
Ant Colony Optimization for Requirement selection in Incremental Software
development

José del Sagrado and Isabel María del Águila
Department of Languages and Computation

Universidad de Almería
04120 Almería (SPAIN)

jsagrado@ual.es

Search-based software engineering allows the

reformulation of the software engineering problems as
search-based problems opening the possibility of
applying metaheuristic algorithms [9]. Optimization
techniques have been applied to a number of software
engineering activities, a review of how to use them and
the keys required for their application appears in [10].

Classical software engineering methodologies break
down the work in several stages: requirements, design,
coding and test. This approach originates some
problems, especially during the initial stages; once of
the major problems we face when developing large and
complex software systems is that related with
requirements [11]. Requirements problems have a large
space of possible solutions, becaming natural
candidates for application of search based tecniques
[5].

As reaction against these "heavyweight"
methodologies, agile software development has been
evolved as new approach [3, 14]. Agile methods
promote incremental development, teamwork,
collaboration, and process adaptability, breaking tasks
into small increments or sprints. Iterations are short
time and are worked on by a team through a full
software development cycle, finishing when a working
product is presented to stakeholders or customer. The
set of features to be included in the next iteration or
increment comes from the negotiation between
customers and development team. These features are
selected from a prioritized set of high level
requirements that cover all customer need.

The problem of which requirements should included
in the next iteration as a search problem, also known as
next release problem (NRP) [1], has been addressed
applying some metaheuristic optimization techniques.
Other approaches propose variations and enhancement
of this problem [7, 15, 16, 2, 8].

It is assumed that for a software development
project, there is a set of customers, C = {c1, …, cm} and
a set of possible software requirements, R = {r1,…, rn}.
It is assumed that all customers are not equally
important for a given project. In order to satisfy each
requirement, some resources need to be allocated and
each one has a associated cost: Cost = {cost1, …,
costn}. The increments have a cost boundary (B) that
cannot be overrun.

A decision vector {x1,…, xn}∈{0, 1} denotes a
problem solution and determines the requirements that
have to be included in the iteration. In this vector, xi is
1 if requirement i is selected and 0 otherwise.

A wide range of different optimization and search
techniques can and have been used in software
engineering [10]. Specifically related with NRP,
greedy algorithms, hill climbing, simulated annealing
have been applied [1]. Suitability of weighted and
Pareto optimal genetic algorithms, together with the
NSGA-II algorithm have been used too [16, 15 , 8]

Other metaheuristic technique is ant colony
optimization (ACO), which is inspired by shortest path
search behavior of various ant species [5, 6]. These
algorithms are a wellknown set of techniques for
finding near optimal solutions and have been applied in
search based software engineering in testing [13, 12] or
model checking [4].

ACO algorithms are essentially construction
algorithms: in each step, every ant constructs a solution
to the problem by traveling, on a line that connects a
food source to their nest. The main mean to maintain
the line is a pheromone trail. Ants leave a some
pheromone while traveling and each ant
probabilistically select to follow a way rich in
pheromone. Once an obstacle has appeared, ants cannot
continue to follow the pheromone trail and they have to
choose turning right or left. Those ants which choose,
by chance, the shortest path will more rapidly

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143457316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reconnect the pheromone trail compared to those who
choose the longer path. Thus, the shorter path will
receive a greater amount of pheromone and therefore a
larger number of ants will choose the shorter path.

This approach can be applied to requirement
negotiation problems: the more pheromones assemble
in a requirement in R, the more probability the
requirement will be selected.

Every ant system cycle, or episode, the pheromone
of each ri is adjust according to the level of attenuation
of the pheromone in the search of the solution. After a
certain of number episodes the i-th position of the
decision vector obtained by ACO techniques, will
contain a value 1 if the associated ri is included in the
path with the highest pheromone level and 0 otherwise.

This proposal shows that ACO systems can be
applied to problems of requirements selection in
software incremental development, with the idea of
obtaining better results of those produced by expert
judgment alone. The evaluation of the ACO systems
should be done through a compared analysis with
greedy and simulated annealing algorithms, performing
experiments with some problems instances.

References

[1] Bagnall,A. Rayward-Smith, V, and Whittley, I.. The

next release problem. Information and Software
Technology, 43(14):883–890, Dec. 2001.

[2] Baker, P , Harman, M, Steinhöfel, K, and Skaliotis, A.
Search Based Approaches to Component Selection and
Prioritization for the Next Release Problem. In 22nd
International Conference on Software Maintenance
(ICSM 06), pages 176–185, Philadelphia, Pennsylvania,
USA, September 24- 27 2006.

[3] Beck, K, Extreme Programming explained: Embrace
change Addison-Wesley, 2000.

[4] Chicano F, Alba E. Ant Colony Optimization with
Partial Order Reduction for Discovering Safety Property
Violations in Concurrent Models. Information
Processing Letters. 2007.

[5] Doringo, M., Maniezzo, V. and Coloni, A: Ant System:
optimization by colony of cooperating agents, IEEE
Trnas. on Sys., Man and Cybernetics, Vol. 26, No. 1,
february 1996.

[6] Doringo, M, Birattari, M and Stültzle, T, Ant Colony
Optimization: artificial ants as a computational
intelligence technique, IEEE Computational Intelligence
Magazine, November, 2006

[7] Finkelstein A, Harman M, Mansouri SA, Ren J, Zhang
Y. "Fairness Analysis" in Requirements Assignments.
En: Proceedings of the 16th IEEE International
Requirements Engineering Conference (RE '08). IEEE
Computer Society; 2008:115-124.

[8] Greer, D and Ruhe, G. Software release planning: an
evolutionary and iterative approach. Information &
Software Technology, 46(4):243–253, 2004.

[9] Harman, M, Jones BF. Search-based software
engineering. Information & Software Technology.
2001;43(14):833-839.

[10] Harman M. The Current State and Future of Search
Based Software Engineering. In: FOSE.; 2007:342-357.

[11] Kotonya G. and Sommerville, I, Requirements
Engineering: Processes and Techniques, Wiley, 1998.

[12] Lam, C.P., Xiao, J., and Li, H. Ant Colony Optimisation
for Generation of Conformance Testing Sequences
using a Characterising Set. Proceeding (559) Advances
in Computer Science and Technology – 2007.

[13] Mahanti PK, Banerjee S. Automated Testing in
Software Engineering: using Ant Colony and Self-
Regulated Swarms. In: Proc. of the 17th IASTED Int.
Conf. on Modelling and simulation (MS '06). ACTA
Press; 2006:443-448.

[14] Schwaber K, Beedle M. Agile Software Development
with Scrum. Prentice Hall; 2001.

[15] Zhang Y, Harman M, Mansouri SA. The Multi-
Objective Next Release Problem. En: Proceedings of the
9th annual Conference on Genetic and Evolutionary
Computation (GECCO '07). ACM; 2007:1129-1137.

[16] Zhang Y, Finkelstein A, Harman M. Search Based
Requirements Optimisation: Existing Work &
Challenges. En: Proceedings of the 14th International
Working Conference, Requirements Engineering:
Foundation for Software Quality (REFSQ '08).Vol
5025. Springer; 2008:88-94.

	References

