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1. Introduction

Probabilistic Normed (briefly PN) spaces were introduced by Serstnev in a series of papers [1-4]. Then a new definition
was proposed by Alsina, Schweizer and Sklar [5]. This new definition revived the study of PN spaces. The properties of these
Spaces were studied by several authors; here we shall mention [6-9] (but see also the survey papers [10,11]).

We shall consider the space A of distribution functions (=d.f’s); a d.f. is an increasing (in the weak sense) function
F:R = [—o0, +0o0] — [0, 1] that is left-continuous and such that F(—oco) = 0 and F(400) = 1. The d.f’s belonging
to the subset A™ := {F € A | F(0) = 0} will be called distance distribution functions. Also the subset D+ ¢ A+ of the
proper distance distribution functions, i.e, those F € A™ for which limy_, 4 o0 F(x) = 1 will be needed. The space A can
be metrized in several equivalent ways [12-14] in such a manner that the metric topology coincides with the topology of
weak convergence for distribution functions. Here, we assume that A is metrized by the Sibley metric ds, which is the metric
denoted by d; in [15]. The d.fs of constant random variables will be needed: for every a € R,

0, t<a,
2glt) t= 1, t>a.

For the reader’s convenience, now we recall the definition of a PN space: the notation is essentially that fixed by the
classical book by Schweizer and Sklar [15].

Definition 1.1. A probabilistic normed space is a quadruple (V, v, 7, t*), where V is a real linear space, r and t* are
continuous triangle functions and the mapping v : V — AT satisfies, for all pand gin V, the conditions

* Corresponding author. Tel.: +39 0832351786 fax: +39 0832297410.
E-mail addresses: blafuerz@ual.es (B. Lafuerza-Guillén), carlo.sempi@unisalento.it (C. Sempi), zhanggaoxun002@163.com (G. Zhang).

0362-546X/$ - see front matter © 2010 Published by Elsevier Ltd
doi:10.1016/}.na.2009.12.037



1128 B. Lafuerza-Guillén et al. / Nonlinear Analysis 73 (2010) 1127-1135

(N1) v, = gg ifand only if p = 6 (6 is the null vector in V);

(N2)VpeV v, =y,

(N3) vprg = T (vp, vg);

(N4) YVa € [0, 1] v < ¥ (Vapv U(Iﬂx)p)-

The function v is called the probabilistic norm. If (V, v. 1, T*) satisfies the condition, weaker than (N1),

Yy = €o,

then it is called a Probabilistic Pseudo-Normed space (briefly, a PPN space). If T = 77 and t* = 7;+ for some continuous
t-norm T and its t-conorm T* then (V, v, 77, 77+) is denoted by (V, v, T) and is called a Menger PN space. A PN space is
called a Serstnev space if it satisfies (N1), (N3) and the following condition,

S) Vep(X) = vp (%) forevery o € R\ {0} and for every x > 0.

From the point of view of topological vector spaces the most interesting PN spaces are those that are not Serstnev spaces.
In these cases vector addition is still continuous (provided the triangle function is determined by a continuous t-norm),
while scalar multiplication, in general, is not continuous with respect to the strong topology (see [16]).

AsetAinthe PN space (V, v, 7, %) is said to be D-bounded if its probabilistic radius, R4 belongs to D . The probabilistic
radius of A is defined by

_ )¢ infly,(x) 1 p € A}, x € [0, 400,
Rl = {1, X = +oo0.
Of course, if V is a normed space under the norm [l - Il then the set A may be bounded when regarded as a subset of the
normed space (V, || - ||), but the two notions need not coincide (see [8]). The aim of this paper is to investigate the cases in

which the notions of D-boundedness and boundedness coincide. The papers [17-19] on the relationship between the two
types of boundedness ought also to be kept in mind.

The notion of t-norm will be used in the sequel; its definition may be found in [20,21,15]. Briefly a t-norm is any binary
operation T on [0, 1] that is commutative, associative, increasing in each place and such that T(a, 1) = a for everya € [0, 1].
A t-conorm T* is associated with every t-norm T: it is defined by T*(x,y) =1—-T(1 —x,1—y).

Important examples of t-norms and of their t-conorms are: M(x,y) = min{x,y}, IT(x,y) = xy and M*(x,y) =
max({x, y}, IT*(x,y) = x +y — xy. We recall the following inequalities

T<M<M"<T*
which hold for every t-norm T; in particular

W<II<M<M <[T" <W*,

Definition 1.2. APNspace (V, v, 7, t*) will be said to be strict if v(V) € D1, or, equivalently, if vp belongs to D for every
pev.
Definition 1.3. A triangle function is a mapping  from A* x A* into A* such that, for all F,G H,KinA™,

(1) ©(F, &) =F,

(2) T (F,G) = (G, F),

(3) ©(F,G) < t(H,K) whenever F < H,G < K,
(4) 7 (v(F,G),H) = ©(F, (G, H)).

Particular and relevant triangle functions are the functions tr, 77~ and those of the form /7 which, for every continuous
t-norm T, and every x > 0, are defined by

7 (F, G)(x) = sup{T(F(u), G(v)) | u 4 v = x},
tr+(F, O)(x) = inf{T*(F(u), G(v)) | u+ v = x}

and
M7 (F, G)(x) = T(F(x), G(x)).

See [22,23] for a recent study of triangle functions.

Definition 1.4. A subset A of a PN space which is a TV space is said to be bounded if for every m € N there existsa k € N
such that

A C kNy(1/m).
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Definition 1.5. The subset A is said to be totally bounded if for every m e N there is a finite set Ay € A such that

Ac Jo+ma/mw),

peA;

Furthermore, whenever a metric space has the structure of a TV space, another type of boundedness is relevant, A subset
Aof a TV space is topologically bounded if for every sequence (¢p) C R with lim,, ;o (e;) = 0 and for every sequence
(pn) C A, one has limy_, 4 oo (appp) = 6.

Definition 1.6. Let . be the set of all binary operations L on R+ satisfying the following conditions:

(i) RanL = R*
(ii) Lis non-decreasing in each place;
(iii) Lis continuous on Rt x R* except, at most, in (0, co) and (oo, 0).
Theorem 1.1. Let T be a left-continuous t-norm, and let L belong to £ and satisfy the following conditions:
(a) Lis commutative;
(b) Lis associative;
() uy <uyandv; < vy imply L(uy, v1) < L(u,, vy);
(d) L(x,0) = x;
then the function tr | isa triangle function.
Lemma 1.1. Let T be a continuous t-norm and let I satisfy the condition of Theorem 1.1 (a); then 17 (&4, &) = L) foralla
and b in [0, +ool.
Definition 1.7. A copula is a function C - [0, 1] — [0, 1] that satisfies the following conditions:

(C1) forevery t € [0, 1], C(0, t) =C(t,0) =0and C(1,¢) = Clt,: 1) =t
(C2) Cis 2-increasing, i.e., for all s, s'.tand t’in [0, 1], with s <sandt <t/

C't) —C(s', t) — C(s, t') + C(s, t) > 0.

It follows from Definition 1.7 that every copula C is increasing in each place.
Moreover for any copula C one has W <C<M.

Definition 1.8. Let ¢ be a continuous, strictly decreasing function from I = [0, 1] to [0, +o0] such that ©(1) = 0. The
pseudo-inverse of ¢ is the function ¢!~ with Dom ¢!~ — [0, +-00] and Ran ¢!~ = I defined by

-1
=py. — J@7 (6), 0<t<¢0),
= l@); = {o, B0 < 6 = o (1.1)

The following results are well known and can be found in [15] or in [24].

Lemma 1.2. Let ¢ be a continuous, strictly decreasing function from I to [0, +c0] such that ¢(1) = 0, and let o= be the
pseudo-inverse of ¢ defined by (1.1). Let C be the function from T? to I defined by

Cu,v) = o) + p(v)). (12)
Then C satisfies the boundary conditions (C1). Moreover C is 2-increasing if, and only if, for all v e 1,
Cluz, v) = C(uy, v) < uy —uy, (1.3)

whenever u; < u,

Theorem 1.2. Let ¢ be a continuous, strictly decreasing function from I to [0, +oo] such that ¢(1) = 0, and let @'~ be the
pseudo-inverse of ¢ defined by (1.1). Then the function C from I? to I defined by (1.2)is a copula if, and only if, ¢ is convex.

Copulas of the form (1.2) are called Archimedean. An Archimedean copula is associative and a t-norm.
One owes the following result to Alsina, Schweizer and Sklar [16].
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Theorem 1.3. Every PN space (V, v, 7, ™), when it is endowed with the strong topology induced by the probabilistic norm v, is
a topological vector space if, and only if, forevery p € V the map from R into V defined by

A Ap (1.4)
is continuous, i.e., for every n > 0, there exists a number § > 0 such that
dS(Vu/p—aps &) < n

whenever |a’ — «| < §, or, equivalently, such that ds(vgp, €0) < 1 whenever 1Bl < 6.

A triangle function t is said to be Archimedean if €0 and e, . are the only solutions in A* of the functional equation
7(F,F) = F. Any such a solution is said to be an idempotent of the triangle function 7: thus a triangle function 7 is
Archimedean if, and only if, ¢y and €400 are the only idempotents of . Thus, for instance, the triangle functions Ty and
77 are Archimedean.

It was proved in [16, Theorem 4], that, if the triangle function 7* is Archimedean, then the mapping (1.4) is continuous
and, as a consequence of Theorem 1.3, the PN space (V, v, 7, t*)isa TV space. It was shown in [8] that uniform boundedness
ina Serstnev PN space (V. v, 7, t¥), (named boundedness in the present setting) of a subset A  V with respect to the strong
topology is equivalent to the fact that the probabilistic radius R4 of A is an element of DT, Here we extend this equivalence
to a larger class of PN spaces, namely those PN spaces that are topological vector spaces (briefly TV spaces), but are not
Serstnev PN spaces.

Section 2 presents a characterization of those PN spaces, whether they are TV spaces or not, in which the equivalence
holds. In Section 3, a characterization of the Archimedeanity of triangle functions t* of the type 7 is given. This work is
a partial solution to a problem of comparing the concepts of distributional boundedness (D-bounded in short) and that of
boundedness in the sense of associated strong topology.

2. Main results (I)—A particular class of PN spaces
Definition 2.1. The PN space (V, v, , T*) is said to satisfy the DI-condition’ if the probabilistic norm v is such that, for all

@ €R\{0},xeRandp e V,

Vo(p(x) = Vp(</7(057 X)),
where ¢ : R x [0, +o00[— [0, —+o00[ satisfies
lim ¢(a,X) = +0c0 and lim o(a, X) = +o00.
+00 a—0

X

Example 2.1. Let (V, || - ||) be a normed space. For g €]0, 1[, define v : V — A+ by

0, x =<0,
Vp(X) = u—ﬁ%wm»—lﬂliﬁ—a x €]0, 400,
’ In(14x) + |Ip||

1, X = +o00.

Below, we shall prove that (V, v, T, Tn)

(1) is a PN space;
(2) is neither a Serstnev space nor a TV space nor a strict PN space;
(3) satisfies the DI-condition, with

o, x) = (x+ DVl _ 1,
(1)(V,v, 7, Ty) isa PN space. It is easily verified that (N1) and (N2) hold.
Forallpand qinV, forall s and t in R+, one has

lp + qll - lipll + lqll - _linl llqll
In(1+s+t) “In(1+s+t) ~ In(1+s) ' In(1 +t)

T The acronym DI stands for the expression Double Infinity.
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Notice that the factor (1 — Beo(llpl)) equals 1 if, and only if, p = 6; otherwise, it equals 1 — 8. Then, if both p and q differ
from @,

In(1+4s+t) 1

Vprg(s+1t) = (1—p) =0=-p)———
- In(T+s+6) + [Ip +q 14 gl
1
> (1-p)
lipl llal
1 In(1p+s) + [n(1q+t)
1
2= 0
el gl Ipl gl
1 + In(ers) + In(lqu) + In(H—i) Ir?(H»[)
. (1=p 1-p8)
- Ipll - llal
T+ ]n(1p+s) L In(1q+t)
(1—p) In(1+5s) In(14¢t) ) ©
=1-8)— "7 1 _ R — T ) R (O
In(1+5) + [p|| In(1+0)+ g — 7 !

As a consequence (N3) holds, i.e, forallpand qinV, and for every x € R*,

Vptq(X) > T (v, vg) ().

This latter inequality is trivially true if at least one of pand q equals 6.
Forall sand t in R*, one has

In(1+45) _In(T+s+1t)—1In(1+5) B Iﬂ%
In(1+s+t) In(1 +s+1¢) In(14s+10)

_In0+59) _ ma+o
Cn(A+s+0 - (A +s+0

Therefore, because of Lemma 2 in [7],

V(] In(1+s) )p =V In(1+0) i

T IOFs+0 In(I+s+0)
Forall  €]0, 1[ and x € R*, there exist S0, to in R" such that sy + ty = x and

_ In(1 +5p) )
T In(1+sp+ 6
infactsy = (1 +x)® — 1. Whence, ifp # 6,

TM(Vapv V(]—(y)p)(x) = sup min(vap(s), V(l»aip(t))

S+t=x
= sup min (U In(14s9) \ (S), Vi Gy (F)
S+t=x <1n(]+50+lo) )p ( = In(1+s0+1) )p

v

min | v/ imgtsy) (S9), v in(i+sg) \ (£p)
( (1n<1+so+0ro)>p ' (T‘Inmﬂofzo))ﬁ’

min (a1 50 ey )

— min ((1 —BA)In(1+s0+1t) (1—8)In(1 45, + fo))
In(1+s0+to) + pll * In(1+s5 + ) + IIpll

min(up(x), vp(X)) = Vp(x).

%

I

Therefore (N4) holds for p # 6; since (N4) is obvious forp = 0, it holds for every p € V and for every o €]0, 1.
Foro =0ora = 1,(N4) obviously holds, i.e.,

Vp = ™ (Vap, V(1—a)p)-

(2) (V, v, 1, ) is neither a Serstnev space nor a TV space nor a strict PN space. A straightforward calculation shows that
Vap(X) # vp(x/|er]) so that (V, v, 7., 7y) is not a Serstney space.

We recall that a sufficient condition for a PN space (V. v. 1, t*) tobe a TV space is that * be an Archimedean triangle
function. Now, 1, is not Archimedean so that all one needs to prove is that the scalar multiplication A + Ap is not
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continuous. For every sequence (A,) of real numbers that converges to 0 as nn tends to 400, and for every pin V one has
Anp ~ 6 in the strong topology of V. Now

lim vy ,(x) =1—-8 <1,
n—oo
or equivalently,
lim Vinp 75 £o.
n—-o0o
Also since lim,_, o, Vp(x) = 1— 8 < 1, the distance d.f. vpisin AT\ ©DF, so that (v, V, Tr, Ty) Is not a strict PN space.
(3)(V, v, 1, t) satisfies the DI-condition. For all xe Rt L eR\ {0 and p € V, one has, for p #*0,
A=-fln+x  A=Fpn(+x

In(t+x) + APl L In(1 +x) + [p]

Vip (X) =

A
_ (1 *ﬂ)lngl + x) P = vy (1 4+ 0% — 1),
In(1+x) ™ + |p||
Let
e, x) = (1 +x)VH 1,
Itis easily checked that (A, x) > @(2, X) satisfies

lim @A, %) =400 and lim ¢(, x) = +o0.
X—+00 A—0

Example 2.2. Let (V, v, 7, 7*) be an «-Serstnev space (see [6]). It is easy to show that (V, v, . T*) satisfies the DI-condition,
where

Y, x) =

Al

Example 2.3. The quadruple (V, v, I, ITy) where V is a normed linear space and v, the probabilistic norm, is a map
vV — A% defined via v,(x) := e~ IPI/’* for x > 0. is a PN space as that of Example 2.2 with o = 1.

Notice that this probabilistic norm is an increasing function of x and a decreasing function of ||p||.

Properties (N1) and (N2) are obvious.

Property (N3) is obviously true since

e~ lIp+all/x > e~ lpli/x e~HqH/x.

As for property (N4), since ||p|| > Allpll for every p € V and for every A € [0, 1], one has for every o €]0, 1[

e IP1/x < minfe=lapl/x o=li-apl/x

Moreover, this is a Serstnev PN space, as is immediately seen.
Itis also a topological vector space. As a matter of fact, for every p = 6, and for every arbitrary sequence (e,,) with o, # 0,
(n € N) such that &, — 0 as n tends to 400, one has
Venp (%) = e~ lanllipll/x > 1.
n—+0o
Moreover there is a neighbourhood of the origin ¢ that is topologically bounded: For every sequence (o) with a, # 0,
(n € N) such that o, — 0 as n tends to +00, and for every sequence (p,) of elements of Mg (t) one has

Ve, (£) = elanllpall/t ﬁv)n%{-oo 1.

Theorem 2.1. Let (V, v, 7, %) be a PN space that satisfies the DI-condition. Then forasubset A C V the following statements
are equivalent:

(a) Ais D-bounded.
(b) Ais bounded, namely, for everyn € N and for every p € A, there is k € N such that vp(1/n) > 1 —1/n.
(c) Ais topologically bounded.
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Proof. (a)=> (b).LetAany D-bounded subset of V. By definition of D-boundedness, the probabilistic radius R4 of A(see [8])
is a distance d.f. such that lim,_, ;o R4(x) = 1, Therefore, for every n € N, there exists x, > 0 such that Ry X)) > 1—=1/n.
Thus, for every p € A,

Vp(xn) = RA(XH) > 1= 1/n~
Since, in view of the DI-condition,

li A, 1/n) = .
Alg[g)w(,/n) +o0

for every n € N, there exists A’ € R such that ¢ (', 1/n) > x,,. Therefore,
vp(1/m) = vy (@2, 1/n)) > vp(xn) = Ralxn) > 1—1/n.

As a consequence letting k = [1/1/], where [t] denotes the integral part of ¢, one has
vpk(1/n) > 1 —1/n,

namely, A is bounded.

(b) = (a) Let A be a bounded subset of V and consider the neighbourhood of /, Ny (1/n). Then there exists 1o € R such
that for every p € V, p = xoq for some g € N, (1/n).

Because of the DI-condition, lim,_, o0 @ (Ao, X) = +00, foreveryn € N; then, there exists xo > 0such that, ¢ (1o, Xp) > 1.
Then, for x > xq,

Up(X) = Vagq(X) = vigq(X0) = vg(@ (Ao, X0)) > V(1) = ve(1/n) > 1—1/n,
so that

1
Ra(x) =2 1——,
n

ie,Ryisin DT.
(a) = (c). Let A any D-bounded subset of V. One has, as above,

1
Vunp"(xn) = Vpn(@(anvxn)) > Ra(xy) > 1— 57

which implies

anpn ——— 0.
n—+o0o

(c) == (a). Let A be a subset of V which is not D-bounded. Then
lim RA(X) =y < 1.
X— 100
By definition of R4, for every n € N there is p, € A such that, for every x > 0,
1+y
2

< 1.

Vp, () <

Then for every x > 0,

1+y

Vernpn (X) = Vp, (@(aty, X)) < < 1,

which shows that v, does not tend to g, even if it has a weak limit, viz., (a,p,) does not tend to # in the strong topology;
in other words, A is not topologically bounded. O

The next example exhibits a PN space (V, v, T, t*) that is a TV space but in which the triangle function * is not
Archimedean.
Example 2.4. Let (V, v, T, T*) be a PN space in which the triangle function 7% is not Archimedean. Let f and g be functions
satisfying the following conditions:

(i) f : [0, +00] — Lis continuous, decreasing and f (0) = 1;
(ii) g : Rt x Rt — I is continuous in either place, increasing in the first place and decreasing in the second place with

gx,0) =1
Then the quadruple (V, v, 7, t*) where the probabilistic norm v is defined via

vp(x) = f(lIplD - g 1IpID,

isa TV space.
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Notice that every PN space (V, v, 7, *) inwhich t* = 7y and such that v(V) € DT isaTVspacesince 1y is Archimedean
on the subset DF of A*.
The condition v(V) € D is not necessary to obtaina TV space as shown in [25, Theorem 9] and in the following example.

Example 2.5. With the same assumptions of the Example 2.4 one has that the quadruple (V. v, [Ty, ITy) where

X

WO = T x Tl

is a PN space that is a TV space, which is not Serstnev and is not strict.

Example 2.6. The quadruple (V, v, ITj, ITy) where the probabilistic norm v is defined via

lIplix
UP(X) = exp (—W 5

is a PN space that is neither Serstnev nor strict, but it is a TV space.

Example 2.7 ([16]). For p € R define v by setting vo = &, and
1 lipll + 1

Wy = 0 )
P el A2 42
for p # 0, it is straightforward to show that (R, v, 7w, 7y) is a PN space, and that, for any p # 0 and any sequence (otn)
converging to 0, the sequence (v,,,) converges weakly, not to &o, but to (g9 + €x)/2. Thus v, is not continuous in its first
place, namely, scalar multiplication is not a continuous mapping from R into V. Thus (R, v, Tw, Ty ) is not a TV space.

Example 2.8. Let (V, | - ||) be a normed space and, for « €]0, 1[,letv : V — AT be given by

0, x<0,
In(14 x)
s < R NS 0, , 1
gy P
V(%) = aln(1+x)
——————— x€]0,+ool, lIpll =1,
In(1+x) + Ipll -

)

Then
(1) (V, v, Tz, Tn) is a PN space satisfying the DI-condition with
1
oA, x) = (A +x)T —1;

(2) (V, v, 77, Tv) isa TV PN space;
(3) the subset A = {p : ||pll < 1} is both O-bounded and bounded.

Only property (2) needs to be checked. For every sequence (%) of real numbers that converges to 0 as n tends to +0o0,
and for every p € V, one has A,p — ¢ in the strong topology of V; in fact, for every x € R, limy oo va,p(X) = 1, namely,
lim,Hoo Vigp = €0-

3. II—A class of PN spaces that are TV spaces
Theorem 1.1 implies that L > max; one also knows that tr | < ITr.

Lemma 3.1. Let L € £ satisfy the assumptions of Theorem 1.1; then L = max, if, and only if, L(a, a) = a for every a €]0, +oo[.
The following theorem studies whether certain classes of PN spaces are TV spaces.

Theorem 3.1. Let T be an Archimedean t-norm and assume that L € £ satisfies the assumptions of Theorem 1.1, then the

following statements are equivalent:

(a) tr is a triangle function having no nontrivial idempotents in A™;
(b) L satisfies the condition L(x, x) > x for every x €]0, +-00[.
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Proof. Recall that 77 is a continuous triangle function (see [15, Theorems 7.2.4 and 7.2.8]).

(a)==(b) A continuous triangle function with no nontrivial idempotents in A™ is Archimedean (see [15, Lemma 14.1.3]).
Then 77 ; is an Archimedean triangle function, and, for every function F ¢ {gg, €4}, one has t; ,(F, F) # F.By Lemma 1.1,
&x # Tr1(ex, &x) = euxx for every x €]0, 4-oo[. Therefore L(x, x) # x and from Lemma 3.1 one has L(x, x) > x for every
x €]0, 4o0[, which is the assertion.

(b)= (a) Let F € A" be different from ¢, for every a € [0, +00]. Then there exists Xp €]0, 400 such that F(xp) is in
10, 1[. Since T is Archimedean, the following holds

7 (F, F)(%0) = sup{T(F(u), F(v)) : L(u, v) = X0} < T(F(x0), F(X0)) < F(Xo).
Therefore F is not an idempotent element of 77 ;. Now let x be in ]0, +oo[. By Lemma 1.1,

7r,1(&x, &x) = EL(x,x) 7 Exs

whence 17 ; has no nontrivial idempotents elements. This concludes the proof. O

Example 3.1. If C is an Archimedean copula, then the triangle function zc; where L € £ satisfies the assumptions of
Theorem 1.1 is Archimedean.

Theorem 3.2. Let T; and T, be t-norms such that Ty < T,; then 7r, . and tr, | have the same idempotents.
Proof. If Fisin A" and 7r, . admits F as idempotent, then

F =7, (F,F) < 17,1 (F,F) <F,
sothat, (F,F) =F. O

Corollary 3.1. Let T be a t-norm such that T < I1, then the family of all PN spaces of the type (V, v, 17, 77 1) are TV spaces.
Corollary 3.2. Let T be a t-norm such that T < W, then the family of all PN spaces of the type (V, v, Tr,, Tw ) are TV spaces.

Theorem 3.3. Let T and C be a continuous t-norm and an Archimedean copula, respectively; if, for every (u,v) € [0, 1]%
T(u, v) < C(u, v), then every PN space of the form (V, v, tr 1, tc.1) is a TV space.

The above result provides many examples of Archimedean triangle functions. It suffices to take

L=K,(x,y) = +y)"* (x,yeRa>1).
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