting configurations do not exceed the
size of the abstract definition (line 22). These optimizations limit the search
space of the algorithm and reduce the number of nodes for which the evaluation
function f(x) is calculated. In addition, f(x) is used as a reference for managing
the priority queue that stores the set of ‘open’ nodes. From this priority queue,
the nodes explored in each iteration are selected (line 10).

The default value for g(x) is 1, since a node differs from its adjacent nodes
in the incorporation of one concrete component. However, after the evaluation
of the algorithm, there are situations (e.g., when the number of candidate com-
ponents is very high) in which the establishment of g(x) = 0, allows us to obtain
architectural solutions in less time. In such cases, the A* algorithm is equiva-
lent to greedy search algorithm. This variation means that implementation of
the algorithm does not ensure that the resulting solution is the optimal (i.e.,
the closest to the starting node). Nevertheless, other operations are responsible
for checking the algorithm not to add additional components to those defined
in the abstract architecture. Moreover, g(x) is configurable through the Admin
interface of the Semantic Trader.

The value of h′(x) represents the distance between the configuration of con-
crete components (associated with the current node) and the input abstract ar-
chitectural model (AAM). This distance must be 0 (lines 13 and 31) to consider
that a configuration is a possible architectural solution, and it is calculated from
the semantic information of the components’ functional interfaces. This decision
ensures (at least) the resolution of valid configuration regarding the functional
part, and in less time than if all components’ part are evaluated. Nevertheless,
when a configuration fulfilling the functional part is found, a full evaluation of
the configuration is performed by calculating the distance with respect to the
AAM and using all the component parts (including extra-functional informa-



1: function aStar(source, AAM)
2: openSet← {source}
3: pQueue← {source}
4: closeSet← ∅
5: discardedConfigs← 0
6: notDesiredCC ← ∅
7: firstSolution← false
8: bestNode← ∅
9: while openSet 6= ∅ do
10: currentNode← pQueue.poll()
11: if currentNode.getH() < bestNode.getH() then bestNode← currentNode
12: end if
13: if currentNode.getH() == 0 then
14: if firstSolution == false then firstSolution← true
15: end if
16: bestNode← currentNode
17: if evaluateCAM(currentNode,AAM) == true then return bestNode
18: else discardedConfigs← discardedConfigs + 1
19: end if
20: else
21: closeSet.put(currentNode)
22: if checkCAMSize(currentNode) == true then
23: if contains(notDesiredCC, currentNode) == false then
24: neighbors = ∅
25: neighbors← createNewAdajectNodes(currentNode)
26: for each neighbor in neighbors do
27: if contains(closeSet, neighbor) == false then
28: if contains(openSet, neighbor) == false then
29: h← heuristics(neighbor, AAM)
30: newNode← createNode(neighbor, h)
31: if h == 0 then . . . // (lines 14–19)
32: else
33: openSet.put(newNode)
34: pQueue.add(newNode)
35: end if
36: end if
37: end if
38: end for
39: end if
40: end if
41: end if
42: end while
43: return bestNode
44: end function

Fig. 2. Search algorithm to find the best configuration

tion). This evaluation also checks: (a) that configurations are closed, i.e., have
no components with additional mandatory required interfaces (with regard to
the abstract architecture); and (b) that configurations are compliant with the
abstract architecture, i.e., functionality is grouped in the components as deter-
mined by the architectural definition.

Apply a heuristic function for evaluating the configurations: the method
in charge of calculating the scores is heuristics (line 29 of Figure 2). This opera-
tion involved only the functional part of the components, distinguishing between
provided and required interfaces. In order to carry out this process, a ‘macro’
abstract component, containing all information pertaining to the functional spec-
ification of the abstract architecture, is created. Similarly, a particular ‘macro’
component, which brings together all the functional information of components
that are part of the current configuration, is created. In both cases, the union
of all provided and required interfaces which are mandatory is produced. These
new specifications are compared with the aim of calculating the distance between
both definitions (Figure 3).



Matching of provided and required interfaces (MPI and MRI, respectively)
is described by a decimal number between 0 and 1, where 0 indicates no match
and 1 means a complete match. This value is calculated by dividing the number
of matched by total existing operations in the abstract definition. Furthermore,
matching of functional part (MF ) is calculated as the average of the matching
scores from the two types of interfaces, as shown by the following expressions:

MF =
MPI +MRI

2
MPI =

matchedProvidedOp

acProvidedOp
MRI =

matchedRequiredOp

acRequiredOp

Evaluation function, which represents the distance between an abstract def-
inition and a concrete specification, is calculated from the obtained matching
value: h′(x) = 1 −matching. Beside this matching value, it is calculated some
specific information about which operations (and belonging to which interfaces)
of the configuration solve the operations of the functional interfaces described in
the abstract architecture. This data is essential for optimizing the performance
in the construction of the concrete architecture model, since the relationships
between components (and corresponding dependencies between interfaces) are
easily calculated from this information.

Moreover, as supplementary information for pairing analysis, other attributes
derived from the comparison are calculated: (a) what type of intersection is
produced between sets of interfaces, (b) who owns the largest set of provided and
required interfaces, (c) the total number of provided and required operations of
the configuration and the abstract architecture, (d) the total number of provided
and required interfaces. This data is produced as a result of the comparisons
made in the heuristic method (line 29 of Figure 2).

Closure of configurations and calculation of compliant configurations:
both operations are carried out in the evaluateCAM function (line 17 of Figure
2). As mentioned above, this method is invoked whenever a configuration is a
possible solution, i.e., a configuration whose value of the evaluation function is
zero (h′(x) = 0). In this function, a new evaluation of matching between the
abstract architecture and the current configuration is performed. In contrast to
the matching of the heuristics method (line 29), the comparison is made for each
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Fig. 3. Comparison between abstract architectures and configurations



component of the configuration independently, instead of performing an overall
comparison. Furthermore, this process of matching takes into account all parts
of the component specifications. Therefore, four values, corresponding to each
of the main parts of the specification of a component, are calculated:

— Functional information: scoring process results in the MF value described
for the heuristics method.

— Extra-function information: the total matching value is the average of the
matches of dependencies and properties parts. Additional information is also
calculated, as the type of intersection between the sets compared or their
relative size. Extra-functional information is divided in: a) Properties: firstly,
the matching operation checks which properties of the abstract component
are fulfilled in the concrete component. Secondly, the matching value is cal-
culated as a weighted sum of the three categories of existing properties (high,
normal or low priority). In this sense, the matching of properties with high
priority involves higher matching scores than meeting properties with a nor-
mal (or low) priority; b) Dependencies: for calculating this value of matching,
it is necessary to take into account the type of intersection between the sets of
dependencies. If there is no intersection, matching is 0.0, provided that both
sets are not empty (in which case matching is 1.0). If there is intersection,
there may be three possibilities: (1) that all the dependencies of the concrete
component (DCC) are within the set of abstract component dependencies
(DAC), (2) that DAC is within DCC, and (3) that no set is within the other.
Next, the expressions to calculate the value of matching (m), depending on
the three possibilities and taking into account the number of dependencies
in the intersection (matchedDep), are shown:

(1) m =
matchedDep

card(DAC)
(2) m =

matchedDep

card(DCC)
(3) m =

matchedDep

card(DAC) + card(DCC)

— Packaging information: the total matching value is the average of the matches
of implementation and location parts. Additional information as the type of
intersection between the sets or their relative size is also calculated.

— Marketing information: calculated scores represents if the components are
developed by the same entity and if same contact people are associated.

Each matching value is described by a decimal number between 0 and 1
(where 0 indicates no match and 1 means that the matching is complete). Thus,
total matching between two components is calculated from the matching of the
functional part (MF ), matching of the extra-functional part (MEF ), matching
of packaging information (MP ), and matching of marketing information (MM).
Figure 4 shows a graphical representation of calculated matching scores for three
concrete components. On the one hand, we can see that the component which
best meets the abstract definition is CC3. On the other hand, the representation
of the matching score of component CC1 has a larger area (determined by the
four points of the four components’ parts) than the component CC2. However,
depending on the importance we attach to each part, it can be considered as the
component CC2 meets better the abstract specification.



In this sense, matching score between two components is calculated from the
following expression: matching = MF ∗factorMF+MEF ∗factorMEF+MP ∗
factorMP +MM ∗factorMM . By default, the values for factorMF, factorMEF,
factorMP and factorMM are 0.8, 0.15, 0.025 and 0.025, respectively. Therefore,
we give more weight to functional and extra-functional properties. Nevertheless,
these weight can be modified at run-time using the Admin interface of the trading
service (if the condition that the sum of the factors is equal to 1 is satisfied). As
a consequence, it is possible to vary the weight given to each of the components’
parts for comparison operations.

Resuming the execution of evaluateCAM method, the closure operation ver-
ifies there are no additional dependencies (mandatory required interfaces) in
concrete components with respect to the abstract definition. With the aim of
checking the compliance with the architecture, it is verified that the configura-
tion is made up of the same number of components as the abstract definition.
When the trading process is set up, the minimum distances to consider that a
configuration meets architecture can be established. In addition, this operations
of the Admin interface can be used at run-time to modify the execution policies.
For example, it is possible to specify that a ratio of 0.95 for extra-functional
properties must be accomplished, thus determining that matching score of that
specific part cannot be less than this value. Those configurations that are not
closed or do not comply with the architecture, are discarded, continuing the
search algorithm until a valid solution is found.

There is another remarkable feature implemented in this process. A maxi-
mum value of time that should not be exceeded to obtain a valid solution can be
defined. Thus, when this limit is exceeded, the search algorithm stops, although
it has failed to reach the final solution. Nevertheless, although several solutions
have been discarded, it is highly probable that other configurations have been
found with a value of h′(x) equal to 0.0. Such configurations are valid solutions
in functional terms. Therefore, whenever a configuration of this type is found, a
reference to the corresponding node is saved, since it is the best node found up
to that point (line 16 of the algorithm shown in Figure 2) In the case that the

Fig. 4. Example of matching scores



algorithm must terminate without finding the final solution, this configuration
will be returned by the algorithm, to ensure the resolution of the architectural
definition (at least at the functional level).

Build the concrete architecture: once the final solution has been obtained,
the semantic trading service constructs the concrete architectural model associ-
ated with the configuration found by the A* search algorithm.

3 Related Work

In the construction of software architectures, selection and evaluation processes
are considered as key operations [14]. An example of work in which these pro-
cesses are addressed is the Off-The-Shelf Option (OTSO) [12]. In such approach,
a hierarchical evaluation criteria analyzes the characteristics of the components
based on other factors such as organizational infrastructure or the availability
of libraries. In [9], DesCOTS system proposes a methodology based on a quality
model which divides the characteristics of the components for their evaluation.

The work presented in [17] evaluates the components and establishes a rank-
ing in terms of performance and according to multiple criteria. In [7], authors
perform a management of dependencies between components using goal-oriented
models as the basis for component selection. A proposal for selecting COTS com-
ponents in large repositories is described in [2]. The approach makes use of the
‘integrator’ concept instead of mediation or trading services. In contrast to our
proposal, the approaches mentioned above do not support component selection
or calculation of configurations at run-time.

The trading described in [10] is the basis of the work. It presents a mediation
process for managing COTS components and building configurations at design-
time. In contrast, our approach is intended to build architectures at run-time
based on a semantic matching of components. Algorithms based on heuristic
functions are a suitable option for the exploration and evaluation of possible
solutions [13]. In addition, other type of algorithms, such as exhaustive search
algorithm for building configurations of components [4], results in exponential
execution orders because all the nodes in the search space must be evaluated.

4 Conclusion and future work

We presented an approach for matching component specifications at run-time.
This operation is part of a trading service in charge of dynamically building
architectures. This process is responsible for calculating the best architectural
solutions starting from their corresponding architectural definitions. In order to
address this resolution, matching operations are performed to compare compo-
nents and obtain scores describing the distance between: (a) an input architec-
tural definition and (b) each of component configurations which are possible
solutions of the architecture. Furthermore, these scores are calculated applying
an evaluation function that makes use of the syntactic and semantic information



described the component specifications. This evaluation function is utilized in
an A* algorithm as the heuristic to find the best configuration.

There are identified some lines as future work. We plan to extend the match-
ing information calculated from the comparison of two components or architec-
tures. In addition, we plan to evaluate alternative search algorithms for building
architectures at run-time. Furthermore, we plan to improve the performance of
the proposed algorithm, for example, parallelizing part of the execution. More-
over, we intend to develop some tools for querying and managing the information
of component specifications and their comparisons.
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