Measuring the quality of transformation
alternatives in software architectures evolution

Javier Criado!, Silverio Martinez-Ferndndez?,
David Ameller? and Luis Iribarne?

1 Applied Computing Group, University of Almerfa, Spain
{javi.criado,luis.iribarne}@ual.es
2 (QESSI Research Group, Universitat Politécnica de Catalunya, Barcelona, Spain
{smartinez,dameller}@essi.upc.edu

Abstract. Many today’s software systems need to be self-adapted at
run-time. Model transformation is a good approach to adapt the compo-
nent-based architecture of such software systems. However, existing model
transformation processes focus on the functionalities of systems, giving
less importance to the quality attributes. The goal of this study is to
improve model transformation processes by also considering quality at-
tributes in the generation and adaptation of component-based architec-
tures (i.e., driving the selection among many alternative model trans-
formations by software architecture metrics). Such metrics evaluate the
qualities of an architecture, such as flexibility and modifiability. This
paper provides some measures of quality for different transformation al-
ternatives and an example in the ENIA software.

Keywords: component-based software, architecture configuration, ar-
chitecture metrics, quality-driven transformation, model transformation.

1 Introduction

Nowadays, component-based software systems need to be self-adapted at run-
time. Previous studies have shown that model transformation is a good approach
to adapt the component-based architecture of software systems [4]. However, ex-
isting model transformation processes focus on the functionalities of systems,
giving less importance to the Quality Attributes (QA), also known as non-
functional requirements or -ilities. An exception are the quality-driven model
transformations described in [7], in which quality is introduced on the design of
the transformation process, or the proposed mechanisms related to the Dynamic
Software Product Lines (DSPLs) [8] considering some quality information.
This paper presents an approach to adapt and evolve component-based soft-
ware systems by measuring the quality of different transformation alternatives.
The goal of this study is to improve model transformation processes by also
considering QAs in the generation and adaptation of component-based architec-
tures. As an example, this paper will focus on flexibility metrics to show the
suitability of our QA-based transformation approach. We provide an exemplar

scenario for the ENTA (ENviromental Information Agent) software. ENIA is a
geographic information system whose User Interfaces (UI) are based on coarse-
grained components and need to be adapted at run-time depending on user
interactions, system requirements, or other evolution needs [1].

2 QA-based Transformation Approach

Depending on a system’s targeted QAs and goals (e.g., improve its flexibility,
maximize the modifiability, minimize the cost, or optimize the execution per-
formance), architectural design decisions can be oriented in different ways. In
this sense, decisions about the construction of software architectures, such as
component selection, may differ from each other. For this reason, it is important
to include QAs as part of the rationale to make such architectural decisions.
The use of specific QA metrics allows us to analyze different alternatives of com-
ponent configurations, and how each one of these alternative architectures is
related to the QA considered.

In order to demonstrate the feasibility of this approach, we focus on some
metrics related to the scenario of ENIA Uls. Nevertheless, these measurement
actions can be extended and applied to other UI applications offering its func-
tionality as a mashup or a dashboard, e.g., Geckoboard, Cyfe, and Netvibes.

In the ENIA scenario, we discussed the relevant QAs: flexibility, modifiabil-
ity, analyzability, performance, testability and consumed resources. Due to the
limitation of space, this paper focuses on the highest priority of ENIA: the flexi-
bility attribute [5] of the quality in use model of the ISO/TEC 25000 standard [6].
ENTA UIs (intended for managing geographic data, social network information,
third-party widgets, etc.) try to provide a friendly interaction by accomplishing
the following objectives: (a) user interfaces must be elastic and flexible with the
aim of allowing the modification of their structure; (b) users can reconfigure
and customize their interfaces, e.g., resizing the component displayed in the in-
terface, changing its position, adding new components, and removing existing
ones; and (c) user interfaces with a greater number of simple components are
preferred over interfaces with a lower number of complex components gathering
a large amount of functionality (i.e., the more pieces has an interface, the more
reconfiguration operations can be performed on it).

The metrics addressed to measure the flexibility of ENIA Uls are calculated
from the component and architecture specifications (i.e., information provided
by developers, architects, and experts) and used at run-time. This paper proposes
an initial stage of the work based on two simple derived metrics. Simple and
realistic metrics allow easier adoption in industry. The first metric is related
to the number of components. The second metric is related to the isResizable
property of the specification, which indicates whether a component can be resized
or not. Table 1 shows the information about both metrics (rc and rr).

The values obtained from these metrics are used for choosing the best alter-
native of architecture that can be constructed from a previous one. Both values
(re and rr) must be maximized and, therefore, a trade-off must be performed.

This information is intended to be used not only for guiding the design and
development of Uls, but also to be applied for supporting the adaptation of this
type of architectures at run-time [4].

Figure 1 shows an example of the measurement that can be performed in the
context of the ENTA system. Consider the initial UI provided by ENTA prototype
implementation [1]: a software architecture representing an UI made up from two
components, a map (M) for displaying geographical information layers, and a
component showing the messages of a social network account (T). From this UT,
if we want to incorporate a legend (L) and a list of layers (LL) related to the map,
it is possible to choose among three alternatives. In this example, the number in
labels represent different alternatives of the same component type (e.g., M1, M2,
and so on). M3 gathers the functionalities of M, L and LL (which is represented
by its three provided interfaces). C1 acts as a container delegating the interfaces
of M2, L2 and LL2. Moreover, M1, M3, T1, L1, and C1 are resizable whereas
M2, L2 and LL2 are not. The values obtained for r¢ and rr shows that A12 has
the best value of rc, but A13 has the best value of rr. Nevertheless, A11 has the
best value for the average of rc and rr, 0.775 instead of the 0.7 of A12 and A13.

The transformations to get these alternatives are different. The transforma-
tion for adapting A0 to A1l (T1) implies the addition of L1 and LL2 and their
connection to M1 whereas A13 is obtained from the replacement of M1 by M3
(i.e., performing T3 transformation). Therefore, if we intend to maximize the

Metric Description Derived Exp.
¢ Number of components n —
r Number of resizable components n —
m The highest ¢ from all architectural alternatives N mazx(ci, ..., cn)
rc Ratio of components according to m y rc=c/m
rr Ratio of resizable components y rr=r/c

Table 1. Example metrics for maximizing the flexibility in ENTA user interfaces

A0

M T
ik
T1 T2 T3
All A12 A13
M T
M I __to o T
° ° % ou [fo
M
we [Lot M3 [OL
| w2 [R P ouw
O olLL 1 on
1
rc = 4/5 = 0.80 Cc1 6|_|_ rc = 5/5 = 1.00 rc = 2/5 = 040
rm = 3/4 =075 o= 2/5 = 040 o= 2/2 =100

Fig. 1. Example of transformation alternatives

flexibility, T1 can be chosen as the best transformation operation for adapting
the architecture of this example scenario.

3 Further Considerations

It is well accepted in the software architecture community that QAs are the
most important drivers of architecture design [2]. Therefore, QAs should guide
the selection of the best transformation alternative, considering the synergies
and conflicts among them [3].

This research in progress aims to analyze whether considering QAs can im-
prove model transformation processes. To that end, we have proposed metrics
to measure the flexibility, and used them for the model transformation process.
It is important to note that the proposed metrics are just an indicator of a QA,
and their improvement must not be seen as a complete satisfaction of any QA.

Future work spreads in several directions: (a) proposing more metrics for
more QAs considering the complexity of direct and derived metrics: modifia-
bility (e.g., modular designs, dependability of components), analyzability (e.g.,
data about the errors of the components), performance (e.g., response time),
testability (e.g., testing components before applying the model transformation),
and consumed resources (e.g., memory); (b) considering constraints in the alter-
native solutions (e.g., regarding components’ technology, location, and provider);
(c) assisting software architects to reason about trade-offs on different quality
attributes, so that they can prioritize; and, (d) deriving and combining metrics.

Acknowledgments. This work was funded by the Spanish MINECO and the
Andalusian Government under TIN2013-41576-R and P10-TIC-6114 projects.

References

1. ACG. ENIA Poject — Development of an intelligent web agent of environmental
information, 2011. http://acg.ual.es/projects/enia/.

2. Ameller, D., Ayala, C., Cabot, J., Franch X.: Non-functional requirements in archi-
tectural decision making. IEEE Software. 30(2), 61-67 (2013)

3. Boehm, B.: Architecture-based quality attribute synergies and conflicts. In:
SAM’2015, pp. 29-34. IEEE Press (2015)

4. Criado, J., Rodriguez-Gracia, D., Iribarne, L., Padilla, N.: Toward the adaptation
of component-based architectures by model transformation: behind smart user in-
terfaces. Software: Practice and Experience 45(12), 1677-1718 (2015)

5. Herrera, M., Moraga, M.A., Caballero, L., Calero, C.: Quality in Use Model for Web
Portals (QiUWeP). In: ICWE 2010, LNCS 6385, pp, 91-101. Springer (2010)

6. ISO/IEC. ISO/IEC 25000. Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — Guide to SQuaRE (2014)

7. Loniewsli, G., Borde, E., Blouin, D., Insfran, E.: An Automated Approach for Archi-
tectural Model Transformations. In: Information System Development: Improving
Enterprise Comm., pp. 295-306. Springer International Publishing (2014)

8. Morin, B., Barais, O., Jézéquel, J.M., Fleurey, F., Solberg, A.: Models@QRun.time
to Support Dynamic Adaptation. Computer 42(10), 44-51 (2009)

