Dynamic Mashup Interfaces for Information
Systems using Widgets-as-a-Service

Jesus Vallecillos, Javier Criado, Luis Iribarne, and Nicolds Padilla

Applied Computing Group, University of Almeria, Spain
{jesus.vallecillos, javi.criado, luis.iribarne,npadilla}@ual.es

Abstract. Web Information Systems intend to adapt to the users’ pref-
erences as new data available on the network. In this regard, the com-
position and reuse of services which are involved in a web application is
an interesting research topic, since these techniques pursue the dynamic
construction of applications that can be adapted at design or run time.
As for the visualization of these applications, web user interfaces play a
key role, serving as a connection point between users and the rest of the
system. This article proposes an architecture for specification, storage,
management and visualization of components, built from widgets com-
plying with the W3C recommendation, for making web user interfaces.
We follow a service-based approach for the interface deployment and
communication management, introducing the concept of Widgets-as-a-
Service (WaaS). To illustrate this proposal, an example of widget-based
Web Information System is shown.

Keywords: GUI, mashup, Widget-as-a-Service, components

1 Introduction

Web Information Systems are largely dependent on web platform, which is a
dynamic and constantly changing domain, that also relies on web services that
provide the required data. In this regard, web services are, increasingly, ele-
ments that need to be changed and updated in order to be adapted to the new
available information and also to the user profiles. Web interfaces do not get
out of this necessity and also require the service they offer as an interface to
be dynamic and adaptive to the user. With this aim, new projects and pro-
posals have come up in the last few years to build customized web interfaces
through the configuration of widgets that the user wants to visualize [8]. For
these applications, the user has one or more graphical interfaces available that
he/she can configure to create some kind of dashboards. These interfaces are
built according to graphical components of high or medium granularity (that
is, they are not simple buttons or text fields) that group together some func-
tionalities related to each other and give rise to mashup applications based on
widgets [3]. Some of the most interesting and currently supported projects are
Netvibes (http://www.netvibes.com), MyYahoo (https://my.yahoo.com) or
Ducksboard (https://ducksboard.com).



Our research work is focused on dynamic management of component-based
graphical user interfaces (GUIs). From our perspective, the representation of
this type of interfaces can be “abstracted” in order to create a definition through
fragments or pieces analogously to a bottom-up approach within the Component-
based Software Engineering (CBSE). At subsequent steps, we can manipulate
this abstract representation to adapt it to the changes according to the user’s
preferences or any other changes derived or not from the interaction and then
make again the graphical interface shown to the user (see Figure 1). This mecha-
nism allows us to work with simplified models of interfaces and later obtain new
widgets to be shown as a service dynamically embedded into the GUI (which
have been named Widgets-as-a-Service, WaaS). This research uses web technolo-
gies to facilitate exchange and sharing of information, and also to allow users to
cooperate and integrate data.

On the other hand, the components in most widgets-based GUI proposals
are isolated from each other, that is, there is no relationship or communication
between them. Those proposals that do not deal with isolated components have
the difficulty of communication, especially in the web domain, as the commu-
nication between some elements may cause some security problems that must
be taken into account and solved at design time when programming widgets
and application [4]. In this sense, our approach certainly allows relationships
and communication between widgets and it suggests an indirect communication
mechanism by means of a service that mediates between their components.

As an application scenario for the web domain, this article focuses on widget-
based web user interfaces that are being developed for the Environmental Infor-
mation Network of Andalusia (REDIAM) as a transfer of the research results
within the framework of ENIA project (http://acg.ual.es/enia), a project

widget-based GUI

component-based widget-based
representation representation

(abstraction) l T (realization)

] I ]
|:] (management)
user preferences

communication
dynamic changes

adaptation
| i f

Fig. 1. Our view of widget-based GUI



of excellence funded by Junta de Andalucia (ref. TIC-6114). This project deals
with geographic information and users should have a GUI that enables them
to access to the multiple services available. For this, each user has access to a
graphical interface that allows him/her to manage different widgets that offer
certain services such as loading layers of geographic information on a map from
OGC services (http://www.opengeospatial.org) provided by REDIAM. We
also consider these widgets as services to which users can access.

The rest of the paper is organized as follows. Section 2 revises some related
work. Section 3 describes the structure of the WaaS model for GUI, in which we
analyze the various layers of the architecture developed and the data model to
define the components. Section 4 shows a case study. Finally, Section 5 presents
the conclusions and future work.

2 Related work

Next we are going to revise some works focused on the development of mashup
web applications, architecture systems that manage user interfaces built from
components and also some works that study how to establish the communication
between components.

In [1], the authors show a system that holds fast and intuitive development of
mashup construction. This system is based on a mechanism of autocompletion
of graphical user interfaces. The authors propose a method to link the compo-
nents with each other in order to help the users to complete their workspace in
the web application. These links help users to decide which components describe
their application. Then, the user selects the components that are going to be
loaded into the user interface when the application is deployed. In contrast to
our proposal, this approach focuses on RSS components instead of W3C widgets.
Furthermore, in [7] the authors perform another approach to carry out a ranking
of components considered as interesting by the users. The purpose of this rank-
ing is to make the selection of RSS components easier. Then, the mashup web
applications are generated from these components. Both aforementioned works
perform an initial load of the components, but it is done at design time. After
that, the users can perform their tasks by using the components that have been
loaded in their workspace.

On the other hand, in [6] we can observe an architecture proposal where a
deployment of web-based components is carried out. The authors developed an
architecture to include dynamic applications through a web-based system. They
studied the architecture through layers, one of which is in charge of managing
the communication between the components and the system core. This form of
communication is similar to the one explained in this work. Unlike this work,
they did not focus on using the web standard of widgets of the W3C, but rather
on the use of Portlet [11] to build the applications.

We can find other works specialized in defining architectures for the man-
agement of widgets such as [5]. Here the authors proposed a new type of system
for widget-based digital television platforms. They focused on widgets that are



built with web technology rather than widgets that follow the web standard
of the W3C. Unlike the means of communication described here, based on a
JavaScript server, the authors used a mode of communication via AJAX to ob-
tain the information stored in XML in a server. Another platform where we can
use widget-based architectures is mobile applications. In [12] the authors defined
an architecture made up of a widget component container that manages the in-
teraction and a software platform that manages its dynamic life cycle. These
widgets operated by the architecture are specific for the mobile platform which
we are working with.

There exist other works like [13] which make adaptations of the code of the
graphical user interface according to the user’s preferences. The authors made
the GUI more dynamic by developing it according to widget components. Un-
like the widget components based on the web standard of the W3C used in this
proposal, they implemented these components by making use of Java Swing.
Moreover, they defined seven types of roles in order to improve the adapta-
tion and reloading of widgets. Depending on the type of role, there are widgets
considered as preferential to make their adaption.

3 WaaS-based Architecture

In order to offer Widgets-as-a-Service (WaaS), we needed to develop an architec-
tural system to support it. Furthermore, to isolate the proposal from the domain
and to be able to manage component-based applications for different platforms,
we built the system according to a three-layer architecture. Let us see some
features of the layers of this architecture as well as the used data model.

3.1 Architecture Layers

The client layer is the upper layer of the architecture (see Figure 2). In our
case, the client uses the services that the architecture deploys, coming from the
“platform dependent” layer. In our example domain, the client is a web applica-
tion, which means that this application has been developed under this technology
and it must be accessed through a browser. Such application is built on the ba-
sis of components that, as it is web technology, have been implemented through
widgets. The widgets in which the application has been developed, follow the rec-
ommendation of widget of the W3C. Moreover, the application is supported on
the services that the architecture deploys to obtain the functionality it requires.
By means of these services of the system architecture, the component-based web
application can be initialized, receive support for the communication between
components and give support to the components that form the application.
The platform dependent layer constitutes the intermediate layer of the
system architecture. This layer deals with providing the client with the required
services and interacting with the independent part of the platform (the bottom
level), thus getting some services from it and providing it with others. Regarding
the first services, (Figure 2-(a)) this layer gets the code necessary to create the



start-up web application and consults the path to be followed by the information
to communicate the components with each other. We achieved this by using web
services implemented in the independent part of the platform (Figure 2-(b)). On
the other hand, this layer provides the independent part of the platform with
some information about the components it manages, such as the direction of
the widgets instances which it will use to create the code defined by the web
application. In these layers, we can find not only the web client that carries
out the functions of the graphical user interface with the system, but also those
servers that have been specifically developed to use our proposal within the
domain of component-based web user interfaces (Figure 2-(c)).

On the other hand, the components managed by our architecture are black-
box components, in which their behavior is hidden and the component is rep-
resented by a specification template. This specification describes both the func-
tional part and the extra-functional part (as well as some additional information)
of components and this is the only way through which the system can make use
of them. Therefore, the only components managed by our system are those de-
fined and built according to this specification, which have also been registered
for use. In order our component specification to be valid for any type of compo-
nents of third parties, we have extended the specification based on COTS (Com-
mercial Off-The-Shelf) components [10]. Our components are called COTSgets
[9], this name comes from COTS and gadgets, being understood a gadget as
a software artifact that encapsulates a certain functionality. For further details
about the structure and content of the component specification used, please see
http://acg.ual.es/definitions/component.xsd.

Furthermore, we developed the architecture of our system by using a plat-
form independent layer. This layer has a server providing the system services
that are valid for all platforms (Figure 2-(d)). For this, its functionalities are
based only on the description of components and their relationships, regardless
of the platform where they will be deployed. It is true that, at the deployment
level, there are certain characteristics of each platform that should be taken into

~
Client
7y > client
(platform) code request code response )
dependent () send interaction y send information D
y
~
Platform Dependent Layer
A
web service request web service response > server
(platform) (b) Y (d)
independent
[ Platform Independent Layer } )

Fig. 2. WaaS-based Architecture Layers



account. For instance, the initialization of a web user interface architecture may
be different from any other component-based architecture implemented in Java,;
or the invocation of methods between components, as part of a communication
task, might be different as well. However, there is a common area, an abstract
view of such behaviors that can independently be extracted and implemented
from the platform. As regards the above examples, we referred to “component
architecture initialization” or “communication management”, respectively.

Therefore, the services offered in this layer are the same for all platforms,
hiding the distinction between different platforms and allowing our proposal to
be modular and scalable, and be able to gradually add new functionalities for new
platforms supported by the system. As this server has the core of the proposal
for the management of component-based architectures, it has been named as
COScore (COTSget-based architecture Operating Support).

3.2 Component Data Model

Although this article is based on dynamic deployment of widgets in web user
interfaces, our ultimate goal is that the system can be able to manage component-
based architectures for different platforms. Moreover, another objective is that
the components managed by the system should not be just those predefined
by the proposal developers but some external developers and third-parties can
also take part in the extension and update of repositories. For both reasons, we
developed a three-level data model as shown in Figure 3 (described as follows).

The ECR (External Component Repositories) level corresponds to the
external repositories of components, that is, the repositories of third-parties.
These components are stored in their place of origin. This level is dependent on
the platform because the components that it stores are specific for the mechanism
they are assigned to. The ECR set is formed by each of the external repositories
(ER) to be taken into account, that is, ECR = {ERy, ERs,... ,ER,}.

The next level MCR (Managed Component Repositories) has a set of
repositories of components managed by the system. This level stores the com-
ponents that meet the structure and the construction guidelines established.
It is also dependent on the platform since it is formed by modified versions
of the EC'R components so that they can be managed by our system and
by a set of components developed for the system (M Ry). Therefore, MCR =
{MRy, MRy, MR,,... , MR, }, being M R; (i > 0) a subset of ER; for which the
components have been embedded with the information and behavior required.
At the same time, each M R repository is formed by a set of components (C') and
a set of components instances (CI) created and associated to such components.
Each instance is created with a piece of information related to the user or client
for whom the component was instantiated. This information contains, among
other data, the instance identifier, the associated user and the component state.
With this information, the system will be able to provide each user with the
corresponding set of instances in the proper state.

Finally, the C'S (Component Specifications) level stores component spec-
ifications. These specifications are referenced from the models that the compo-



(CX X

component architectures

external widgets Wookie REDIAM

o
- JBoss
k3 L]
H
§
g
§
2 -
ER 0]
kel
g Posigros
oW
-
Get component
instances
nede
APACHE Wookie for non

[

Server Side

managed
component
repositories
(MCR)

Platform Dependent

ER1 ER2 ERs3 ERn
external oy
component
repositories REDIAM Netvibes Twitter Others .
(ECR) -

Fig. 3. Component Data Model for widget-based web user interfaces

nent architectures describe so as to indicate which component should be chosen
for its construction. When a developer registers one component in the system,
he/she must register not only the component in the corresponding M R reposi-
tory but its specification, too. That is the only way through which the system
can take into account this component for future architecture construction and
so that it can be embedded into a resulting component-based application. These
specifications are managed by the platform independent server.

Our proposal is oriented to the deployment of services in the cloud. Therefore,
this data model seems to be suitable for the use of cloud technologies, being
able to transfer each layer to different servers or even deploy each repository
in different servers. In this way, the components, the instances and even the
specifications will be considered from the point of view of “resource-as-a-service”
(RaaS). In this scenario, the level that is dependent on the platform corresponds
to the domain of web applications and consequently the repositories managed
by the system (M CR) store widgets. These widgets either have been specifically
developed for the system (M Ry) or built from external repositories (ECR).
In the second case, two different situations may occur: (a) that the external
repositories store widgets, in which case we should create a wrapper upon the



existing widget that can perform operations on it in order to be managed by our
system; (b) or that the external repositories store a service that is not a widget,
in which case we need to create a widget that uses the service concerned.
Figure 3 shows how the system can manage external widgets created from ser-
vices of REDIAM (http://www.juntadeandalucia.es/medioambiente/site/
rediam), Netvibes or Twitter (https://twitter.com/settings/widgets). In
this way, the system has all the elements available to be able to manage the wid-
gets as a service (Widgets-as-a-Service) and dynamically build the web GUIs.

4 Case study

In this section, we present a case study in order to test the behavior and appli-
cability of the work. This example scenario describes a web user interface that
is dynamically constructed from components by applying the proposed architec-
ture layers. The case study has been developed within a project of excellence
funded by Junta de Andalucia (ref. TIC-6114), which deals with geographic in-
formation. For this purpose, we have built a web application which allows us to
load visual layers with geographic information. These layers offer data obtained
from an example set of OGC services provided by the REDIAM.

In this case, the OGC services and the rest of operations related to the man-
agement of geographic information, are encapsulated into widgets and therefore
they are treated as Widget-as-a-Service (WaaS). By deploying these services, the
application allows users to view and query geographic information about the soil
under study within the project (see Figure 4). The application is made up of three
widgets: a map that displays the visualization area and wherein the geographic
information is loaded (Map); another widget that allows us to select which layers
of geographic information will be loaded on the map (Options); and a legend

REDIAM. Red de Espacios Naturales Protegidos de.
Andalucia (RENPA) 3 escala de detalle y semidetalle

Fig. 4. Widget-based Web User Interface



where information about the layers loaded on the map is shown (Legend). This
application is available at the address http://acg.ual.es/enia/uiexample.

Starting from this scenario, the web application behavior is defined as follows.
When a user interacts with the system and accesses to the web address, the appli-
cation is loaded into the browser. The web page that is accessed does not contain
the code for the widgets statically, but the code is constructed dynamically and
at run time. To execute this dynamic construction process, JavaScript (Node.js)
server performs the role of mediator between the application and the COScore
of the architecture. Then, the platform independent server decides which com-
ponents are going to be loaded and returns the HTML code to Node.js. This
code must be embedded in the web application, which contains the components
that define the web user interface. Next, this code is sent to the web application,
and the client is in charge of inserting the three widgets.

In the following steps, the user interacts with the widgets, and this inter-
action may involve either exchanging information between these components or
notifying the system. In this communication process, the Node.js acts again as a
mediator. This server receives the client interactions and invokes the web service
of the platform independent layer that is in charge of solving the communica-
tion process. Then, within this service, the COScore server resolves the message
content and the target widgets and sends the response to the JavaScript server.
Finally, the Node.js server sends the message to the corresponding widgets of
the user interface. As an example of communication, let us suppose that the user
selects a layer in the Options widget. This interaction is sent from the widget to
Node.js and the message contains information about the source and the selected
layer. Then, Node.js invokes the web service of COScore obtaining as a response
that this message must be routed to the Map and Legend widgets. Consequently,
the first widget displays the layer into the map, and the second one adds some
information about the selected layer to its content.

5 Conclusions and future work

In this article we present a three-layer architecture for the specification, stor-
age, management and deployment of component-based applications. Our aim
is to abstract the definition and manipulation of such applications to describe
behaviors that can be valid in multiple platforms. Within this architecture, the
client layer deploys the applications or communicates with the rest of the system
functionalities through services offered by the platform dependent layer. In turn,
this second layer communicates with the platform independent layer, which of-
fers services like application initialization and management of communication
between components. In order to understand this architecture, we also describe
the component data model developed within it.

With the aim of validating our approach, we have chosen the web domain
as an application platform and we have presented a case study that showed an
example developed for a regional research project. In this way, we described the
use of widgets as a service (Widget-as-a-Service, WaaS) to dynamically build



component-based GUIs. As future work, we would like to increase the number of
application scenarios and validate the proposed architecture in other platforms
through practical examples,. We also aim to improve the user’s experience when
managing widget-based graphical user interfaces [2].

Acknowledgments

This work was funded by the EU ERDF and the Spanish Ministry of Econ-
omy and Competitiveness (MINECO) under Project TIN2013-41576-R,, and the
Spanish Ministry of Education, Culture and Sport (MECD) under a FPU grant
(AP2010-3259), and the Andalusian Regional Government (Spain) under Project
P10-TIC-6114.

References

1. Abiteboul, S., Greenshpan, O., Milo, T., Polyzotis, N.: Matchup: Autocompletion
for mashups. IEEE 25th International Conference on Data Engineering. ICDE
2009, pp. 1479-1482. IEEE (2009)

2. Cechanowicz, J., Gutwin, C.: Augmented Interactions: A Framework for Adding
Expressive Power to GUI Widgets. INTERACT 2009, pp. 878-891. Springer (2009)

3. Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R., Casati, F.: Under-
standing UI Integration: A survey of problems, technologies, and opportunities.
Internet Computing, IEEE, 11(3), 59-66 (2007)

4. De Keukelaere, F., Bhola, S., Steiner, M., Chari, S., Yoshihama, S.: SMash: se-
cure component model for cross-domain mashups on unmodified browsers. 17th
WWWW, pp. 535-544. ACM (2008)

5. Fan, K., Tang, S., Liu, Y., Zhang, S., Wang, Y., Xu, Z.: A System Architecture of
Widget-Based Digital TV Interactive Platform. ICGEC, pp. 360-363. IEEE (2012)

6. Gmelch, O., Pernul, G.: A Generic Architecture for User-Centric Portlet Integra-
tion. 14th CEC, pp. 70-77. IEEE (2012)

7. Hassan, OAH., Al-Rousan, T., Taleb, AA., Maaita, A.: An efficient and scalable
ranking technique for mashups involving RSS data sources. Journal of Network
and Computer Applications (pp. 179-190). Elsevier (2013)

8. Hoyer, V., Fischer, M.: Market overview of enterprise mashup tools. ICSOC 2008,
pp. 708-721. Springer (2008)

9. Iribarne, L., Criado, J., Padilla, N.: Using COTS-widgets architectures for de-
scribing user interfaces of web-based information systems. International Journal of
Knowledge Society Research (IJKSR), 2(3), 61-72 (2011)

10. Iribarne, L., Troya, J.M., Vallecillo, A.: A trading service for COTS components.
The Computer Journal, 47(3), 342-357 (2004)

11. Law, E., Miller, D., Nguyen-Ngoc, A.: Differentiating and Defining Portlets and
Widgets: A survey approach. MUPPLE’2009, pp. 123-131 (2009)

12. Pierre, D., Marc, D., Philippe, R.: Ubiquitous Widgets: Designing Interactions
Architecture for Adaptive Mobile Applications. DCOSS’2013, pp. 331-336 (2013)

13. Shirogane, J., Iwata, H., Fukaya, K., Fukazawa, Y.: GUI Change Method according
to Roles of Widgets and Change Patterns. IEICE Transactions on Information and
Systems, 91(4), 907-920 (2008)



