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Abstract. Due to the ubiquitous use of spatial data applications and
the large amounts of spatial data that these applications generate, the
processing of large-scale distance joins in distributed systems is beco-
ming increasingly popular. Two of the most studied distance join queries
are the K Closest Pair Query (KCPQ) and the ε Distance Join Query
(εDJQ). The KCPQ finds the K closest pairs of points from two datasets
and the εDJQ finds all the possible pairs of points from two datasets,
that are within a distance threshold ε of each other. Distributed cluster-
based computing systems can be classified in Hadoop-based and Spark-
based systems. Based on this classification, in this paper, we compare
two of the most current and leading distributed spatial data manage-
ment systems, namely SpatialHadoop and LocationSpark, by evaluating
the performance of existing and newly proposed parallel and distributed
distance join query algorithms in different situations with big real-world
datasets. As a general conclusion, while SpatialHadoop is more mature
and robust system, LocationSpark is the winner with respect to the total
execution time.
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1 Introduction

Nowadays, the volume of available spatial data (e.g. location, routing, naviga-
tion, etc.) is increasing hugely across the world-wide. Recent developments of
spatial big data systems have motivated the emergence of novel technologies
for processing large-scale spatial data on clusters of computers in a distributed
fashion. These Distributed Spatial Data Management Systems (DSDMSs) can be
classified in disk-based [9] and in-memory [19] ones. The disk-based DSDMSs are
characterized by being Hadoop-based systems and the most representative ones
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are Hadoop-GIS [1] and SpatialHadoop [6]. The Hadoop-based systems enable
to execute spatial queries using predefined high-level spatial operators without
having to worry about fault tolerance and computation distribution. On the
other hand, the in-memory DSDMSs are characterized as Spark-based systems
and the most representative ones are SpatialSpark [15], GeoSpark [17], Simba
[14] and LocationSpark [12, 13]. The Spark-based systems allow users to work
on distributed in-memory data without worrying about the data distribution
mechanism and fault-tolerance.

Distance join queries (DJQs) have received considerable attention from the
database community, due to their importance in numerous applications, such
as spatial databases and GIS, data mining, multimedia databases, etc. DJQs
are costly queries because they combine two datasets taking into account a dis-
tance metric. Two of the most representative ones are the K Closest Pair Query
(KCPQ) and the ε Distance Join Query (εDJQ). Given two point datasets P
and Q, the KCPQ finds the K closest pairs of points from P × Q according to
a certain distance function (e.g., Manhattan, Euclidean, Chebyshev, etc.). The
εDJQ finds all the possible pairs of points from P×Q, that are within a distance
threshold ε of each other. Several research works have been devoted to improve
the performance of these queries by proposing efficient algorithms in centralized
environments [2, 10]. But, with the fast increase in the scale of the big input
datasets, processing large data in parallel and distributed fashions is becoming
a popular practice. For this reason, a number of parallel algorithms for DJQs in
MapReduce [3] and Spark [18] have been designed and implemented [7, 13].

Apache Hadoop1 is a reliable, scalable, and efficient cloud computing fra-
mework allowing for distributed processing of large datasets using MapReduce
programming model. However, it is a kind of disk-based computing framework,
which writes all intermediate data to disk between map and reduce tasks. MapRe-
duce [3] is a framework for processing and managing large-scale datasets in a
distributed cluster. It was introduced with the goal of providing a simple yet po-
werful parallel and distributed computing paradigm, providing good scalability
and fault tolerance mechanisms. Apache Spark2 is a fast, reliable and distribu-
ted in-memory large-scale data processing framework. It takes advantage of the
Resilient Distributed Dataset (RDD), which allows transparently storing data
in memory and persisting it to disk only if it is needed [18]. Hence, it can reduce
a huge number of disk writes and reads to outperform the Hadoop platform.
Since Spark maintains the status of assigned resources until a job is completed,
it reduces time consumption in resource preparation and collection.

Both Hadoop and Spark have weaknesses related to efficiency when applied
to spatial data. A main shortcoming is the lack of any indexing mechanism that
would allow selective access to specific regions of spatial data, which would in
turn yield more efficient query processing algorithms. A solution to this problem
is an extension of Hadoop, called SpatialHadoop [6], which is a framework that
supports spatial indexing on top of Hadoop, i.e. it adopts two-level index struc-

1 Available at https://hadoop.apache.org/
2 Available at https://spark.apache.org/
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ture (global and local) to organize the stored spatial data. And other possible
solution is LocationSpark [12, 13], which is a spatial data processing system built
on top of Spark and it employs various spatial indexes for in-memory data.

In the literature, up to now, there are only few comparative studies between
Hadoop-based and Spark-based systems. The most representative one is [11],
for a general perspective. But, for comparing DSDMSs, we can find [16, 17, 8].
Motivated by this fact, in this paper we compare SpatialHadoop and Locati-
onSpark for distance-based join query processing, in particular for KCPQ and
εDJQ, in order to provide criteria for adopting one or the other DSDMS. The
contributions of this paper are the following:

– Novel algorithms in LocationSpark (the first ones in the literature) to per-
form efficient parallel and distributed KCPQ and εDJQ, on big real-world
spatial datasets

– The execution of a set of experiments for comparing the performance of the
two DSDMSs (SpatialHadoop and LocationSpark).

– The execution of a set of experiments for examining the efficiency and the
scalability of the existing and new DJQ algorithms.

This paper is organized as follows. In Section 2, we review related work on
Hadoop-based and Spark-based systems that support spatial operations and pro-
vide the motivation for this paper. In Section 3, we present preliminary concepts
related to DJQs, SpatialHadoop and LocationSpark. In Section 4, the paral-
lel algorithms for processing KCPQ and εDJQ in LocationSpark are proposed.
In Section 5, we present representative results of the extensive experimentation
that we have performed, using real-world datasets, for comparing these two cloud
computing frameworks. Finally, in Section 6, we provide the conclusions arising
from our work and discuss related future work directions.

2 Related Work and Motivation

Researchers, developers and practitioners worldwide have started to take advan-
tage of the cluster-based systems to support large-scale data processing. There
exist several cluster-based systems that support spatial queries over distributed
spatial datasets and they can be classified in Hadoop-based and Spark-based sys-
tems. The most important contributions in the context of Hadoop-based systems
are the following research prototypes:

– Hadoop-GIS [1] extends Hive and adopts Hadoop Streaming framework and
integrates several open source software packages for spatial indexing and ge-
ometry computation. Hadoop-GIS only supports data up to two dimensions
and two query types: rectangle range query and spatial joins.

– SpatialHadoop [6] is an extension of the MapReduce framework [3], based on
Hadoop, with native support for spatial 2d data (see section 3.2).

On the other hand, the most remarkable contributions in the context of
Spark-based systems are the following prototypes:
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– SpatialSpark [15] is a lightweight implementation of several spatial operati-
ons on top of the Spark in-memory big data system. It targets at in-memory
processing for higher performance. SpatialSpark adopts data partition stra-
tegies like fixed grid or kd-tree on data files in HDFS and builds an index
to accelerate spatial operations. It supports range queries and spatial joins
over geometric objects using conditions like intersect and within.

– GeoSpark [17] extends Spark for processing spatial data. It provides a new
abstraction called Spatial Resilient Distributed Datasets (SRDDs) and a
few spatial operations. It allows an index (e.g. Quadtree and R-tree) to be
the object inside each local RDD partition. For the query processing point of
view, GeoSpark supports range query, KNNQ and spatial joins over SRDDs.

– Simba (Spatial In-Memory Big data Analytics) [14] offers scalable and effi-
cient in-memory spatial query processing and analytics for big spatial data.
Simba is based on Spark and runs over a cluster of commodity machines.
In particular, Simba extends the Spark SQL engine to support rich spatial
queries and analytics through both SQL and the DataFrame API. It intro-
duces partitioning techniques (e.g. STR), indexes (global and local) based
on R-trees over RDDs in order to work with big spatial data and complex
spatial operations (e.g. range query, KNNQ, distance join and KNNJQ).

– LocationSpark [12, 13] is an efficient in-memory distributed spatial query
processing system (see section 3.3 for more details).

As we have seen, there are several distributed systems based on Hadoop or
Spark for managing spatial data, but there are not many articles comparing
them with respect to spatial query processing. The only contributions in this
regard are [16, 17, 8]. In [16, 17], SpatialHadoop is compared with SpatialSpark
and GeoSpark, respectively, for spatial join query processing. In [8], SpatialHa-
doop is compared with GeoSpark with respect to the architectural point of view.
Motivated by these observations, and since KCPQ [7] is implemented in Spa-
tialHadoop (its adaptation to εDJQ is straightforward), and in LocationSpark
neither KCPQ nor εDJQ have been implemented yet, we design and implement
both DJQs in LocationSpark. Moreover, we develop a comparative performance
study between SpatialHadoop and LocationSpark for KCPQ and εDJQ.

3 Preliminaries and Background

In this section, we first present the basic definitions of the KCPQ and εDJQ,
followed by a brief introduction of the preliminary concepts about SpatialHadoop
and LocationSpark, the DSDMSs to be compared.

3.1 The K Closest Pairs and ε Distance Join Queries

The KCPQ discovers the K pairs of data formed from the elements of two
datasets having the K smallest distances between them (i.e. it reports only
the top K pairs). The formal definition of the KCPQ for point datasets (the
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extension of this definition to other, more complex spatial objects – e.g. line-
segments, objects with extents, etc. – is straightforward) is the following:

Definition 1. (K Closest Pairs Query, KCPQ)
Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1} be two set of points, and
a number K ∈ N+. Then, the result of the K Closest Pairs Query is an ordered
collection, KCPQ(P,Q,K), containing K different pairs of points from P×Q,
ordered by distance, with the K smallest distances between all possible pairs:
KCPQ(P,Q,K) = ((p1, q1), (p2, q2), · · · , (pK , qK)), (pi, qi) ∈ P×Q, 1 ≤ i ≤ K,
such that for any (p, q) ∈ P × Q \ KCPQ(P,Q,K) we have dist(p1, q1) ≤
dist(p2, q2) ≤ · · · ≤ dist(pK , qK) ≤ dist(p, q).

Note that if multiple pairs of points have the same K-th distance value, more
than one collection of K different pairs of points are suitable as a result of the
query. Recall that KCPQ is implemented in SpatialHadoop [7] using plane-sweep
algorithms [10], but not in LocationSpark.

On the other hand, the εDJQ reports all the possible pairs of spatial objects
from two different spatial objects datasets, P and Q, having a distance smaller
than a distance threshold ε of each other [10]. The formal definition of εDJQ for
point datasets is the following:

Definition 2. (ε Distance Join Query, εDJQ)
Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1} be two set of points,
and a distance threshold ε ∈ R≥0. Then, the result of the εDJQ is the set,
εDJQ(P,Q, ε) ⊆ P×Q, containing all the possible different pairs of points from
P×Q that have a distance of each other smaller than, or equal to ε:
εDJQ(P,Q, ε) = {(pi, qj) ∈ P ×Q : dist(pi, qj) ≤ ε}

The εDJQ can be considered as an extension of the KCPQ, where the dis-
tance threshold of the pairs is known beforehand and the processing strategy
(e.g. plane-sweep technique) can be the same as in the KCPQ for generating
the candidate pairs of the final result. For this reason, its adaptation to Spati-
alHadoop from KCPQ is straightforward. Note that εDJQ is not implemented
in LocationSpark.

3.2 SpatialHadoop

SpatialHadoop [6] is a full-fledged MapReduce framework with native support
for spatial data. It is an efficient disk-based distributed spatial query proces-
sing system. Note that MapReduce [3] is a scalable, flexible and fault-tolerant
programming framework for distributed large-scale data analysis. A task to be
performed using the MapReduce framework has to be specified as two phases:
the map phase is specified by a map function takes input (typically from Hadoop
Distributed File System (HDFS) files), possibly performs some computations on
this input, and distributes it to worker nodes; and the reduce phase which pro-
cesses these results as specified by a reduce function. Additionally, a combiner
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function can be used to run on the output of map phase and perform some
filtering or aggregation to reduce the number of keys passed to the reducer.

SpatialHadoop is a comprehensive extension to Hadoop that injects spatial
data awareness in each Hadoop layer, namely, the language, storage, MapReduce,
and operations layers. MapReduce layer is the query processing layer that runs
MapReduce programs, taking into account that SpatialHadoop supports spati-
ally indexed input files. The Operation layer enables the efficient implementation
of spatial operations, considering the combination of the spatial indexing in the
storage layer with the new spatial functionality in the MapReduce layer. In ge-
neral, a spatial query processing in SpatialHadoop consists of four steps [6, 7]
(see Figure 1): (1) Preprocessing, where the data is partitioned according to a
specific spatial index, generating a set of partitions or cells. (2) Pruning, when
the query is issued, where the master node examines all partitions and prunes
by a filter function those ones that are guaranteed not to include any possible
result of the spatial query. (3) Local Spatial Query Processing, where a local
spatial query processing is performed on each non-pruned partition in parallel
on different machines (map tasks). Finally, (4) Global Processing, where the re-
sults are collected from all machines in the previous step and the final result of
the concerned spatial query is computed. A combine function can be applied in
order to decrease the volume of data that is sent from the map task. The reduce
function can be omitted when the results from the map phase are final.

Fig. 1. Spatial query processing in SpatialHadoop [6, 7].

3.3 LocationSpark

LocationSpark [12, 13] is a library in Spark that provides an API for spatial
query processing and optimization based on Spark’s standard dataflow opera-
tors. It is an efficient in-memory distributed spatial query processing system.
LocationSpark provides several optimizations to enhance Spark for managing
spatial data and they are organized by layers: memory management, spatial in-
dex, query executor, query scheduler, spatial operators and spatial analytical.
In the Memory Management layer for spatial data, LocationSpark dynamically
caches frequently accessed data into memory, and stores the less frequently used
data into disk. For the Spatial Index layer, LocationSpark builds two levels of
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spatial indexes (global and local). To build a global index, LocationSpark sam-
ples the underlying data to learn the data distribution in space and provides a
grid and a region Quadtree. In addition, each data partition has a local index
(e.g., a grid local index, an R-tree, a variant of the Quadtree, or an IR-tree).
Finally, LocationSpark adopts a new Spatial Bloom Filter to reduce the com-
munication cost when dispatching queries to their overlapping data partitions,
termed sFilter, that can speed up query processing by avoiding needless com-
munication with data partitions that do not contribute to the query answer.
In the Query Executor layer, LocationSpark evaluates the runtime and memory
usage trade-offs for the various alternatives, and then, it chooses and executes
the better execution plan on each slave node. LocationSpark has a new layer,
termed Query Scheduler, with an automatic skew analyzer and a plan optimi-
zer to mitigate query skew. The query scheduler uses a cost model to analyze
the skew to be used by the spatial operators, and a plan generation algorithm
to construct a load-balanced query execution plan. After plan generation, local
computation nodes select the proper algorithms to improve their local perfor-
mance based on the available spatial indexes and the registered queries on each
node. For the Spatial Operators layer, LocationSpark supports spatial querying
and spatial data updates. It provides a rich set of spatial queries including spa-
tial range query, KNNQ, spatial-join, and KNNJQ. Moreover, it supports data
updates and spatio-textual operations. Finally, for the Spatial Analytical layer,
and due to the importance of spatial data analysis, LocationSpark provides spa-
tial data analysis functions including spatial data clustering, spatial data skyline
computation and spatio-textual topic summarization. Since our main objective
is to include the DJQs (KCPQ and εDJQ) into LocationSpark, we are interested
in the Spatial Operators layer, where we will implement them.

Fig. 2. Spatial query processing for DJQs in LocationSpark, based on [13].

To process spatial queries, LocationSpark builds a distributed spatial index
structure for in-memory spatial data. As we can see in Figure 2, for DJQs, given
two datasets P and Q, P is partitioned into N partitions based on a spatial index
criteria (e.g. N leaves of a R-tree) by the Partitioner leading to the PRDD
(Global Index). The sFilter determines whether a point is contained inside a
spatial range or not. Next, each worker has a local data partition Pi (1 ≤ i ≤
N) and builds a Local Index (LI). QRDD is generated from Q by a member
function of RDD (Resilient Distributed Dataset) natively supported by Spark,
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that forwards such point to the partitions that spatially overlap it. Now, each
point of Q is replicated to the partitions that are identified using the PRDD
(Global Index), leading to the Q’RDD. Then a post-processing step (using the
Skew Analyzer and the Plan Optimizer) is performed to combine the local results
to generate the final output.

4 DJQ Algorithms in SpatialHadoop and LocationSpark

Since KCPQ is already implemented in SpatialHadoop [7], in this section, we will
present how we can adapt KCPQ to εDJQ in SpatialHadoop and how KCPQ
and εDJQ can be implemented in LocationSpark.

4.1 KCPQ and εDJQ in SpatialHadoop

In general, the KCPQ algorithm in SpatialHadoop [7] consists of a MapReduce
job. The map function aims to find the KCP between each local pair of partitions
from P and Q with a particular plane-sweep KCPQ algorithm [10] and the result
is stored in a binary max heap (called LocalKMaxHeap). The reduce function
aims to examine the candidate pairs of points from each LocalKMaxHeap and
return the final set of the K closest pairs in another binary max heap (called
GlobalKMaxHeap). To improve this approach, for reducing the number of pos-
sible combinations of pairs of partitions, we need to find in advance an upper
bound of the distance value of the K-th closest pair of the joined datasets, cal-
led β. This β computation can be carried out by sampling globally from both
datasets or by sampling locally for an appropriate pair of partitions and, then
executing a plane-sweep KCPQ algorithm over both samples.

The method for the εDJQ in MapReduce, adapting from KCPQ in Spati-
alHadoop [7], adopts the map phase of the join MapReduce methodology. The
idea is to have P and Q partitioned by some method (e.g., Grid) into two sets
of cells, with n and m cells of points, respectively. Then, every possible pair of
cells is sent as input for the filter function. This function takes as input, com-
binations of pairs of cells in which the input set of points are partitioned and a
distance threshold ε, and it prunes pairs of cells which have minimum distances
larger than ε. By using SpatialHadoop built-in function MinDistance we can
calculate the minimum distance between two cells (i.e. this function computes
the minimum distance between the two MBRs, Minimum Bounding Rectangles,
of the two cells). On the map phase, each mapper reads the points of a pair
of filtered cells and performs a plane-sweep εDJQ algorithm [10] (variation of
the plane-sweep-based KCPQ algorithm) between the points inside that pair of
cells. The results from all mappers are just combined in the reduce phase and
written into HDFS files, storing only the pairs of points with distance up to ε.

4.2 KCPQ and εDJQ in LocationSpark

Assuming that P is the largest dataset to be combined and Q is the smallest
one, and following the ideas presented in [13], we can describe the Execution
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Plan for KCPQ in LocationSpark as follows. In Stage 1, the two datasets are
partitioned according to a given spatial index schema. In Stage 2, statistic data
is added to each partition, SP and SQ, and they are combined by pairs, SPQ. In
Stage 3, the partitions from P and Q with the largest density of points, Pβ and
Qβ , are selected to be combined by using a plane-sweep KCPQ algorithm [10]
to compute an upper bound of the distance value of the K-th closest pair (β). In
Stage 4, the combination of all possible pairs of partitions from P and Q, SPQ, is
filtered according to the β value (i.e. only the pairs of partitions with minimum
distance between the MBRs of the partitions is smaller than or equal to β are
selected), giving rise to FSPQ, and all pairs of filtered partitions are processed
by using a plane-sweep KCPQ algorithm. Finally, the results are merged to get
the final output.

With the previous Execution Plan and increasing the size of the datasets,
the execution time increases considerably due to skew and shuffle problems. To
solve it, we modify Stage 4 with the query plan that is used for the algorithms
shown in [13], leaving the plan as shown in Figure 3.

Fig. 3. Execution Plan for KCPQ in LocationSpark, based on [13].

Stages 1, 2 and 3 are still used to calculate the β value which will serve
to accelerate the local pruning phase on each partition. In Stage 4, using the
Query Plan Scheduler, P is partitioned into PS and PNS being the partitions that
present and do not present skew, respectively. The same partitioning is used to
Q. In Stage 5, a KCPQ algorithm [10] is applied between points of PS and QS
that are in the same partition and likewise for PNS and QNS in Stage 6. These
two stages are executed independently and the results are combined in Stage 7.
Finally, it is still necessary to calculate if there is any present candidate for each
partition that is on the boundaries of that same partition in the other dataset.
To do this, we use β′ which is the maximum distance from the current set of
candidates as a radius of a range filter with center in each partition to obtain
possible new candidates on those boundaries. The calculation of KCPQ of each
partition with its candidates is executed in Stages 8 and 9 and these results are
combined in Stage 10 to obtain the final answer.

The Execution Plan for εDJQ in LocationSpark is a variation of the KCPQ
one, where the filtering stages are removed, since SPQ is filtered by ε (i.e. β =
β′ = ε), which is the threshold distance known beforehand.

9



5 Experimentation

In this section we present the results of our experimental evaluation. We have
used real 2d point datasets to test our DJQ algorithms in SpatialHadoop and Lo-
cationSpark. We have used three datasets from OpenStreetMap3: BUILDINGS
which contains 115M records of buildings, LAKES which contains 8.4M points
of water areas, and PARKS which contains 10M records of parks and green areas
[6]. Moreover, to experiment with the biggest real dataset (BUILDINGS ), we
have created a new big quasi-real dataset from LAKES (8.4M), with a similar
quantity of points. The creation process is as follows: taking one point of LA-
KES, p, we generate 15 new points gathered around p (i.e. the center of the
cluster), according to a Gaussian distribution with mean = 0.0 and standard de-
viation = 0.2, resulting in a new quasi-real dataset, called CLUS LAKES, with
around 126M of points. The main performance measure that we have used in our
experiments has been the total execution time (i.e. total response time). All ex-
periments are conducted on a cluster of 12 nodes on an OpenStack environment.
Each node has 4 vCPU with 8GB of main memory running Linux operating
systems and Hadoop 2.7.1.2.3. Each node has a capacity of 3 vCores for MapRe-
duce2 / YARN use. The version of Spark used is 1.6.2. Finally, we used the latest
code available in the repositories of SpatialHadoop4 and LocationSpark5.

Parameter Values (default)

K 1, 10, (102), 103, 104, 105

ε (×10−4) 2.5, 5, 7.5, 12.5, (25), 50

Number of nodes 1, 2, 4, 6, 8, 10, (12)

Type of partition Quadtree

Table 1. Configuration parameters used in the experiments.

Table 1 summarizes the configuration parameters used in our experiments.
Default values (in parentheses) are used unless otherwise mentioned. Spatial-
Hadoop needs the datasets to be partitioned and indexed before invoking the
spatial operations. The times needed for that pre-processing phase are 94 secs
for LAKES, 103 sec for PARKS, 175 sec for BUILDINGS and 200 sec for
CLUS LAKES. We have shown the time of this pre-processing phase in Spati-
alHadoop (disk-based DSDMS), since it would be the full execution time, at least
in the first running of the query. Note that, data are indexed and the index is
stored on HDFS and for subsequent spatial queries, data and index are already
available (this can be considered as an advantage of SpatialHadoop). On the
other hand, LocationSpark (in-memory-based DSDMS) always partitions and
indexes the data for every operation. The partitions/indexes are not stored on
any persistent file system and cannot be reused in subsequent operations.

3 Available at http://spatialhadoop.cs.umn.edu/datasets.html
4 Available at https://github.com/aseldawy/spatialhadoop2
5 Available at https://github.com/merlintang/SpatialSpark

10



Our first experiment aims to measure the scalability of the KCPQ and εDJQ
algorithms, varying the dataset sizes. As shown in the left chart of Figure 4 for
the KCPQ of real datasets (LAKES × PARKS, BUILDINGS × PARKS
and BUILDINGS × CLUS LAKES), the execution times in both DSDMSs
increase linearly as the size of the datasets increase. Moreover, LocationSpark is
faster for all the datasets combinations except for the largest one (e.g. it is 29
sec slower for the biggest datasets, BUILDINGS×CLUS LAKES (BxC L)).
However, it should be noted that SpatialHadoop needs a pre-indexing time of
175 and 200 sec for each dataset (depicted by vertical lines in the charts) and
that difference can be caused by memory constraints on the cluster.

As we have just seen for KCPQ, the behavior of the execution times when
varying the size of the datasets is very similar for εDJQ. For instance, for the
combination of large datasets (see the right chart of Figure 4), BUILDINGS×
CLUS LAKES (BxC L), SpatialHadoop is 32 sec faster than LocationSpark.
However, for smaller sets, LocationSpark shows better performance (e.g. it is 96
sec faster for the middle size datasets, BUILDINGS ×PARKS (BxP)). From
these results with real data, we can conclude that both DSDMSs have similar
performance, in terms of execution time, even showing LocationSpark better
values in most of the cases, despite the fact that neither pre-partitioning nor
pre-indexing are done.
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Fig. 4. KCPQ (left) and εDJQ (right) execution times considering different datasets.

The second experiment studies the effect of the increasing both K and ε value
for the combination of the biggest datasets (BUILDINGS×CLUS LAKES).
The left chart of Figure 5 shows that the total execution time for real data-
sets grows slowly as the number of results to be obtained (K) increases. Both
DSDMSs, employing Quadtree, report stable execution times, even for large K
values (e.g. K = 105). This means that the Quadtree is less affected by the in-
crement of K, because Quadtree employs regular space partitioning depending
on the concentration of the points. As shown in the right chart of Figure 5, the
total execution time grows as the ε value increases. Both DSDMSs (SpatialHa-
doop and LocationSpark) have similar relative performance for all ε values, with
SpatialHadoop being faster, except for ε = 50×10−4, where LocationSpark out-
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performs it (i.e. LocationSpark is 377 sec faster). This difference is due to the
way in which εDJQ is calculated in the latter, where fewer points are used as
candidates and skew cells are dealt with its Query Plan Scheduler. For smaller
ε values SpatialHadoop preindexing phase reduces time considerably for very
large datasets.

The main conclusions that we can extract for this experiment are: (1) the
higher K or ε values, the greater the possibility that pairs of candidates are not
pruned, more tasks would be needed and more total execution time is consumed
and, (2) LocationSpark shows better performance especially for higher values of
K and ε thanks to its Query Plan Scheduler and the reduction of the number
of candidates.
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Fig. 5. KCPQ cost (execution time) vs. K values (left) and εDJQ cost (execution
time) vs. ε values (right).

The third experiment aims to measure the speedup of the DJQ MapReduce
algorithms (KCPQ and εDJQ), varying the number of computing nodes (n). The
left chart of Figure 6 shows the impact of different number of computing nodes
on the performance of parallel KCPQ algorithm, for BUILDINGS×PARKS
with the default configuration values. From this chart, it could be concluded
that the performance of our approach has direct relationship with the number
of computing nodes. It could also be deduced that better performance would
be obtained if more computing nodes are added. LocationSpark is still showing
a better behavior than SpatialHadoop. In the right chart of Figure 6, we can
observe a similar trend for εDJQ MapReduce algorithm with less execution time,
but in this case LocationSpark shows worse performance for a smaller number
of nodes. This is due to the fact that LocationSpark and εDJQ depends more
on the available memory and when the number of nodes decreases, this memory
also decreases considerably.

By analyzing the previous experimental results, we can extract several con-
clusions that are shown below:

– We have experimentally demonstrated the efficiency (in terms of total exe-
cution time) and the scalability (in terms of K and ε values, sizes of datasets

12



1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

n: # of available computing nodes

T
o
ta

l
E

x
ec

u
ti

o
n

T
im

e
(i

n
se

c)

BUILDINGSxPARKS - KCPQ

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

n: # of available computing nodes

T
o
ta

l
E

x
ec

u
ti

o
n

T
im

e
(i

n
se

c)

BUILDINGSxPARKS - εDJQ

SpatialHadoop LocationSpark

Fig. 6. Query cost with respect to the number of computing nodes n.

and number of computing nodes (n)) of the proposed parallel algorithms for
DJQs (KCPQ and εDJQ) in SpatialHadoop and LocationSpark.

– The larger the K or ε values, the larger the probability that pairs of candi-
dates are not pruned, more tasks will be needed and more total execution
time is consumed for reporting the final result.

– The larger the number of computing nodes (n), the faster the DJQ algo-
rithms are.

– Both DSDMSs have similar performance, in terms of execution time, alt-
hough LocationSpark shows better values in most of the cases (if an adequate
number of processing nodes with adequate memory resources are provided),
despite the fact that neither pre-partitioning nor pre-indexing are done.

6 Conclusions and Future Work

The KCPQ and εDJQ are spatial operations widely adopted by many spatial
and GIS applications. These spatial queries have been actively studied in cen-
tralized environments, however, for parallel and distributed frameworks has not
attracted similar attention. For this reason, in this paper, we compare two of the
most current and leading DSDMSs, namely SpatialHadoop and LocationSpark.
To do this, we have proposed novel algorithms in LocationSpark, the first ones
in literature, to perform efficient parallel and distributed KCPQ and εDJQ al-
gorithms on big spatial real-world datasets, adopting the plane-sweep technique.
The execution of a set of experiments has demonstrated that LocationSpark is
the overall winner for the execution time, due to the efficiency of in-memory pro-
cessing provided by Spark and additional improvements as the Query Plan Sche-
duler. However, SpatialHadoop is a more mature and robust DSDMS because of
time dedicated to investigate and develop it (several years) and, it provides more
spatial operations and spatial partitioning techniques. Future work might cover
studying other Spark-based DSDMSs like Simba [14], implement other spatial
partitioning techniques [4] in LocationSpark and, design and implement other
DJQs in these DSDMSs for further comparison.
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