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Abstract

In this paper we propose a naive Bayes model for unsupervised data clustering, where
the class variable is hidden. The feature variables can be discrete or continuous, as the
conditional distributions are represented as mixtures of truncated exponentials (MTEs).
The number of classes is determined using the data augmentation algorithm. The proposed
model is compared with the conditional Gaussian model for some real world and synthetic
databases.

1 Introduction

Unsupervised classification, frequently known
as clustering, is a descriptive task with many
applications (pattern recognition, . . . ) and that
can be also used as a preprocessing task in the
so-called knowledge discovery from data bases
(KDD) process (population segmentation and
outlier identification).

Cluster analysis or clustering (Anderberg,
1973; Jain et al., 1999) is understood as a
decomposition or partition of a data set into
groups in such a way that the objects in one
group are similar to each other but as different
as possible from the objects in other groups.
Thus, the main goal of cluster analysis is to
detect whether or not the general population
is heterogeneous, that is, whether the data fall
into distinct groups.

Different types of clustering algorithms can
be found in the literature depending on the type
of approach they follow. Probably the three
main approaches are: partition-based cluster-

ing, hierarchical clustering, and probabilistic
model-based clustering. From them, the first
two approaches yield a hard clustering in the
sense that clusters are exclusive, while the third
one yield a soft clustering, that is, an object
can belong to more than one cluster following a
probability distribution.

In this paper we focus on probabilistic cluster-
ing, and from this point of view the data cluster-
ing problem can be defined as the inference of a
probability distribution for the given database.
In this work we allow nominal and numeric vari-
ables in the data set, and the novelty of the ap-
proach lies in the use of MTE (Mixture of Trun-
cated Exponential) (Moral et al., 2001) densities
to model the numeric variables. This model has
been shown as a clear alternative to the use of
Gaussian models in different tasks (inference,
classification and learning) but to our knowl-
edge its applicability to clustering remains to
be studied. This is precisely the goal of this pa-
per, to do an initial study of applying the MTE
model to the data clustering problem.
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The paper is structured as follows: first, Sec-
tions 2 and 3 give, respectively, some prelim-
inaries about probabilistic clustering and mix-
tures of truncated exponentials. Section 4 de-
scribes the method we have developed in or-
der to obtain a clustering from data by using
mixtures of truncated exponentials to model
numerical variables. Experiments over several
datasets are described in Section 5. Finally, and
having in mind that this is a first approach, in
Section 6 we discuss about some improvements
and applications to our method, and also our
conclusions are presented.

2 Probabilistic model-based

clustering

The usual way of modeling data clustering in a
probabilistic approach is to add a hidden ran-
dom variable to the data set, i.e., a variable
whose value has been missed in all the records.
This hidden variable, normally referred to as
the class variable, will reflect the cluster mem-
bership for every case in the data set.

From the previous setting, probabilistic
model-based clustering is modeled as a mixture
of models (see e.g. (Duda et al., 2001)), where
the states of the hidden class variable corre-
spond to the components of the mixture (the
number of clusters), and the multinomial distri-
bution is used to model discrete variables while
the Gaussian distribution is used to model nu-
meric variables. In this way we move to a prob-
lem of learning from unlabeled data and usu-
ally the EM algorithm (Dempster et al., 1977)
is used to carry out the learning task when the
graphical structure is fixed and structural EM
(Friedman, 1998) when the graphical structure
also has to be discovered (Peña et al., 2000).
In this paper we focus on the simplest model
with fixed structure, the so-called Naive Bayes
structure (fig. 1) where the class is the only root
variable and all the attributes are conditionally
independent given the class.

Once we decide that our graphical model is
fixed, the clustering problem reduces to take
a dataset of instances and a previously speci-
fied number of clusters (k), and work out each
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Figure 1: Graphical structure of the model.
Y1, . . . , Yn represent discrete/nominal variables
while Z1, . . . , Zm represent numeric variables.

cluster’s distribution (multinomial or gaussian)
and the population distribution between the
clusters. To obtain these parameters the EM
(expectation-maximization) algorithm is used.
The EM algorithm works iteratively by carrying
out the following two-steps at each iteration:

• Expectation.- Estimate the distribution of
the hidden variable C, conditioned on the
current setting of the parameter vector θk

(i.e. the parameters needed to specify the
non-hidden variables distributions).

• Maximization.- Taking into account the new
distribution of C, use maximum-likelihood
to obtain a new set of parameters θk+1 from
the observed data.

The algorithm starts from a given initial start-
ing point (e.g. random parameters for C or θ)
and under fairly general conditions it is guaran-
teed to converge to (at least) a local maximum
of the log-likelihood function.

Iterative approaches have been described in
the literature (Cheeseman and Stutz, 1996) in
order to discover also the number of clusters
(components of the mixture). The idea is to
start with k = 2 and use EM to fit a model, then
the algorithm tries with k = 3, 4, ... while the
log-likelihood improves by adding a new com-
ponent (cluster) to the mixture. Of course some
criteria has to be used in order to prevent over-
fitting.

To finish with this section we discuss about
how to evaluate the obtained clustering?. Obvi-
ously, a clustering is useful if it produces some
interesting insight in the problem we are analyz-
ing. However, in practice and specially in order



to test new algorithms we have to use a differ-
ent way of measuring the quality of a clustering.
In this paper and because we produce a prob-
abilistic description of the dataset, we use the
log-likelihood (logL) of the dataset (D) given
the model to score a given clustering:

logL =
∑

x∈D

log p(x|{θ,C}).

3 Mixtures of Truncated

Exponentials

The MTE model is an alternative to Gaussian
models, and can be seen as a generalization
to discretization models. It is defined by its
corresponding potential and density as follows
(Moral et al., 2001):

Definition 1. (MTE potential) Let X be a
mixed n-dimensional random vector. Let Y =
(Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the dis-
crete and continuous parts of X, respectively,
with c + d = n. A function f : ΩX 7→ R

+
0 is

a Mixture of Truncated Exponentials potential
(MTE potential) if one of the next conditions
holds:

i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +

m
∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj


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

(1)
for all z ∈ ΩZ, where ai, i = 0, . . . ,m and

b
(j)
i , i = 1, . . . ,m, j = 1, . . . , c are real num-

bers.

ii. Y = ∅ and there is a partition D1, . . . ,Dk

of ΩZ into hypercubes such that f is de-
fined as

f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written
in the form of equation (1).

iii. Y 6= ∅ and for each fixed value y ∈ ΩY,
fy(z) = f(y, z) can be defined as in ii.

Definition 2. (MTE density) An MTE poten-
tial f is an MTE density if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 .

A univariate MTE density f(x), for a contin-
uous variable X, can be learnt from a sample as
follows (Romero et al., 2006):

1. Select the maximum number, s, of intervals
to split the domain.

2. Select the maximum number, t, of expo-
nential terms on each interval.

3. A Gaussian kernel density is fitted to the
data.

4. The domain of X is split into k ≤ s
pieces, according to changes in concav-
ity/convexity or increase/decrease in the
kernel density.

5. In each piece, an MTE potential with m ≤
t exponential terms is fitted to the kernel
density by iterative least squares estima-
tion.

6. Update the MTE coefficients to integrate
up to one.

When learning an MTE density f(y) from a
sample, if Y is discrete, the procedure is:

1. For each state yi of Y , compute the Max-
imium Likelihood Estimator of p(yi), which

is
#yi

sample size
.

A conditional MTE density can be specified
by dividing the domain of the conditioning vari-
ables and specifying an MTE density for the
conditioned variable for each configuration of
splits of the conditioning variables (Romero et
al., 2006).

In this paper, the conditional MTE densities
needed are f(x|y), where Y is the class vari-
able, which is discrete, and X is either a dis-
crete or continuous variable, so the potential is
composed by an MTE potential defined for X,
for each state of the conditioning variable Y .



Example 1. The function f defined as

f(x|y) =































































5 + e2x + ex, y = 0,

0 < x < 2,

1 + e−x y = 0,

2 ≤ x < 3,
1

5
+ e−2x y = 1,

0 < x < 2,

4e3x y = 1,

2 ≤ x < 3.

is an MTE potential for a conditional x|y re-
lation, with X continuous, x ∈ (0, 3]. Observe
that this potential is not actually a conditional
density. It must be normalised to integrate up
to one.

In general, an MTE conditional density
f(x|y) with one conditioning discrete variable,
with states y1, . . . , ys, is learnt from a database
as follows:

1. Divide the database in s sets, according to
variable Y states.

2. For each set, learn a marginal density for
X, as shown above, with k and m constant.

4 Probabilistic clustering by using

MTEs

In the clustering algorithm we propose here, the
conditional distribution for each variable given
the class is modeled by an MTE density. In the
MTE framework, the domain of the variables is
split into pieces and in each resulting interval
an MTE potential is fitted to the data. In this
work we will use the so-called five-parameter
MTE, which means that in each split there are
at most five parameters to be estimated from
data:

f(x) = a0 + a1e
a2x + a3e

a4x . (2)

The choice of the five-parameter MTE is mo-
tivated by its low complexity and high fitting
power (Cobb et al., 2006). The maximum num-
ber of splits of the domain of each variable has

been set to four, again according to the results
in the cited reference.

We start the algorithm with two clusters with
the same probability, i.e., the hidden class vari-
able has two states and the marginal probability
of each state is 1/2. The conditional distribu-
tion for each feature variable given each of the
two possible values of the class is initially the
same, and is computed as the marginal MTE
density estimated from the train database ac-
cording to the estimation algorithm described
in section 3.

The initial model is refined using the data
augmentation method (Tanner and Wong,
1987):

1. First of all, we divide the train database
into two parts, one of them properly for
training and the other one for testing the
intermediate models.

2. For each record in the test and train
databases, the distribution of the class vari-
able is computed.

3. According to the obtained distribution, a
value for the class variable is simulated and
inserted in the corresponding cell of the
database.

4. When a value for the class variable for all
the records has been simulated, the con-
ditional distributions of the feature vari-
ables are re-estimated using the method de-
scribed in section 3, using as sample the
train database.

5. The log-likelihood of the new model is com-
puted from the test database. If it is
higher than the log-likelihood of the initial
model, the process is repeated. Otherwise,
the process is stopped, returning the best
model found for two clusters.

In order to avoid long cycles, we have lim-
ited the number of iterations in the procedure
above to 100. After obtaining the best model for
two clusters, the algorithm continues increasing
the number of clusters and repeating the proce-
dure above for three clusters, and so on. The



algorithm continues to increase the number of
clusters while the log-likelihood of the model,
computed from the test database, is increased.

A model for n clusters in converted into a
model for n + 1 clusters as follows:

1. Let c1, . . . , cn be the states of the class vari-
able.

2. Add a new state, cn+1 to the class variable.

3. Update the probability distribution of the
class variable by re-computing the proba-
bility of cn and cn+1 (the probability of the
other values remains unchanged):

• p(cn) := p(cn)/2.

• p(cn+1) := p(cn)/2.

4. For each feature variable X,

• f(x|cn+1) := f(x|cn).

At this point, we can formulate the clustering
algorithm as follows. The algorithm receives as
argument a database with variables X1, . . . ,Xn

and returns a naive Bayes network with vari-
ables X1, . . . ,Xn, C, which can be used to pre-
dict the class of any object characterised by fea-
tures X1, . . . ,Xn.

Algorithm CLUSTER(D)

1. Divide the train database D into two parts:
one with the 80% of the records in D se-
lected at random, for estimating the pa-
rameters (Dp) and another one with the
remaining 20% (Dt) for testing the current
model.

2. Let net be the initial model obtained from
Dp as described above.

3. bestNet := net.

4. L0 :=log-likelihood(net,Dt).

5. Refine net by data augmentation from
database Dp.

6. L1 :=log-likelihood(net,Dt).

7. WHILE (L1 > L0)

(a) bestNet := net.

(b) L0 := L1.

(c) Add a cluster to net.

(d) Refine net by data augmentation.

(e) L1 :=log-likelihood(net,Dt).

8. RETURN(bestNet)

5 Experimental evaluation

In order to analyse the performance of the pro-
posed algorithm in the data clustering task, we
have selected a set of databases1 (see Table 1)
and the following experimental procedure has
been carried out:

• For comparison we have used the EM al-
gorithm implemented in the WEKA data
mining suite (Witten and Frank, 2005).
This is a classical implementation of the
EM algorithm in which discrete and nu-
merical variables are allowed as input at-
tributes. Numerical attributes are modeled
by means of Gaussian distributions. In this
implementation the user can specify, be-
forehand, the number of clusters or the EM
can decide how many clusters to create by
cross validation. In the last case, the num-
ber of clusters is initially set to 1, the EM
algorithm is performed by using a 10 folds
cross validation and the log-likelihood (av-
eraged the 10 folds) is computed. Then, the
number of clusters in increased by one and
the same process is carried out. If the log-
likelihood with the new number of clusters
has increased with respect to the previous
one, the execution continues, otherwise the
clustering obtained in the previous itera-
tion is returned.

• We have divided all the data sets into train
(80% of the instances) and test (20% of the
instances). Then the training set has been
used to learn the model but the test set is
used to assess the quality of the final model,
i.e., to compute the log-likelihood.

1In those datasets usually used for classification the
class variable has been removed.



DataSet #instances #attributes discrete? classes source

returns 113 5 no – (Shenoy and Shenoy, 1999)

pima 768 8 no 2 UCI(Newman et al., 1998)

bupa 345 6 no 2 UCI(Newman et al., 1998)

abalone 4177 9 2 – UCI(Newman et al., 1998)

waveform 5000 21 no 3 UCI(Newman et al., 1998)

waveform-n 5000 40 no 3 UCI(Newman et al., 1998)

net15 10000 15 2 – (Romero et al., 2006)

sheeps 3087 23 5 – real farming data (Gámez, 2005)

Table 1: Brief description of the data sets used in the experiments. The column discrete means
if the dataset contains discrete/nominal variables (if so the number of discrete variables is given).
The column classes shows the number of class-labels when the dataset comes from classification
task.

• Two independent runs have been carried
out for each algorithm and data set:

– The algorithm proposed in this pa-
per is executed over the given training
set. Let #mteclusters be the number of
clusters it has decided. Then, the EM
algorithm is executed receiving as in-
puts the same training set and number
of clusters equal to #mteclusters.

– The WEKA EM algorithm is exe-
cuted over the given training set. Let
#emclusters be the number of clusters
it has decided. Then, our algorithm is
executed receiving as inputs the same
training set and number of clusters
equal to #emclusters.

In this way we try to compare the perfor-
mance of both algorithms over the same
number of clusters.

Table 2 shows the results obtained. Out of
the 8 databases used in the experiments, 7 re-
fer to real world problems, while the other one
(Net15) is a randomly generated network with
joint MTE distribution (Romero et al., 2006).
A rough analysis of the results suggest a better
performance of the EM clustering algorithm: in
5 out of the 8 problems, it obtains a model with
higher log-likelihood than the MTE-based algo-
rithm. However, it must be pointed out that the
number of clusters contained in the best mod-
els generated by the MTE-based algorithm is

significantly lower than the number of clusters
produced by the EM. In some cases, a model
with many clusters, all of them with low prob-
ability, is not as useful as a model with fewer
clusters but with higher probability, even if the
last one has lower likelihood.

Another fact that must be pointed out is that,
in the four problems where the exact number
of classes is known (pima, bupa, waveform and
waveform-n) the number of clusters returned by
the MTE-based algorithms is more accurate.
Besides, forcing the number of clusters in the
EM algorithm to be equal to the number of clus-
ters generated by the MTE method, the differ-
ences turn in favor of the MTE-based algorithm.

After this analysis, we consider the MTE-
based clustering algorithm a promising method.
It must be taken into account that the EM
algorithm implemented in Weka is very opti-
mised and sophisticated, while the MTE-based
method presented here is a first version in which
many aspects are still to be improved. Even in
these conditions, our method is competitive in
some problems. Models which are away from
normality (as Net15) are more appropriate for
applying the MTE-based algorithm rather than
EM.

6 Discussion and concluding remarks

In this paper we have introduced a novel unsu-
pervised clustering algorithm which is based on
the MTE model. The model has been tested



DataSet #mteclusters MTE EM #emclusters MTE EM

returns 2 212 129 – – –

Pima 3 -4298 -4431 7 -4299 -3628

bupa 5 -1488 -1501 3 -1491 -1489

abalone 11 6662 7832 15 6817 8090

waveform 3 -38118 -33084 11 -38153 -31892

Waveform-n 3 -65200 -59990 11 -65227 -58829

Net15 4 -3418 -6014 23 -3723 -5087

Sheeps 3 -34214 -35102 7 -34215 -34145

Table 2: Results obtained. Columns 2-4 represents the number of clusters discovered by the
proposed MTE-based method, its result and the result obtained by EM when using that number
of clusters. Columns 5-7 represents the number of clusters discovered by EM algorithm, its result
and the result obtained by the MTE-based algorithm when using that number of clusters.

over 8 databases, 7 of them corresponding to
real-world problems and some of them com-
monly used for benchmarks. We consider that
the results obtained, in compares with the EM
algorithm, are at least promising. The algo-
rithm we have used in this paper can still be
improved. For instance, during the model con-
struction we have used a train-test approach for
estimating the parameters and validating the in-
termediate models obtained. However, the EM
algorithm uses cross validation. We plan to in-
clude 10-fold cross validation in a forthcoming
version of the algorithm.

Another aspect that can be improved is the
way in which the model is updated when the
number of clusters is increased. We have fol-
lowed a very simplistic approach: for the fea-
ture variables, we duplicate the same density
function conditional on the previous last clus-
ter, while for the class variable, we divide the
probability of the former last cluster with the
new one. We think that a more sophisticated
approach, based on component splitting and pa-
rameter reusing similar to the techniques pro-
posed in (Karciauskas, 2005) could improve the
performance of our algorithm.

The algorithm proposed in this paper can be
applied not only to clustering problems, but
also to construct an algorithm for approximate
probability propagation in hybrid Bayesian net-
works. This idea was firstly proposed in (Lowd
and Domingos, 2005), and is based on the sim-

plicity of probability propagation in naive Bayes
structures. A naive Bayes model with discrete
class variable, actually represents the condi-
tional distribution of each variable to the rest of
variables as a mixture of marginal distributions,
being the number of components in the mix-
ture equal to the number of states of the class
variable. So, instead of constructing a general
Bayesian network from a database, if the goal
is probability propagation, this approach can be
competitive. The idea is specially interesting for
the MTE model, since probability propagation
has a high complexity for this model.
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