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Received 30 September 2011 / Received in final form 24 December 2011
Published online 5 March 2012 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012

Abstract. In this paper, three new algorithms are introduced in order to explore long memory in financial
time series. They are based on a new concept of fractal dimension of a curve. A mathematical support
is provided for each algorithm and its accuracy is tested for different length time series by Monte Carlo
simulations. In particular, in the case of short length series, the introduced algorithms perform much better
than the classical methods. Finally, an empirical application for some stock market indexes as well as some
individual stocks is presented.

1 Introduction

The discussion about the market efficiency is still, after
half a century, a classical topic in finance. Indeed, nowa-
days researchers can be classified into two different tenden-
cies: some of them consider that stock market prices follow
a Brownian motion1, which implies a certain level of ran-
domness in the evolution of trends (see [1,2]), while others
try to prove that prices reflect a fractional Brownian mo-
tion, which means that market shows a fractal behavior
with long memory (see [3–7]). This second idea involves
some interesting effects since the existence of memory in
market prices evolution would imply that some extra in-
formation could be available in order to make investments.

In this way, this second school of thought was born
after the publication of [8], which is one of the first
Mandelbrot’s works in economy. The main research of
these authors is focused on the study of long memory pro-
cesses in financial time series. Obviously, note that the
detection of memory implies the rejection of the efficient
market hypothesis (supported by [9,10], for instance).

The classical procedure in order to test long memory in
market series is based on the calculation of the Hurst ex-
ponent, which was first introduced by english hydrologist
Hurst in 1951, and has been classically estimated through
the next two procedures:
1. R/S analysis (see [1,7,11–13]);
2. DFA (detrended fluctuation analysis) (see for exam-

ple, [14–18]).
a e-mail: jetrini@ual.es
1 In 1959, the concept of Brownian motion in finance was

introduced by the astronomer Robert Osborne by comparing
the stock market equilibrium with the equilibrium of particles
in statistical mechanics.

The Hurst exponent, usually denoted by H , has to lie
between 0 and 1. Thus, when the process is a Brownian
motion then the value of H is equal to 0.5. When it is
persistent it will be greater than 0.5, and when it is anti-
persistent that quantity will be less than 0.5. Examples of
extreme values 0 and 1 are 1/f noise and a simple linear
trend, respectively.

As use to be normal in social sciences, most of the
quantitative models are being extended from other sci-
entific areas, such as statistical physics, mathematics and
natural sciences (see [19]): in this sense, both R/S analysis
and DFA do not provide an exception. Under the theory
that the previous models and instruments need an adapta-
tion before being exported, in a previous paper (see [20])
the authors proved that the classical methods to estimate
the Hurst exponent do not work properly in short series,
so they proposed a new methodology, which is based on
two geometrical approaches named GM1 and GM2, that,
in particular, solve this problem.

During last years new ways to explore market memory
have been developed: several of them based on the calcu-
lation of fractal dimension, such as [21–23], to quote some
of them. Nevertheless, their approach is totally different
from ours.

In this paper, we will introduce some new procedures
in order to explore market memory, based on a new con-
cept of fractal dimension, which will be called FD meth-
ods. Their behavior and accuracy are tested from different
length time series using Monte Carlo simulations. More-
over, a mathematical support is provided for each algo-
rithm and we also apply them to explore long memory in
financial time series.

The organization of the paper is as follows: in Sec-
tion 2 we present the concept as well as the mathematical
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bases of a fractal structure. In Section 3, by using fractal
structures, we introduce a new concept of fractal dimen-
sion particularly appropriated for the image of any curve.
Section 4 contains the main theoretical results as well as
the mathematical formulation of our algorithms to esti-
mate the Hurst exponent. The accuracy of FD methods is
tested in detail in Section 5, where a comparison between
geometrical, classical and fractal approaches is provided.
The paper continues with empirical applications to the
analysis of long memory in stock market indexes and some
individual stocks, respectively. Finally, Section 7 contains
the main conclusions.

2 Exploring the complexity of curves using
fractal structures

Since Benôıt Mandelbrot introduced the concept of fractal
set ([24]), this kind of non-linear objects have received
attention from a wide range of science fields, including
social sciences. In this way, [25] and its references contain
a detailed selection of such applications.

The main tool we provide in order to describe frac-
tals from a rigorous point of view is the concept of fractal
structure, which was first sketched in [26], and then used
in [27] to characterize non-archimedean quasimetrization,
though a more natural use of it is in the study of frac-
tals. A fractal structure is just a countable family of cov-
erings, called levels, of a given set which approaches the
space. More information is provided about the space when
deeper levels in its fractal structure are explored. For in-
stance, note that some kind of common fractal objects like
self-similar sets are equipped with a fractal structure in a
natural way (see [28], Def. 4.4) as well as it happens with
any euclidean space Rd which also has a natural fractal
structure consisting of d-dimensional cubes of side 1

2n on
the nth-level of its fractal structure (see [29], Def. 3.1).
Accordingly, fractal structures provide a rigorous descrip-
tion of these non-classical objects and lead to formalize
the definition of a fractal from a mathematical point of
view.

Note that [30] contains a wide range of applica-
tions of fractal structures in some mathematical re-
search areas. In this way, space-filling curves, topologi-
cal and fractal dimensions, self-similar sets, metrization,
non-archimedean quasimetrization and transitive quasi-
uniformities are some examples, just to name a few.

Next we introduce some preliminary concepts which
are necessary in order to define a fractal structure on any
set X . Indeed, let Γ1 and Γ2 be two coverings of X (a
family Γ of subsets of X is said to be a covering if X =
∪A∈Γ A). Then, we will write Γ1 ≺ Γ2 to denote the fact
that Γ1 is a refinement of Γ2, that is, for all A ∈ Γ1 there
exists B ∈ Γ2 such that A ⊆ B. Similarly, Γ1 ≺≺ Γ2

means that Γ1 ≺ Γ2, and for all B ∈ Γ2 it is verified that
B = ∪{A ∈ Γ1 : A ⊆ B}.

A fractal structure on a set X is defined as a countable
family of coverings of X , namely, Γ = {Γn : n ∈ N}, such
that Γn+1 ≺≺ Γn for each n ∈ N .

Fractal structures provide a powerful tool in order to
study the complexity of a given set by means of its fractal
dimension value. In this paper, we develop a new defini-
tion of fractal dimension to be used to distinguish and
classify different kinds of processes such as Brownian mo-
tions (resp. fractional Brownian motions), whose relevance
consists of its usefulness in order to modelize random pro-
cesses (resp. long memory processes) in time series. These
motions have been widely applied to the analysis of finan-
cial time series.

One of our goals is to define a fractal structure on the
image set of a real curve. Thus, for irregular curves, our
fractal dimension definition will provide some interesting
information about its structure and pattern. Indeed, if α :
I → R is a parametrization of a real curve, where I is a
subinterval of the real line which has a fractal structure
Γ, then it is always possible to define an induced fractal
structure Δ on its image set α(I). This idea allows to
study the structure of any curve and leads to interesting
analysis of time series like those used in finance.

The natural fractal structure on the real line (see [29])
is defined as the countable family of coverings Γ = {Γn :
n ∈ N}, whose levels are given by Γn = {[ k

2n , k+1
2n ] : k ∈ Z}

for all n ∈ N. In particular, it is also possible to consider a
natural fractal structure induced on real subsets from the
previous one. For instance, the natural fractal structure
induced on the interval [0, 1] ⊂ R may be defined as the
family of coverings Γ, whose levels are Γn = {[ k

2n , k+1
2n ] :

k ∈ {0, 1, . . . , 2n − 1}} for all natural number n. We can
define now the fractal structure induced in the image of a
curve.

Definition 1. Let α : I → R be a parametrization of a
real curve where I ⊂ R is a closed real subinterval and let
Γ be the natural fractal structure on I. Then, the fractal
structure induced by Γ in the image set α(I) ⊂ R is de-
fined as the countable family of coverings Δ = {Δn : n ∈
N}, whose levels are given by

Δn = α(Γn) = {α(A) : A ∈ Γn}.
To conclude this section, Figure 1 illustrates the meaning
of Definition 1. In this case, it is shown the first two levels
of the fractal structure induced in the image of a given
Brownian motion. In the bottom of the images, we can
see the elements (horizontal bars on the bottom) of level 1
(in the first image) and 2 (in the second image) of Γ. The
image of those elements gives the elements (vertical bars
on the left) of level 1 (first image) and 2 (second image)
of Δ, which are shown in the left side of the images.

3 The fractal dimension of a curve

A new concept of fractal dimension for a curve is in-
troduced in this section. The classical fractal dimension
theory (box-counting dimension and Hausdorff dimension)
deals with the dimension of a set while we define the di-
mension of the parametrization of a curve. So, different
parametrizations lead to different values of the dimension.

http://www.epj.org
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Fig. 1. (Color online) The two figures above show the graph of a Brownian motion α and the first two levels of its induced fractal
structure Δ, namely Δ1 and Δ2. The horizontal lines at the bottom represent the elements of the natural fractal structure Γ
defined on I , namely, Γ1 and Γ2. Furthermore, note that the image of each dotted line border box by α leads to the elements
of Δ (the vertical bars on the left).

This gives much more information than we get if we only
calculate the dimension of the image of the curve and it
is someway equivalent to calculate the dimension of the
graph of the curve. We refer the reader to [31] for the
study of the classical fractal dimension theory.

The next definition we provide is the key concept of
the paper. It is an application of fractal dimension III
defined in [32], and is based both in the box-counting and
Hausdorff dimensions (see [31], end of Sect. 3.1 for the
relation between both classical dimensions, which is also
the motivation for this definition).

Definition 2. Let α : I → R be a parametrization of
a real curve, where I = [0, 1] is the closed unit interval
and let Γ be the natural fractal structure on I. Let also
Δ be the fractal structure induced by Γ in the image set
α(I) ⊂ R. Thus, for s ≥ 0, consider the following sequence
of quantities:

Hs
n(α(I)) =

∑
{diam(B)s : B ∈ Δn} (1)

for all n ∈ N, where diam(B) is the diameter of B, that is,
diam(B) = sup{|x − y| : x, y ∈ B}. Take also Hs(α(I)) =
limn→∞ Hs

n(α(I)).
We define the fractal dimension of α with respect to Δ,

which will be denoted by dimΔ(α), as one of the following
equivalent quantities:

inf{s : Hs(α(I)) = 0} = sup{s : Hs(α(I)) = ∞}. (2)

Note that we are working with a very general concept of
curve, since we do not require it to be continuous. Thus, in

Definition 2, the curve α does not need to be continuous.
Also, it can be a time series and in particular, a financial
time series. In this way, in the next section we will see
that Definition 2 can be used as an alternative and also a
generalization of the Hurst exponent. Thus, we study some
new algorithms based on the calculation of the introduced
fractal dimension, and in the particular case of (fractional)
Brownian motions, we can determine the Hurst exponent
by using such methods.

The interpretation of the values of the fractal dimen-
sion could be stated as follows. A bigger fractal dimension
with d ∈ [1,∞) means that the oscillations of the curve
increase at any scale. On the other hand, smaller values
of d imply a greater smoothness in the graph of the curve.
In particular, if α is a smooth curve, then dimΔ(α) = 1,
and if α is a Brownian motion, then dimΔ(α) = 2.

4 Hurst exponent estimation using fractal
dimension

In this section, we will see how to use the fractal dimen-
sion introduced above to estimate the Hurst exponent. We
can consider the fractal dimension as a generalization of
the Hurst exponent, since it can be calculated for a wide
range of motions, not only fractional Brownian motions.
Anyway, instead of using the fractal dimension directly,
we will use its relation with the Hurst exponent, since it
is more familiar to researchers.

We present two kind of procedures to estimate H
by fractal dimension techniques. The first approach is to

http://www.epj.org
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compute the fractal dimension by the ratio of the diam-
eters of the elements of consecutive levels of Δ. The sec-
ond approach is based on the relations of some statistical
moments of consecutive levels of the induced fractal struc-
ture Δ.

Thus, the structure of this section is as follows. First,
we recall the basic properties of random functions and
their increments. Then, we provide some theorems which
give general conditions to calculate the fractal dimension
and we introduce three new algorithms to calculate the
fractal dimension based on those theorems. Finally, we
also give some general conditions for a motion which al-
low to calculate the Hurst exponent as the inverse of the
fractal dimension. In particular, this can be applied to
(fractional) Brownian motions and (fractional) Lévy sta-
ble motions.

4.1 Preliminaries: random functions
and their increments. Self-affinity properties

The definitions, properties and results that we recall next
come from the theory of probability and stochastic pro-
cesses and are essential in order to formalize our mathe-
matical ideas. Some useful references are [23,31,33].

Let (X,A, P ) be a probability space and let t ∈ [0,∞)
denote time. We say that X = {X(t, ω) : t ≥ 0} is a
random process or a random function from [0,∞) × Ω
to R, if X(t, ω) is a random variable for all t ≥ 0 and
all ω ∈ Ω (ω belongs to a sample space Ω). We think
of X as defining a sample function t 
→ X(t, ω) for all
ω ∈ Ω. Thus, the points of Ω parametrize the functions
X : [0,∞) × Ω → R and P is a probability measure on
this class of functions.

The definitions of a Brownian motion (BM for short),
fractional Brownian motion (FBM), Lévy stable motion
(LSM) and fractional Lévy stable motion (FLSM) can be
found in [31] or [23].

Let X(t, ω) and Y (t, ω) be two random functions. The
notation X(t, ω) ∼ Y (t, ω) means that the two preceding
random functions have the same finite joint distribution
functions. Recall also that

1. A random process X = {X(t, ω) : t ≥ 0} is said to be
H-self-similar if for some H > 0,

X(at, ω) ∼ aHX(t, ω)

for all a > 0 and t ≥ 0. The parameter H is the self-
similarity index or exponent.

2. The increments of a random function X(t, ω) are said
to be:
(a) stationary, if for each a > 0 and t ≥ 0

X(a + t, ω) − X(a, ω) ∼ X(t, ω) − X(0, ω);

(b) self-affine with parameter H ≥ 0, if for any h > 0
and any t0 ≥ 0,

X(t0 + τ, ω) − X(t0, ω)

∼ 1
hH

{X(t0 + hτ, ω) − X(t0, ω)}. (3)

In this way, note that any FBM with exponent H has
stationary and self-affine increments with parameter H
(see [33], Thm. 3.3). On the other hand, note that by [33],
Corollary 3.6, we have that if a random function X(t, ω)
has self-affine increments with parameter H , then a T H

law as the following is satisfied:

M(T, ω) ∼ T HM(1, ω) (4)

where its cumulative range is given by

M(t, T, ω) = sup
s∈[t,t+T ]

{
Y (s, t, ω)

}
− inf

s∈[t,t+T ]

{
Y (s, t, ω)

}

(5)
where Y (s, t, ω) = X(s, ω) − X(t, ω) and moreover,
M(T, ω) = M(0, T, ω). In particular, any FBM with pa-
rameter H satisfies a T H-law as shown in equation (4).
Further, if X is a FBM, then one can replace sup and inf
by max and min respectively, in equation (5) (see [33],
Prop. 4.1).

Remark 1. Let α : I → R be a sample function of a
random process X with stationary increments, where I =
[0, 1]. Let Γ be the natural fractal structure on I and Δ
the fractal structure induced by Γ in α(I). Then, for each
n ∈ N, {diam(A) : A ∈ Δn} is a sample of the random
variable M( 1

2n , ω).

4.2 A first approximation to the fractal
dimension: algorithm FD1

We introduce a first algorithm to calculate the fractal di-
mension of a curve. First, we prove a result which is the
base for the algorithm FD1. Then, we prove that for FBMs
or FLSMs, the Hurst exponent can be calculated as the
inverse of its fractal dimension, so algorithm FD1 can be
used to calculate the Hurst exponent or the fractal dimen-
sion of any FBM or FLSM.

Our first idea is as follows. Let α : I → R be a
parametrization of a real curve, where I = [0, 1]. Let Γ
be the natural fractal structure on I and let also Δ be
the fractal structure induced by Γ in α(I). Recall that we
are going to determine the fractal dimension by means of
Definition 2.

Indeed, let s be a positive real number. We have that
any element A of each level Δn of the induced fractal
structure Δ can be written as A = A1 ∪ A2, where
A1, A2 ∈ Δn+1. Suppose that the fractal structure Δ is
regular enough, so diam(A1) � diam(A2). Hence, if we
denote by a = diam(A) and b = diam(A1) � diam(A2),
then we can calculate the ratio between the diameter of
elements of consecutive levels of Δ, namely, rn = b

a ∈
(0, 1). Let us suppose that there exists a common ratio
r (which could be taken as the mean of the list of ratios
{rn : n ∈ N}) for any two elements of consecutive levels
of Δ.

Now, assume that there exists a value of s such that
as � 2bs = 2rsas. Then, it is easy to see that Hs

n(α(I)) =
Hs

n+1(α(I)) for all n ∈ N, and hence there exists Hs(α(I))
which is a finite quantity, so that dimΔ(α) = s.

http://www.epj.org
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On the other hand, note that if as � 2bs = 2rsas,
then 2rs � 1, and hence r � 2

−1
s . Accordingly, s � −1

log2(r)

would be a suitable estimation of the fractal dimension.
Therefore dimΔ(α) � −1

log2(r) .
Next, we formalize the ideas sketched above.

Theorem 1. Let α : I → R be a sample function of a
random process X with stationary and self-affine incre-
ments with parameter H, where I = [0, 1]. Let Γ be the
natural fractal structure on I and Δ the fractal structure
induced by Γ in α(I). Then dimΔ(α) = 1

H and

M(Tn, ω) ∼ 2HM(Tn+1, ω) (6)

with Tn = 1
2n .

Proof. Let n ∈ N. Since X has stationary and self-affine
increments with parameter H , by equation (4) it follows
that

M(Tn, ω) ∼
(

1
2n

)H

M(1, ω) (7)

and similarly,

M(Tn+1, ω) ∼
(

1
2n+1

)H

M(1, ω). (8)

From equations (7) and (8) we deduce equation (6).
Now, by equation (6) we have that M(Tn, ω)

1
H ∼

2 M(Tn+1, ω)
1
H .

On the other hand, by Remark 1, {diam(A) : A ∈
Δn} is a sample of the random variable M(Tn, ω), so
{diam(A)

1
H : A ∈ Δn} is a sample of the random variable

M(Tn, ω)
1
H . Since M(Tn, ω)

1
H ∼ 2 M(Tn+1, ω)

1
H , then

the mean of any sample of M(Tn, ω)
1
H must be the dou-

ble of the mean of any sample of M(Tn+1, ω)
1
H , and hence

∑{
diam(A)

1
H : A ∈ Δn

}

2n
= 2

∑{
diam(B)

1
H : B ∈ Δn+1

}

2n+1

which implies that H 1
H
n (α(I)) = H 1

H
n+1(α(I)). Thus, there

exists H 1
H (α(I)) ∈ (0,∞) and then dimΔ(α) = 1

H .

Theorem 1 is quite general. Next we apply it to FBMs
and FLSMs.

Corollary 1. Let α : I → R be a sample function of a
FBM X with parameter H, where I = [0, 1]. Let Γ be the
natural fractal structure on I and Δ the fractal structure
induced by Γ in α(I). Then, dimΔ(α) = 1

H .

Proof. The increments of any FBM are stationary and
self-affine with parameter H by [33], Theorem 3.3, so it
suffices with applying Theorem 1.

The following result provides sufficient conditions
about a random process X in order to verify equation (3).

Theorem 2. Let X be a H-self similar random process
with stationary increments. Then X has self-affine incre-
ments with parameter H.

Proof. First of all, note that X(0, ω) = 0 for all ω ∈ Ω,
since X is a H-self similar process. On the other hand, the
stationariness of the increments of X leads to

1
hH

{
X(t0+ha, ω)−X(t0, ω)

}
∼ 1

hH

{
X(ha, ω)−X(0, ω)

}

∼ 1
hH

X(ha, ω) for all t0 ≥ 0 and all h > 0.

Furthermore, the next equation is also based on the H-self
similarity of X:

1
hH

X(ha, ω) ∼ 1
hH

hHX(a, ω) ∼ X(a, ω)

and now it is clear that

X(a, ω) ∼ X(a, ω) − X(0, ω) ∼ X(t0 + a, ω) − X(t0, ω)

for all t0 ≥ 0. Thus, X has self-affine increments with
exponent H .

Hence, it is possible to explore the Hurst exponent of
any FLSM by means of its fractal dimension. Indeed, the
proof of the next corollary is now clear from the previous
results.

Corollary 2. Let α : I → R be a sample function of a
FLSM X with parameter H, where I = [0, 1]. Let Γ be the
natural fractal structure on I and Δ the fractal structure
induced by Γ in α(I). Then, dimΔ(α) = 1

H .

Proof. Note that X is a H-self similar random process
with stationary increments (see [34]). Thus, by Theorem 2,
we have that X has self-affine increments with exponent
H . Hence, Theorem 1 gives dimΔ(α) = 1

H .

For practical applications the next remark is useful.

Remark 2. Note that though each fractal structure has
a countable number of levels, in practical applications we
are going to work with a finite number of them. That
number of levels depends on the data number of the curve
or the time series we are analyzing. Indeed, let d be the
length of the data series. Then, the maximum level that
we can explore is n � log2(d).

Now, by Remark 1, {diam(A) : A ∈ Δn} is a sample
of the random variable M(Tn, ω) for all n ∈ N. Let dn be
the sample mean of {diam(A) : A ∈ Δn}, which provides
a good approximation of the mean of M(Tn, ω). By equa-
tion (6) of Theorem 1, it follows that rn = dn+1

dn
must be

equal to a constant r and that r = 1
2H . It follows that

H = − log2(r) and by Theorem 1, dimΔ(α) � −1
log2(r) .

We can use the previous comments to give the first
algorithm to calculate both the fractal dimension and the
exponent H of a random process X in the hypothesis of
Theorem 1. Indeed, the procedure is as follows.

http://www.epj.org
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Fig. 2. Algorithm FD1 in action. Points represent the values
rn and the line represent r, their mean (see the description of
algorithm FD1). This was calculated for a 2048 point BM.

Algorithm 1 (Algorithm FD1)

1. Calculate dn as the mean of each collection {diam(A) :
A ∈ Δn}, for n ∈ {1, . . . , log2(d)};

2. let rn = dn+1
dn

for all n ∈ {1, . . . , log2(d) − 1};
3. let r be the mean of {rn : n ∈ {1, . . . , log2(d) − 1}};
4. dimΔ(α) = −1

log2(r) and H = − log2(r).

Figure 2 shows a graphical representation of the cal-
culation of the fractal dimension of a time series by FD1.
In this case, the coefficients rn are plotted as well as their
mean value r (the horizontal line) for a 2048 point time
series (note that the induced fractal structure Δ has 11
levels) which corresponds to a BM. Note that the quan-
tity r leads to the fractal dimension value and to the Hurst
exponent of that time series.

4.3 Two new algorithms based on statistical
sth-moments: FD2 and FD3

In this section, we introduce an alternative approach to
calculate the fractal dimension of a time series which is
based on statistical moments of certain random variables.
Indeed, let X be a random variable. Recall that its statis-
tical sth moment is defined by ms(X) = E(Xs) for each
s > 0 (if that expected value exists). Furthermore, let
{xk : k = 1, . . . , n} be a sample of length n of the random
variable X . Thus, its sample sth-moment is calculated as

ms(X) =
∑n

i=1 xs
i

n
.

Next, we present our main theorem which allows us to
calculate the fractal dimension for a wide range of curves.

Theorem 3. Let α : I → R be a sample function of a
random process X, with I = [0, 1]. Let Γ be the natural

fractal structure on I and Δ the fractal structure induced
by Γ in α(I). Let Xn = M( 1

2n , ω) be the random variable
which provides the statistical distribution of the list of di-
ameters {diam(A) : A ∈ Δn}, for all n ∈ N. Suppose also
that there exists a positive real number s that verifies the
next two conditions:

1. there exists ms(Xn) for all n ∈ N;
2. ms(Xn) = 2 ms(Xn+1) for all n ∈ N.

Then, dimΔ(α) = s.

Proof. The sample sth-moment of {diam(A) : A ∈ Δn} is
approximately equal to ms(Xn), that is,

ms(Xn) =
∑{diam(A)s : A ∈ Δn}

2n

since each level Δn of the induced fractal structure Δ has
2n elements. Hence,

Hs
n(α(I)) =

∑
{diam(A)s : A ∈ Δn} = 2n ms(Xn) (9)

and a similar argument leads to

Hs
n+1(α(I)) = 2n+1 ms(Xn+1). (10)

Equations (9) and (10) and hypothesis (2) of the theorem
allow us to affirm that Hs

n(α(I)) = Hs
n+1(α(I)) for all

natural number n, which implies that Hs(α(I)) is a finite
and positive real number. Therefore, dimΔ(α) = s.

Remark 3. Note that the main theoretical hypothesis in
Theorem 3, namely, ms(Xn) = 2 ms(Xn+1) for all n ∈ N,
is usually verified in most practical applications. This fact
is shown empirically in Section 6.

Now, we use the key Theorem 3 to give two new al-
gorithms to calculate the fractal dimension and the Hurst
exponent of any time series.

As before, recall that any fractal structure has a count-
able number of levels. Nevertheless, in practical applica-
tions, the quantity of levels we are going to work with
depends on the data number (see Rem. 2). In order to
determine the number of levels of the fractal structure Δ,
note that if d is the length of the data, then log2(d) is the
deeper level we can consider.

The key condition we are going to check in our algo-
rithms is about the main theoretical hypothesis in Theo-
rem 3, namely,

ms(Xn) = 2 ms(Xn+1) (11)

where the random variable Xn provides the statistical dis-
tribution of the list of diameters {diam(A) : A ∈ Δn}, for
all n ∈ N. Equivalently, it suffices with checking the condi-
tion ms(Xk)

ms(Xk+1)
= 2 for k ∈ {1, 2, . . . , log2(d) − 1}. Indeed,

we introduce the next algorithm to estimate the fractal
dimension.
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Fig. 3. Algorithm FD2 in action. Example of the graph rep-
resentation of ys vs. s for a 2048 length time series of a BM
(see the description of algorithm FD2). The fractal dimension
is close to 2 (H = 0.5) and corresponds with the value of s
which makes ys = 2.

Algorithm 2 (Algorithm FD2)

1. For each s > 0, compute the list ys = {yk,s : k ∈
{1, 2, . . . , log2(d) − 1}}, where yk,s = ms(Xk)

ms(Xk+1)
;

2. let ys be the mean of each list ys;
3. find s0 such that ys0 = 2 (note that {(s, ys) : s > 0} is

a s-increasing function);
4. dimΔ(α) = s0 (Thm. 3) and H = 1

s0
(Thm. 1).

Figure 3 gives an illustration of the calculations in al-
gorithm FD2. It represents the graph of ys in function of
s. Note that ys is an increasing funcion of s, so it is easy
to find the value s0 of s which makes ys0 = 2. It is the
value of the fractal dimension. In this case, a 2048 point
time series which corresponds to a BM is used.

Next we introduce algorithm FD3, which is an alter-
native to FD2 and is based on the same Theorem 3.

First, note that equation (11) is equivalent to

ms(Xn) =
1

2n−1
ms(X1) (12)

for all n ∈ N. Thus, if we take 2-base logarithms in equa-
tion (12), then

log2(ms(Xn)) = −n + γ (13)

where γ = 1 + log2(ms(X1)) remains constant. This gives
a linear relation between log2(ms(Xn)) and n that can be
used to calculate the fractal dimension.

Next, we provide the technical description of the algo-
rithm based on the above ideas.

Algorithm 3 (Algorithm FD3)

1. For each s > 0, consider the 2D-point cloud {(k, βk,s) :
k ∈ {1, . . . , log2(d)}} with βk,s = log2(ms(Xk)), and
let βs be the slope of the regression line of the cloud;

2. consider the increasing function {(s, βs) : s > 0}, and
determine s1 such that βs1 = −1;

3. dimΔ(α) = s1 (Thm. 3 and Eq. (13)) and H = 1
s1

(Thm. 1).

Algorithm FD3 can be used to check the main hypoth-
esis in Theorem 3, namely, ms(Xn) = 2 ms(Xn+1) for all
n ∈ N. Indeed, note that equation (13) is equivalent to
condition (2) in Theorem 3, so to check that the empiri-
cal data verify that condition, we only have to check that
equation (13) is verified, that is, the regression coefficient
of equation (13) is close to (1).

A graphical interpretation similar to that one given in
Figure 3 could be performed.

5 Testing the accuracy of FD methods

We explore the accuracy of FD methods developed in the
previous section. These new approaches to estimate the
Hurst exponent are specially appropriated when analyz-
ing short length time series. Note that it becomes a signi-
ficative advantage compared to other algorithms, like the
classical R/S analysis which does not work fine for short
time series.

The accuracy of FD1 has been tested before applying it
to capital markets. Indeed, we have used Monte Carlo sim-
ulation as follows: we have generated 10 000 BMs (Hurst
exponent H = 0.5) with a length of 1024 and have calcu-
lated the Hurst exponent considering that prices change
about 128 times per day (actually, they usually change
much more, but for simulation purposes, 128 times is
enough). This is done so that we can simulate the maxi-
mum and minimum of each day. The mean of the Hurst
exponent was found to be 0.50 and the standard deviation
0.04 which is very close to 0. Thus, this means that FD1
works appropriately as a self-similarity estimator because
the computed value for the Hurst exponent is near to 0.5
in the case of BMs. A similar analysis to the previous
one was carried out for H = 0.25 (that is, anti-persistent
FBMs) and for H = 0.75. In the first case, the mean was
found to be 0.33 and the standard deviation was equal
to 0.04. On the other hand, for H = 0.75, the mean of
the Hurst exponent was 0.74 with a standard deviation
of 0.07. We can see that for small values of H , FD1 lost
accuracy, while it is quite accurate for values of H near to
or greater than 0.5 (see also Fig. 5). Remember that, by
Section 4.2, FD1 is correct asymptotically.

For all these values of H , namely, H ∈ {0.25, 0.5, 0.75},
analogous analysis also were carried out for time series
with lengths of 32 and 256. Table 1 contains the complete
results.

On the other hand, a similar analysis to the previ-
ous one was carried out for algorithms FD2 and FD3.
Indeed, for both algorithms we have tested its accuracy
via the Monte Carlo method by generating 10 000 FBMs
for different values of H. The length of all the time series
was equal to 1024 and we also consider that prices change
about 128 times per day. Firstly, we tested the behavior
of FD2 for BMs. In this case, the mean of the estimated
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Table 1. Influence of the length of the series in the Hurst ex-
ponent using different approaches. The results have been ob-
tained by Monte-Carlo simulation of 10 000 FBMs with Hurst
exponents H ∈ {0.25, 0.5, 0.75} and time series of lengths equal
to 32, 256 and 1024. The data displayed in bold corresponds
with the best computed mean in each case.

R/S DFA
H Length Mean Std Mean Std
0.25 32 0.60 0.07 -0.00 0.37

256 0.41 0.06 0.11 0.09
1024 0.34 0.05 0.16 0.06

0.5 32 0.66 0.07 0.46 0.43
256 0.57 0.08 0.47 0.10
1024 0.54 0.08 0.48 0.06

0.75 32 0.69 0.07 0.68 0.42
256 0.71 0.10 0.71 0.12
1024 0.74 0.11 0.72 0.08

GM1 GM2
H Length Mean Std Mean Std
0.25 32 0.30 0.31 0.31 0.06

256 0.28 0.11 0.30 0.03
1024 0.28 0.07 0.29 0.02

0.5 32 0.66 0.30 0.51 0.08
256 0.57 0.11 0.51 0.03
1024 0.54 0.07 0.51 0.04

0.75 32 0.98 0.27 0.73 0.11
256 0.86 0.11 0.74 0.07
1024 0.82 0.08 0.74 0.05

FD1 FD2 FD3
H Mean Std Mean Std Mean Std
0.25 0.37 0.09 0.25 0.08 0.24 0.09

0.34 0.05 0.26 0.05 0.25 0.05
0.33 0.04 0.26 0.04 0.25 0.04

0.5 0.50 0.09 0.49 0.10 0.48 0.10
0.50 0.05 0.50 0.06 0.49 0.06
0.50 0.04 0.50 0.05 0.49 0.04

0.75 0.72 0.13 0.71 0.15 0.69 0.15
0.73 0.08 0.73 0.09 0.72 0.10
0.74 0.07 0.73 0.07 0.73 0.07

Hurst exponent was found to be 0.50 with a standard de-
viation of 0.05. Thus, FD2 works appropriately in the case
of random walks. Furthermore, for H = 0.25, the mean of
the Hurst exponent was found to be 0.26 with a standard
deviation of 0.04, and for H = 0.75, the mean was found
to be 0.73 with a standard deviation equal to 0.07.

Similarly, algorithm FD3 was tested before being ap-
plied to capital markets. Thus, for H = 0.5 we found that
the mean was equal to 0.49 with a standard deviation of
0.04. Since the mean is very close to 0.5 and the devia-
tion is quite small, we conclude that FD3 works fine for
analyzing BMs. Moreover, note that the results were also
interesting for anti-persistent FBMs (H = 0.25), since the
mean was 0.25 with a slight standard deviation, 0.04. The
results for H = 0.75 were as follows: the mean was found
to be 0.73 with a standard deviation equal to 0.07. Table 1
contains all the data generated in the analysis.

As can be seen in Table 1 as well as in Figures 4 and 5,
both FD2 and FD3 algorithms work fine for all range of H.

Figure 5 shows a graphical comparison among differ-
ent algorithms to calculate the Hurst exponent: the fractal
methods (FD1, FD2 and FD3) vs. geometrical algorithms
(GM1 and GM2) vs. the classical procedures (R/S analy-
sis and DFA). The graphs were plotted for a Monte Carlo
simulation of 1000 FBMs for different Hurst exponents
H ∈ (0, 1) with a length of 256 (with 128 changes per
day). Note that both FD2 and FD3 result versatile in or-
der to estimate all the possible values of H : persistent,
anti-persistent and random ones. Nevertheless, for Hurst
exponents less than or equal to 0.3 approximately, FD1
becomes less accurate than the other FD methods. More-
over, note that GM2 is not as accurate as both FD2 and
FD3 in order to estimate small values of the Hurst expo-
nent. On the other hand, algorithm GM1 does not provide
estimations so accurate as fractal ones. Note that the clas-
sical algorithms have been improved by both fractal and
geometrical techniques.

We also like to point out the influence of the length
of the time series when estimating the Hurst exponent.
Indeed, one of the advantages that our fractal dimension
techniques have is about its accuracy when analyzing short
length time series. Unlike R/S analysis, note that the ac-
curacy of FD methods is not too influenced by the length
of the time series, in the sense that we obtain means close
to its theoretical values with slight standard deviations
when taking short time series. This fact leads to a sig-
nificant advantage of the fractal approaches as well as it
happens with the geometrical estimations. In this way,
Table 2 compares the influence of the length of the series
using fractal, geometrical and classical procedures. The
experiments were carried out for a Monte Carlo simula-
tion of 1000 BMs (Hurst exponent equal to 0.5), and with
128 changes per day. Note that for short length time se-
ries, both FD1 and FD2 methods returns the expected
mean 0.5 with slight standard deviations. In this way,
FD3 algorithm also provides interesting results. On the
other hand, note that R/S analysis needs long time series
(with lengths from 4096) in order to provide means near
to 0.5. For lower lengths than 512, the obtained standard
deviations using DFA are greater than those obtained by
fractal techniques. Moreover, GM2 is the algorithm that
have lower standard deviations for all lengths.

An interesting graphical comparison of the accuracy
of the different approaches to estimate the Hurst expo-
nent was carried out in Figure 6 for H = 0.5. The first
picture compares the histogram of the estimated H us-
ing the classical approaches (R/S analysis and DFA) vs.
the geometrical algorithms (GM1 and GM2). The highest
mode histogram corresponds to algorithm GM2, whose
mean is close to 0.5 and presents the slightest deviation.
On the other hand, the image at the bottom contains the
histograms of the estimated H using algorithms FD com-
pared with DFA (the lowest mode histogram). Note that
all algorithms FD provide similar and accurate estima-
tions of the Hurst exponent, and the histogram is more
centered at 0.5 than DFA. The analysis were carried out
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Fig. 4. (Color online) Accuracy of algorithm FD2 when estimating H . The graph representation compares the theoretical Hurst
exponent vs. the empirical one given by FD2. The experiments were carried out with a Monte Carlo simulation of 10 000 FBMs
with a uniform random Hurst exponent between 0 and 1 and with lengths of 1024 (with 128 changes per day). Note that each
point of the cloud corresponds with one simulation.

by Monte Carlo simulation of 10 000 Brownian motions
with a length of 1024 and 128 changes per day.

6 Empirical applications

Two empirical applications of our fractal dimension tech-
niques are shown in this section. In the first of them, the
Hurst exponent of several international stock market in-
dexes is estimated. In the second one, we use algorithm
FD2 to calculate the Hurst exponent of individual stocks.

6.1 Exploring long memory in stock market indexes

We analyze market memory in several stock indexes
through the Hurst exponent. In this way, the Hurst ex-
ponent of the following international indexes is estimated
by means of FD methods: Cac40, FTSE100, NIKKEI225,
Ibex35, DAX, S&P500, Nasdaq100 and Nasdaq compos-
ite.

Table 3 contains the Hurst exponent estimations ob-
tained by algorithms FD1, FD2 and FD3. In this way, note
that the length of each time series was chosen to be equal
for all the studied market indexes. Indeed, time series of
256 (one year) and 1024 (4 years) data were considered in
order to estimate H . Thus, since the length of all the time
series was the same, a possible comparison of the results

that the algorithms provided could be done in the same
terms. The last day of the data used in both cases was
April 11, 2011.

With a confidence level of 95%, we have calculated the
empirical confidence intervals of each algorithm for the
Hurst exponent of a BM of length 256: (0.408, 0.602) for
FD1, (0.395, 0.620) for FD2 and (0.384, 0.609) for FD3. On
the other hand, for BMs of length 1024, the confidence in-
tervals were found to be (0.430, 0.580), (0.416, 0.594) and
(0.412, 0.581) for FD1, FD2 and FD3, respectively, for a
confidence level of 95%.

Note that the estimation of the Hurst exponent for
1024 length time series of S&P500, Nasdaq100 and Nasdaq
composite provides a value very close to the upper limit of
the corresponding confidence interval (for algorithm FD1).
Moreover, the Hurst exponent estimations for both 256
and 1024 length time series are near to the upper limit of
the confidence intervals in the case of NIKKEI225 index.
In particular, for 1024 length time series, the Hurst expo-
nent calculated using FD1 equals to the upper limit of the
corresponding confidence interval. Also, the FD2 and FD3
Hurst exponent estimations for 1024 length time series of
NIKKEI225 are close to the upper limit of their intervals.
Anyway, all estimations of H lie within the confidence in-
tervals. Therefore, we can say that the behavior of the
evolution of these international stock market indexes is
random: we cannot conclude that their Hurst exponent
values are statistically different from 0.5 in any case.
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Fig. 5. (Color online) Accuracy of different approaches to estimate the Hurst exponent. Horizontal bars represent the confidence
intervals of the empirical distribution of the algorithms at a confidence level of 95%.
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Table 2. Influence of the length of the series in the Hurst
exponent estimation using different approaches. The analy-
sis were performed by Monte Carlo simulation of 10 000 BMs
(H = 0.5). In each case, the Hurst exponents displayed in bold
corresponds to the best computed mean of H .

R/S DFA
Length Mean Std Mean Std
32 0.66 0.07 0.46 0.43
64 0.69 0.05 0.45 0.22
128 0.60 0.08 0.47 0.14
256 0.57 0.08 0.47 0.10
512 0.55 0.08 0.48 0.08
1024 0.54 0.08 0.48 0.06
2048 0.54 0.06 0.49 0.05
4096 0.53 0.06 0.49 0.04
8192 0.52 0.04 0.49 0.04

GM1 GM2
Length Mean Std Mean Std
32 0.66 0.30 0.51 0.08
64 0.61 0.20 0.51 0.06
128 0.59 0.15 0.51 0.05
256 0.56 0.11 0.51 0.04
512 0.55 0.09 0.51 0.03
1024 0.55 0.07 0.51 0.03
2048 0.54 0.06 0.51 0.02
4096 0.53 0.05 0.51 0.02
8192 0.53 0.05 0.51 0.02

FD1 FD2 FD3
Length Mean Std Mean Std Mean Std
32 0.50 0.09 0.49 0.10 0.48 0.10
64 0.50 0.07 0.49 0.08 0.48 0.09
128 0.50 0.06 0.50 0.07 0.49 0.07
256 0.50 0.05 0.50 0.06 0.49 0.06
512 0.50 0.04 0.50 0.05 0.49 0.05
1024 0.50 0.04 0.50 0.05 0.49 0.04
2048 0.50 0.04 0.50 0.04 0.49 0.04
4096 0.50 0.03 0.49 0.04 0.49 0.03
8192 0.50 0.04 0.49 0.03 0.49 0.03

Table 3. Hurst exponent estimations for different stock mar-
ket indexes using different approaches, where 256 (one year)
and 1024 (4 years) diary data where used. The Hurst expo-
nents displayed in bold correspond to those estimations of H
which are close to the upper limit of the corresponding confi-
dence interval. All estimations of H lie within the confidence
intervals.

Index FD1 FD2 FD3

Last Data 256 1024 256 1024 256 1024

Cac40 0.45 0.55 0.43 0.54 0.42 0.53

FTSE100 0.45 0.53 0.48 0.48 0.46 0.49

NIKKEI225 0.59 0.58 0.51 0.56 0.52 0.56

Ibex35 0.46 0.54 0.42 0.51 0.42 0.52

DAX 0.48 0.55 0.53 0.51 0.49 0.51

S&P500 0.52 0.57 0.53 0.53 0.50 0.54

Nasdaq100 0.52 0.57 0.56 0.52 0.51 0.53

Nasdaq C. 0.53 0.58 0.54 0.52 0.51 0.53
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Fig. 6. (Color online) Comparison of the accuracy of different
approaches to estimate the Hurst exponent. The first image
contains the histogram of the estimated Hurst exponent of BMs
(H = 0.5) of both classical and geometrical approaches while
the second one compares the FD methods vs. algorithm DFA.
The analysis were carried out by Monte Carlo simulation of
10 000 BMs with a length of 1024 and 128 changes per day.

6.2 The Hurst exponent for individual stocks

In this section, we study the Hurst exponent given by FD2
for the components of the S&P500 and the Nasdaq100
stock indexes. We make the test for different time intervals
from 256 data (one year) to 4096 data (16 years). The last
day of the data is April 11, 2011.

First, we check that the stocks follow the hypothesis of
Theorem 3. To do that, we calculate the regression coeffi-
cient for equation (13) (see Sect. 4.3). Note that a regres-
sion coefficient close to 1 means that the linear relation is
true, and hence the hypothesis of Theorem 3 is satisfied.

Following that procedure we find that in most of the
cases the regression coefficient is greater than 0.99 and
only for a few cases it is between 0.98 and 0.99. Only in two
cases the regression coefficient is less than 0.98, with values
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Table 4. Percentage of stocks in the index with a Hurst expo-
nent, given by FD2, inside the confidence intervals, at a confi-
dence level of 95%.

Data Length S&P500 Nasdaq100
256 95% 95%
512 96% 92%
1024 93% 96%
4096 98% 98%

of 0.977 and 0.979. This means that we have empirical
evidence that stocks verify the hypothesis of Theorem 3.

Second, we calculate the confidence intervals for each
of the lengths. This is done by Monte Carlo simula-
tion, calculating the Hurst exponent given by FD2 of
10 000 BMs, and then calculating the inferior and superior
limits of the interval so that 95% of the Hurst exponent
obtained lies between them.

In Table 4 we can see the percentage of stocks for each
index that have a Hurst exponent, given by FD2, inside
the confidence intervals, at a confidence level of 95%. From
the results obtained, we cannot conclude that the stocks
does not follow a BM, so there is no evidence of memory
in the series.

7 Conclusions

To conclude, we will like to point out that this paper
presents novel theoretical and empirical results in order
to estimate the Hurst exponent. The concept of a fractal
structure of a curve is first applied in order to provide a
new definition of fractal dimension for a parametrization
of a curve. Thus, we can explore long memory in time
series by using fractal techniques.

In particular, we prove that for random processes with
stationary and self-affine increments with parameter H
(which include FBMs and FLSMs with parameter H), the
fractal dimension is equal to the inverse of H . Thus, the
fractal dimension can be considered a generalization of
the Hurst exponent, since the former could be computed
for any real curve (not necessarily continuous). For in-
stance, note that unlike R/S analysis and DFA (see [23]),
the FD methods introduced here are able to estimate the
self-similarity index of FLSMs and any other random pro-
cess with stationary and self-affine increments.

We also prove some general results that are the base
for three new algorithms (called FD methods) to calculate
both the fractal dimension and the exponent H . They are
based on two mathematical techniques: algorithm FD1 is
based on the ratio of the diameter of elements of consec-
utive levels of the fractal structure, while algorithms FD2
and FD3 are based on statistical moments. All three algo-
rithms are supported by theoretical results, which guar-
antees that they are correct in an asymptotic way.

On the other hand, it is well known and, in any case,
easy to proof (see Tab. 1) that, for short length time se-
ries, classical methods are not accurate. Some of the solu-
tions to avoid it that have appeared in the literature are

unnecessarily artificial or complex. Algorithms FD are a
simpler and more efficient solution to this problem, since
they work fine with short time series. In particular, they
are suitable to study financial series, where it is usual to
have some extra information, like the maximum and the
minimum of the day (or period). The use of this informa-
tion make the algorithms FD1, FD2, FD3 and GM2 much
more accurate than the classical ones.

To illustrate it, the influence of the length of the se-
ries is analyzed for all fractal, geometrical and classical
algorithms to estimate H . As a result of this analysis, we
conclude that both the fractal and the geometrical ap-
proaches perform much better than the classical methods,
specially for short time series.

Finally, we have studied stock indexes and individual
stocks and we find no evidence of memory using the three
algorithms introduced in the paper.
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