
Learning Recursive Probability Trees from Probabilistic
Potentials

Andrés Cano, Manuel Gómez-Olmedo, Seraf́ın Moral, Cora B. Pérez-Ariza
Department of Computer Science and Artificial Intelligence

University of Granada, Spain
{acu,mgomez,smc,cora}@decsai.ugr.es

Antonio Salmerón
Department of Statistics and Applied Mathematics

University of Almeŕıa, Spain
antonio.salmeron@ual.es

Abstract

A recursive probability tree (RPT) is an incipient data structure for representing the dis-
tributions in a probabilistic graphical model. RPTs capture most of the types of indepen-
dencies found in a probability distribution. The explicit representation of these features
using RPTs simplifies computations during inference. This paper describes a learning
algorithm that builds a RPT from a probability distribution. Experiments prove that
this algorithm generates a good approximation of the original distribution, thus making
available all the advantages provided by RPTs.

1 Introduction

The required size for representing probability
distributions in a probabilistic graphical model
(like a Bayesian network) is exponential in the
number of variables. A Bayesian network is
an efficient representation of a joint probabil-
ity distribution, since it exploits independencies
among the variables, but it cannot directly rep-
resent context-specific independencies (Boutilier
et al., 1996) within the distributions. Probabil-
ity trees have been previously used to represent
this kind of independencies within probability
potentials (Cano et al., 2000). Moreover, some-
times a probability distribution can be obtained
through the multiplication (factorization) of a
list of smaller distributions by detecting pro-
portionalities within it (Mart́ınez et al., 2002;
Mart́ınez et al., 2005; Mart́ınez et al., 2006).
Recently, a new data structure for representing
potentials was introduced (Cano et al., 2009):
Recursive Probability Trees (RPTs). This kind
of tree is a generalization of a probability tree.
It allows to represent context-specific indepen-

dencies within distributions, while keeping po-
tentials factorized.

Like probabilistic decision graphs (Jaeger,
2004) and chain event graphs (Smith and An-
derson, 2008), RPTs can be used as a stand-
alone representation of joint probability dis-
tributions, and probabilistic inference can be
fully carried out using this single structure,
as the necessary operations, namely product,
marginalization and restriction, are well defined
over this data structure (Cano et al., 2009).

This paper presents a learning algorithm
able to decompose a probability distribution
into smaller pieces, by detecting context-specific
independencies and multiplicative decomposi-
tions. This decomposition will be represented
as a RPT. The rest of the paper is organized as
follows: Section 2 defines RPTs and describes
their features; Section 3 presents the algorithm
used for constructing a RPT from a probabilis-
tic potential; Section 4 shows the experiments
performed for testing the performance of the al-
gorithm; and finally Section 5 presents conclu-
sions as well as future research directions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143457835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Recursive Probability Trees

A Recursive Probability Tree (Cano et al., 2009)
(hereafter referred to as RPT) is a directed tree
with two different kinds of inner nodes (Split
nodes and List nodes), and two types of leaf
nodes (Value nodes and Potential nodes). A
Split node represents a discrete variable. A List
node represents a multiplicative factorization by
listing all the factors to which a potential is de-
composed. It contains one outgoing arc for ev-
ery factor in the decomposition. A Value node
represents a non-negative real number. Finally,
a Potential node stores a full potential inter-
nally using an arbitrary representation. Fig. 1
shows a RPT (left part) and the Bayesian net-
work whose joint probability distribution is en-
coded in the tree (right part). Note how the
potentials are enclosed in Potential nodes, and
how the List node represents a multiplicative
factorization. Using this structure, it is possi-
ble to represent context-specific independencies
within a probability distribution, as shown in
Fig. 2, as well as factorizations (involving the
whole potential or parts of it). Proportionali-
ties within the probability distribution are also
easily represented using this structure (see Fig.
2).

In (Cano et al., 2009) we give a formal def-
inition of a RPT and a method to obtain the
value of the potential for each configuration of
its variables.

Figure 1: RPT (left) encoding of a Bayesian
network distribution (right)

3 Constructing a RPT from a
probabilistic potential

In this section we shall describe our proposal
for transforming any given probabilistic poten-

Figure 2: Distribution with context specific in-
dependencies and proportional values (right),
and the corresponding RPT (left)

tial (for instance, a probability table) into a
RPT. Our proposal is aimed at detecting con-
text specific independencies and multiplicative
factorizations present in a probabilistic poten-
tial. In order to detect context specific inde-
pendencies, we follow an approach similar to
the procedure used for constructing probabil-
ity trees (Salmerón et al., 2000), which is based
on selecting variables for Split nodes according
to their information gain, in a similar way as
variables are selected when constructing deci-
sion trees (Quinlan, 1986). Regarding the mul-
tiplicative decomposition, the basic idea is to
make groups of variables using their mutual in-
formation as a selection criterion. The groups
are later used to obtain the potentials that make
up the multiplicative decomposition.

The starting point is a potential f defined
over a set of variables X, and the aim of the
algorithm is therefore to find a representation of
f as a RPT. We denote S =

∑
x f(x) as the sum

of all the values in f and S(Y = y) =
∑

z f(z, y)
(sum of values consistent with Y = y). The
procedure we propose operates over an auxiliary
graph structure Gf with vertex set X where two
variables Y, Z ∈ X will be linked if there is a
probabilistic dependence between them. More
precisely, a link Y − Z is present in Gf if the
dependence between Y and Z exceeds a given
threshold ε > 0. We use the mutual information
as a measure of dependence, and hence, a link
Y − Z will be included only if

I(Y,Z) =
∑
y,z

p(y, z) log
p(y, z)

p(z)p(y)
> ε, (1)

where p(y, z) = f↓Y Z(y,z)
S and f↓Y Z is the

marginal of f over variables Y and Z. Each

link Y −Z is weighted with I(Y, Z). After con-
structing graph Gf , a first factorization of f is
readily obtained if Gf is disconnected in n con-
nected components X1 ∪ · · · ∪ Xn = X. The
factorization is given by

f(x) = f1(x1) · · · fn(xn)Sn, (2)

where fi = f↓Xi , i = 1, . . . , n, and Sn is a
normalization factor required to keep the sum
of f1(x1) · · · fn(xn) equal to the sum of f(x):

Sn =

∑
x f(x)∑

x (f1(x1) · · · fn(xn))
. (3)

Hence, potential f can be represented as a
RPT where the root node would be a List node
containing the factors in Eq. (2). On the con-
trary, if graph Gf remains as a single connected
component, it means that the potential is not
decomposable as a list of factors with disjoint
variables. However, conditional decompositions
are possible. In order to seek for such context
specific factorizations we must compute for each
variable Y ∈ X the following value

V (Y) =
∑

Z neighbour of Y

I(Y,Z). (4)

Next, we choose Y0 such that Y0 =
argmaxY ∈X V (Y). This heuristic removes the
variable more dependent on the remaining vari-
ables in the graph. This way we can split the
graph into several connected components repre-
senting independent parts within the potential
analyzed.
The procedure described above is repeated,

but restricted to variable Y0. That is, we con-
struct a graph GY0

f by removing Y0 and its links
from Gf and re-weighting each remaining link

Z − U in GY0
f with

I(Z,U |Y0)=
∑
z,u,y0

p(z, u, y0) log
p(z, u|y0)

p(z|y0)p(u|y0) ,

where

p(z, u, y0) =
f↓ZUY0(z, u, y0)∑

z,u,y0
f↓ZUY0(z, u, y0)

and the conditional distributions p(z, u|y0),
p(z|y0) and p(u|y0) are computed from
p(z, u, y0). If the value of the marginal for
some configuration of the conditioning variable
is equal to zero, then the conditional mutual
information reduces to a summation of terms
of the form 0log0, and assumed to be zero.
Again, we consider a threshold ε > 0 so that
only those links Z − U where I(Z,U | Y0) > ε
will be added to the graph, and weighted as
I(Z,U | Y0).

As a previous step to the creation of GYi
f ,

we must sort Yi into set Y1 if the variable was
connected to all the other variables in the con-
nected component before being removed; other-
wise, the variable will be appended to set Y2.
These two sets will help us to discern between
scenarios with context-specific independencies
and factorizations.

In general, if Y0, . . . , Ym have been cho-
sen, everything must be turned conditional on
Y1, . . . , Ym before selecting Ym+1. The process
stops when a division of the graph is found or
when there is no variable left to choose, i.e. the
graph has two variables and both are connected.

In the second case (the graph has only two
connected variables) there is no further possible
decomposition. In the first case, suppose that
after choosing Y = {Y0, ..., Ym} the graph is
decomposed into n connected components Z =
Z1 ∪ · · · ∪ Zn, with Z = X \Y.

Next, a RPT is built with the variables in Y1

(containing Split nodes). For each leaf h of this
tree, suppose that Y1 = y1 is the assignment
compatible with h, then potential fh is stored
in leaf h, where fh is defined as fh = fR(Y1=y1),
and fR(Y1=y1) denotes the potential f restricted
to assignment (Y1 = y1). Potential fh is de-
composed as

fh(z1, . . . , zn,y2) := Sh
n∏

i=1

fh(zi,y2),

Sh =

∑
z,y2

fh(z1, . . . , zn,y2)

∑
z,y2

n∏

i=1

fh(zi,y2)

(5)

with z = (z1, . . . , zn). This scenario is explained
in Fig. 3. Once a decomposition is performed,
the algorithm is recursively applied to each and
every potential obtained successively, until no
further decomposition can be computed.

Y1={ X }1

Y ={ X }
32

Z1={ X , X }5 6

Z2={ X , X , X }2 4 7

X1

R(X =0)1

f (X , X , X)5 6 3

R(X =0)1

f (X , X , X , X)2 4 7 3

R(X =1)1

f (X , X , X)5 6 3

R(X =1)1

f (X , X , X , X)2 4 7 3

S
(X =0) S

(X =1)

0 1

Figure 3: Example where a division of the graph
has been found.

3.1 Computing the threshold ε

The value of ε should not be kept constant
throughout the entire algorithm, as the range
of possible values of the mutual information
varies depending on the variables over which
it is computed, and also on the computation
of the mutual information conditioned to other
variables. Thus, we propose assigning a rate δ,
with 0 ≤ δ ≤ 1, and then compute ε as the frac-
tion of the maximum mutual information deter-
mined by δ. In the case of unconditional mu-
tual information between two variables X and
Y , notice that

I(X,Y) = H(X)−H(X|Y)

= H(X)− (H(X,Y)−H(Y))

= H(X) +H(Y)−H(X,Y) (6)

where H(·) denotes Shannon’s entropy. There-
fore, as H(X) ≤ log |X|, where |X| is the num-
ber of possible values of X, it follows that

I(X,Y) ≤ log |X|+ log |Y |,
and thus, we compute ε as

ε := δ × (log |X|+ log |Y |). (7)

In the case of conditional mutual informa-
tion, if we have X,Y and Z, it follows that
I(X,Y |Z) = H(X|Z) − H(X,Y,Z). Since
H(X|Z) = H(X,Z) − H(Z) and H(X|Y,Z) =
H(X,Y,Z)−H(Y,Z), it holds that

I(X,Y |Z) = H(X,Z)−H(Z)−H(X,Y,Z)+

H(Y,Z) ≤ log |X ∪ Z|+ log |Y ∪ Z| (8)

So, ε can be computed as:

ε := δ × (log |X ∪ Z|+ log |Y ∪ Z|). (9)

3.2 Detecting context specific
independencies

Besides factorizations, RPTs can efficiently rep-
resent context specific independencies, in a sim-
ilar way as they are represented by probability
trees (Boutilier et al., 1996). A possible im-
provement of the described algorithm would be
to widen the search by choosing at some point
a variable Yj connected to the rest of the vari-
ables and splitting the tree by it. In this case,
the tree would grow with a Split node for such
variable, and the process would continue for ev-
ery branch, but now with the distributions re-
stricted to the branch configuration. This way,
the algorithm may follow different paths dur-
ing factorization for each branch. In (Salmerón
et al., 2000), a methodology of variable selec-
tion for labeling the internal nodes of proba-
bility trees is proposed. This methodology in-
volves the calculation of the information gain of
a given variable Yj according to Eq. 9. Here we
propose a similar approach to discern if split-
ting by a certain variable increases the quality
of the learned model.

Let’s assume that we are working with a po-
tential f defined for a set of variables X =
{X1, . . . , Xn}. Let’s consider any variable Y ∈
X and define Z = X \ {Y }. The information
gain resulting of splitting potential f by vari-
able Y is computed as

I(Y, f) = S · (log |Y | − logS)+∑
y

S(Y = y) logS(Y = y). (10)

The maximum possible value for I(Y, f) can
be obtained using the properties of Shannon’s
entropy. We define NY =

∑
y S(Y = y). Then,

it holds that

−1

NY

∑

y∈ΩY

S(Y = y) logS(Y = y) ≥ 0,

and, therefore

−
∑

y∈ΩY

S(Y = y) logS(Y = y) ≥ 0 ⇒
∑

y∈ΩY

S(Y = y) logS(Y = y) ≤ 0. (11)

Hence, replacing (11) in (10), we obtain
I(Y, f) ≤ S · (log |Y | − logS). Using this re-
sult, the criterion for choosing a variable to split
from a parameter 0 ≤ δ ≤ 1 would be to select
a variable Y if I(Y, f) ≥ δ · S · (log |Y | − logS).

3.3 The algorithm

This section describes the pseudocode of the
algorithm outlined above. The algorithm has
been decomposed into different modules for the
sake of readability. Algorithm 1 is the main
body of the procedure, and the others are di-
vided according to the different scenarios that
can appear during the learning process. Algo-
rithm 2 describes the required steps if the graph
representing a potential is disconnected. In ad-
dition, Algorithm 3, gives the details of the pro-
cess followed by a connected graph. Algorithm 3
is divided into several parts: Algorithm 4 shows
what to do in case an Information Gain is de-
tected for a variable. Algorithms 5 and 6 cover
the case in which the resulting graph is discon-
nected within Algorithm 3.

Input: A potential f
Output: An RPT , recTree
begin

Let Gf be the graph built for f
if Gf is connected then

if there are more than two variables in Gf then
recTree = dealWithConnectedGraph()

else
Set recTree = PotentialTreeNode(f)

end

else
recTree = dealWithDisconnectedGraph()

end

end

Algorithm 1: Body of potential factoriza-
tion algorithm

Example 1. We shall illustrate the algorithm
with a simple example consisting of decompos-
ing a potential f defined over four binary vari-
ables X,Y, Z, and W with values f(x, y, z, w) =
{0.03, 0.04, 0.07, 0.06, 0.18, 0.24, 0.42, 0.36,
0.27, 0.36, 0.63, 0.54, 0.12, 0.16, 0.27, 0.24}. It
can be seen that potential f is decomposable as

f(x, y, z, w) = f1(x, y)f2(z, w) with f(x, y) =
{0.1, 0.6, 0.9, 0.4} and f2(z, w) = {0.3, 0.4,
0.7, 0.6}. Alg. 1 is called with potential f
as argument. The first step is the construc-
tion of graph Gf . This is achieved by com-
puting the entropy between each pair of vari-
ables and inserting the links for which the mu-
tual information is greater than a given thresh-
old. Let’s assume we consider a threshold ε =
1E − 6, that is, approximately equal to 0. We
do this because independent variables can have
a slightly positive mutual information due to
rounding errors. The mutual information be-
tween each pair of variables, computed accord-
ing to Eq. (1) is I(X,Y) = 0.1484, I(X,Z) =
5.607E-17, I(X,W) = 3.886E-17, I(Y, Z) =
7.772E-17, I(Y,W) = 0, and I(W,Z) = 0.0055.
Therefore, graph Gf has only two arcs, X − Y
and W − Z. Since the graph is disconnected,
Alg.2 is called. As the two connected com-
ponents of Gf only have two variables each,
a list node is returned, in which the first fac-
tor is the marginal of f over (X,Y), the sec-
ond is the marginal of f over (Z,W), and the
third is a normalizing constant. More pre-
cisely, the three factors are: g1(x, y) = {0.2,
1.2, 1.8, 0.8}, g2(z, w) = {0.6, 0.8, 1.4, 1.2},
and g3(x, y, z, w) = 0.25. It can be proved that
f(x, y, z, w) = g1(x, y)g2(z, w)g3(x, y, z, w).

Input: A list C, which is the list of connected components
of Gf , the potential f

Output: A List Tree Node, L
begin

Let L be a List Tree Node;
for each Ci in C do

Let XC be the variables in Ci;
if Ci contains only 1 or 2 variables then

Set recTree = f
↓XCi ;

else

recTree = PotentialFactorization(f
↓XCi)

(Alg.1);
end

end
Add recTree to L;
Let factor be a ValueTreeNode, computed as in
Eq. (3);
Add factor to L;

end

Algorithm 2: DealWithDisconnected-
Graph()

Example 2. Now consider a potential f de-
fined for three binary variables X,Y , and Z,
with values f(x, y, z) = {0.3, 0.3, 0.3, 0.3, 0.1,
0.2, 0.75, 0.25}. Let’s assume we consider a

threshold ε = 0.001. Then, Alg. 1 generates
a complete graph Gf , as the mutual informa-
tion values are I(X,Y) = 0.0398, I(X,Z) =
0.0122, and I(Y, Z) = 0.0212. Next, Alg. 3 is
called with Gf as an argument. This algorithm
selects a variable according to the connectiv-
ity values defined in Eq.(4). These values are
V (X) = 0.052, V (Y) = 0.061, and V (Z) =
0.0334. Therefore, the chosen variable is Y .
Since Y is connected to the rest of the vari-
ables, it is inserted into Y1 and GY

f , consist-
ing of a graph with variables X and Z, and a
link between them, is generated. In the next
step, the information gain is computed accord-
ing to Eq.(10) and, since it is equal to 0.0993,
Alg.4 is called. This last procedure constructs a
split node with variable Y and two children, one
for each possible value of Y . The two children
are g1(x, z) = fR(Y=0) and g2(x, z) = fR(Y=1).
Their values are g1(x, z) = {0.3, 0.3, 0.1, 0.2}
and g2(x, z) = {0.3, 0.3, 0.75, 0.25}.

Input: The potential f , graph G
Output: A Tree Node, recTree
begin

Let Y1 and Y2 be empty vectors of variables;
while G remains connected and f has more than 2
variables and there is no information gain do

Choose variable to remove, Y (Eq.4);
if Y was connected to all other variables in Gf

then
Add Y to Y1;

else
Add Y to Y2;

end

Build GY
f ;

if GY
f is connected then
if There is Information Gain then

treeNode =
dealWithIndependentSplit()

end

else
if Y1 is empty then

treeNode = dealWithoutSplitChain
else

treeNode = dealWithSplitChain
end

end

end

end

Algorithm 3: DealWithConnectedGraph()

4 Experiments

4.1 Learning from a probability table

The first experiment consisted of 30 runs of the
algorithm over randomly generated probability
tables, defined over 6 binary variables. For each

Input: The potential f , Vector Y1

Output: A Split Tree Node, recTree
begin

Let recTree be a Split Chain of variables from Y1;
for each possible value y1 of Y1 do

treeNode = potentialFactorization(fR(Y1=y1));

Update recTree’s current leaf with fR(Y1=y1);
end

end

Algorithm 4: DealWithIndepen-
dentSplit()

Input: A list C which is the list of connected components
of Gf , the potential f

Output: A Tree Node, recTree
begin

if C has more than one element then
Let recTree be a List Tree Node;
for each Ci of C do

Set f1 = potentialFactorization(f
↓XCi);

Add f1 as children of recTree;
end
Let factor be a ValueTreeNode, computed as in
Eq. (3);
Add factor to recTree;

else
Set recTree = PotentialTreeNode(f);

end

end

Algorithm 5: DealWithoutSplitChain()

Input: The potential f , Vector Y1, Vector Y2, A list C
which is the list of connected components of Gf

Output: A Tree Node, recTree
begin

Let recTree be a Split Chain of variables from Y1;
for each possible value y1 of Y1 do

Let f1 be fR(Y1=y1);
if C has more than one element then

Let recTree be a List Tree Node;
for each element Ci of C do

Set fR = f
↓XCi∪Y2 ;

Set f1 = potentialFactorization(fR);
Add f1 as children of recTree;

end
Let factor be a ValueTreeNode, computed
as in Eq. (3);

else
Set treeNode = potentialFactorization(f1)

end
Update recTree’s current leaf with treeNode;

end

end

Algorithm 6: DealWithSplitChain()

run, ε was set between 0 and 0.01 at intervals of
0.001, and the root mean squared error (MSE)
between the original probability table and the
learned RPT was computed. The results are
shown in Fig. 4, where it can be seen that for
higher values of ε, the approximations obtained
are worse. But there is a point where the er-
ror suddenly increases, fact that can be used as
a stopping criterion when searching for a solu-

tion. It was also observed that for higher values
of ε, the decompositions obtained are more fac-
torized and we get close to a model with a list
node containing one factor per variable, which
is not accurate and gives high error rates.

0 0.001 0.003 0.005 0.007 0.009

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

MSE variation

epsilon

M
S

E

Figure 4: Results for the first experiment

4.2 Capturing repeated values

The second experiment consisted of 30 runs of
the algorithm over probability tables for 6 bi-
nary variables generated from pruned probabil-
ity trees, in the first case with a prune value
(Salmerón et al., 2000) of 0.001 (light pruning)
and in the second case, of 0.01 (severe prun-
ing). Pruning the tree consists of replacing sub-
trees with the average value in the leaves, which
means that the value for every configuration of
variables in the pruned sub-tree becomes con-
stant. Therefore, if we construct a table from
such a tree, as a result all the cells in the ta-
ble corresponding to the configurations in the
pruned sub-tree will contain the same value.
Thus, a severe pruning will generate more re-
peated values in the equivalent probability table
than a light pruning. For each probability table
generated, the algorithm is applied ten times,
corresponding to ε values ranging from 0.0 to
0.01 at intervals of 0.001. Fig. 5 shows the MSE
variation for each case. The upper panel of Fig.
5, which corresponds to light prune, shows that
higher error values are reached in this case. So,
it seems likely that the algorithm is able to de-
tect this kind of regularity within a potential.

0 0.001 0.003 0.005 0.007 0.009

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

MSE variation

epsilon

M
S

E
0 0.001 0.003 0.005 0.007 0.009

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

MSE variation

epsilon

M
S

E

Figure 5: MSE variation learning from the same
tree with light and severe prune

Other experiments have been performed to
check the relation between accuracy and size
of the learned model. The results show that
the less accurate representations are those with
smaller size. This reflects mainly the fact that
smaller representations are expected to be a list
of small factors (most likely, one per variable in
the distribution), which is a not very accurate
representation.

4.3 Learning from the same model

Due to the nature of the algorithm and the
RPTs themselves, it is possible to obtain differ-
ent RPTs representing the same distribution.
The aim of this experiment was to check if
those representations, while different, were ac-
curate. A probability table was generated from
a pruned probability tree. The algorithm was
applied to it, with an ε value of 0.002, in order
to get a slightly different distribution. The re-
sulting RPT was called RPT1. The algorithm

used the probability table represented by RPT1

as an argument, this time with an ε value of 0,
and returned a new RPT called RPT2. This
procedure was repeated 30 times, and then we
calculated the mean and the standard deviation
of both the difference in sizes of the resultant
trees, and the Kullback-Leibler divergence rel-
ative to the original distribution. For the tree
size differences, we got a mean of 0.73333, and a
standard deviation of 1.311312. For the KL di-
vergence, the mean downs to 0.021955 and the
standard deviation to 0.040008. These results
seem to confirm that under these circumstances,
RPT1 and RPT2 are similar representations of
the same distribution. In other words, this ex-
periment illustrates the ability of the algorithm
to find a RPT representation of a probability
distribution, close to the original distribution.

5 Conclusions

In this paper we have proposed an algorithm
for transforming a probabilistic potential into
a RPT. The experiments performed suggest
that the proposed algorithm is able to capture
most of the details of the original distribution.
This proposal can be used as the basis for de-
signing approximate algorithms for inference in
Bayesian networks, using RPT-based represen-
tations of the potentials involved in the infer-
ence process. The applicability of this method
is limited, in practice, by the size of the po-
tential that is going to be transformed into a
RPT. It can be seen in Eq. (1), where the dis-
tributions used are obtained by marginalizing
the original potential f . Therefore, the avail-
ability of a representation of f that allows an
efficient computation of marginals would bene-
fit the performance of the algorithm.

We are currently considering the possibility
of extending the algorithm in order to learn di-
rectly from a database. Also, we are studying
a way to detect a different kind of regularity,
namely, the proportionality between different
parts of the potential.

Acknowledgments

This research was jointly supported by the
Spanish Ministry of Education and Science un-

der projects TIN2007-67418-C03-03,02, the Eu-
ropean Regional Development Fund (FEDER),
the FPI scholarship programme (BES-2008-
002049) and the Andalusian Research Program
under project P08-TIC-03717.

References

C. Boutilier, N. Friedman, M. Goldszmidt, and
D. Koller. 1996. Context-specific independence
in Bayesian networks. In E. Horvitz and F.V.
Jensen, editors, Proceedings of the 12th Con-
ference on Uncertainty in Artificial Intelligence,
pages 115–123. Morgan & Kaufmann.

A. Cano, S. Moral, and A. Salmerón. 2000. Penni-
less propagation in join trees. International Jour-
nal of Intelligent Systems, 15:1027–1059.

A. Cano, M. Gómez-Olmedo, S. Moral, and C.B.
Pérez-Ariza. 2009. Recursive probability trees for
Bayesian networks. CAEPIA 2009. Lecture Notes
in Artificial Intelligence., 5988:242–251.

M. Jaeger. 2004. Probabilistic decision graphs. com-
bining verification and AI techniques for proba-
bilistic inference. International Journal of Uncer-
tainty, Fuzziness and Knowledge Based Systems,
12:19–42.

I. Mart́ınez, S. Moral, C. Rodŕıguez, and
A. Salmerón. 2002. Factorisation of probability
trees and its application to inference in Bayesian
networks. In J.A. Gámez and A. Salmerón, edi-
tors, Proceedings of the First European Workshop
on Probabilistic Graphical Models, pages 127–134.

I. Mart́ınez, S. Moral, C. Rodŕıguez, and
A. Salmerón. 2005. Approximate factorisation of
probability trees. ECSQARU’05. Lecture Notes
in Artificial Intelligence, 3571:51–62.

I. Mart́ınez, C. Rodŕıguez, and A. Salmerón. 2006.
Dynamic importance sampling in Bayesian net-
works using factorisation of probability trees. In
Proceedings of the Third European Workshop on
Probabilistic Graphical Models (PGM’06), pages
187–194.

J.R. Quinlan. 1986. Induction of decision trees. Ma-
chine Learning, 1:81–106.

A. Salmerón, A. Cano, and S. Moral. 2000. Impor-
tance sampling in Bayesian networks using prob-
ability trees. Computational Statistics and Data
Analysis, 34:387–413.

J.Q. Smith and P.E. Anderson. 2008. Conditional
independence and chain event graphs. Artificial
Intelligence, 172:42–68.

