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Abstract. Mixtures of Truncated Basis Functions (MoTBFs) have re-
cently been proposed for modelling univariate and joint distributions
in hybrid Bayesian networks. In this paper we analyse the problem of
learning conditional MoTBF distributions from data. Our approach uti-
lizes a new technique for learning joint MoTBF densities, then propose
a method for using these to generate the conditional distributions. The
main contribution of this work is conveyed through an empirical investi-
gation into the properties of the new learning procedure, where we also
compare the merits of our approach to those obtained by other proposals.
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1 Introduction

Mixtures of truncated basis functions (MoTBFs) [2] have recently been proposed
as a general framework for handling hybrid Bayesian networks, i.e., Bayesian net-
works where discrete and continuous variables coexist. Previous hybrid models
as the so-called mixtures of truncated exponentials (MTEs) [7] and mixtures of
polynomials (MoPs) [10] can be regarded as particular cases of MoTBFs.

Part of the success of MoTBFs is due to the fact that they can model hybrid
Bayesian networks with no structural restrictions, unlike the conditional Gaus-
sian (CG) model [6], where discrete variables are not allowed to have contin-
uous parents. Furthermore, MoTBFs are closed under addition, multiplication,
and integration, which facilitates the use of efficient inference methods like the
Shenoy-Shafer architecture [9] or the variable elimination algorithm [12].

The problem of learning MoTBFs from data has been studied considerably
already (see, e.g., [3, 5]). However, even though a Bayesian network model popu-
lated with MoTBF distributions requires the specification of both marginal and
conditional MoTBF distributions, only limited attention has been given to learn-
ing the conditional MoTBF distributions directly from data [1, 11]. In this paper
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we first extend previous work on learning marginal MoTBF distributions [5] to
also learn joint densities. These are in turn employed to generate the required
conditional MoTBFs.

The remainder of the paper is organized as follows: The MoTBF model is
introduced in Section 2. Next, techniques for learning marginal and joint MoTBF
densities from data is described in Section 3, where we also detail how we define
the conditional distributions. The main part of this work is given in Section 4,
where our proposal is validated through a series of experiments. Finally, we give
some conclusions in Section 5.

2 The MoTBF Model

The MoTBF framework is based on the abstract notion of real-valued basis func-
tions ψ(·), which include both polynomial and exponential functions as special
cases. Let X be a continuous variable with domain ΩX ⊂ R and let ψi : ΩX 7→ R,
for i = 0, . . . , k, define a collection of real basis functions. We say that a function
f : ΩX 7→ R+

0 is an MoTBF potential of level k wrt. Ψ = {ψ0, ψ1, . . . , ψk} if f
can be written as

f(x) =

k∑
i=0

ci ψi (x) ,

where ci are real numbers [2]. The potential is a density if
∫
ΩX

f(x) dx = 1.

In this paper we will restrict our attention to the MoP framework, meaning
that ψi(x) = xi.

When there are more than one variable, we can use a joint MoP to capture
the probability density function over the variables. Let X be a d-dimensional
continuous variable, X = (X1, . . . , Xd) with domain ΩX ⊂ Rd. A function f :
ΩX 7→ R+ is said to be an MoP potential of level k if it can be written as

f(x) =

k∑
`1=0

. . .

k∑
`d=0

c`1,`2,...,`d

d∏
i=1

x`ii , (1)

or if there is a partition of ΩX into hypercubes where f can be written as in
Equation 1 for each part.

3 Learning MoPs from Data

We will now investigate how to learn MoP distributions for a given set of random
variables. We start by looking at how to learn univariate MoP distributions from
data, before we extend that approach to learning joint MoP distributions, and
finally discuss how one can obtain conditional distribution functions.



3.1 Univariate MoPs

The learning of univariate MoTBFs from data was explored in [5], and we will
briefly summarize that approach here in the special case of MoPs. The estimation
procedure relies on the empirical cumulative distribution function (CDF) as a
representation of the data D = {x1, . . . , xN}. The empirical CDF is defined as

GN (x) =
1

N

N∑
`=1

1{x` ≤ x}, x ∈ ΩX ⊂ R,

where 1{·} is the indicator function.
The algorithm in [5] approximates the empirical CDF by a function whose

derivative is an MoTBF, using least squares. In our case, the role of the basis
functions is taken by the polynomials, and since the integral of a polynomial is
itself a polynomial, the target function is of the form F (x) =

∑k
i=0 ci x

i, defined
on an interval ΩX = [a, b] ⊂ R. The optimization problem thus becomes

minimize

N∑
`=1

(GN (x`)− F (x`))
2

subject to
dF (x)

dx
≥ 0 ∀x ∈ ΩX , (2)

F (a) = 0 and F (b) = 1.

The probability density function (PDF) is found by simple differentiation of
the estimated CDF. The constraints of the optimization program ensures that
the result is a legal density; the first requirement ensures that the PDF is non-
negative over the domain, the others ensure it integrates to one. Furthermore,
[5] remarks that the solution obtained by solving program in Equation 2 is a
consistent estimator of the true CDF in terms of the mean squared error for all
x ∈ ΩX .

Note that the optimization program is convex, and can be efficiently solved
in theory. However, the infinite number of constraints introduced by requiring

that dF (x)
dx ≥ 0 for all x ∈ ΩX complicates the implementation on a computer.

In practice, we therefore only check that the constraint is fulfilled for a limited
set of points spread across ΩX .

In learning situations where we have lots of data (N is large), the solution
of the program can be slow. In such cases we rather define a grid on ΩX , where
the grid is selected so that the number of observations is the same between each
pair of consecutive grid-points. Then, the grid-points will play the role of the
evaluation points in the objective function.

The level k of the estimated MoP can be decided using a multitude of differ-
ent model selection techniques. For the results presented in this paper we have
searched greedily for k, and chosen the value that maximized the BIC score
[8]. This choice is motivated by [3], who showed that the estimators based on
Equation 2 are consistent in terms of the mean squared error for all x ∈ ΩX .



3.2 Joint MoPs

During the definition of the conditional distributions (described in Section 3.3),
we will investigate the use of joint MoP densities to define conditional distribu-
tions. We therefore proceed by extending the program in Equation 2 to arbitrar-
ily dimensional random vectors. The procedure is very similar to the univariate
case. The data now consists of d-dimensional observations, D = {x1, . . . ,xN},
x ∈ ΩX ⊂ Rd. We continue to use 1{·} to denote the indicator function, and
the say that the event x` ≤ x is true if and only if x`,i ≤ xi for each dimension
i = 1, . . . , d. For notational convenience we use Ω−

X ∈ Rd to denote the minimal
point of ΩX (obtained by choosing the minimum of ΩX in each dimension), and
let Ω+

X ∈ Rd be the corresponding maximal point. Then, the empirical CDF is
defined as

GN (x) =
1

N

N∑
`=1

1{x` ≤ x}, x ∈ ΩX ⊂ Rd.

Our goal is to find a representation of the empirical CDF of the form

F (x) =

k∑
`1=0

. . .

k∑
`d=0

c`1,`2,...,`d

d∏
i=1

x`ii ,

leading us to the optimization problem

minimize

N∑
`=1

(GN (x`)− F (x`))
2

subject to
∂dF (x)

∂x1, . . . , ∂xd
≥ 0 ∀x ∈ ΩX, (3)

F
(
Ω−

X

)
= 0 and F

(
Ω+

X

)
= 1.

The solution to this problem is the parameter-set that defines the joint CDF,
and the density can be obtained simply by differentiation of the joint CDF. As
in the univariate case, the problem is a quadratic optimization problem, that
can be solved efficiently. When the amount of data and/or the dimensionality
get large, we have used the same strategy wrt. grid-points for the joint density
as we did when estimating the univariate PDFs.

The top of Figure 1 shows the MoP density generated by solving the op-
timization program in Equation 3. The model was learned from a database of
1000 observation generated from a bivariate standard normal distribution (i.e.,
with correlation-coefficient ρ = 0). In the bottom part of Figure 1 we can see
the model learned from same distributions but with correlation ρ = 0.99.

3.3 Conditional distributions

The last piece of the puzzle is to learn the conditional density functions for a
variable X with parents Z, that will be used to populate the Bayesian network
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Fig. 1. The contour and the perspective plots of the result of learning a MoP from
N = 1000 samples drawn from bivariate standard normal distributions with ρ = 0
(top) and ρ = 0.99 (bottom).

structure. Using the minimization program in Equation 3, we can learn both
f(x, z) and f(z), hence by the definition of a conditional probability density it
seems natural to define f(x|z) as

f(x|z)← f(x, z)

f(z)
, (4)

where both f(z) and f(x, z) are MoPs. Unfortunately, though, MoPs are not
closed under division [2], thus f(x|z) defined by Equation 4 will not lead to a
legal MoP-representation of a conditional density. An alternative was therefore
pursued by [2], where the influence the parents Z have on X was encoded only
through the partitioning of the domain of Z into hyper-cubes. Then, specific
distributions for X that are valid as long as Z is inside a specific hypercube was
learned from data.

Here, however, we will follow an alternative strategy similar to the one pur-
sued in [11]. The idea is to learn representations for f(x, z) and f(z), then utilize
Equation 4 to calculate f(x|z). As already noted, this will not result in an MoP,
and the next step is therefore to approximate this representation into an MoP
by some means. Varando et al. [11] investigated two schemes: i) To use the rep-
resentation in Equation 4 to generate samples from the conditional distribution
of x given Z and learn the MoP representation from the generated dataset; ii)
to use numerical techniques to approximate the fraction directly (specifically,



both Taylor series and Lagrange interpolation were considered). In our work we
first learn an MoP representation for f(x, z) using the program in Equation 3,
then calculate f(z) =

∫
Ωx
f(x, z)dx directly from the learned joint. Note that

since f(x, z) is a MoP the integral can easily be performed analytically. Next,
the conditional distribution defined through Equation 4 is our target, leading to
the following optimization program:

minimize

N∑
`=1

(
f(x`, z`)

f(z`)
− f(x`|z`)

)2

(5)

subject to f(x|z) ≥ 0 ∀(x, z) ∈ (ΩX ×Ωz) .

The solution to this problem is a parameter-set that defines an un-normalized
conditional PDF (that is, we have no guarantee that

∫
Ωx
f(x|z)dx = 1 for all z ∈

Ωz). Hence, the procedure is finalized by partially normalizing the distribution
[10]. The program is quadratic, and can therefore be solved efficiently.

We note that while the programmes in Equation 2 and Equation 3 are defined
to obtain the CDFs, the programme in Equation 5 works directly with the PDF.
The reason for the programmes in Equation 2 and Equation 3 to work with the
cumulative distribution functions is that the defined GN (·) function is a more
robust data-representation than, say, a histogram [5], and as GN (·) represents
the empirical CDF the result of these programs are also CDFs. On the other
hand, the program in Equation 5 does not work directly with representations of
the data, but rather defines the target function through Equation 4. Therefore,
the objects under study by this program are PDFs.

4 Experimental Analysis

In this section, we compare the proposal given in Section 3 with the methods
described in [5] (where the conditioning variables are discretized) and in [11]
(where B-splines are used) for learning conditional MoPs from data.

We consider two different scenarios concerning two continuous variables, X
and Y . In the first one, Y ∼ N (µ = 0, σ = 1) and X|{Y = y} ∼ N (µ =
y, σ = 1). In the second scenario, Y ∼ Gamma(rate = 10, shape = 10) and
X|{Y = y} ∼ Exp(rate = y). For each scenario, we generated 10 data-sets of
samples {Xi, Yi}Ni=1, where the size is chosen as N = 25, 500, 2500, 5000. The
effectiveness of the tested methods was measured by computing the mean square
error for each set of samples. The results are showed in Table 1 and Table 2.

The results in Table 1 indicate that the most accurate results for scenario 1
are achieved by the B-spline approach [11]. The worst results by far are obtained
by the approach that discretizes the conditioning variables [5]. Both the proposed
approach and the B-spline approach yield errors close to zero in most cases.

The results for scenario 2 are reported in Table 2. In this case, the most
accurate results in terms of mean square error are provided by the MoTBF
approach. Again, the method in [5] obtains the worst results overall.



N fX|Y (x|y) Split
Method[5]

MoTBF
Algorithm

B-Splines
Method[11]

25 y=-0.6748
y=0.00
y=0.6748

0.1276
0.1254
0.1279

0.0848
0.0936
0.1416

0.0103
0.0089
0.0105

500 y=-0.6748
y=0.00
y=0.6748

0.0256
0.0317
0.0246

0.0453
0.0117
0.0411

0.0025
0.0009
0.0020

2500 y=-0.6748
y=0.00
y=0.6748

0.0031
0.0064
0.0058

0.0019
0.0010
0.0024

0.0006
0.0002
0.0006

5000 y=-0.6748
y=0.00
y=0.6748

0.0019
0.0074
0.0019

0.0018
0.0009
0.0020

0.0006
0.0002
0.0006

Table 1. Average MSE between the different methods to obtain MoP approximations
and the true conditional densities for each set of 10 samples, where Y ∼ N (0, 1) and
X|Y ∼ N (y, 1).

N fX|Y (x|y) Split
Method[5]

MoTBF
Algorithm

B-Splines
Method[11]

25 y=0.7706
y=0.9684
y=1.1916

0.4054
0.4703
0.5473

0.0083
0.0081
0.0229

0.0131
0.0225
0.0374

500 y=0.7706
y=0.9684
y=1.1916

0.0158
0.0048
0.0118

0.0037
0.0034
0.0039

0.0012
0.0022
0.0057

2500 y=0.7706
y=0.9684
y=1.1916

0.0064
0.0080
0.0029

0.0025
0.0024
0.0046

0.0025
0.0043
0.0074

5000 y=0.7706
y=0.9684
y=1.1916

0.0013
0.0091
0.0026

0.0021
0.0015
0.0029

0.0015
0.0022
0.0032

Table 2. Average MSE between the different methods to obtain MoP approximations
and the true conditional densities for each set of 10 samples, where Y ∼ Gamma(rate =
10, shape = 10) and X|Y ∼ Exp(y).



The results are consistent with the plots in Figure 2, where the MoTBF
approach (bottom row in the figure) presented in this paper is able to resemble
the shape of the exact conditional distribution (top row), specially in the non
Gaussian scenario, while the method in [5] (middle row) is penalized by the fact
that the estimated model is piecewise constant along the Y axis. The plots in
Figure 2 show the results obtained when learning from N = 5000 samples.

5 Concluding Remarks

In this paper we have extended the learning algorithm for univariate MoTBFs
in [5] to multivariate and conditional densities. The advantage of the proposal
described here with respect to the B-spline approach in [11] is that there is no
need to split the domain of any variable. This is a fundamental issue in order to
keep the complexity of inference in hybrid Bayesian networks under control. We
note that while in theory high order polynomials may be required to model the
distributions, the use of the BIC-score [8] leads to low-order polynomials being
selected in practice [4, 5].

The experimental analysis suggests that our proposal is competitive with the
B-spine approach in a range of commonly used distributions. Even if the condi-
tional distribution functions yielded by the method is this paper are not proper
conditional densities, evidence so far indicates they are accurate approximations,
which in practice allows the method to be used as a means of representing the
parameters of a Bayesian network. This paves the way to envisioning structural
learning algorithms for hybrid Bayesian networks parameterized by MoTBFs.

Finally, we note that even though the paper develops a learning method for
MoPs, the techniques employed here can easily be extended to be applicable for
MoTBFs in general.
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