MASTER OFICIAL INTERUNIVERSITARIO

REPRESENTACIÓN Y DISEÑO EN INGENIERÍA Y ARQUITECTURA

TRABAJO FIN DE MASTER

INFLUENCIA DE LOS PUNTOS DE ORIENTACIÓN EN LA CALIDAD DE LA SUPERFICIE DE UN TALUD

Sandra V. Sánchez Morán Curso 2010-2011

Director/es:

Fernando Carvajal Ramírez Francisco Agüera Vega

RESUMEN

El objetivo de este trabajo fin de máster fue el análisis de la precisión obtenida en la caracterización del deslizamiento de un talud situado en una autovía de doble calzada, tomando diferentes combinaciones de puntos de control, medidos sobre el terreno con un GPS, para su georreferenciación, con la intención de caracterizar y cuantificar dicho error en función de la localización de los tres puntos de apoyo elegidos

Como datos de partida se emplean las fotografías realizadas por un vehículo aéreo no tripulado e introducías en el software Photommodeler Scanner 2011 y 35 puntos de control medidos sobre el terreno con GPS. El método de orientación relativa elegido para la georreferenciación del proyecto fotogramétrico fue la transformación afín de 3 puntos de apoyo. Para probar la incidencia de la distribución estos tres puntos de apoyo en la calidad final del producto, se han realizado 6 proyecto fotogramétricos, en cada uno de los cuales se han seleccionado 3 de los 35 puntos de control y posteriormente se ha medido el error medio cuadrático RMS cometido entre los puntos de control de coordenadas conocidas y los obtenidos en el MDS.

Se puede concluir que si los puntos de apoyo se distribuyen adecuadamente con la mayor distancia posible entre ellos en el plano xy, se va obtener una precisión adecuada de dichas coordenadas. Además para obtener un valor adecuado del RMSz, es necesario que al menos un punto de apoyo tenga una cota claramente diferenciada de los otros dos. Esta precisión en z se puede mejorar si los tres puntos poseen diferentes cotas

PALABRAS CLAVE: fotogrametría, talud, precisión, MDS

ABSTRACT

The aim of this master thesis has been analyze the accuracy obtained in the characterization of a landscape located on a dual carriageway motorway, taking different combinations of control points, measured on ground with a GPS for georeferencing, intended to characterize and quantify the error depending on the location of the chosen three support points

As baseline data are used photographs taken by an unmanned aerial vehicle and introduced in the software Photommodeler Scanner 2011 and 35 control points measured on ground with GPS. The chosen method of relative orientation for photogrammetric to geo-referencing the project was the affine transformation of 3 support points. In order to test the effect of the distribution of these three support points in the final quality product, there have been 6 photogrammetric project, each of whom have selected 3 of the 35 control points and then measured the mean square error RMS committed between check points of known coordinates and those obtained in the MDS.

In conclusion, if the supports are appropriately distributed to the greatest possible distance between them in plane xy, adequate accuracy will be obtained of these coordinates. In addition, in order to obtaining a suitable value RMSz, it is necessary that at least a support point has a height clearly differentiated from the other two. Z This precision can be improved if the three points have different heights

KEY WORDS: photogrammetry, landslide, accuracy, MDS

MASTER EN REPRESENTACIÓN Y DISEÑO EN INGENIERÍA Sandra V. Sánchez Morán

ÍNDICE

1.	INTRODUCCIÓN	2
	1.1. Tipología y desarrollo de los movimientos de taludes	2
	1.2. Métodos de cálculo de estabilidad de taludes	4
	1.3. Reconocimiento de un talud mediante fotogrametría UAV	7
2.	MATERIALES Y MÉTODOS	9
	2.1. Datos de Partida	9
	2.2. Metodología	12
3.	RESULTADOS	18
	3.1. Proyecto 1	19
	3.2. Proyecto 2	20
	3.3. Proyecto 3	21
	3.4. Proyecto 4	22
	3.5. Proyecto 5	23
	3.6. Proyecto 6	
4.	DISCUSIÓN	24
5.	CONCLUSIONES	26
6.	BIBLIOGRAFÍA	27

1. INTRODUCCIÓN

1.1. Tipología y desarrollo de los movimientos de taludes

El estudio de la problemática de la estabilidad de taludes ha sido objeto de análisis en diversos campos de la ingeniería, y en especial, el de la ingeniería civil. En nuestros días el gran volumen de construcciones lineales (carreteras, autopistas, ferrocarriles, etc.) hace necesario alterar constantemente la superficie natural del terreno, siendo unidades de obra muy comunes la excavación de desmontes así como la construcción de terraplenes, dando lugar a superficies creadas de forma artificial.

La inestabilidad de taludes se traduce en distintos tipos de movimientos del terreno, que comúnmente se denominan deslizamientos

Los terrenos sobre los que se producen los denominados deslizamientos se pueden clasificar principalmente en tres grupos:

- Macizos rocosos: Se caracterizan por ser medios discontinuos que esencialmente se componen por bloques sólidos separados por discontinuidades.
- Suelos: Constituyen un agregado de partículas sólidas con diferentes grados de consolidación, que pueden desarrollarse "in situ" formando una cobertura de los macizos rocosos, o bien pueden haber sufrido cierto transporte.
- Materiales de relleno: Se consideran materiales de relleno aquellos depósitos acumulados debido a la realización de determinadas obras y actividades, generalmente compuestos por materiales heterogéneos

A continuación se resumen los distintos tipos de movimientos posibles en los taludes clasificados por Ayala y col., 1986, y que se representan en la figura 1.1.

- a) Desprendimiento. Se define como una masa separada de un talud mediante una superficie de corte normalmente pequeña, cuyo recorrido se realiza mayoritariamente a través del aire. Este tipo de movimiento se puede considerar exclusivo de los macizos rocosos.
- b) *Vuelcos*: Se produce por la rotación de unidades con formas de columna.
- c) Deslizamientos rotacionales: Tienen lugar a lo largo de una superficie de rozamiento interna, de forma aproximadamente circular y cóncava alrededor de un eje dispuesto paralelamente al talud
- d) Deslizamientos traslacionales: En este tipo de deslizamiento la masa se desplaza hacia a fuera y abajo, a lo largo de una superficie más o menos plana.
- e) Extensiones laterales: El movimiento consiste en la extensión lateral controlada por superficies de corte y/o fracturas de tensión. El mecanismo de rotura es complejo, pudiendo comprender formas de traslación, rotación, flujo y licuación.

- f) Coladas: Se caracteriza principalmente por la indefinición de la superficie de deslizamiento. Suelen ser más frecuentes en terrenos de tipo suelo que en materiales rocosos.
- g) Movimientos complejos: Son el resultado de la combinación de más de un tipo de movimiento diferente descrito anteriormente.

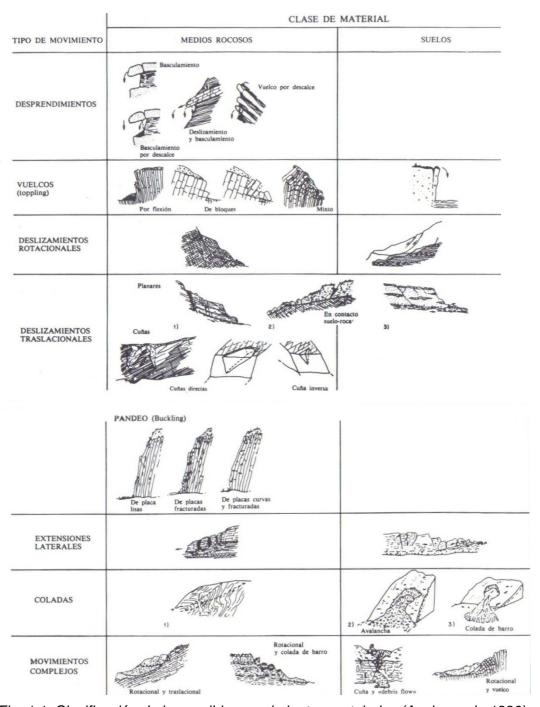


Fig. 1.1. Clasificación de los posibles movimientos en taludes (Ayala y col., 1986)

MASTER EN REPRESENTACIÓN Y DISEÑO EN INGENIERÍA Y ARQUITECTURA Sandra V. Sánchez Morán

En el análisis de los movimientos de un talud se debe diferenciar entre los factores que condicionan la estabilidad de este y aquellos que actúan como desencadenantes de los movimientos.

La susceptibilidad de que se produzcan movimientos en los taludes está condicionada por la estructura geológica, la litología, las condiciones hidrogeológicas, y la morfología propia de un área determinada.

Se considera que las condiciones hidrológicas son el factor más influyente, tanto condicionante como desencadenante, de la inestabilidad de taludes. Otros factores son el hielo y la nieve, la sismicidad, las excavaciones, las voladuras, la actividad biológica, las sobrecargas, etc.

1.2. Métodos de cálculo de estabilidad de taludes

Lo métodos de cálculo para analizar la estabilidad de taludes se pueden clasificar en dos grandes grupos:

- Métodos de cálculo en deformaciones. Consideran en el cálculo las deformaciones del terreno además de las leyes de la estática. Su aplicación práctica es de gran complejidad y el problema debe estudiarse aplicando el método de los elementos finitos u otros métodos numéricos.
- Métodos de equilibrio límite Se basan exclusivamente en las leyes de la estática para determinar el estado de equilibrio de una masa de terreno potencialmente inestable. No tienen en cuenta las deformaciones del terreno. Suponen que la resistencia al corte se moviliza total y simultáneamente a lo largo de la superficie de corte.

Estos últimos se pueden clasificar en los métodos exactos y los no exactos.

Los métodos exactos aplican las leyes de la estática. Proporcionan una solución exacta del problema con la única salvedad de las simplificaciones propias de todos los métodos de equilibrio límite (ausencia de deformaciones, factor de seguridad constante en toda la superficie de rotura, etc.). Esto sólo es posible en taludes de geometría sencilla, como por ejemplo la rotura planar y la rotura por cuñas.

En la mayoría de los métodos no exactos la geometría de la superficie de rotura no permite obtener una solución exacta del problema mediante la única aplicación de las leyes de la estática. El problema es hiperestático y ha de hacerse alguna simplificación o hipótesis previa que permita su resolución. Se pueden considerar así los métodos que consideran el equilibrio global de la masa deslizante, hoy en desuso, y los métodos de las dovelas o rebanadas, que consideran a la masa deslizante dividida en una serie de fajas verticales.

A su vez los métodos de las dovelas o rebanadas pueden clasificarse en dos grupos. Por un lado los métodos aproximados, los cuales no cumplen todas las ecuaciones de la estática. Se pueden citar por ejemplo los métodos de Fellenius, Janbu y Bishop simplificado. Y por otro lado, los métodos precisos o completos que sí cumplen todas las ecuaciones de la estática. Los más conocidos son los de Morgenstern-Price, Spercer y Bishop riguroso.

En la figura 1.2.1 se muestra un gráfico en el que se recogen los diferentes métodos de cálculo.

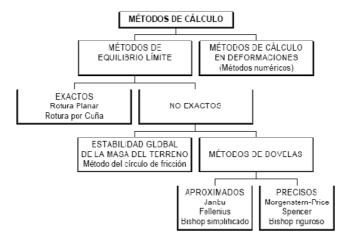


Fig 1.2.1. Clasificación de los métodos de cálculo de la estabilidad de taludes

Casi la totalidad de los métodos utilizados actualmente se basan en el denominado de las dovelas o rebanadas (fig. 1.2.2), que consiste en dividir el macizo potencialmente deslizante en rebanadas verticales, calcular el equilibrio de cada una de ellas, y finalmente analizar el equilibrio global, obteniendo un Factor de Seguridad (FS) que se define como la relación entre fuerzas o momentos resistentes y fuerzas o momentos motores.

El peso de la rebanada (W) se descompone en un empuje tangencial (WT) y otro vertical (WN), paralelo y normal, respectivamente, a la base de aquella. WT origina una tensión cortante, a la que se opone la propia resistencia al corte (s) del terreno, definida por la cohesión y la fuerza normal (WN) disminuida en la presión intersticial (u). Las fuerzas V y H, con sus subíndices, definen la interacción entre rebanadas, y es la evaluación de estas reacciones internas lo que establece la diferencia fundamental entre los métodos. Si las circunstancias así lo requieren puede ser necesario considerar la incidencia de sobrecargas, fijas o temporales, las fuerzas de filtración a través del macizo, así como las acciones sísmicas.

Una vez calculado FS para una determinada curva de rotura potencial, se repite el proceso para otra distinta, y así sucesivamente hasta obtener un mínimo para FS, suponiéndose entonces que esta será la curva pésima. Como puede fácilmente deducirse, en cálculo manual el proceso es lento y tedioso, prestándose a errores durante la manipulación de tan gran número de parámetros, y quedando siempre la incertidumbre de si el valor del FS que estimamos final es realmente el mínimo, o todavía podemos encontrar otra curva que lo minimice más, y aunque hay procedimientos para ir acotando progresivamente los FS, se necesita un número significativamente elevado de horas de trabajo para llegar a un valor fiable.

Con el cálculo electrónico el procesamiento es prácticamente instantáneo, y permite analizar un gran número de alternativas, por lo que el valor mínimo de FS puede acotarse dentro de un intervalo razonablemente aceptable en un tiempo muy corto. Se exponen a continuación los fundamentos de algunos de los métodos más utilizados y contrastados por la práctica.

- Método de Bishop. Originalmente desarrollado para roturas circulares, considera que las interacciones entre rebanadas son nulas. El cálculo se lleva a cabo buscando el equilibrio de momentos respecto al centro del arco circular, aunque en la versión posterior se puede aplicar a superficies no curvas definiendo centros ficticios.
- Método de Janbu. Diseñado para superficies no necesariamente circulares, también supone que la interacción entre rebanadas es nula, pero a diferencia de Bishop busca el equilibrio de fuerzas y no de momentos. Experiencias posteriores hicieron ver que la interacción nula en el caso de equilibrio de fuerzas era demasiado restrictiva, lo que obligó a introducir un factor de corrección empírico aplicable al FS. En versión posterior, en el denominado método riguroso, se define una línea de empuje entre las rebanadas y se buscan los equilibrios en fuerzas y momentos respecto al centro de la base de cada una.
- Método de Spencer. Este, como los que se citan a continuación, también pertenecen a la categoría de los denominados rigurosos. Supone que de la interacción entre rebanadas aparece una componente de empuje con iteraciones, analiza tanto el equilibrio en momentos como en fuerzas en función de ese ángulo, hasta hacerlo converger hacia un mismo valor, calculando entonces el FS correspondiente. Es aplicable a roturas circulares y generales.
- Método de Morgenstern y Price. Al igual que el anterior, también es de aplicación general, y trata de alcanzar tanto el equilibrio de momentos como de fuerzas. La diferencia fundamental estriba en que la interacción entre rebanadas viene dada por una función que evalúa esa interacción a lo largo de la superficie de deslizamiento.
- Método de Sarma.- Significó un cambio radical respecto a la filosofía de los anteriores, ya que se busca la aceleración horizontal necesaria para que la masa de suelo alcance el equilibrio límite. El FS es calculado reduciendo progresivamente la resistencia a cortante del suelo hasta que la aceleración se anula. Por sus características es aplicable a rebanadas no verticales, y suele ser muy utilizado en el cálculo por elementos finitos.

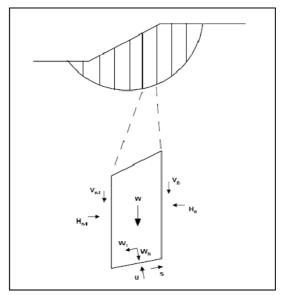


Fig 1.2.2. Principio del método de rebanadas

1.3. Reconocimiento de un talud mediante fotogrametría UAV

Para la investigación del movimiento de un talud se deben identificar y valorar las siguientes características (Ayala y col. 1986):

- Geometría y morfología
- Características geológicas y geotécnicas
- Características hidrogeológicas
- Causas externas

En el trabajo que nos ocupa se pretende obtener la geometría de un talud determinado con la precisión y escala adecuadas, teniendo en cuenta que la escala de la cartografía empleada para un trabajo determinado debe estar en función tanto de los objetivos perseguidos en la investigación como del tamaño del área de estudio. En el caso del estudio de taludes localizados en obras lineales como autovías o ferrocarriles, en los que se pretende el estudio de un deslizamiento concreto, la fotogrametría aérea convencional proporciona perspectivas de grandes áreas dando una visión general del conjunto, en donde se pueden interpretar rasgos y estructuras geológicas combinadas con la topografía. No obstante, la precisión obtenida con este tipo de fotografía no permite la observación a una mayor escala debido a que la altura de vuelo en las plataformas de vuelo aerotransportadas suele ser de cientos de metros. Por otro lado, la topografía llevada a cabo con estaciones totales, teodolitos, estaciones de nivel o GPS pueden ser inviables cuando el paisaje es inaccesible, y muy caro, por la mano de obra necesaria.

En la última década, se ha desarrollado una nueva alternativa que emplea ambas técnicas con el fin de conseguir mayores escalas y menor coste. Esta técnica, denominada la fotogrametría UAV (unmanned aerial vehicles), consiste en una plataforma aérea no tripulada de medición fotogramétrica, que opera por control remoto, semi-autónoma, o bien de forma autónoma, sin piloto sentado en el vehículo. La plataforma está equipada con un sistema de medición fotogramétrico de pequeño o mediano tamaño. La fotogrametría UAV permite la combinación de la fotogrametría aérea y terrestre, así como el desarrollo de nuevas aplicaciones para la utilización en corto alcance (Eisenbeis,2009).

Las principales ventajas del UAV en comparación con los sistemas de vehículo aéreos tripulados son que pueden usarse en áreas de acceso difícil o peligroso, siendo posible volar a baja altura o incluso volar cerca de los objetos que se pretende fotografiar. Además, una ventaja fundamental de la utilización de vehículos aéreos no tripulados es que no cargan con las limitaciones fisiológicas y los gastos económicos de los pilotos humanos. La desventaja fundamental que presentan es la dependencia a las condiciones climatológicas debido al ligero peso del vehículo. A continuación se muestra la imagen de un UAV con la cámara fotográfica incorporada (ver figura 1.3.)

Fig 1.3. Imagen de un UAV con la cámara digital. (www.microdones.com)

En cuanto a su aplicación en el seguimiento y análisis de deslizamientos en taludes se pueden obtener modelos digitales de superficie (MDS) con las fotografías obtenidas mediante el UAV. Además, si se requiriese una evaluación constante de las condiciones de deslizamiento de tierra, lo que implicaría tanto medidas espaciales como temporales así como de la velocidad de los desplazamientos y la topografía de la superficie, se podrían comparar MDS realizados con fotografías obtenidas en distintas fechas (Niethammer et col., 2010)

Actualmente la simple composición de orto-mosaicos permite un detallado análisis a gran escala de los materiales de deslizamiento de tierra y de las fisuras relacionadas con los procesos de los movimientos de los terrenos en taludes (Walter y col., 2009). Además, la información obtenida de alta resolución permite un análisis de la textura del terreno lo que podría permitir un análisis de la humedad del suelo de la superficie de los deslizamientos (Niethammer y col., 2009). Este análisis podría basarse en un análisis multi-espectral en el infrarrojo cercano y térmico.

Cuando se aplica la técnica de fotogrametría UAV para el control del deslizamiento de un talud, la elección de los puntos de apoyo para la orientación absoluta del proyecto fotogramétrico y su georreferenciación es un factor determinante del error finalmente cometido.

Cuanto mejor distribuidos, altimétrica y planimétricamente, se encuentren los puntos de apoyo, menores serán los errores de posicionamiento cometidos en el proyecto. A veces para conseguir dicha distribución hay que emplear una alta cantidad de recursos. La inaccesibilidad de algunas localizaciones dentro del talud o la peligrosidad hasta su acceso plantea la necesidad de cuantificar el aumento que sufren los errores del proyecto cuando la distribución no es la ideal

El objetivo de este trabajo fin de máster fue el análisis de la precisión obtenida en la caracterización del deslizamiento de un talud situado en una autovía de doble calzada, tomando diferentes combinaciones de puntos de control, medidos sobre el terreno con un GPS, para su georreferenciación, con la intención de caracterizar y cuantificar dicho error en función de la localización de los tres puntos de apoyo elegidos.

2. MATERIALES Y MÉTODOS

2.1. Datos de partida.

El talud objeto de investigación del presente trabajo se encuentra situado al suroeste de España entre las provincias de Almería y Granada. Se trata de un terraplén localizado en el punto kilométrico 339 de la autovía A-92, en el término municipal de Abla. En la figura 2.1.1 se muestra la situación de dicho talud.

El terraplén tiene una longitud aproximada de 100 m y una elevación máxima de 20m respecto al pie del talud. En la figura 2.1.2 se muestra una imagen general del talud

Fig 2.1.1. Situación del talud objetos de estudio

Fig 2.1.2. Vista general del talud

En la figura 2.1.3. se muestra el deslizamiento actual existente en el talud. Además se observa la presencia de un muro de contención en el extremo del talud, lo que demuestra la evidencia de que la inestabilidad de este terraplén ya ha sido objeto del intento de conservación. Se observa que la rotura del talud es rotacional y, por tanto, el deslizamiento producido según la tipología descrita anteriormente es deslizamiento rotacional. Entre las posibles causas que han

podido producir dicho deslizamiento se encuentran la elevada pendiente del talud y las presiones que han producido por el agua, bien por acumulación en grietas o por drenaje superficial o subterráneo.

Fig 2.1.3. Deslizamiento del talud

En la figura 2.1.4. se muestra una imagen del talud cuando todavía no se había producido el deslizamiento de los terrenos.

Fig 2.1.4. Imagen del talud cuando todavía no se había producido el deslizamiento (www.googleearth.com)

El proyecto fotogramétrico para la realización del presente trabajo fue obtenido de la investigación realizada por Carvajal Ramírez y col., 2011, quienes a partir de las fotografías obtenidas mediante un UAV modelo MD4-200 de la marca microdones y una cámara Pentax Optio A40, obtuvieron un MDS con un error medio cuadrático total cometido (RMS) de 0,2541, precisión que se considera adecuada para la correcta caracterización de un talud. La ruta de vuelo programada obtuvo un total de 54 fotografías que se obtuvieron en 3 pasadas paralelas a la curvatura de la autovía, es decir 18 fotografías por cada pasada, todas ellas de eje vertical y con un solape longitudinal del 80% y transversal del 60% de solapamiento entre ellas (figura 2.1.5)

En la figura 2.1.6 se muestra la planificación del vuelo, realizada con el software microdrones mdCockpit, Standard Edition V2.8.06, módulo Waypoint editor.

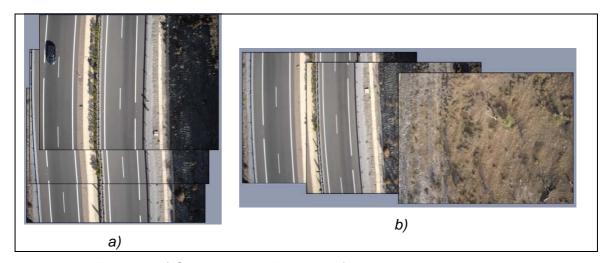


Fig. 2.1.5.a) Solape longitudinal entre fotos dentro de una pasada. b) Solape transversal entre fotos de distintas pasadas.

Fig. 2.1.6. Planificación del vuelo (3 pasadas)

El software elegido para la realización del proyecto fotogramétrico fue el Photomodeler Scanner 2011 (www.photomodeler.com). Se trata de un software de multi-aplicación y de bajo coste que puede ser usado tanto con proyectos de fotogrametría convergentes como paralelos (Einsenbeis, 2009). Se señala que la cámara con la que fueron tomadas las fotografías estaba previamente calibrada en dicho software. La tabla 2.1.1 muestra los parámetros de calibración obtenidos.

El bloque fotogramétrico en el que se basa este trabajo de investigación fue orientado relativamente mediante el uso de puntos de atado obtenidos automáticamente con Photomodeler Scanner 2011. El empleo de 37 imágenes de las 54 tomadas fueron suficientes para cubrir toda la superficie de estudio

Por otro lado, para poder estimar el error cometido se necesitan una serie de puntos de control de coordenadas conocidas que se compararán con los obtenidos con el proyecto fotogramétrico. Dichos puntos fueron tomados sobre el terreno con un GPS Trimble R6 (www.trimble.com) en tiempo real con RTK

(Real Time Kinematic mode), aplicando las correcciones necesarias basándose en la estación Calar Alto que pertenece a la Red Andaluza de Posicionamiento RAP (www.juntadeandalucia.es). Dicho vértice se encuentra a 20.8 km del área de estudio. El error medio cuadrático (RMS) cometido en los 35 puntos medidos se estima de 0.0175m. En la figura 2.1.7 se pueden ver las posiciones de los puntos tomados.

Longitud focal (mm)	8.1841									
Tamaño del formato (micro-m)	W=7.4853	H =5.6132								
Punto principal (micro-m)	X=3.7223	Y=2.6773								
Distorsión de lente	K1=2.820e-003	K2=-1.526e-005 K3=0								
Distorbion de fonte	P1=5.139e-005	P2=-4.462e-004								
Residuo total RMS	().5047								
Residuo máximo	().9985								
Cobertura de foto (%)		79								

Tabla 2.1.1Parámetros de calibración obtenidos

Fig. 2.1.7. Puntos de control obtenidos "in situ" con GPS

2.2. Metodología.

El método de orientación relativa del proyecto fotogramétrico elegido en este trabajo fue la transformación afín de 3 puntos (Wolf P.R., 1983). La última versión del programa Photomodeler Scanner 2011 permite la orientación absoluta de las fotografías empleando varios puntos control, de los cuales el software elegirá los tres puntos que considere darán mayor precisión en la orientación del proyecto fotográmetrico. Este quedará referido al sistema de coordenadas UTM (Universal Tranverse Mercator), para el hemisferio norte y huso 30°, en el ED-50 (European Datum 1950) y el modelo de geoide Ibergeo.

Para probar la incidencia de la distribución de los tres puntos de apoyo en la calidad final del producto, en cada proyecto fotogramétrico se han seleccionado 3 de los 35 puntos de control y posteriormente se ha medido el error medio cuadrático RMS cometido entre los puntos de control de coordenadas conocidas y los obtenidos en el MDS. En total, se han realizado 6 proyectos con diferentes criterios de orientación.

En un primer paso se ha creado una plantilla base del proyecto fotogramétrico a partir del cual se desarrollarán los 6 proyectos diferentes. Dicha plantilla está compuesta por las 37 imágenes previamente orientadas relativamente y los 35 puntos de control marcados en todas las fotografías usadas en el bloque fotogramétrico. El proceso consiste en identificar en las fotografías los 35 puntos de control, los cuales han sido marcados en el terreno con dianas o se corresponden con puntos fácilmente identificables como un mojón o la esquina de una arqueta (ver ejemplo de diana en la figura 2.2.1). Dichos puntos deben identificarse en el mayor número de fotografías posible que, dado el alto porcentaje de solape existente, suelen ser varias (entre 3 y 8). A continuación a estos puntos se les asigna su coordenada del punto real previamente medida en campo con GPS, obteniendo de esta manera un tabla de geometría externa con todos los puntos de coordenadas conocidas. Para la realización de los diferentes proyectos se ha elegido en esta tabla aquellos tres que se quieren utilizar para la orientación, empleándolos como puntos de apoyo y dejando los 32 restantes como puntos de control.

Fig. 2.2.1. Diana de un punto de control

Una vez marcados los tres puntos elegidos como puntos de apoyo (ver ejemplo en la fig.2.2.2), y tras efectuar la orientación absoluta del proyecto, se crean nubes de puntos en los solapes de pares de fotografías hasta obtener una nube de puntos de todo el talud (ver figura 2.2.3). A partir de esta nube de puntos se crea un MDS por triangulación (ver figura 2.2.4). Cabe señalar en este punto que debido a que se trata de un talud con una pendiente muy elevada siendo incluso vertical en algunas zonas, se hace necesario rellenar aquellos huecos donde no se ha sido posible la ubicación de puntos. Estas zonas se reconocen fácilmente de forma visual pues el software le asocia el color gris al no poder asociarle ninguna textura.

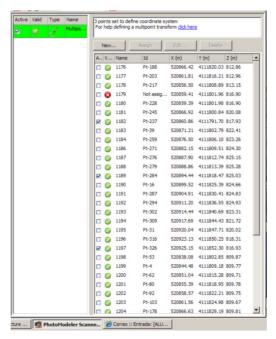


Fig. 2.2.2. Ejemplo de geometríaexterna del proyecto 4

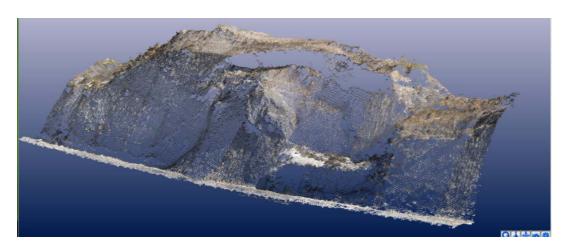


Fig. 2.2.3. Nube de puntos del talud

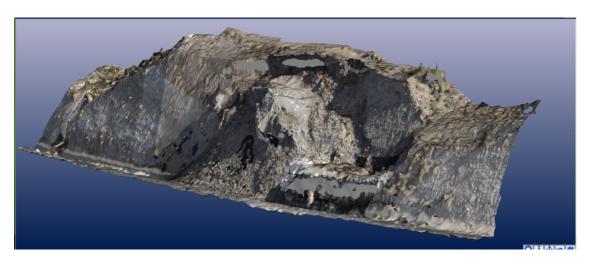


Fig. 2.2.4. MDS del talud.

El siguiente paso a seguir para el desarrollo de la presente investigación es la obtención de las coordenadas (x,y,z) de los 32 puntos de control en el MDS obtenido. Para ello se desarrollan dos métodos, uno para la obtención de las coordenadas planimétricas x e y, y otro para la coordenada altimétrica z.

Para la obtención de las coordenadas x e y se procede a exportar del proyecto fotogramétrico a una ortoimágen interpolada con el método del vecino más próximo y con una precisión de 0,02 pixel/m. La ortoimágen obtenida se puede ver en la figura 2.2.5. Dicha ortoimágen se obtiene georreferenciada gracias al archivo de texto en donde se proporcionan los datos de orientación y escala correspondientes (ver figura 2.2.6). A continuación se emplean estos datos para la georreferenciación de la ortoimágen, previamente importada en Autocad (www.autodesk.com), en la que se localizan los puntos de control, que como se ha dicho anteriormente se encuentran marcados con dianas, obteniendo de esta manera las coordenadas x e y de dichos puntos. En la presente investigación las coordenadas x e y se han exportado del Autocad con la aplicación dxfacil. Este programa es gratuito y posibilita el intercambio entre ficheros DXF y TXT, en los dos sentidos y en 3D (www.galiciacad.com)

Fig. 2.2.5. Ortofoto del talud exportado del proyecto fotogramétrico

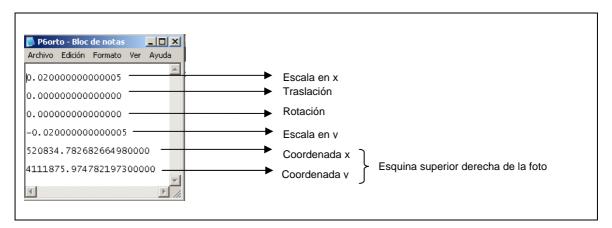


Fig. 2.2.6. Datos de georreferenciación de la ortofoto

La coordenada z de los puntos de control se obtiene exportando la nube de puntos obtenida en el proyecto fotogramétrico al software Surfer 8 (www.ssg-surfer.com), interpolando el modelo digital de elevaciones (MDE) mediante una función de base radial con un pixel cada 0,5 m. En la figura 2.2.8.a se puede ver el mapa de superficies del talud obtenido empleando dicho método. Además en la figura 2.2.8.b se muestra el plano de líneas de nivel con intervalos de 1m, y en las figura 2.2.8.c se muestra el plano de líneas de nivel superpuesto al plano de superficies. Una vez interpolado el MDE, fue extraída la coordenada z que se encuentra en dicho modelo en las coordenadas planimétricas de los puntos de control.

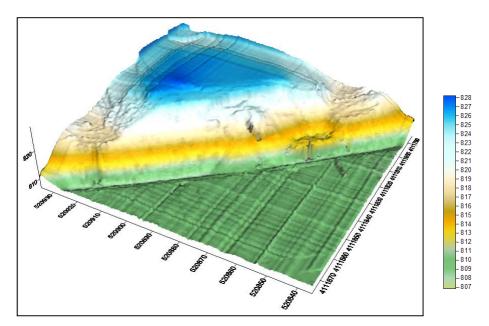
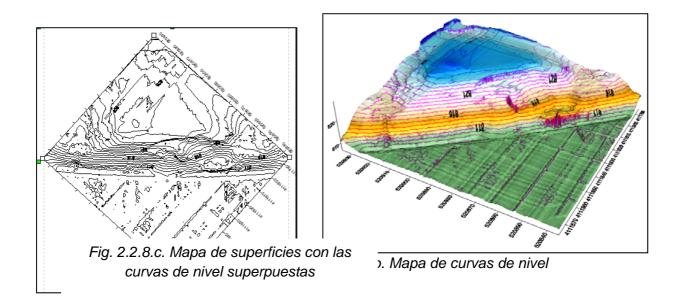



Fig. 2.2.8.a. Mapa de superficies

MASTER EN REPRESENTACIÓN Y DISEÑO EN INGENIERÍA Y ARQUITECTURA Sandra V. Sánchez Morán

La precisión obtenida en los seis proyectos realizados con diferentes puntos de apoyo se ha calculado comparando los 32 puntos de control de coordenadas conocidas con los puntos observados en el proyecto fotogramétrico, cuyas coordenadas se han obtenido con los métodos anteriormente descritos. Dicha comparación se realiza mediante el cálculo del error medio cuadrático (RMS) en cada proyecto. Puesto que las coordenadas x e y, y la coordenada z han sido obtenidas por distintos métodos se calcula un RMS paras las coordenadas x e y, y otro RMS para la coordenada z. El RMS para una colección de N valores se define mediante la fórmula 2.2.1

$$RMS X_{i} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} EX_{i}^{2}} = \frac{\sqrt{(EX_{1}^{2} + EX_{2}^{2} + \dots + EX_{N}^{2})}}{N}$$
(2.2.1)

 EX_i (Errror absoluto en i) = x-X

x: valor observado

X: valor real

N: número total de la muestra

En nuestro caso, para el cálculo del RMSxy y el RMSz, no se tienen en cuenta los tres puntos empleados para la orientación del proyecto, realizando el cálculo del error medio cuadrático para los 32 restantes. Por tanto, las fórmulas quedarían de la siguiente forma:

RMS XY =
$$\sqrt{\frac{1}{N-3}\sum_{i=1}^{N-3}EX_i^2 + EY_i^2} = \frac{\sqrt{(EX_1^2 + EX_2^2 + \dots + EX_{N-3}^2) + (EY_1^2 + \dots + EY_{N-3}^2)}}{N-3}$$
 (2.2.2)

RMS Z =
$$\sqrt{\frac{1}{N-3}\sum_{i=1}^{N-3} EZ_i^2} = \frac{\sqrt{(EZ_1^2 + EZ_2^2 + \dots + EZ_{N-3}^2)}}{N-3}$$
 (2.2.3)

 EX_i (Errror absoluto en i) = x-X

x, y, z: valor observado de x, y, z

X, Y, Z: valor real de x, y, z

N: número total de puntos

3. RESULTADOS

Se realizaron seis proyectos fotogramétricos con distintos puntos de apoyo que se describen a continuación.

3.1. Proyecto 1.

Los tres puntos escogidos para el primer proyecto se encuentran situados dos de ellos en la parte inferior del talud y uno en la parte superior distribuidod de manera homogénea, que se corresponden con la numeración 1.183, 1.195 y 1.205. Su ubicación en el talud se puede ver en la figura 3.1 en color rojo.

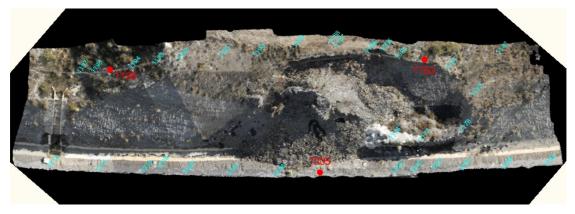


Fig. 3.1. Puntos utilizados para la orientación externa del proyecto 1

Se obtuvo un MDS por triangulación de 202.595 triángulos procedentes de los 109.604 puntos de la nube.

En la tabla 3.1 se observan los resultados obtenidos del cálculo del RMSxy y el RMSz.

ID	Coordenadas observadas			Coord	enadas real	es									
	x	у	Z				Ex	Ey	Ez	N	Ex2	Ey2	Ez2		
1176	520866.232	4111819.047	812.9795564	520866.42	4111820.034	812.862	0.188	0.987	-0.118	- 1	0.035344	0.974169	0.013819516		
1177	520861.57	4111815.199	813.0358846	520861.81	4111816.206	812.963	0.24	1.007	-0.073	- 1	0.0576	1.014048999	0.005312165		
1178	520856.262	4111807.889	813.033833	520856.499	4111808.894	813.147	0.237	1.005	0.113	- 1	0.056169	1.010025	0.012806773		
1180	520859.224	4111800.973	816.8868787	520859.393	4111801.976	816.9	0.169	1.003	0.013	- 1	0.028561	1.006008999	0.000172168		
1181	520866.842	4111799.809	819.9835322	520866.919	4111800.839	820.078	0.077	1.03	0.094	- 1	0.005929	1.060900001	0.00892417		
1182	520860.642	4111790.669	818.0117064	520860.859	4111791.698	817.933	0.217	1.029	-0.079	- 1	0.047089	1.058840999	0.006194696		
1183	520871.064	4111801.809	822.3984876	520871.207	4111802.793	822.406	0.143	0.984	0.008	0	0	0	0	Tranf. Afin	
1184	520876.362	4111805.122	823.2535504	520876.497	4111806.101	823.257	0.135	0.979	0.003	- 1	0.018225	0.958441	1.18995E-05		
1185	520879.576	4111806.019	823.8554184	520879.726	4111807.001	823.857	0.15	0.982	0.002	- 1	0.0225	0.964324001	2.50131E-06		
1186	520882.024	4111808.528	824.3079689	520882.146	4111809.51	824.301	0.122	0.982	-0.007	- 1	0.014884	0.964324	4.85651E-05		
1187	520887.792	4111811.746	825.1936301	520887.899	4111812.738	825.151	0.107	0.992	-0.043	- 1	0.011449	0.984064	0.001817328		
1188	520888.707	4111812.414	825.4495227	520888.856	4111813.392	825.279	0.149	0.978	-0.171	- 1	0.022201	0.956484	0.029078004		
1189	520894.302	4111817.463	825.0852375	520894.441	4111818.466	825.03	0.139	1.003	-0.055	- 1	0.019321	1.006009	0.003051181		
1190	520899.379	4111824.39	824.698666	520899.519	4111825.394	824.664	0.14	1.004	-0.035	- 1	0.0196	1.008015999	0.001201729		
1191	520904.757	4111829.413	824.8808442	520904.912	4111830.41	824.829	0.155	0.997	-0.052	- 1	0.024025	0.994009	0.002687819		
1192	520911.047	4111835.584	824.968137	520911.196	4111836.553	824.934	0.149	0.969	-0.034	- 1	0.022201	0.938961	0.001165333		
1193	520914.3	4111839.711	823.1702991	520914.435	4111840.689	823.306	0.135	0.978	0.136	- 1	0.018225	0.956483999	0.018414745		
1194	520917.572	4111843.478	821.7056973	520917.686	4111844.434	821.719	0.114	0.956	0.013	- 1	0.012996	0.913936	0.000176962		
1195	520919.9	4111846.749	819.9299396	520920.045	4111847.708	820.017	0.145	0.959	0.087	0	0	0	0	Tranf. Afin	
1196	520922.99	4111849.254	818.401803	520923.127	4111850.254	818.306	0.137	1	-0.096	- 1	0.018769	1	0.009178222		
1197	520925.029	4111851.346	816.832899	520925.146	4111852.299	816.928	0.117	0.953	0.095	- 1	0.013689	0.908209	0.0090442		
1198	520837.791	4111801,813	809.7698338	520838.079	4111802.849	809.874	0.288	1.036	0.104	- 1	0.082944	1.073296	0.010850599		
1199	520844.195	4111808.171	809.712344	520844.482	4111809.177	809.767	0.287	1.006	0.055	- 1	0.082369	1.012036	0.002987283		
1200	520850.788	4111814.304	809.6539054	520851.037	4111815.277	809.708	0.249	0.973	0.054	- 1	0.062001	0.946729	0.002926221		
1201	520855.115	4111817.966	809.7244683	520855,391	4111818.951	809.782	0.276	0.985	0.058	- 1	0.076176	0.970225	0.003309892		
1202	520858.368	4111821.237	809.7705312	520858.571	4111822.209	809.75	0.203	0.972	-0.021	- 1	0.041209	0.944783999	0.000421531		
1203	520861.335	4111824.036	809.7080427	520861,561	4111824.979	809.673	0.226	0.943	-0.035	- 1	0.051076	0.889249	0.001227991		
1205	520872.179	4111834.206	809.6361114	520872.435	4111835.152	809.435	0.256	0.946	-0.201	0	0	0	0	Tranf. Afin	
1206	520879.495	4111840.608	809.542944	520879.716	4111841.545	809.432	0.221	0.937	-0.111	- 1	0.048841	0.877969	0.012308564		
1207	520886.984	4111846.924	809.1991959	520887.193	4111847.856	809.239	0.209	0.932	0.040	- 1	0.043681	0.868624	0.001584365		
1208	520894.276	4111852.68	809.21767	520894.47	4111853.617	809.177	0.194	0.937	-0.041	- 1	0.037636	0.877969	0.001654045		
1209	520899.332	4111855.364	809.2669103	520899.644	4111856.282	809.01	0.312	0.918	-0.257	- 1	0.097344	0.842724	0.066002884		
1210	520901.259	4111858.583	809.1807802	520901.426	4111859.515	809.15	0.167	0.932	-0.031	- 1	0.027889	0.868624	0.000947423		
1212	520908.571	4111864.331	808.9543984	520908.743	4111865.3	809.027	0.172	0.969	0.073	- 1	0.029584	0.938961	0.005270989		
1213	520916.749	4111870.033	809.5774729	520916.928	4111870.98	809.22	0.179	0.947	-0.357	0	0	0	0		
							0.183	0.977	-0.025	31	1.149527	29.788444	0.232599764	RMSxy	0.998999
														RMSz	0.0866211

Tabla 3.1. Cálculo del RMSxy y RMSz

3.2. Proyecto 2

Los tres puntos escogidos en este proyecto, al contrario que el anterior se encuentran situados dos de ellos en la parte superior del talud y uno en la parte inferior distribuidos homogeneamente, que se corresponden con la numeración 1.190, 1.199 y 1.210. Su ubicación en el talud se puede ver en la figura 3.2 en color rojo.

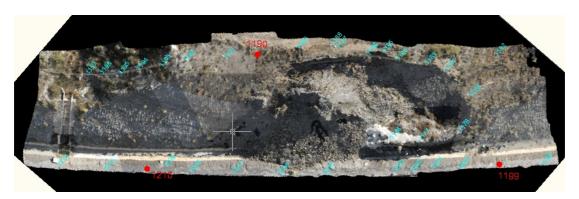


Fig. 3.2. Puntos utilizados para la orientación externa del proyecto 2

Se obtuvo un MDS por triangulación de 220.405 triángulos procedentes de los 118.991 puntos de la nube.

En la tabla 3.2 se observan los resultados obtenidos del cálculo del RMSxy y el RMSz.

ID	Coorder	nadas obse	ervadas	Coord	enadas rea	les									
	x	у	Z				Ex	Ey	Ez	N	Ex2	Ey2	Ez2		
1176	520866.3	4111819.029	812.9986553	520866.42	4111820.034	812.862	0.12	1.005	-0.137	1	0.0144	1.010025	0.018674664		
1177	520861.642	4111815.189	813.0555903	520861.81	4111816.206	812.963	0.168	1.017	-0.093	1	0.028224	1.034289	0.008572967		
1178	520856.341	4111807.896	813.1273119	520856.499	4111808.894	813.147	0.158	0.998	0.020	1	0.024964	0.996003999	0.00038762		
1180	520859.368	4111800.997	816.8703142	520859.393	4111801.976	816.9	0.025	0.979	0.030	1	0.000625	0.958441	0.000881245		
1181	520866.86	4111799.853	820.0530741	520866.919	4111800.839	820.078	0.059	0.986	0.025	1	0.003481	0.972196	0.000621299		
1182	520860.68	4111790.74	818.0656185	520860.859	4111791.698	817.933	0.179	0.958	-0.133	1	0.032041	0.917763999	0.017587665		
1183	520871.097	4111801.848	822.4071997	520871.207	4111802.793	822.406	0.11	0.945	-0.001	1	0.0121	0.893025	1.43919E-06		
1184	520876.391	4111805.152	823.2808427	520876.497	4111806.101	823.257	0.106	0.949	-0.024	1	0.011236	0.900601	0.000568475		
1185	520879.599	4111806.048	823.863841	520879.726	4111807.001	823.857	0.127	0.953	-0.007	1	0.016129	0.908209	4.67997E-05		
1186	520882.032	4111808.556	824.3167622	520882.146	4111809.51	824.301	0.114	0.954	-0.016	1	0.012996	0.910116	0.000248448		
1187	520887.785	4111811.772	825.1665368	520887.899	4111812.738	825.151	0.114	0.966	-0.016	1	0.012996	0.933156	0.000241391		
1188	520888.698	4111812.431	825.4382707	520888.856	4111813.392	825.279	0.158	0.961	-0.159	1	0.024964	0.923521	0.025367158		
1189	520894.284	4111817.478	825.0557225	520894.441	4111818.466	825.03	0.157	0.988	-0.026	1	0.024649	0.976144	0.000661647		
1190	520899.351	4111824.407	824.6404289	520899.519	4111825.394	824.664	0.168	0.987	0.024	0	0	0	0	Tranf. Afin	
1191	520904.719	4111829.415	824.841722	520904.912	4111830.41	824.829	0.193	0.995	-0.013	1	0.037249	0.990025	0.000161849		
1192	520910.995	4111835.56	824.9601858	520911.196	4111836.553	824.934	0.201	0.993	-0.026	1	0.040401	0.986049	0.000685697		
1193	520914.26	4111839.68	823.152539	520914.435	4111840.689	823,306	0.175	1.009	0.153	1	0.030625	1.018080999	0.02355027		
1194	520917.519	4111843.443	821.6558294	520917.686	4111844.434	821.719	0.167	0.991	0.063	1	0.027889	0.982081	0.003990526		
1195	520919.852	4111846.713	819.9007933	520920.045	4111847.708	820.017	0.193	0.995	0.116	1	0.037249	0.990025	0.013503998		
1196	520922.948	4111849.199	818.2124297	520923.127	4111850.254	818.306	0.179	1.055	0.094	1	0.032041	1.113025	0.008755408		
1197	520924.982	4111851.29	816.7996639	520925.146	4111852.299	816.928	0.164	1.009	0.128	1	0.026896	1.018081	0.016470144		
1198	520837.937	4111801.839	809.9141393	520838.079	4111802.849	809.874	0.142	1.01	-0.040	1	0.020164	1.0201	0.00161116		
1199	520844.311	4111808.161	809.7607584	520844.482	4111809.177	809.767	0.171	1.016	0.006	0	0	0	0	Tranf. Afin	
1200	520850.893	4111814.307	809.7081852	520851.037	4111815.277	809.708	0.144	0.97	0.000	1	0.020736	0.940899999	3.4293E-08		
1201	520855.216	4111817.935	809.8808503	520855.391	4111818.951	809.782	0.175	1.016	-0.099	1	0.030625	1.032256	0.009771392		
1202	520858.459	4111821.221	809.8195072	520858.571	4111822.209	809.75	0.112	0.988	-0.070	1	0.012544	0.976144	0.004831258		
1203	520861.425	4111824.007	809.7709578	520861.561	4111824.979	809.673	0.136	0.972	-0.098	1	0.018496	0.944783999	0.009595729		
1205	520872.248	4111834.156	809.665503	520872.435	4111835.152	809.435	0.187	0.996	-0.231	1	0.034969	0.992016	0.053131648		
1206	520879.546	4111840.551	809.5476693	520879.716	4111841.545	809.432	0.17	0.994	-0.116	1	0.0289	0.988036	0.013379384		
1207	520887.023	4111846.863	809.205274	520887.193	4111847.856	809.239	0.17	0.993	0.034	1	0.0289	0.986049	0.001137445		
1208	520894.312	4111852.604	809.2107182	520894.47	4111853.617	809.177	0.158	1.013	-0.034	1	0.024964	1.026169001	0.001136916		
1209	520899.341	4111855.269	809.2737115	520899.644	4111856.282	809.01	0.303	1.013	-0.264	1	0.091809	1.026169001	0.069543774		
1210	520901.282	4111858.488	809.1741693	520901.426	4111859.515	809.15	0.144	1.027	-0.024	0	0	0	0	Tranf. Afin	
1212	520908.565	4111864.251	808.9559113	520908.743	4111865.3	809.027	0.178	1.049	0.071	1	0.031684	1.100400999	0.005053605		
1213	520916.699	4111870.037	809.602491	520916.928	4111870.98	809.22	0.229	0.943	-0.382	0	0	0	0		
							0.1558	0.9912	-0.035	31	0.794946	30.463882	0.310171055	RMSxy	1.004166
														RMSz	0.1000276

Tabla 3.2. Cálculo del RMSxy y RMSz

3.3. Proyecto 3

Los tres puntos escogidos para el tercer proyecto se encuentran situados todo ellos en la parte inferior del talud, y se corresponden con la numeración 1.198, 1.205 y 1.213. Su ubicación en el talud se puede ver en la figura 3.3 en color rojo.

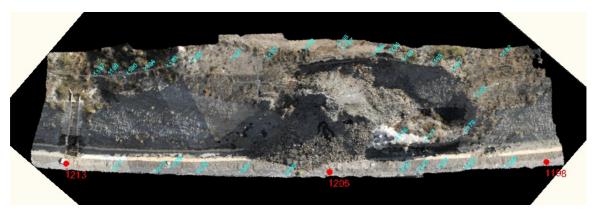


Fig. 3.3. Puntos utilizados para la orientación externa del proyecto 3

Se obtuvo un MDS por triangulación de 291.145 triángulos procedentes de los 158.762 puntos de la nube.

En la tabla 3.3 se observan los resultados obtenidos del cálculo del RMSxy y el RMSz.

	Coorder	nadas obse	rvadas	Coord	denadas rea	les									
ID	x	у	Z	x	у	Z	Ex	Ey	Ez	N	Ex2	Ey2	Ez2		
1176	520866.214	4111819.139	812.6729686	520866.42	4111820.034	812.862	0.206	0.895	0.189	1	0.042436	0.801025	0.035732881		
1177	520861.547	4111815.319	812.7843744	520861.81	4111816.206	812.963	0.263	0.887	0.179	1	0.069169	0.786768999	0.031907102		
1178	520856.243	4111808.007	812.7042982	520856.499	4111808.894	813.147	0.256	0.887	0.443	1	0.065536	0.786768999	0.195984902		
1180	520859.062	4111801.212	816.2897314	520859.393	4111801.976	816.9	0.331	0.764	0.610	1	0.109561	0.583696	0.372427704		
1181	520866.56	4111800.157	819.043864	520866.919	4111800.839	820.078	0.359	0.682	1.034	1	0.128881	0.465124	1.069437276		
1182	520860.442	4111790.981	817.0952721	520860.859	4111791.698	817.933	0.417	0.717	0.838	1	0.173889	0.514089	0.701788103		
1183	520870.7	4111802.23	821.3964221	520871.207	4111802.793	822.406	0.507	0.563	1.010	1	0.257049	0.316969	1.019247574		
1184	520875.973	4111805.544	822.1667148	520876.497	4111806.101	823.257	0.524	0.557	1.090	1	0.274576	0.310249	1.188721754		
1185	520879.154	4111806.47	822.5342231	520879.726	4111807.001	823.857	0.572	0.531	1.323	1	0.327184	0.281961	1.74973862		
1186	520881.59	4111808.984	823,105931	520882.146	4111809.51	824.301	0.556	0.526	1.195	1	0.309136	0.276676	1.428189937		
1187	520887.313	4111812.218	823.9626582	520887.899	4111812.738	825.151	0.586	0.52	1.188	1	0.343396	0.2704	1.412156203		
1188	520888.226	4111812.882	824.2161842	520888.856	4111813.392	825.279	0.63	0.51	1.063	1	0.3969	0.2601	1.129577461		
1189	520893.823	4111817.918	823.7368553	520894.441	4111818.466	825.03	0.618	0.548	1.293	1	0.381924	0.300304	1.672223172		
1190	520898.903	4111824.84	823.1106134	520899.519	4111825.394	824.664	0.616	0.554	1.553	1	0.379456	0.306916	2.413009848		
1191	520904.267	4111829.853	823.542864	520904.912	4111830.41	824.829	0.645	0.557	1.286	1	0.416025	0.310249	1.654145739		
192	520910.548	4111835.998	823.5372541	520911.196	4111836.553	824.934	0.648	0.555	1.397	1	0.419904	0.308025	1.950899218		
1193	520913.853	4111840.08	821.6433555	520914.435	4111840.689	823.306	0.582	0.609	1.663	1	0.338724	0.370881	2.764386757		
1194	520917.17	4111843.79	820.1953939	520917.686	4111844.434	821.719	0.516	0.644	1.524	1	0.266256	0.414736	2.321375697		
1195	520919.561	4111847.015	818.7455327	520920.045	4111847.708	820.017	0.484	0.693	1.271	1	0.234256	0.480249	1.616629049		
1196	520922.701	4111849.455	816.8814071	520923.127	4111850.254	818.306	0.426	0.799	1.425	1	0.181476	0.638401	2.029465019		
1197	520924.784	4111851.507	815.4763733	520925.146	4111852.299	816.928	0.362	0.792	1.452	1	0.131044	0.627264	2.107220093		
1198	520837.912	4111801.856	809.8730058	520838.079	4111802.849	809.874	0.167	0.993	0.001	0	0	0	0	Tranf. Afin	
199	520844.309	4111808.196	809.853335	520844.482	4111809.177	809.767	0.173	0.981	-0.086	1	0.029929	0.962361	0.007453733		
200	520850.919	4111814.331	809.7001604	520851.037	4111815.277	809.708	0.118	0.946	0.008	1	0.013924	0.894916	6.14588E-05		
201	520855.251	4111817.983	809.8324738	520855.391	4111818.951	809.782	0.14	0.968	-0.050	1	0.0196	0.937024	0.0025476		
202	520858.459	4111821.231	809.8018929	520858.571	4111822.209	809.75	0.112	0.978	-0.052	1	0.012544	0.956483999	0.002692868		
203	520861.441	4111824.025	809.7216801	520861.561	4111824.979	809.673	0.12	0.954	-0.049	1	0.0144	0.910116	0.00236975		
205	520872.268	4111834.175	809.5383483	520872.435	4111835.152	809.435	0.167	0.977	-0.103	0	0	0		Tranf. Afin	
206	520879.592	4111840.566	809.4239356	520879.716	4111841.545	809.432	0.124	0.979	0.008	1	0.015376	0.958441	6.50351E-05		
207	520887.072	4111846.865	809.0180739	520887.193	4111847.856	809.239	0.121	0.991	0.221	1	0.014641	0.982081	0.048808347		
208	520894.357	4111852.599	808.9311098	520894.47	4111853.617	809.177	0.113	1.018	0.246	1	0.012769	1.036324	0.06046201		
209	520899,439	4111855.255	808.8846694	520899.644	4111856.282	809.01	0.205	1.027	0.125	1	0.042025	1.054729	0.015707755		
1210	520901.34	4111858.492	808.8495874	520901.426	4111859.515	809.15	0.086	1.023	0.300	1	0.007396	1.046529	0.090247759		
1212	520908.624	4111864.237	808.5862168	520908.743	4111865.3	809.027	0.119	1.063	0.441	1	0.014161	1.129968999	0.194289819		
1213	520916.793	4111869,962	809.0644064	520916.928	4111870.98	809.22	0.135	1.018	0.156	0	0	0	0	Tranf. Afin	
							0.34297	0.792	0.691	32	5.443543	20.279826	29.28897025	RMSxy	0.8965798
														RMSz	0.9567028

Tabla 3.3 Cálculo del RMSxy y RMSz

3.4. Proyecto 4

Los tres puntos escogidos para este proyecto, al contrario que el anterior, se encuentran situados todos ellos en la parte superior del talud y se corresponden con la numeración 1.182, 1.189 y 1.197. Su ubicación en el talud se puede ver en la figura 3.4 en color rojo.

Fig. 3.4. Puntos utilizados para la orientación externa del proyecto 4

Se obtuvo un MDS por triangulación de 257.756 triángulos procedentes de los 139.313 puntos de la nube.

En la tabla 3.4 se observan los resultados obtenidos de cálculos del RMSxy y el RMSz

	Coorder	nadas obse	rvadas	Coor	denadas re	ales									
ID	x	У	Z	x	у	Z	Ex	Ey	Ez	N	Ex2	Ey2	Ez2		
1176	520866.294	4111819.064	813.0089765	520866.42	4111820.034	812.862	0.126	0.97	-0.147	1	0.015876	0.9409	0.021602078		
1177	520861.638	4111815.224	813.0314455	520861.81	4111816.206	812.963	0.172	0.982	-0.068	1	0.029584	0.964324	0.004684787		
1178	520856.313	4111807.916	813.1191531	520856.499	4111808.894	813.147	0.186	0.978	0.028	1	0.034596	0.956483999	0.00077545		
1180	520859.244	4111801.015	816.9451636	520859.393	4111801.976	816.9	0.149	0.961	-0.045	1	0.022201	0.923520999	0.002039747		
1181	520866.833	4111799.857	820.0304466	520866.919	4111800.839	820.078	0.086	0.982	0.048	1	0.007396	0.964324001	0.002261323		
1182	520860.661	4111790.732	818.0739781	520860.859	4111791.698	817.933	0.198	0.966	-0.141	0	0	0	0	Tranf. Afin	
1183	520871.059	4111801.853	822.3575275	520871.207	4111802.793	822.406	0.148	0.94	0.048	1	0.021904	0.8836	0.002349587		
1184	520876.361	4111805.159	823.2359647	520876.497	4111806.101	823.257	0.136	0.942	0.021	1	0.018496	0.887364	0.000442485		
1185	520879.564	4111806.052	823.8189811	520879.726	4111807.001	823.857	0.162	0.949	0.038	1	0.026244	0.900601	0.001445434		
1186	520882.012	4111808.56	824.2762804	520882.146	4111809.51	824.301	0.134	0.95	0.025	1	0.017956	0.902499999	0.000611058		
1187	520887.778	4111811.772	825.1303378	520887.899	4111812.738	825.151	0.121	0.966	0.021	1	0.014641	0.933156	0.000426925		
1188	520888.696	4111812.432	825.3866098	520888.856	4111813.392	825.279	0.16	0.96	-0.108	1	0.0256	0.9216	0.011579879		
1189	520894.296	4111817.463	824.9958833	520894.441	4111818.466	825.03	0.145	1.003	0.034	0	0	0		Tranf. Afin	
1190	520899.386	4111824.406	824.5605389	520899.519	4111825.394	824.664	0.133	0.988	0.103	1	0.017689	0.976144	0.010704202		
1191	520904.753	4111829.409	824.7530373	520904.912	4111830.41	824.829	0.159	1.001	0.076	1	0.025281	1.002001	0.00577033		
1192	520911.042	4111835.574	824.8483022	520911.196	4111836.553	824.934	0.154	0.979	0.086	1	0.023716	0.958441	0.007344119		
1193	520914.321	4111839.687	823.0290064	520914.435	4111840.689	823.306	0.114	1.002	0.277	1	0.012996	1.004004	0.076725464		
1194	520917.593	4111843.451	821.5417482	520917.686	4111844.434	821.719	0.093	0.983	0.177	1	0.008649	0.966289	0.03141821		
1195	520919.939	4111846.719	819.7327066	520920.045	4111847.708	820.017	0.106	0.989	0.284	1	0.011236	0.978121	0.08082273		
1196	520923.032	4111849.21	818.1440393	520923.127	4111850.254	818.306	0.095	1.044	0.162	1	0.009025	1.089936	0.026231254		
1197	520925.08	4111851.302	816.6660333	520925.146	4111852.299	816.928	0.066	0.997	0.262	0	0	0	0	Tranf. Afin	
1198	520837.844	4111801.88	809.9612135	520838.079	4111802.849	809.874	0.235	0.969	-0.087	1	0.055225	0.938961	0.00760619		
1199	520844.287	4111808.229	809.8735395	520844.482	4111809.177	809.767	0.195	0.948	-0.107	1	0.038025	0.898704001	0.011350656		
1200	520850.87	4111814.346	809.7244243	520851.037	4111815.277	809.708	0.167	0.931	-0.016	1	0.027889	0.866761	0.000269758		
1201	520855.22	4111818.005	809.8449393	520855.391	4111818.951	809.782	0.171	0.946	-0.063	1	0.029241	0.894916	0.003961354		
1202	520858.455	4111821.267	809.8535044	520858.571	4111822.209	809.75	0.116	0.942	-0.104	1	0.013456	0.887364	0.01071317		
1203	520861.426	4111824.059	809.7875957	520861.561	4111824.979	809.673	0.135	0.92	-0.115	1	0.018225	0.8464	0.013132169		
1205	520872.275	4111834.215	809.6177496	520872.435	4111835.152	809.435	0.16	0.937	-0.183	1	0.0256	0.877969	0.033397424		
1206	520879.589	4111840.599	809.5163842	520879.716	4111841.545	809.432	0.127	0.946	-0.084	1	0.016129	0.894916	0.007120688		
1207	520887.085	4111846.908	809.1702636	520887.193	4111847.856	809.239	0.108	0.948	0.069	1	0.011664	0.898704001	0.004724688		
1208	520894.383	4111852.648	809.1438778	520894.47	4111853.617	809.177	0.087	0.969	0.033	1	0.007569	0.938961	0.00109708		
1209	520899.44	4111855.342	809.1859087	520899.644	4111856.282	809.01	0.204	0.94	-0.176	1	0.041616	0.8836	0.030943879		
1210	520901.372	4111858.524	809.0625491	520901.426	4111859.515	809.15	0.054	0.991	0.087	1	0.002916	0.982081	0.007647661		
1212	520908.685	4111864.285	808.8156865	520908.743	4111865.3	809.027	0.058	1.015	0.211	1	0.003364	1.030224999	0.044653376		
1213	520916.804	4111870.088	809.457686	520916.928	4111870.98	809.22	0.124	0.892	-0.238	0	0	0	0		
							0.13669	0.9665	0.0117	31	0.634005	28.992872	0.463853156	RMSxy	0.977602
														RMSz	0.1223234

Tabla 3.4. Cálculo del RMSxy y RMSz

3.5. Proyecto 5

Para este proyecto se han escogidos los tres puntos que se consideran más desfavorables, es decir, se encuentran en la base del talud y son consecutivos. Se corresponden con la numeración 1.198, 1.199 y 1.200. Su ubicación en el talud se puede ver en la figura 3.5 en color rojo.

Fig. 3.5. Puntos utilizados para la orientación externa del proyecto 5

Se obtuvo un MDS por triangulación de 313.056 triángulos procedentes de los 157.615 puntos de la nube.

En la tabla 3.5 se observan los resultados obtenidos de cálculos del RMSxy y el RMSz

	Coorder	nadas obse	ervadas	Coorde	nadas real	es									
ID	X	у	Z	X	у	Z	Ex	Ey	Ez	N	Ex2	Ey2	Ez2		
1176	520866.462	4111818.787	813.5467148	520866.42	4111820.034	812.86	-0.042	1.247	-0.685	1	0.001764	1.555009	0.468834365		
1177	520861.808	4111814.951	813.5804539	520861.81	4111816.206	812.96	0.002	1.255	-0.617	1	4E-06	1.575025	0.381249279		
1178	520856.511	4111807.657	813.9220459	520856.499	4111808.894	813.15	-0.012	1.237	-0.775	1	0.000144	1.530168999	0.600696153		
1180	520859.621	4111800.522	818.297561	520859.393	4111801.976	816.9	-0.228	1.454	-1.398	1	0.051984	2.114116	1.953176674		
1181	520867.367	4111799.157	822.3030777	520866.919	4111800.839	820.08	-0.448	1.682	-2.225	1	0.200704	2.829124	4.950970785		
1182	520861.055	4111790.246	820.1930976	520860.859	4111791.698	817.93	-0.196	1.452	-2.260	1	0.038416	2.108304	5.108040967		
1183	520871.719	4111800.988	824.5259751	520871.207	4111802.793	822.41	-0.512	1.805	-2.120	1	0.262144	3.258025001	4.494294606		
1184	520877.061	4111804.219	825.8753052	520876.497	4111806.101	823.26	-0.564	1.882	-2.618	1	0.318096	3.541923999	6.855521861		
1185	520880.299	4111805.065	827.1876608	520879.726	4111807.001	823.86	-0.573	1.936	-3.331	1	0.328329	3.748096001	11.09330158		
1186	520882.773	4111807.533	827.3793616	520882.146	4111809.51	824.3	-0.627	1.977	-3.078	1	0.393129	3.908529	9.476310189		
1187	520888.573	4111810.676	827.5752774	520887.899	4111812.738	825.15	-0.674	2.062	-2.424	1	0.454276	4.251844	5.877121111		
1188	520889.491	4111811.33	827.8234342	520888.856	4111813.392	825.28	-0.635	2.062	-2.544	1	0.403225	4.251844	6.474145591		
1189	520895.075	4111816.352	827.457513	520894.441	4111818.466	825.03	-0.634	2.114	-2.428	1	0.401956	4.468996	5.892819164		
1190	520900.149	4111823.283	826.8992405	520899.519	4111825.394	824.66	-0.63	2.111	-2.235	1	0.3969	4.456321	4.996300118		
1191	520905.525	4111828.264	827.1331685	520904.912	4111830.41	824.83	-0.613	2.146	-2.304	1	0.375769	4.605316001	5.309192541		
1192	520911.817	4111834.37	827.2124671	520911.196	4111836.553	824.93	-0.621	2.183	-2.278	1	0.385641	4.765488999	5.191412456		
1193	520915.009	4111838.569	825.2439425	520914.435	4111840.689	823.31	-0.574	2.12	-1.938	1	0.329476	4.494399998	3.755620959		
1194	520918,185	4111842.436	823.820732	520917.686	4111844,434	821.72	-0.499	1,998	-2.102	1	0.249001	3,992003999	4.4172776		
1195	520920.436	4111845.8	821.8112735	520920.045	4111847.708	820.02	-0.391	1.908	-1.794	1	0.152881	3.640464001	3.219417287		
1196	520923.417	4111848.416	819.7612608	520923.127	4111850.254	818.31	-0.29	1.838	-1.455	1	0.0841	3.378244	2.117783941		
1197	520925.383	4111850.569	818.5847065	520925.146	4111852,299	816.93	-0.237	1.73	-1.657	1	0.056169	2.9929	2.744676384		
1198	520837.921	4111801.864	809.9839777	520838,079	4111802.849	809.87	0.158	0.985	-0.110	0	0	0	0	Tranf. Afin	
1199	520844.328	4111808,166	809.7775271	520844,482	4111809,177	809,77	0.154	1.011	-0.011	0	0	0	0	Tranf. Afin	
1200	520850,909	4111814.304	809.6769031	520851,037	4111815,277	809.71	0.128	0.973	0.031	0	0	0	0	Tranf. Afin	
1201	520855,286	4111817,884	809.7890674	520855.391	4111818.951	809.78	0.105	1.067	-0.007	1	0.011025	1.138489	4.99485E-05		
202	520858.469		809.7439797	520858.571	4111822.209	809.75	0.102	1.036	0.006	1	0.010404	1.073296	3.62438E-05		
1203	520861,434	4111823.955	809.6742077	520861,561	4111824.979	809,67	0.127	1.024	-0.001	1	0.016129	1.048575999	1.45842E-06		
1205	520872.266	4111834.087	809.4738535	520872.435	4111835.152	809.44	0.169	1.065	-0.039	1	0.028561	1.134225	0.001509598		
1206	520879.582		809.3772503	520879.716	4111841.545	809.43	0.134	1.092	0.055	1	0.017956	1.192463999	0.002997529		
1207	520887.06	4111846.731	809.0370193	520887.193	4111847.856	809.24	0.133	1.125	0.202	1	0.017689	1.265625	0.040796186		
1208	520894.348		809.0488227	520894.47	4111853,617	809.18	0.122	1,162	0.128	1	0.014884	1.350244	0.016429414		
209	520899.391	4111855.126	809.1154088	520899,644	4111856,282	809.01	0.253	1,156	-0.105	1	0.064009	1.336336	0.011111021		
1210	520901.322	4111858.323	809.0106106	520901.426	4111859,515	809,15	0.104	1,192	0.139	1	0.010816	1.420864001	0.019429409		
1212	520908.624	4111864.041	808.8134881	520908.743	4111865.3	809.03	0.119	1.259	0.214	1	0.014161	1.585080999	0.045587328		
1213	520916.732	4111869.828	809.5033577	520916.928	4111870.98	809.22	0.196	1,152	-0.283	Ö	0.011101	0	0.010001020		
							-0.1998	1,52851	-1.2014	31	5.089742	84.01134299	95.51611175	DMSvv	1.695355
-							0.1000	02031	1.2014	01	3.000142	54.01154233	30.01011113		1.7553247
														RMSz	1./553

Tabla 3.5. Cálculo del RMSxy y RMSz

3.6. Proyecto 6

Los tres puntos escogidos para último proyecto se encuentran situados dos de ellos en la parte inferior del talud y uno en la parte superior, que se corresponden con la numeración 1.182, 1.198 y 1.213. Su ubicación en el talud se puede ver en la figura 3.6 en color rojo.

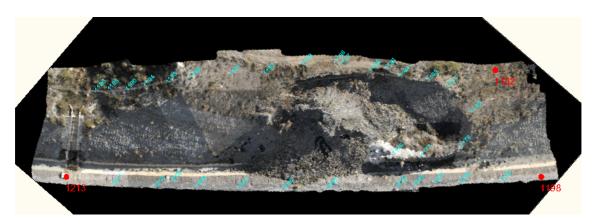


Fig. 3.1.6. Puntos utilizados para la orientación externa del proyecto 6

Se obtuvo un MDS por triangulación de 305.057 triángulos procedentes de los 153.622 puntos de la nube.

En la tabla 3.6 se observan los resultados obtenidos de los cálculos del RMSxy y el RMSz.

	Coorder	nadas obse	rvadas	Coord	denadas rea	les									
ID	x	у	Z	x	у	Z	Ex	Ey	Ez	N	Ex2	Ey2	Ez2		
1176	520866.274	4111819.039	812.9141235	520866.42	4111820.034	812.862	0.146	0.995	-0.052	1	0.021316	0.990025	0.002716856		
1177	520861.621	4111815,194	812.9785123	520861.81	4111816.206	812.963	0.189	1.012	-0.016	1	0.035721	1.024143999	0.000240633		
1178	520856,317	4111807.896	813,1179694	520856,499	4111808.894	813,147	0.182	0.998	0.029	1	0.033124	0.996003999	0.000842778		
1180	520859.238	4111800.997	816.8773679	520859.393	4111801.976	816.9	0.155	0.979	0.023	1	0.024025	0.958441	0.00051221		
1181	520866.811	4111799,846	819.9740508	520866,919	4111800.839	820.078	0.108	0.993	0.104	1	0.011664	0.986049	0.010805433		
1182	520860.662	4111790.747	818.0060788	520860.859	4111791.698	817.933	0.197	0.951	-0.073	0	0	0	0	Tranf. Afin	
1183	520871.03	4111801.833	822.3417142	520871.207	4111802.793	822.406	0.177	0.96	0.064	1	0.031329	0.9216	0.004132663		
1184	520876.311	4111805.125	823.1672645	520876.497	4111806.101	823.257	0.186	0.976	0.090	1	0.034596	0.952576	0.008052462		
1185	520879.515	4111806.018	823.764519	520879.726	4111807.001	823.857	0.211	0.983	0.092	1	0.044521	0.966289	0.00855273		
1186	520881.955	4111808.526	824.2031094	520882.146	4111809.51	824,301	0.191	0.984	0.098	1	0.036481	0.968255999	0.009582573		
1187	520887.699	4111811.731	825.0368799	520887.899	4111812.738	825,151	0.2	1.007	0.114	1	0.04	1.014048999	0.013023399		
1188	520888.613	4111812.39	825.2411769	520888.856	4111813.392	825.279	0.243	1.002	0.038	1	0.059049	1.004004	0.00143059		
1189	520894.2	4111817.421	824.873595	520894.441	4111818.466	825.03	0.241	1.045	0.156	1	0.058081	1.092025	0.024462514		
1190	520899.269	4111824.349	824.414248	520899.519	4111825.394	824.664	0.25	1.045	0.250	1	0.0625	1.092025	0.062376037		
1191	520904.63	4111829.359	824.5896335	520904.912	4111830.41	824.829	0.282	1.051	0.239	1	0.079524	1.104601	0.05729631		
1192	520910.892	4111835.511	824.6451521	520911.196	4111836.553	824.934	0.304	1.042	0.289	1	0.092416	1.085764	0.083433114		
193	520914.175	4111839.621	822.8521766	520914.435	4111840.689	823,306	0.26	1.068	0.454	1	0.0676	1.140624	0.205955637		
1194	520917.447	4111843.38	821.3293456	520917.686	4111844.434	821.719	0.239	1.054	0.390	1	0.057121	1.110916	0.151830514		
1195	520919.785	4111846.645	819.6067881	520920.045	4111847.708	820.017	0.26	1.063	0.410	1	0.0676	1.129969	0.168273779		
1196	520922.874	4111849.168	817.7699195	520923.127	4111850.254	818.306	0.253	1.086	0.536	1	0.064009	1.179396	0.287382302		
1197	520924.927	4111851,225	816.3694994	520925.146	4111852.299	816,928	0.219	1.074	0.559	1	0.047961	1.153476	0.311922945		
1198	520837.913	4111801.863	809.94303	520838.079	4111802.849	809.874	0.166	0.986	-0.069	0	0	0	0	Tranf. Afin	
1199	520844.323	4111808.181	809.8025744	520844.482	4111809.177	809.767	0.159	0.996	-0.036	1	0.025281	0.992016001	0.001265536		
200	520850.892	4111814.334	809.7039837	520851.037	4111815.277	809.708	0.145	0.943	0.004	1	0.021025	0.889249	1.61304E-05		
1201	520855.245	4111817.942	809.791258	520855.391	4111818.951	809.782	0.146	1.009	-0.009	1	0.021316	1.018081	8.57112E-05		
202	520858.441	4111821.228	809.7593337	520858.571	4111822.209	809.75	0.13	0.981	-0.009	1	0.0169	0.962360999	8.71183E-05		
203	520861.409	4111824.017	809.6695115	520861.561	4111824.979	809.673	0.152	0.962	0.003	1	0.023104	0.925444	1.21698E-05		
205	520872.236	4111834.181	809.4804113	520872.435	4111835.152	809.435	0.199	0.971	-0.045	1	0.039601	0.942841	0.002062187		
206	520879.545	4111840.547	809.3448706	520879.716	4111841.545	809.432	0.171	0.998	0.087	1	0.029241	0.996004	0.007591528		
207	520887.011	4111846.849	808.9723169	520887.193	4111847.856	809.239	0.182	1.007	0.267	1	0.033124	1.014049	0.071119862		
208	520894.293	4111852.581	808.9104882	520894.47	4111853.617	809.177	0.177	1.036	0.267	1	0.031329	1.073296001	0.07102852		
209	520899.381	4111855.245	808.8607765	520899.644	4111856.282	809.01	0.263	1.037	0.149	1	0.069169	1.075369	0.022267661		
1210	520901.263	4111858.476	808.8245722	520901.426	4111859.515	809.15	0.163	1.039	0.325	1	0.026569	1.079521001	0.105903273		
1212	520908.562	4111864.201	808.5564989	520908.743	4111865.3	809.027	0.181	1.099	0.471	1	0.032761	1.207801	0.221371249		
1213	520916.665	4111869,994	809.1228103	520916.928	4111870.98	809.22	0.263	0.986	0.097	0	0	0	0	Tranf. Afin	
							0.1997	1.01194	0.1513	32	1.338058	33.046265	1.915636424	RMSxy	1.0365858
							-							RMSz	0.2446705

Tabla 3.6. Cálculo del RMSxy y RMSz

4. DISCUSIÓN

En general, viendo la gráfica de la figura 4.1. y los valores de la tabla 4.1, se aprecia que los RMSxy son prácticamente iguales en los seis proyectos excepto el P5, mientras que los RMSz son parecidos entre P1, P2 y P4, siendo algo mayor en P6 y disparándose el valor para P3 y P5. Además, se observa que existen dos comportamientos perfectamente diferenciados de los errores. Por un lado se encuentran los proyectos P3 y P5 que se caracterizan por tener valores de RMSz muy elevados y cercanos al RMSxy y, por otro lado, se encuentran los proyectos P1,P2,P4 y P6, cuya diferencia entre los dos errores es bastante elevada, siendo RMSxy mayor que el RMSz. También se aprecia en dicha gráfica que el proyecto que peor comportamiento ha tenido, y por tanto, tiene el RMSxy y el RMSz mayor, es como cabía esperar el P5, pues en este proyecto se han escogido los tres puntos de apoyo que se consideraron más desfavorables, los tres en la base del talud, en una esquina y consecutivos.

Como se ha comentado anteriormente, el comportamiento del error del proyecto P5 se asemeja al de P3. En ambos proyectos los puntos de apoyo se encuentran en la base de talud, por lo que las diferencias de cotas entre los puntos son mínimas, al encontrarse la base de talud prácticamente a la misma cota, por ello el RMSz es tan elevado con respecto a los de los otros proyectos. El hecho de que el RMSz sea mayor en P5 que en P3 se debe a que en P5 los puntos son consecutivos mientras que en P3 se encuentran lo más separados posibles, esta mayor distancia entre puntos se traduce en una mayor diferencia de cotas entre los puntos de apoyo de P3 (0.654) y los de P5 (0.166) debido a la pequeña pendiente que posee la base del talud, lo que provoca que el RMSz en P3 sea menor que en P5. En cuanto al RMSxy del P5, se observa que su valor, de 1.695, es mucho más elevado que el resto de los valores obtenidos para los diferentes proyectos que se encuentran todos entre los valores 0.897 y 1.037, esto es debido a la poca distancia que existe entre los puntos de apoyo en el plano xy, al estar concentrados los tres puntos al principio del talud. El hecho de que el RMSz en P3 y P5 sea del mismo orden pero un poco más elevado que el RMSxy podría no ser más que una coincidencia en el caso de P3, pues el valor del RMSxy en este se asemeja a los demás valores obtenidos en los demás proyectos, siendo el RMSz el que se sale del rango por las razones dadas en el anterior aparatado.

El menor valor de RMSxy se encuentra en P3, pues sus puntos de apoyo son los más separados en el plano xy, sin embargo el RMSz es muy elevado al no tener apenas diferencia de cota entre sus puntos como ya se ha dicho en el párrafo anterior.

El proyecto P1, en el que se eligen tres puntos distribuidos por el talud, 2 arriba y 1 abajo, es el que da un mejor resultado pues el RMSz dado es el más bajo de todos los valores y aunque el RMSxy no llega a ser tan bajo como el de P3, se asemeja bastante.

El proyecto P2, en donde los puntos de apoyo se han invertido respecto a P1, es decir, tiene los puntos distribuidos por el talud uno arriba y dos abajo, arroja unos valores semejantes a los de P1, aunque el RMSz es algo mayor. Esta diferenciada podría ser debida a que en el P2 los dos puntos situados

abajo del talud están a la misma cota, mientras que solo uno se encuentra en la parte superior, lo que daría resultados algo peores.

En el proyecto P4 se situaron los tres puntos en la coronación del talud lo más separados posibles entre sí en el plano xy, es por ello que arroja un valor de RMSxy menor que P1 y P2. El valor de RMSz, aunque peor que los obtenidos en P1 y P2, da también un buen resultado debido a que al estar la coronación del talud a distintas cotas, los puntos de apoyo proporcionan diferentes valores de la cota z.

Por último, el proyecto P6 que es análogo al P2 pero con el punto de la coronación del talud en un extremo en vez de centrado, arroja un valor de RMSx semejante al de P2 aunque un poco mayor. Sin embargo, el valor del RMSz es el doble que el de P2. Quizá este aumento del RMSz se vea desvirtuado por el hecho de que el punto escogido en la coronación del talud se identificaba por un mojón y no por una diana.

Todos los valores numéricos dados en este aparatado se muestran en la tabla 4.1.

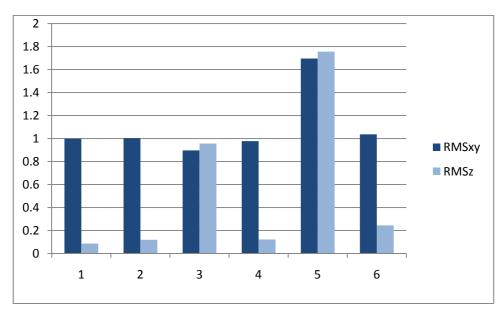


Fig. 4.1. Gráfico comparativo del RMSxy y RMSz

	P1	P2	Р3	P4	P5	P6
RMSxy	0.998999031	1.0031282	0.89657977	0.97760202	1.69535499	1.03658579
RMSz	0.086621119	0.11943492	0.95670284	0.12232336	1.75532473	0.24467047
Dif. Max. cotas	12.971		0.654	8.102	0.166	8.713

Tabla 4.1 RMSxy y RMSz obtenidos

5. CONCLUSIONES

Se puede concluir que si los puntos de apoyo se distribuyen adecuadamente con la mayor distancia posible entre ellos en xy se va obtener una media del RMSxy de 0.983, siguiendo el método empleado en esta investigación. Además, para obtener un valor adecuado del RMSz, es necesario que al menos un punto de apoyo tenga una cota claramente diferenciada de los otros dos. Quizá una posible vía de investigación sería establecer cuál es el umbral de dicha diferencia de cota.

En el caso de un talud de carretera como el que nos ocupa, tanto si es desmonte como terraplén, es fácil establecer las coordenadas reales de al menos dos de los tres puntos de apoyo ya que se encuentran en el extremo de una carretera y, por tanto, son de fácil acceso. El tercer punto de apoyo, es el que condiciona la precisión de la cota, y por tanto debe ser tomado en algún punto de dicho talud, siendo el acceso a dicho punto más o menos difícil según el caso.

Una posible vía de investigación con el objetivo de mejorar la precisión de la geometría del talud, sería comparar el actual MDS obtenido a partir de fotografías verticales con un nuevo MDS construido a partir de fotografías ortogonales al plano medio del talud.

Por otro lado, existen en el mercado numerosos softwares de pago y gratuitos en internet para el cálculo de la estabilidad de taludes. Se suele creer que lo gratuito es malo, mientras que lo de pago da resultados de calidad. Otra vía de investigación, siempre y cuando se pudiera obtener la geometría originaría del talud antes del deslizamiento, sería comprobar esta creencia comparando el deslizamiento real ya obtenido en el MDS con el obtenido por los distintos softwares.

6. BIBLIOGRAFÍA

Autocad 2010. http://www.autodesk.es (Accesible 15-jun-2011)

Ayala Cacedo, F. J., Andreu Posse, F.J. y col., 1986. Manual de ingeniería de taludes. Instituto Geológico y Minero de España.

Carvajal Ramírez F., Agüera Vega F., Pérez Saiz, 2011. M. Geometric characterization of landslide in a road embankment using Unmanned Aerial Vehicle Photogrammetry. Proc. IMProVe International conference on Innovative Methods in Product Design, ADM – INGEGRAF, Venice.

Eisenbeis H., 2009. UAV Photogrammetry. Institut für Geodäsie und Photogrammetrie, Zürich.

GaliciaCAD. Portal de recursos CAD. http://www.galiciacad.com (Accesible 15-jun-2011)

Microdrones GmbH 2011. http://www.microdrones.com/ (Accesible 15-jun-2011)

Niethammer U., Rothmund S., James M.R., Travelletti J., Joswig M., 2010. UAV-based remote sensing of landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (5), 496-501.

Niethammer, U., Rothmund, S., Joswig, M., 2009. UAV-based remote sensing of the slow-moving landslide Super-Sauze. In: Malet, J.-P., Remaître, A., Boogard, T. (Eds) Proc. International Conference on Landslide Processes: from geomorpholgic mapping to dynamic modelling, CERG Editions, Strasbourg, pp. 69-74.

Photomodeler Scanner, 2011. http://www.photomodeler.com (Accesible 15-jun-2011)

Red andaluza de posicionamiento (RAP). http://www.juntadeandalucia.es/obraspublicasytransportes/redandaluzadeposici onamiento/rap/ (Accesible 15-jun-2011)

Surfer 8. http://www.ssg-surfer.com/ (Accesible 15-jun-2011)

Trimble, 2011. http://www.trimble.com/ (Accesible 15-jun-2011)

Walter, M., Niethammer, U., Rothmund, S., Joswig, M., 2009. Joint analysis of the Super-Sauze (French Alps) mudslide by nanoseismic monitoring and UAV-based remote sensing. EAGE 27(8), 75-82.

Wolf P.R., 1983. Elements of photogrammetry. Mc. Graw Hill.

MASTER OFICIAL INTERUNIVERSITARIO

REPRESENTACIÓN Y DISEÑO EN INGENIERÍA Y ARQUITECTURA

RESUMEN

El objetivo de este trabajo fin de máster fue el análisis de la precisión obtenida en la caracterización del deslizamiento de un talud situado en una autovía de doble calzada, tomando diferentes combinaciones de puntos de control, medidos sobre el terreno con un GPS, para su georreferenciación, con la intención de caracterizar y cuantificar dicho error en función de la localización de los tres puntos de apoyo elegidos

Como datos de partida se emplean las fotografías realizadas por un vehículo aéreo no tripulado e introducías en el software Photommodeler Scanner 2011 y 35 puntos de control medidos sobre el terreno con GPS. El método de orientación relativa elegido para la georreferenciación del proyecto fotogramétrico fue la transformación afín de 3 puntos de apoyo. Para probar la incidencia de la distribución estos tres puntos de apoyo en la calidad final del producto, se han realizado 6 proyecto fotogramétricos, en cada uno de los cuales se han seleccionado 3 de los 35 puntos de control y posteriormente se ha medido el error medio cuadrático RMS cometido entre los puntos de control de coordenadas conocidas y los obtenidos en el MDS.

Se puede concluir que si los puntos de apoyo se distribuyen adecuadamente con la mayor distancia posible entre ellos en el plano xy, se va obtener una precisión adecuada de dichas coordenadas. Además para obtener un valor adecuado del RMSz, es necesario que al menos un punto de apoyo tenga una cota claramente diferenciada de los otros dos. Esta precisión en z se puede mejorar si los tres puntos poseen diferentes cotas

UNIVERSIDAD DE ALMERÍA

