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1. Introduction

Probabilistic Normed (briefly PN) spaces were introduced by Serstnev in a series of papers [1-4]. Then a new definition
was proposed by Alsina, Schweizer and Sklar [5]. This new definition revived the study of PN spaces. The properties of these
spaces were studied by several authors; here we shall mention [6-9] (but see also the survey paper [ 10]). We recall below for
the reader’s convenience the definition of a PN space; the notation is essentially that fixed by the classic book by Schweizer
and Sklar [11].

Definition 1.1. A probabilistic normed space is a quadruple (V, v, v, t*), where V is a real linear space, 7 and t* are
continuous triangle functions and the mapping v : V — A" satisfies, for all p and g in V, the conditions
(N1) v, = € if, and only if, p = € (6 is the null vector in V);
(N2) VpeV V_p = Vp;
(N3) Vpyq = 7 (Vp, vo);
(N4) Ya €[0,1] v, <7* (vap, v(],a)p).
The function v is called the probabilistic norm. If (V, v, t, T*) satisfies the condition, weaker than (N1),
Vg = €q,

then it is called a Probabilistic Pseudo-Normed space (briefly, a PPN space). If t = 7y and t* = 7+ for some continuous
t-norm T and its t-conorm T* then (V, v, 77, Tr+) is denoted by (V, v, T) and is a Menger PN space.
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A PN space is called a Serstnev space if it satisfies conditions (N1), (N3) and following condition

%) Ye e R\ {0} VxR vop(X) =, (_>

[oe]
which implies (N2) and (N4) in the strengthened form

Vael[0,1] YpeV vy =i (Vaps V(i-app) -

The definition of a t-norm may be found in [11-13].
Some examples of t-norms T and its t-conorms T* are: M (x, y) = min{x, y}, I1(x,y) = x - y and M*(x, y) = max({x, y}
IT*(x,y) = x+y — x - y. We recall the following sequence of inequalities:

T=M-M =T,
and in particular

W= =M =M =T =

Definition 1.2. A triangle function is a mapping 7 from A™ x A% into A" such that, forall F, G, H,K in A,

(1) ©(F,€0) =F,

(2 (B, G =7T(GC F)

(3) ©(F,G) < t(H,K) wheneverF < H,G <K,
@) v (F @), H) ="t (E, (G H))

Relevant triangle functions are the functions 7, 7+ and those of the form I7; which, for any continuous t-norm T, and
any x > 0, are given by

7r(F, G)(x) = sup{T(F(u), G(v)) | u+ v = x},
7« (F, G)(x) = inf{T*(F(u), G(v)) | u+ v = x}

and
ITr (F, G)(x) = T(F(X), G(X)).

See [14,15] for a recent study of triangle functions.

The purpose of this note is to study the countable product of PN spaces. The case of the finite product of PN spaces was
studied by the first author in [ 16]. The countable product of probabilistic metric spaces was the object of the two important
papers by Alsina [17] and Alsina and Schweizer [18]; the differences between these works and the present one will be
noted; in the first place, while a single triangle function appears in the definition of a probabilistic metric space, two triangle
functions, T and 7*, have to be considered in a PN space.

2. The dominance relation

Definition 2.1. Let (S, <) be a partially ordered set and let f and g be commutative and associative binary operations on S
with common identity e. Then f dominates g, and one writes f > g, if, for all x4, X2, ¥1, ¥ In S,

fg(x1,¥1), 8(X2, ¥2)) = g(f (X1, X2), f(¥1, ¥2)).

Setting y; = X, = e in this inequality, one has f (X1, y2) > g(x1, y2); thusf > g implies f > g, which in turn implies tha
the dominance relation is antisymmetric. It is easily shown that the dominance relation is also reflexive. However, although
it is known that the dominance relation is transitive on certain subsets of the set of continuous t-norms (see [19-21]), it is
not, in general, transitive, as examples due to Sherwood [13] and Sarkoci [22] show.

We are interested in the dominance relation as it applies to t-norms, s-norms' and triangle functions. Here the following
are known:

Lemma 2.1. The following statements hold:

(a) Forevery t-normT,M > T;
(b) Foreverys-normS,S > M*;

(c) For every continuous t-norm T, Il > tr;
(d) For every triangle function t, ITy, > .

1 5_norms are often called t-conorms in the literature.



B. Lafuerza-Guillén et al. / Nonlinear Analysis 71 (2009) 4405-4414 4407

Proof. (a) For all X, x5, y; and y, in I, one has
=M, %), y=MQ@iy) (=12)
thus
T(x1,y1) = T (M(x1,%2), M(y1,¥2))
T(x2,y2) = T (M(X1,X2), M(y1,¥2)) ,
whence
M (T (%1, 1), T(X2, ¥2)) = T (M(X1, X2), M(y1,¥2)) ,
i.e. M > T. Corresponding arguments prove (b), (c) and (d).

Next, a straightforward calculation yields

Lemma 2.2. If T; and T, are t-norms such that T; 3> T, then T, > T, and conversely.
The following theorem is due to Tardiff [23].

Theorem 2.1. The following statements are equivalent for all continuous t-norms Ty and T;:
(1) T > Ty
(2)SHlr s>
(3) vr, > &y
(4) Hn > T
(5)

3. Main results: (I)-The X -product

In a given PN space (V, v, 7, t*) the value of the probabilistic norm of p € V at the point ¢ will be denoted either by
v(p)(t) or by vp(t).

j
that ZjeN B; = 1, their X-product is the pair (V, v) where V is the countable cartesian product of the spaces V;, V := l_[jeN V.

and where, for p = (p;) € V,

= Z,Bj vi(D))-

jeN

Definition 3.1. Given a sequence (Vj, U T o )jeN of PN spaces and a sequence (,Bj)jeN of strictly positive real numbers such

Our first result is the following.

Theorem 3.1. Let (Vj, Vi, T, T ) be a sequence of PN spaces such that for, every j € N, 7; > tw and r < tw=. Then their

X -product (V, v) is a Menger PN space under W.
Proof. Let6 := (61,05, ..., 6}, ...), where 6; is the origin of the vector space V; (j € N). Then
vp =Y Biv(6) = D Bico=¢co.
jeN JjeN
In the other direction, if v, = €, then one has v,(t) = 1 for every t > 0; thus
=3 suEit =3 =1,
JjeN JjeN

so that one has, for every j € N and every t > 0, vj(p;)(t) = 1, namely p; = 6; and, therefore, p = 6. This proves (N1). The
proof of (N2) is trivial. As for (N3), one has, for every t > 0,

vpra() = Y By +a)® = Y B (w®p), (@) ©
jeN JjeN
= D Brow (@), v(a) ©
jeN

=Y B sup W (v, v(@)(t —w);
jeN uel0,t]
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thus, for every u in [0, t],

Vpaq() = Y B max {v(py) (u) + v(g)(t — u) — 1,0}

JjeN
> Y B {uE) ) + v —u) — 1}
jeN
— () =)=,
and, hence
Vpag(®) = sup {vp(w) + vg(t —u) — 1} ;

ue(0.t]

since vp4q > 0, one has vpq > 7w (vp, vg), Which proves (N3).
Similarly, for every « € [0, 1] for every p € V and for every ¢t > 0, one has

() = D B < Y B7 (vilepy, v((1 - a)p)) ©)

JeN jeN
< D Biwe (vilepy), vi((1 — a)py) (©)
JjeN

el Z B; uei%ft] W* (vj(apy) (), vi((1 — a)p)(t — ).
jeN !

Recalling that W*(s, t) = min{s + t, 1}, one has, for every u in [0, t],
vp(6) < D BW* (uep) ), yi((1 —e)p)(t —w)

JjeN

S8 (wlap)@) + v((1 - a)py(t —w)

JeEN

= chp(u) aF V(1_a)p(t —u),

IA

so that

t) < inf e aptl =1
vp(©) = inf {vep(W) + vi-ap(t — v}
since v, < 1, 0ne has v, < Tw (Vap. V(1-a)p). Which establishes (N4) and concludes the proof. O

Corollary 3.1. If (Vj, vj)jeN is a sequence of Menger PN spaces under W, then their X-product is again a Menger PN space under
w.
However, even if (Vj, vj)jeN is a sequence of PN spaces with respect to the same triangle functions t and t*, their X-

product need not be a PN space with respect to the same triangle functions. In order to see this it is sufficient to modify
Example 1.3 in Alsina’s paper [17].

Example 3.1. Consider the simple space (R, | - |, U) where U is the d.f. of a random variable uniformly distributed on the
interval (0, 1) and the sequences p and q in [ [, .y R given by
p={cm:neN} and q:={n:neN}

Assume that f; = max{f; : j € N} and, moreover, assume that the constant ¢ €]0, 1/2[ is small enough to satisfy the
inequality

]
c+1
Thus, for every t > 0,

t i
e Ll e

JeN

(3=

B1 >

In particular,

1 e
Vp+q()<c+]
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On the other hand
1 1
1/2) = Ul — ul— )=
%(1/2) ;ﬁj (ZCj)>ﬂ1 (ZC) B

since 1/(2c) > 1, and
: 1 1
ve(1/2) = ;ﬂjU (2_]> > B U (E) = [
so that
v (vp, vg) (1) = v5(1/2) A vg(1/2) = B

Therefore one has, because of Eq. (3.1),

1
Vpig(1) < —— < v (vp, vg) (1),
p+q() C+.1<ﬂl_M(p q)()
viz. the X-product of the sequence of simple spaces we have considered is not a simple space.

The previous example also exhibits one drawback of the construction of the X'-product of a sequence of PN spaces, namely
thateven when (Vj, v, T, T *)jeN is a sequence of PN spaces under the same triangle functions = and t*, their ¥'-product need

not be a PN space under the same two triangle functions. This drawback is evident also in another class of examples, which
we now proceed to construct.

Definition 3.2. The pair (V, v) is said to be a Probabilistic Semi-Normed space (briefly a PSN space) when v : V. — A*
satisfies (N1) and (N2). A PSN space (V, v) is said to be a Wald space, when T = %, namely when the triangle function 7 is
the convolution,

Vptq = Vp * Vg. B32)

In a PN space with 7 = 77, where [T is the t-norm I7(a, b) = a - b, one has

Vp+q(x+y) = Vp(x) 3 Vq(y)-

Theorem 3.2. A Wald space (V, v, ) can be made in a PN space (V, v, x, Ilr+), for every t-norm T.

Proof. The inequality v, < vgp, which holds for every p € V and for every g € [0, 1], yields, when applied to 8 = « and
B=1-a(el0,1]),

Vp = min {Vapv V(l—a)p} = Ily (Vap, V(l-—a)p) < Ir» (Vap» Vu—a)p) ,
which concludes the proof. O
Example 3.2. The quadruple (V, v, %, ITy) where V is a normed linear space and the probabilistic norm v is defined via

el

)

=
B +1
and x is convolution, is a PN space; it is neither a Serstnev space nor a topological vector space. In fact, (N1) and (N2) are
obvious.
(N3) For every x > 0 and for all p and g in V, one has explicitly, settingh :==x + 1 > 1,

/x e SR T R
b Xt 1 (t + 1)2

_ e~Upli+lgh [/X gt _/x it :|
g @+ Jo GHI-0G+ 17

— e=Upl+lal {1 1 2Inh X .
h o (1+h?  (1+hh

|

/ vy (x — ) dvg ()
0
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Property (N3) is equivalent, in turn to each of the following inequalities

e T S T SSRRE s
; h (1+h?> (Q+hh

X S eleral=Glpli+lal (1 _ 1 2k - %

i h (I8P fi+mh)

x

~ 1 2h Inh X
= eita—teral \* T T +mZ  (d+mh)’

1 h 2h Inh )
X = X — X
= elptilal=Tpral \“ 14+ n ~ (1+ h)?

But
—1— < __Zh_lgi <0 and L = 1
elpl+lal—lp+al = (1 + h)2 18
so that
i 1 5 h = il (x h s 2h Inh )
— elleli+lall=lp+al = 1 4 b — ellpli+lall=lp+gll e —h ) 2
which proves (N3).

(N4) is immediate since for everyp € V and foreverya € (0, 1),one has ||p|| > «|lp|land |p]| = (1 — ) |p|.
Moreover, (V, v, %, ITy) is not a Serstnev PN space because in this case the equation (S) is equivalent to the relationshir

X1 _ -
X+ e

which, for x £ —|«| is an equation that admits the unique solution

o] e IP Il _ 1
= 1 _e-wipl

this means that equation (5) cannot hold for allx > Oandp € V.

Example 3.3. The ¥-product of Wald PN spaces is not necessarily a Wald PN space.
Consider the normed space (R, | - |) as a Wald space (R, v, %), where

vp = €p| = €0(x — |PI),
forallp € R. Let (Vj, v, Tj, Tj*)jeN be a sequence of Wald spaces where V; = R for every j € N. Then their X¥'-product is the
pair (V, v), where
V = I[jenV = IjenR,
and where, for every p = (p;) € V one has
1
vy = Z i vi(pj)-
JjeN
Ghoose pi=(1, 120, ..., 0, .= (0,0, 1, . .. 1, = s dand e =101, 1, - 1S ooy ithenps- g =7,
1 3 3 1

1’p=‘—1€o+z€1, quzfo—f—zé], and Vr = €1,

whence one concludes that
1
Vp * Vg = 1 (3€3 + 10€7 + 3€p) ,
and, for0 < x < 1,

3
(i %0 0 = o 0= v (x),

and the proof is complete.

From the point of view of topology, the following result is essential.



B. Lafuerza-Guillén et al. / Nonlinear Analysis 71 (2009) 4405-4414 4411

Theorem 3.3. The strong topology of the X-product (V, v, Tw, Tw+) coincides with the product topology of the sequence of

>
spaces (V;, vj, 7, 7; )jeN.

Proof. The neighbourhoods of the type
No(t) = {q eV :vg(t) > 11t}

form a basis for the topology of the X-product (V, v, Ty, tw+), while the cylinders

k
[T#5@ x[Tv
=i

Jj>k

are a basis for the product topology.
Let a neighbourhood M (t) be given with t €]0, 1[ (if t > 1, then Np(t) = V). Since there exists n € N such that
> j=1 B > 1 —t, itis possible to define

- fomu

LB
Jj=1

and let tp :=t A t’. If a point g belongs to the cylinder

Un(to) = 1_[ Ny (to) % 1_[ Vi,
=1

Jj>n

then one has v;(q;)(to) > 1 —tp foreveryj =1, 2, ..., n. Now

ve(t) = ve(to) = D Bivi(@)(to) > Y _B(1—to) =Y FA—t)=1—1t;
j=1 j=1

=1

so that U, (tp) C Ny (t).
In the other direction, consider the cylinder

n
Un(tr, bz, - ) = [ [y &) x [ T v (33)
=1

Jj>n
and set

te=minfti it e 0

Pi=1-max{f(1—t)+ Y B:i=12....n
keN
k#j

foo—EAL,

Then, if g belongs to the neighbourhood A (tp), one has, foreveryj =1,2,...,n,

va(t) = vo(t)) > 1—to > 1—t'=max{ (1 —6)+ Y Be:j=12,...,n
ke N
k#j
>BA—t)+) B =BU—)+ ) Bn@)®);
E 2
) J

this inequality implies
Bivi(g) () > B (1 —t),
namely v;(g;)(t;) > 1 — t;; therefore
No(to) C Uy(tq, ta, ..., tn);
which concludes the proof. O
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4. (II)—The 7-product

By extending Alsina’s construction [17] a different definition is possible for the countable product of PN spaces. Before
proceeding, it is necessary to recall the definition of the 7% _product of a sequence (t;),cy Of triangle functions. One
proceeds inductively by setting, for any sequence (F,),cy of distribution functions in A™, W = 74, and, forn > 2,

T P ) =R T VLR )

The sequence {r(”’ (B Fn+1)} is decreasing so that its weak limit always exists, although it may be identically be equal
to zero; it is denoted by 7 {F,},
T®F} =w— lim @, ..., F1).
n—+4o00

Definition 4.1. Given a sequence (Vj, Vi, T, rj*) . of PN spaces and a continuous triangle function t, their 7-product is the

JjE

pair (V, v), where V = ]—[jeN Viandv : V — AT is defined, if p = (p,) with p, € V,, forevery n € N, by

v, = 7 )} (4.1)

Theorem 4.1. Let (V,,, Vs T rn*)neN be a sequence of PN spaces. Assume that there exist two continuous triangle functions t
and t* such that

(@) foreveryne Nt <7 <7} <71%
(b) T* dominates T, T* > 7.

Then their T-product (V, v) is a PN space under t and t*.

Proof. One has vy = 7 {vg,} = 1°{eo, ..., €, ...} = €. Notice that this also proves that t'> is not identically equal
to zero. Now assume that v, = €p; then one has v,(p,) = €, and hence p, = 0, for every n; therefore p = ¢ and (N1) i
proved, property (N2) is trivial.

Let p = (p,) and q = (q,) be elements of V. Then, on account of the continuity of 7, one has

Vp+q = 7 {vn(on + )} = 5 {Tn Wn (), vin(qn))}
o {t n(Pn)s va(Gn))} = 7 (T(Oo) (vn(@n)) g (Vn(qn)))
=i (Vp’ "q) )

which proves (N3).
For every « € [0, 1], one has, since 7* is continuous and t* dominates T,

vp = T {u(pn)} < v {1} (napn), v ((1 — @)pn))}
T {* (vn(apn), v (1 — @)pn)) |

(7 (wlaps)} . v (o ((1 = @)pa)})

=t (Vap’ ”(l—a)p) )

which proves (N4) and concludes the proof. O

%

IA

IA

In the case of Menger spaces we have a stronger result as a special case of the previous theorem.

Example 4.1. In the previous theorem, if for everyn € N, 7, = 1wy, 7, = ty* and * = 1y, namely, if the spaces
n p

(Vj, Vi, T Tf*)jeN are all PN spaces of Menger, then their ty-product (V, v) is also a PN space of Menger denoted by (V, v, M)

Example 4.2. Under the same hypotheses of Theorem 4.1, assume that for everyn € N, v, = v, 77 = Ty+; then the 77-
product (V, v) is a PN space under 77 and I7y. Notice that one has 7. < ITy: in fact, for all F and G in AT and x > 0, one
has

v+ (F, ) (%) = v (F, G)(x) = sup{M(F(u), G(v)) | u + v =x} < M(F(x), G(x)),

since for all u and v in R such that u + v = x, M(F(u), G(v)) < M(F(x), G(x)) holds. On the other hand ITy, > t for every
triangle function t, which establishes the assertion.

However, even if (Vj, Vi)jeN is a sequence of PN spaces of Menger with respect to the same triangle functions 77 and 77+
their rr-product need not be a PN space of Menger with respect to the same triangle functions because 77+ >> 77 is not true.
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In a way similar to that of Theorem 4.1 one proves the following

Theorem 4.2. Under the same assumptions of the previous Theorem, if the mapping v/ : V. — A™ is defined, for every p = (py)
inV, by

V,; = T*(N){Vn(Pn)}v
then the T*-product (V, v/, T, T*) of the given sequence of PN spaces is a PN space, called the T*-product of (Vj, Vi, Tj, Tj*)jeN.
Notice that for the probabilistic norms v and v’ of the 7- and 7*-products, respectively, one has v < v’.

Next, we give the exargple of a -product of a sequence of PN spaces. To this end, recall that an equilateral PN space
(V, v, F) (see [7]) is not a Serstnev space unless the d.f. F is constant on R.

Example 4.3. Let (8,),n be a sequence of strictly positive numbers such that Y nen Bn < +oo and let (Vy, vy, M) ey be
a sequence of equilateral PN spaces, where, for alln € N, v, = €g,. The convergence of the series Y nen Bn ensures that
H,\(,,w) is not identically zero. The ITy-product is again an equilateral PN space. Notice also that, if 7 is a continuous triangle
function such that 7 (&,, €5) = €4 for all real numbers a, b € [0, +00], then the r-product (V, v) is a PN space under 7 and
Iy

It suffices to recall that ITy, > 7 for every triangle function .

Theorem 3.3 has only a partial analogue in the case of the t-product of PN spaces.

Theorem 4.3. The product topology of the sequence (V,T, Ve r:)neN of PN spaces is weaker than the strong topology of their
T-product.

Proof. As in the proof of Theorem 3.3 let U,(ty, ta, ..., t;) be the same neighbourhood as in (3.3) and define t :=
min{ti,, ..., t;} > 0.Let g = (q) belong to Ny (t); then, one has, forallj € {1,2,...,n},

1—6<1—t < vt) =< v(g)) < v(g)(E,
so that Ng(t) C [[jenNoy(5) C Un(tr, b2, tn). O

Considerations analogous to those presented in [17] could be made in order to explain (i) why the two topologies that are
the object of Theorem 4.3 in general cannot coincide and (ii) the different probabilistic meaning, in the topologies of o - and
7-products, of the statement “a point p = (p,) belongs to the neighbourhood Ny (t)”. Since they would just be a rephrasing
of those in Alsina’s paper, they will not be repeated here.

5. Final considerations

In [18] Alsina and Schweizer were successful in constructing the countable product of Probabilistic Metric(= PM) spaces
in such a way that the following natural, and, hence, desirable, properties of the product space hold

(a) if all the PM spaces in the sequence (S, F, 7)oy Share the same triangle function 7, then the product space (S, ¥) is a
PM under the same triangle function t;
(b) the strong topology of the product space coincides with the product topology.

One naturally wonders whether the construction given in [18] may be modified so as to extend it to the case of the
countable product of PN, rather than PM, spaces. It will be shown below that the answer to this question must be negative.
This is a consequence of the fact that two triangle functions, 7 and t*, rather than only one, appear in the definition of a PN
space.

Let (Vj. Vi, T, r*)jeN be a sequence of PN spaces under the same two continuous triangle functions v and 7*.

The same concepts will be used as in [18]. As in that paper, let (,Bj) be a sequence of strictly positive numbers such

that the series ZjeN Bj converges. For every j € N, let ¢; belong to Mﬁjfet?]e set of strictly increasing functions from [0, ﬁj]
onto [0, +o0]. The functions g;'s are requested to be t-superadditive, viz,, for all F and G in A* and for everyj € N,
T(F,G)og>1(Fop,Gog).
Define, for every j € N, V(p;) := v(p;) o ¢; and, for p = {p; : j € N} in ]_[jeN Vi,
op =TV}
Then again, with the same proof as in [ 18], one shows that v, belongs to D and that the probabilistic norm thus defined

satisfies property (N3) of a PN space. The problems arise with property (N4). In fact, in order to satisfy this latter property
one has to require that each ¢; be v*-subadditive, namely, for all F and G in At and for every j € N,

T*(F,G) og <t*(Fog, Gog).
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