
An XQuery-based Model
Transformation Language?

Jesús M. Almendros-Jimenez1 and Luis Iribarne1
and Jesús J. López-Fernández2 and Ángel Mora-Segura2

1 University of Almeria (SPAIN) {jalmen, luis.iribarne}@ual.es
2 Autonomous University of Madrid (SPAIN) {jesusj.lopez, angel.moras}@ual.es

Abstract. In this paper we propose a framework for model transformation
in XQuery. Our proposal aims to provide the elements for using XQuery as
a transformation language. With this aim, our framework provides a mecha-
nism for automatically obtaining an XQuery library for a given meta-model.
Meta-models are defined as XML schemas, and the XQuery library serves to
query and create elements of an XML Schema. Transformations abstract from
XML representation, in the sense of, elements from meta-models are encapsu-
lated by XQuery functions. We have also studied how to use our framework for
model validation. Source and target models and transformations are validated
by considering constraints. The framework has been tested with a case study
of transformation in UML, where the XML-based representation of models is
achieved by the standardized language XMI.

1 Introduction
XQuery [6, 3] is a programming language proposed by the W3C as standard for the
handing of XML documents. XQuery allows to change the XML-based format of the
output of a query, against an XML input document. In spite of the main aim of XQuery
is querying XML documents, XQuery can be also used as XML transformation lan-
guage. XSLT [14], which was designed for XML transformations, can be encoded in
XQuery [4], however XSLT code is very verbose and hard to maintain.

Model Driven Engineering (MDE) is an emerging approach for software develop-
ment. MDE emphasizes the construction of models from which the implementation is
derived by applying model transformations, and provides a framework to developers
for transforming their models. Therefore, model transformation [8, 13, 19, 26] is a key
technology of MDE. There are many proposals of programming languages specifically
designed for transforming models: QVT [20, 16], ATL [12], ETL [15], RubyTL [23], VI-
ATRA2 [2], GReAT [1] and AGG [25], among others. Most of languages for describing
models (UML, BPMN, Petri Nets, WebML, etc) have an XML-based representation
(XMI [21], XPDL [24], PNML [11], IFML [7], etc). Thus, XML provides a framework
for handling many modeling languages, and XQuery can be used for describing trans-
formations in such languages. Usually, the XML-based representation of models is used
for exchanging models between applications. One can argue that the XML represen-
tation is a machine readable format, and transforming models via XQuery could be
a too low-level task. However, XQuery is equipped with high-level mechanisms (i.e.,

? This work was funded by the EU ERDF and the Spanish Ministry of Economy and Com-
petitiveness (MINECO) under Project TIN2010-15588, and the Andalusian Regional Gov-
ernment (Spain) under Project P10-TIC-6114.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143457986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. Almendros and L. Iribarne and J.J López and A. Mora
modules, higher-order functions) that could make that transformations abstract from
the XML representation.

In this paper we propose a framework for model transformation in XQuery. Our
proposal aims to provide the elements for using XQuery as transformation language. In
order to use XQuery as transformation language, the developer should be equipped with
mechanisms allowing the handling of different meta-models. Models in transformations
(source and target models) can conform to different meta-models. With this aim, our
framework provides a mechanism for automatically obtaining an XQuery library of
functions for each meta-model. This library allows query the given meta-model and to
create elements of the meta-model. Meta-models are defined as XML schemas, and the
XQuery library is designed for handling an XML schema.

XQuery libraries for meta-models can be used with two ends. Firstly, to define
transformations between models. Transformations abstract from XML representation
in the sense of elements from meta-models are encapsulated by XQuery functions.
Querying and creation of elements from meta-models are achieved by calling suitable
XQuery functions. Transformation code uses XQuery constructions, that is, for and
let to traverse source models and return to generate target models, and where to
express applicability conditions of the transformation. In addition, union operator is
used to decompose a transformation into several transformation cases. In addition, the
transformation can make use ofmodules and auxiliary functions for particular subtasks.

Secondly, the XQuery library is used for defining transformation properties (i.e.,
constraints). We have also studied how to use our framework for model validation,
in particular, how to validate source and target models, and transformations. Source
and target models and transformations are validated by considering constraints. The
framework is also used for syntactic validation of source and target models. Syntactic
validation is achieved by using XML schema-based validation. Meta-models of source
and target models are defined as XML schemas, and therefore syntactic validation of
them is equivalent to schema validation.

In order to describe a model transformation in our framework, we have to follow
the next steps.

1. Definition of XML Schemas of Source and Target Models. We have to
define the meta-models of the source and target models. Meta-models have to be
described by XML Schemas.

2. Generation of the XQuery Library. From XML schemas of source and target
meta-models, an XQuery library is automatically generated.

3. Validation of Source Models. Source models are syntactically validated from
XML Schemas of source meta-models. An XML Schema validator is used for this
step. In addition, a set of constraints are described making use of the XQuery
library of the source meta-model. Source models are validated w.r.t. constraints.
An XQuery interpreter is used for this step.

4. Definition of the Transformation. The XQuery library of the source and target
meta-models can be used to define the transformations. An XQuery interpreter is
used for this step.

5. Execution of the Transformation. The transformations are executed obtaining
target models. An XQuery interpreter is used for this step.

6. Validation of Target Models. Target models are syntactically validated from
XML Schemas of target models. An XML Schema validator is used for this step.
In addition, a set of constraints are described making use of the XQuery library of
the target meta-model. Target models are validated w.r.t. constraints. An XQuery
interpreter is used for this step.

An XQuery-based Model Transformation Language 3
7. Cross Validation of Source and Target Models. A set of cross constraints are

described making use of the XQuery library of the source and target meta-models.
Source and target models are validated w.r.t. constraints. An XQuery interpreter
is used for this step.

The advantages of the approach are the following. Firstly, we can handle any meta-
model having an XML representation. In order to handle a given meta-model is only
it is required to have the corresponding XML Schema. Secondly, we use a well-known
programming language (XQuery) to write transformations. There are many implemen-
tations of XQuery range from academic to commercial ones (see http://www.w3.org/
XML/Query/). Thirdly, the XQuery language provides a type system, compilation and
run-time errors, a module system, higher order programming, among others. XQuery
can handle in most implementations large XML documents, and therefore in our pro-
posal large models. Finally, it is worth observing that n-m transformations can be
defined making use of natural join operations in database query languages.

The framework has been tested with a case study of transformation in UML, where
the XML-based representation of models is achieved by the standardized language
XMI. Nevertheless, our framework is not specifically designed for UML. We have to
provide the XML schema of XMI in order to transform UML models. The case study
of transformation we show is the well-known Entity-relationship model to Relational
model, in which source and target models are class diagrams. Thus, we have to provide
specifically the XMI Schema of class diagrams.

The implementation of the approach has been achieved by using the BaseX in-
terpreter [10] of XQuery. We have developed a library generator from XML Schemas.
The library generator has been implemented in XQuery. It takes an XML Schema as
input (the XML Schema is an XML document) and generates XQuery code in plain
text (as output document). The XQuery code is an XQuery library providing a set of
XQuery functions to handle the XML Schema. Basically, each item of the XML Schema
is handled by two main functions, one to query the item from an XML document, and
one to create the item. Moreover, BaseX is also used in our framework to validate
models with respect to XML Schemas (i.e., meta-models) as well as to validate models
with respect to constraints. Finally, BaseX is also used to edit transformations and
execute transformations. BaseX assists in the development of transformations. BaseX
provides error messages from XML Schema validation. BaseX also helps in the devel-
opment of code of transformations, by providing compilation error messages due to
syntactic bugs and run-time error messages when the execution is accomplished. For
designing XML Schemas we have used the UML Visual Paradigm tool which is able
to translate a stereotyped UML class diagram into an XML Schema. The use of UML
VP and BaseX is not actually required in our framework. The implementation can be
downloaded from http://indalog.ual.es/mdd together with the case study (models,
meta-models, validation properties, etc).

The structure of the paper is as follows. Section 2 will describe the use of XQuery as
transformation language. Section 3 will show the validation of transformations. Section
4 will summarize related work. Finally, Section 5 will conclude and present future work.

2 Model Transformation with XQuery
Now, we describe the steps to be followed in our framework with a case study. The case
study is a well-known transformation from an entity-relationship to relational model.

The model A of Figure 1 represents the modeling of a database. We will call this
kind of modeling “entity-relationship” modeling of a database in contrast to the model
B of Figure 2 which will be called “relational” modeling of a database.

4 J. Almendros and L. Iribarne and J.J López and A. Mora

Fig. 1. Entity-relationship modeling of the Case Study
model-A

DB_Students DB_Courses

 id_student : int
 name : String
 old : int

Student

id_student : int

 id_course : int
 title : String
 credits : float

Course

id_course : intis_registered

register1..*

0..*

the_students

1

0..* the_courses

1

0..*

Fig. 2. Relational modeling of the Case Study
model-B

<<row>>
Course

 type : float

<<column>>
credits

 type : int

<<column>>
id_course

 type : int

<<column>>
id_student

 type : String

<<column>>
name

 type : int

<<column>>
old

<<table>>
register

<<row>>
registerCourse

 type : int

<<column>>
registerCourseid_course

 type : int

<<column>>
registerCourseid_student

<<row>>
Student

<<table>>
the_courses

<<table>>
the_students

 type : String

<<column>>
title

key1

1

col1

1
col col1

1

1

1

col1

1

foreign 1

1

key 1

1

line

1

0..*
line

1

foreign1

0..*

1

line

1

0..*

The model A of Figure 1 can be summarized as follows. Data (i.e. entities) are
represented by classes (i.e., Student and Course), including attributes. Stores are de-
fined for each data (i.e., DB_Students and DB_Courses); stores are composed of data,
therefore specifying a composition relationship between store and data. The store is
responsible for storing the objects of a certain data. Stores are unique for each data.
Relations are represented by associations and relation names are association names.
Besides, roles are defined (i.e., the_students, the_courses, is_registered and register)
for each relation end. Data attributes are class attributes. The type of each attribute is
the type of the class attribute. Each data has (one or more) key attributes. Relations
can be adorned with role qualifiers and navigability. Qualifiers are used to specify the
key attributes of each data being foreign keys of the corresponding relation, therefore
qualifiers have to be selected from the key attributes of the corresponding data.

In model B of Figure 2 Tables are composed of rows, and rows are composed of
columns. Stereotypes << table >>, << row >> and << column >> are used for
them. Furthermore, line is the role of the rows in the table, key is the role of the key
attributes in rows, foreign is the role of the foreign keys in rows, and col is the role of
non keys and non foreign keys in rows.

Figure 3 represents the meta-model of model A 3 . In the meta-model A, DB_Stu-
dents and DB_Courses are instances of the class store, while Student and Course are
instances of the class data, and the attributes of class Student and class Course are in-
stances of the class data_attribute. data_attribute represents id_course, title, etc. hav-
ing a boolean attribute key to represent key attributes. the_students and the_courses
are values of attribute container, and register, is_registered are roles, each one with
a min and max values representing the cardinality, and navigable which is a boolean
value. The attribute data of role is used as cross reference in the the meta-model (of

3 Let us observe that our framework works with XML format (models and meta-models).
Nevertheless, we use UML class diagrams to graphically describe them.

An XQuery-based Model Transformation Language 5
type IDREF), and represents the association end of the role. Figure 4 represents the
meta-model of model B. In the meta-model B, tables and rows of the target model are
instances of the corresponding classes, and the same can be said about key, col and
foreign classes.

Fig. 3. Meta-model of the Source Model
meta-model-A

<<XSDattribute>> -name : String
<<XSDattribute>> -type : String

<<XSDelement>>
role_qualifier

<<XSDattribute>> -name : String

<<XSDelement>>
relation

<<XSDattribute>> -name : String
<<XSDattribute>> -navigable : boolean
<<XSDattribute>> -min : String
<<XSDattribute>> -max : String
<<XSDattribute>> -data : IDREF

<<XSDelement>>
role

<<XSDattribute>> -name : String
<<XSDattribute>> -type : String
<<XSDattribute>> -key : boolean

<<XSDelement>>
data_attribute

<<XSDattribute>> -name : String
<<XSDattribute>> -container : String

<<XSDelement>>
data

xmi

<<XSDattribute>> -name : String

<<XSDelement>>
store

<<XSDelement>>
meta_model_A

<<XSDattribute>> <<ref>> -id : ID
<<XSDattribute>> <<ref>> -value : String
<<XSDattribute>> <<ref>> -type : QName

<<XSDcomplexType>>
XMI_Item

data
1

data_attribute *

store

*

relation*
role *

role_qualifier
*

Fig. 4. Meta-model of the Target Model
meta-model-B

<<XSDattribute>> -name : String
<<XSDattribute>> -type : String

<<XSDelement>>
column

<<XSDattribute>> -name : String
<<XSDattribute>> -type : String

<<XSDelement>>
foreign

<<XSDattribute>> -name : String
<<XSDattribute>> -type : String

<<XSDelement>>
key

<<XSDattribute>> -name : String

<<XSDelement>>
row

<<XSDattribute>> -name : String

<<XSDelement>>
table

xmi

<<XSDattribute>> <<ref>> -id : ID
<<XSDattribute>> <<ref>> -value : String
<<XSDattribute>> <<ref>> -type : QName

<<XSDcomplexType>>
XMI_Item

<<XSDelement>>
meta_model_B

is_col*

consists_of

*

has*

is_key
* is_foreign*

In both meta-models, we make use of a class called XMI_Item from the XMI
Schema providing an id, value and type for each XMI Item. It is specific to the case
study, which is an XMI based transformation. In addition, in the Visual Paradigm tool,
several stereotypes: XSDelement, XSDattribute and XSDcomplextype are used to represent
XML Schemas. The stereotype ref is used to represent references on XML Schemas.

Our framework is based on the automatic generation of an XQuery library for any
XML Schema. Basically, the XQuery library consists of a set of XQuery functions that
query and create items of an XML Schema (items xsd:element and xsd:complextype).
With this aim, we have defined two abstract XQuery functions as follows:

declare function rlib:readsubitem($model as node()*,$nameitem as xsd:QName ,$attributes as xsd:string*,$values as xsd:
string *)

{
for $elements in $model /* where node -name($elements)=$nameitem and

(every $att in $attributes satisfies rlib:cond($elements ,$att ,$values[index -of($attributes , $att)]))
return $elements
};

declare function clib:createitem($name as xsd:QName , $atts as xsd:string*, $values as xsd:string*,$body as node()*)
{

element {$name }{(for $par_n in $atts return (attribute {$par_n }{ $values[index -of($atts , $par_n)]})),$body}
};

6 J. Almendros and L. Iribarne and J.J López and A. Mora
The function readsubitem, reads from an XML document ($model), the items of a

certain name ($nameitem). In other words, readsubitem queries the nodes of a certain
tag. The function has two additional parameters: $attributes and $values, that restrict
the search to tags with attributes of a certain value. Basically, the call to the sentence
rlib:readsubitem (model, nameitem, (attribute1, . . . , attributen), (value1, . . . , valuen))
corresponds to the XPath expression given by model/nameitem [attribute1 = value1 and

. . . and attributen = valuen]. Let us remark that we have to use an XQuery function
for this task given that the number of attributes (and values) varies, and it cannot be
simulated with XPath.

The function createitem creates an item of name $name with $atts whose value is
given in $values. Additionally, the item can include a $body as subitem. Basically, a call
to clib:createitem(name, (attribute1, . . . , attributen), (value1, . . . , valuen), body) gen-
erates < name attribute1 = value1, ..., attributen = valuen > body < /name >

These two functions serve as the basis of the automatically generated XQuery li-
brary for any XML Schema. The XQuery library for a particular XML Schema contains
functions to query and create XML items following the XML Schema.

For instance, for the XML-Schema of Figure 3, the XQuery library contains the func-
tions read_store_of_meta_model_A , read_data_of_store, read_data_attribute_of_data,
etc. to query the elements of the XML document, as well as functions create_store,
create_data, create_data_attribute, etc. to create the elements of the XML document.
They are defined as follows:
declare function mmAl:read_store_of_meta_model_A($model as node()*,$atts as xsd:string*, $values as xsd:string *)
{

rlib:readsubitem($model ,QName(’http ://xtl.org/mmA ’,’mmA:store ’), $atts , $values)
};
declare function mmAl:create_store($xmi_id as xsd:string , $xmi_value as xsd:string ,$xmi_type as xsd:string , $name as

xsd:string , $body as node()*)
{

clib:createitem(QName(’http ://xtl.org/mmA ’,’mmA:store ’) ,(QName(’http :// xtl.org/xmi ’,’xmi:id ’),
QName(’http :// xtl.org/xmi ’,’xmi:value ’),QName(’http :// xtl.org/xmi ’,’xmi:type ’),
QName(’’,’name ’)),($xmi_id ,$xmi_value ,$xmi_type ,$name), $body)

};

Basically, the functions for querying an element call to the previously defined
readsubitem, and the functions for creating an element calls createitem. The functions
for creating elements include as parameters the attributes of the XML Schema.

For instance, data_attribute in the XML Schema of Figure 3 has as attributes:
name, type and key and, additionally, three attributes inherited from XMI_Item:
xmi_id, xmi_value and xmi_type, which have been included as parameters of the
function mmAl:create_data_attribute.

The XQuery library is automatically generated from the XML Schema thanks to
an XQuery program we have developed that traverses an XML Schema and generates
for each xsd:element in an xsd:choice two functions (one for querying and another for
creation). It generates parameters for each xsd:attribute and xsd:complextype of an
xsd:extension.

We have assumed in the case study that models are XMI-based models. This is
the reason why the elements of the meta-models inherit from XMI_Item. It has as
consequence that each element is identified by the attribute xmi:id. This identifier is
used in meta-models for cross references (see attribute data of class role in Figure 3).
In other words, some meta-model links are defined in XMI-based models, and they are
represented by xmi:id values.

With this aim, the base library includes a function called readlink. The readlink
function retrieves from $model the elements whose xmi:id has the value of $nameatt
of the item $element. The readlink function is used in the (automatically generated)
function read_data_of_role. They are defined as follows:

An XQuery-based Model Transformation Language 7

declare function rlib:readlink($model as node()*,$element as node(),$nameatt as xsd:string)
{

for $pointer in (for $atts in $element/@* where name($atts)=$nameatt return data($atts))
return for $items in $model //* where data($items/@xmi:id)=$pointer

return $items
};
declare function mmAl:read_data_of_role($model as node()*,$element as node())
{

rlib:readlink($model , $element , ’data ’)
};

The same could happen in other meta-meta-models, that is, a certain attribute is
used for cross references. In such a case, the function readlink can be easily modified
without affecting our implementation.

Now, the problem of model transformation is how to transform a class diagram
of the type A (like Figure 1) into a class diagram of type B (like Figure 2). The
transformation is as follows.

The transformation generates two tables called the_students and the_courses each
including three columns that are grouped into rows. The table the_students includes
as columns for each student the attributes of Student of Figure 1. Key columns are key
attributes. The same can be said for the table the_courses. Given that the association
between Student and Course is navigable from Student to Course, a table of pairs,
called register, is generated to represent the assignments of students to courses, using
registerCourse as the name of the row. The columns registerCourseid_student and
registerCourseid_course taken from role qualifiers, play the role of foreign keys.

The transformation can be considered as a transformation of elements of meta-
model A (see Figure 3) into elements of meta-model B (see Figure 4). Such a trans-
formation has to query elements of meta-model A and create elements of meta-model
B. Therefore we can use the XQuery libraries for meta-models A and B, in particular
those functions for querying A and creating B. The code of the transformation is as
follows.
<meta_model_B xmlns ="http ://xtl.org/mmB" xmlns:xmi="http :// xtl.org/xmi" xmlns:mmB="http :// xtl.org/mmB">
{
let $model := doc($file)/mmA:meta_model_A
let $body := ((
for $s in mmAl:read_store_of_meta_model_A($model ,() ,()),

$p in mmAl:read_data_of_store($s ,() ,())
return (

let $attrs := mmAl:read_data_attribute_of_data($p ,() ,())
let $columns := er:columns($attrs)
let $id_has := clib:create_id (($s/@xmi:id,$p/@xmi:id , "has"))
let $id_table := clib:create_id (($s/@xmi:id ,$p/@xmi:id, "table"))
let $r:= mmBl:create_row($id_has ,"","mmB:has",$p/@name ,$columns)
let $t:= mmBl:create_table($id_table ,"","mmB:table",$p/@container , $r)
return $t

)
)
union
(
for $s in mmAl:read_relation_of_meta_model_A($model ,() ,()),

$p in mmAl:read_role_of_relation($s ,() ,()) where (($p/@navigable = "true") and ($p/@max = "*"))
return (
let $data := mmAl:read_data_of_role($model ,$p)
let $columns := er:foreign_keys($model ,$s,$p)
let $id_has := clib:create_id (($s/@xmi:id,$p/@xmi:id , "has"))
let $id_table := clib:create_id (($s/@xmi:id ,$p/@xmi:id, "table"))
let $r:= mmBl:create_row($id_has ,"","mmB:has",concat($p/@name ,$data/@name), $columns)
let $t:= mmBl:create_table($id_table ,"","mmB:table",$p/@name ,$r)
return $t

)))
return $body
}
</meta_model_B >

Basically, the XQuery code of the transformation generates an XML document
conforming to the XML Schema of meta-model B. Therefore the result is an XML
document whose root label is meta_model_B and contains a $body including two kinds
of tables: those representing the_students and the_courses, and those representing
register. In other words, the XQuery code represents two cases and they are joined
by the union operator of XQuery.

8 J. Almendros and L. Iribarne and J.J López and A. Mora

Fig. 5. Schema of the Whole Transformation

Model	 A	 Metamodel	 A	
Schema	

XMI	 of	 	
Model	 A	 XMI	 Schema	

er2rl	

mm2er	

export	

Metamodel	 B	
Schema	

XMI	 of	 	
Model	 B	

VP	 project	

Model	 B	

rl2mm	

import	

VP	 project	
conforms	 to	

transforma<on	
VPP	 mapping	

XMI	 Schema	

In both cases a for expression is used to traverse the meta-model A, the let expres-
sion retrieves some elements of the model, the where expression describes applicability
conditions, and the return expression builds the elements of the meta-model B.

In the case study, the code creates tables, rows and columns thanks to the use of
creation functions of the library for meta-model B. A central element of the transfor-
mation code is the use of an auxiliary function, called create_id for creating identifiers
of XML nodes.

In order to simplify the code some auxiliary functions have been implemented, for
instance, functions columns and foreign_keys which, respectively, compute the columns
of a table, in the first case, and the foreign keys in the second case. The code of the
first auxiliary function is as follows.
declare function er:columns($attrs as node()*)
{
for $attr in $attrs return

let $idkey := clib:create_id (($attr/@xmi:id ," is_key "))
let $idcol := clib:create_id (($attr/@xmi:id ," is_col "))
return
if ($attr/@key="true")
then mmBl:create_key($idkey ,"","mmB:key",$attr/@name ,$attr/@type ,())
else mmBl:create_column($idcol ,"","mmB:is_col",$attr/@name ,$attr/@type ,())

};

We have presented how to encode the transformation from meta-model A to meta-
model B. However, the case study of transformation involves two additional transforma-
tions, that is, from the UML meta-meta-model to meta-model A, and from meta-model
B to the UML meta-meta-model. In other words, the whole transformation takes an
XMI file with the model A and transforms model A into an XMI file with model B.
Thus, the XMI representation of model A has to be transformed into the XML repre-
sentation of meta-model A, and also the XML representation of meta-model B has to
be transformed into the XMI representation of model B (see Figure 5, where mm2er
and rl2mm are the additional transformations, and er2rl in the main transformation).
Direct transformations from XMI to XMI are harder to encode.

3 Validation of the Transformation
Now, we would like to show how we can describe validation properties on transfor-
mations. Source and target models and transformations are validated by considering
constraints. Moreover, we have considered two kinds of properties to be validated: syn-
tactic (SynR) and semantic requirements (SemR). In addition, we have considered that
some requirements are required to have well-formed models (WR), while some of them
are required by the transformation (TR). We can see these requirements in Table 1.

For instance, (v2) requires that each data has a unique key attribute. This is a
semantic requirement. Key attributes are attributes having key set to true, and the

An XQuery-based Model Transformation Language 9

Table 1. Model validation: properties

SemR SynR WF TR
Source Model Constraints

(v1) All attribute names of a data are distinct X - X -
(v2) Each data has a unique key attribute X - - X
(v3) Each attribute is associated to exactly one data - X X -
(v4) Each data is contained in exactly one store - X X -
(v5) All data have distinct names X - - X
(v6) All data have distinct containers X - - X
(v7) Each qualifier is associated to exactly one role - X - X
(v8) All qualifier names of a relation are distinct X - - X
(v9) All qualifiers are key attributes X - X -
(v10) Each relation has two roles - X X -
(v11) Each role is associated to exactly one relation - X - X
(v12) Each role is associated to exactly one data - X - X
(v13) All role names of a data are distinct X - - X
(v14) Each store is associated to exactly one data - X X -

Target Model Constraints
(v15) All column names of a row are distinct X - X -
(v16) All foreign keys of a row are keys of another row X - X -
(v17) Each table is associated to exactly one row - X X -
(v18) Each row is associated to exactly one table - X X -
(v19) Each key is associated to exactly one row - X - X
(v20) Each column is associated to exactly one row - X - X
(v21) Each foreign key is associated to exactly one row - X - X
(v22) All table names are distinct X - X -
(v23) All row names are distinct X - X -
(v24) All rows have exactly one key - X - X
(v25) All rows have either all keys and ‘cols’ or all foreign keys X - - X

Cross Constraints
(v26) Key and col names and types are names and types of data ‘atts’ X - - X
(v27) Table names are either container names or role names X - - X
(v28) Row names are data names or ‘concats’ of role and data names X - - X
(v29) Foreign key names are concatenations of role, data and key names X - - X

existence of a unique key attribute cannot be expressed by the XML Schema. Moreover,
this requirement is a constraint on the source model because key attributes are used
as foreign keys in the target model. Case (v4) is a syntactic requirement on well-
formed models: each data is contained in exactly one store. It is not needed in the
transformation and can be expressed by the XML Schema with a cardinality constraint.
Cases (v5), (v6), (v8) and (v13) are related to naming of elements of source models,
and therefore they are semantic requirements. They are required by the transformation:
data and container names are used for naming tables and rows in the target model,
while role and qualifier names (concatenated with data names) are also used for naming
rows and foreign keys.

In the target model tables, rows, columns, keys and foreign keys are not shared
(cases (v15), (v22) and (v23)). Case (v16) is a semantic requirement that describes the
relationship between foreign keys and keys in a well-formed target model. Case (v25) is
required by the transformation which assigns either keys and columns or foreign keys to
rows. Finally, cases (v26)-(v29) describe the relationship between names of the target
model and names of the source model.

It is worth observing that the requirements about source and target models in
isolation are not enough for the soundness of the transformation. For instance, source
and target models can both have keys, but a transformation requirement is needed: the
keys of the target models are the keys of the source model.

Now, we can see how to validate source models in our approach. Firstly, syntactic
requirements (SynR) can be validated by XML schema validation. Fortunately, BaseX
is equipped with validate:xsd-info which is a built-in function that validates an XML
document against an XML Schema and provides error messages. Secondly, semantic
requirements (SemR) can be validated by XQuery boolean expressions that use the

10 J. Almendros and L. Iribarne and J.J López and A. Mora
XQuery library. For instance, (v2) “Each data has a unique key attribute” can be
checked as follows:
let $model := doc($file)/mmA:meta_model_A
return every $stores in mmAl:read_store_of_meta_model_A($model ,() ,())

satisfies (every $data in mmAl:read_data_of_store($stores ,() ,())
satisfies (let $attr := mmAl:read_data_attribute_of_data($data ,(" key") ,("true"))

return (count($keys) = 1))

The same can be said for the validation of target models. They can be syntactically
validated by the XML Schema, and semantically validated by XQuery boolean expres-
sions. For instance, (v16) “All foreign keys of a row are keys of another row” can be
checked by the following expression:
let $model := doc($file2)/mmB:meta_model_B
return

every $table in mmBl:read_table_of_meta_model_B($model ,() ,())
satisfies
(every $row in mmBl:read_row_of_table($table ,() ,())
satisfies

(every $foreign in mmBl:read_foreign_of_row($row ,() ,())
satisfies
(some $table2 in mmBl:read_table_of_meta_model_B($model ,() ,())
satisfies
(some $row2 in mmBl:read_row_of_table($table2 ,() ,())
satisfies
(some $key in mmBl:read_key_of_row($row2 ,() ,())
satisfies $foreign/@name=concat($row/@name ,$key/@name)

)))))

Finally, cross constraints can be expressed in our framework. For instance, (v26)
“Key and column names and types are names and types of data attributes” can be
expressed as follows:
let $modelB := doc($file2)/mmB:meta_model_B
let $modelA := doc($file)/mmA:meta_model_A
return

every $table in mmBl:read_table_of_meta_model_B($modelB ,() ,())
satisfies
(every $row in mmBl:read_row_of_table($table ,() ,())
satisfies
(every $keycol in mmBl:read_key_of_row($row ,() ,()) union mmBl:read_column_of_row($row ,() ,())
satisfies
(some $store in mmAl:read_store_of_meta_model_A($modelA ,() ,())
satisfies
(some $data in mmAl:read_data_of_store($store ,() ,())
satisfies
(some $data_attribute in mmAl:read_data_attribute_of_data($data ,() ,())
satisfies $data_attribute/@name=$keycol/@name and $data_attribute/@type=$keycol/@type)

))))

4 Related Work
The use of XML and transformation languages for XML in the context of model trans-
formation have been proposed in some works. All of them, as far as we know, fall on
the use of XSLT.

In an early work [22], the authors propose a language that uses XSLT for trans-
forming models. The language can be seen as a first attempt to represent models and
transformations in XSLT.

In [17] the authors propose the use of the transformation language QVT, but they
map QVT transformations into XSLT. XSLT programs are automatically obtained from
QVT transformations. Therefore QVT is encoded by an XSLT transformation. They
also create XML schemas for source and target meta-models using syntactic validation
of source and target models. This work is the closest to our proposal. Although they
use an standardized language (i.e., QVT) for describing transformations, they adopt
as transformation engine an XML-based transformation language. Since XSLT can be
encoded in XQuery, the proposal of these authors could be handled by XQuery instead
of XSLT.

The UMT (UML Model Transformation) Tool [9] also is based on XSLT (and Java).
In this tool a simplified version of XMI (called XMI light) is used as representation of

An XQuery-based Model Transformation Language 11
UML models. They directly use XSLT to write transformations. In [5], M2T transfor-
mations are also proposed in XSLT using a simplified version of XMI. We believe that
to simplify XMI makes easier the definition of transformations. The drawback is that
tools (especially UML VP) usually generate and require fully fledged XMI files, and it
limits import and export of models.

UMLX [27] uses a graphical notation that is again translated into XSLT transforma-
tions. User interface model transformation has been studied in [18], where a graphical
notation is translated into XSLT (and QVT). The main aim of the transformations
is to obtain a prototype of the user interface (using the XML based user interface
language OpenLaszlo). The use of graphical notation is an interesting research line
in model transformation: developers would like to use a graphical notation to depict
transformations instead of using code. Thus, transformations of graphical notations to
code aims to ease the adoption of transformation technologies.

In conclusion, XSLT has been the basis of works dealing with model transforma-
tions. We can see our work similar to them in the sense of the proposed XQuery library
of functions provides a high-level language for describing transformations, and at a
low-level XQuery handles models in XML format. Obviously, our proposal could be
adapted to XSLT.

5 Conclusions and Future Work
In this paper we have presented a framework to use XQuery as transformation language.
We have studied how to adapt MDE to XQuery in the following sense. Meta-models
are represented by XML Schemas. From XML Schemas we are able to automatically
generate an XQuery library to handle elements of a certain meta-model. It allows
to write transformations in XQuery abstracting from the XML representation. The
XQuery code becomes elegant and concise thanks to the use of the XQuery library. We
have also shown how to use the library to validate transformations by constraints as
semantic requirements. Syntactic requirements checking comes for free from the use of
XML Schema validation. As future work we would like to extend our work as follows.
Firstly, the XML type system is not still used in our proposal. In other words, types in
the XML Schema are not used in the generation of the XQuery library. We believe that
introducing types we could improve compilation (error detection) of XQuery programs
for transformation. Secondly, we would like to implement an oracle to guide the user
in transformation validation. The XML Schema validator of BaseX already provides
information about syntactic (compilation) errors in source and target models, whereas
the semantic validation we have proposed only gives true or false when checking a
constraint. It could be useful to provide more accurate information about the type
of error the validator has found. We are also interested to apply our framework to
other modeling languages: BPM, Ontologies, etc. Finally, we are interested in test
case generation for transformations in order to detect programming errors and to help
transformation debugging.

References

1. Agrawal, A.: Graph rewriting and transformation (GReAT): a solution for the model inte-
grated computing (MIC) bottleneck. Automated Software Engineering, 2003. Proceedings.
18th IEEE International Conference on pp. 364–368 (6-10 Oct 2003)

2. Balogh, A., Varró, D.: The Model Transformation Language of the VIATRA2 Framework.
Science of Programming 68(3), 187–207 (October 2007)

3. Bamford, R., Borkar, V., Brantner, M., Fischer, P.M., Florescu, D., Graf, D., Kossmann,
D., Kraska, T., Muresan, D., Nasoi, S., et al.: XQuery reloaded. Proceedings of the VLDB
Endowment 2(2), 1342–1353 (2009)

12 J. Almendros and L. Iribarne and J.J López and A. Mora
4. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the

ATL model transformation language: Transforming XSLT into XQuery. In: 2nd OOPSLA
Workshop on Generative Techniques in the context of Model Driven Architecture (2003)

5. Bichler, L.: A flexible code generator for MOF-based modeling languages. In: 2nd OOP-
SLA Workshop on Generative Techniques in the context of Model Driven Architecture
(2003)

6. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J., Stefanescu,
M.: XQuery 1.0: An XML query language. W3C working draft 12 (2003)

7. Brambilla, M., Fraternali, P.: Large-scale Model-Driven Engineering of Web User Interac-
tion: The WebML and WebRatio experience. Science of Computer Programming (2013)

8. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In: 2nd
OOPSLA Workshop on Generative Techniques in the Context of Model-Driven Architec-
ture (2003)

9. Grønmo, R., Oldevik, J.: An empirical study of the UML model transformation tool
(UMT). Proc. First Interoperability of Enterprise Software and Applications, Geneva,
Switzerland (2005)

10. Grün, C.: BaseX. The XML Database (2013), http://basex.org
11. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: An extendable

reference implementation of the Petri Net Markup Language. In: Applications and Theory
of Petri Nets, pp. 318–327. Springer (2010)

12. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming 72(1-2), 31–39 (2008)

13. Jouault, F., Kurtev, I.: On the interoperability of model-to-model transformation lan-
guages. Sci. Comput. Program. 68(3), 114–137 (2007)

14. Kay, M., et al.: XSL transformations (XSLT) version 2.0. W3C Recommendation 23 (2007)
15. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon transformation language. In: Theory

and Practice of Model Transformations, pp. 46–60. Springer (2008)
16. Kurtev, I.: State of the Art of QVT: A Model Transformation Language Standard. In:

3rd Int. Symposium on Applications of Graph Transformation with Industrial Relevance.
pp. 377–393. Springer (2008)

17. Li, D., Li, X., Stolz, V.: QVT-based model transformation using XSLT. ACM SIGSOFT
Software Engineering Notes 36(1), 1–8 (2011)

18. López-Jaquero, V., Montero, F., González, P.: T: XML: A Tool Supporting User Interface
Model Transformation. In: Model-Driven Development of Advanced User Interfaces, pp.
241–256. Springer (2011)

19. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Electr. Notes Theor. Com-
put. Sci. 152, 125–142 (2006)

20. OMG: MOF 2.0 Query/Views/Transformations RFP. Tech. rep., http://www.omg.org/
spec/QVT/ (2008)

21. OMG: XML Metadata Interchange (XMI). Tech. rep., http://www.omg.org/spec/XMI/
(2011)

22. Peltier, M., Bézivin, J., Guillaume, G.: MTRANS: A general framework, based on XSLT,
for model transformations. In: Workshop on Transformations in UML (WTUML), Genova,
Italy (2001)

23. Sánchez-Cuadrado, J., García-Molina, J., Menárguez-Tortosa, M.: RubyTL: A Practical,
Extensible Transformation Language. In: Procs of Model Driven Architecture - Founda-
tions and Applications. pp. 158–172. LNCS 4066, Springer (2006)

24. Shapiro, R.M.: XPDL 2.0: Integrating process interchange and BPMN. Workflow Hand-
book pp. 183–194 (2006)

25. Taentzer, G.: Agg: A graph transformation environment for modeling and validation of
software. In: Applications of Graph Transformations with Industrial Relevance, pp. 446–
453. Springer (2004)

26. Tratt, L.: Model transformations and tool integration. Software and System Modeling
4(2), 112–122 (2005)

27. Willink, E.: UMLX: A graphical transformation language for MDA. In: Model Driven
Architecture: Foundations and Applications. pp. 03–27 (2003)

