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Abstract. In the paper observability problems are considered in basic dy-
namic evolutionary models for sexual and asexual populations. Observability
means that from the (partial) knowledge of certain phenotypic characteris-
tics the whole evolutionary process can be uniquely recovered. Sufficient
conditions are given to guarantee observability for both sexual and asexual
populations near an evolutionarily stable state.
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model, observability of nonlinear systems

1 Introduction

The static concept of an evolutionarily stable state (ESS) was introduced by
Maynard Smith and Price (1973) to describe the terminal state of phenotypic
evolution of an asexual population. ESS is a state of the population in which
no rare mutant phenotype can propagate via natural selection. (A formal
definition of ESS in terms of the pay-off matrix of the evolutionary game is
recalled in section 3.)

Taylor and Jonker (1978) proposed a dynamic evolutionary model (evo-
lutionary game dynamics, replicator dynamics) and proved (see also Zeeman
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(1979), Hofbauer and Sigmund (1988)) that ESS is an asymptotically stable
equilibrium for this dynamics.

Later, the notion of evolutionary stability was extended to sexual pop-
ulations defining the corresponding dynamic model, the so-called strategic
model of viability selection, where in a diploid model the state of the popula-
tion is described in terms of allele frequencies, and at the phenotypic level an
evolutionary game models the selection process. (See Creesman et al. 1996,
Garay and Varga 1998, Cressman et al. 2003).

In the above dynamic models, an important qualitative property, asymp-
totic stability (in particular the convergence to the evolutionarily stable state)
was proved. Further important qualitative properties of these models can be
explored applying concepts and methods of mathematical systems theory.
This discipline was developed to deal with problems of system engineering,
see Kalman et al. (1969). Its application to dynamic selection models was
initiated by Varga (1989). In his paper controllability of Fisher’s selection
model was considered. In biological terms the main result was the following:
If in a population subject to natural selection, certain perturbation changes
the state of the population from a polymorphic equilibrium to a nearby state,
then under generic conditions on the fitness matrix the population can be
controlled by artificial selection into this equilibrium in given time. Recently,
in Scarelli and Varga (2002) these results have been extended to selection-
mutation processes.

In Varga (1992) selection processes were studied from another aspect
of mathematical systems theory, namely, observability of Fisher’s selection
model was considered. A strong biological motivation for observability in
population genetic models is the following: Frequency-dependent selection
models are usually described in terms of allele frequencies, the macroscopic
observation of the population, however, is carried out in terms of pheno-
typic characteristics. As a matter of fact, the dominance structure among
alleles can obscure the underlying genetic process. In a static situation, in
terms of the hereditary system, Garay and Garay (1998) gave a necessary
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and sufficient condition for the allele frequency-phenotype correspondence to
be one-to-one. For the dynamic situation, in the strategic model of viability
selection with symmetric genotype-phenotype correspondence (see Cressman
et al. 1996, Garay and Varga 1998), the observability problem was investi-
gated in Gamez et al. (2002) providing sufficient conditions to recover the
genetic process observing only phenotypic characteristics.

In the present paper we extend these models to non-symmetric genotype-
phenotype correspondences, moreover, we also consider the observability
problem in the classical replicator dynamics for the phenotypic evolution of
an asexual population, in case of partial observation phenotype frequencies,
providing sufficient conditions for observability. We notice that for evolu-
tionary game dynamics controllability problems were considered in Kósa and
Varga (1996), while the problem of partial observation in density-dependent
models of population ecology was studied in Varga et al. (2002).

2 Observability of nonlinear systems with in-
variant manifold

In this section we will recall the basic concepts and the sufficient condition
given by Varga (1998) with additional comments on that condition.

Definition 2.1. For given k ∈ {1, 2, . . . , n − 1} a set M ⊂ IRn is called a
regular k− dimensional sub-manifold, if there exists an open set G ⊂ IRn and
a function φ ∈ C1(G, IRn−k) such that, for all x ∈ G, we have Rφ′(x) = Rn−k

and M = φ−1(0).

For a continuously differentiable function f : IRn → IRn, we consider the
differential equation

ẋ = f ◦ x, (1)

where ◦ denotes the composition of functions (in traditional form ẋ = f(x)).
Given a regular ε−dimensional sub-manifold M ⊂ IRn, let x∗ ∈ M be

such that f(x∗) = 0 (in other words, an equilibrium of system (1)), then
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there exists a neighbourhood of x∗ and T ∈ IR+ such that any solution of (1)
beginning at a point of this neighbourhood is defined in [0, T ].

For this section we suppose that M is locally positively invariant for
system (1) at x∗, that is, any solution of (1) beginning at a point of a neigh-
bourhood of x∗ in M , remain in M.

For a given m ∈ N, let h : IRn → IRm be a continuously differentiable
function h(x∗) = 0, we define an observation system as{

ẋ = f ◦ x
y = h ◦ x

(2)

Definition 2.2. We shall say that observation system (2) is locally observ-
able (in M) at x∗; if there exists ε ∈ IR+ satisfying the following conditions:

Given zi ∈M , with |zi − x∗| < ε (i ∈ {1, 2}) and

ẋi(t) = f(xi(t)) (t ∈ [0, T ])

xi(0) = zi (i ∈ {1, 2})
h(x1(t)) = h(x2(t)) (t ∈ [0, T ]);

then z1 = z2 (consequently x1(t) = x2(t) (t ∈ [0, T ])).

The local observability in M , at x∗ means that if, instead of the solution
we can observe a transformation of it then, from this observed function we
can recover the solution in a unique way, provided the solution begins at a
point of M near the given equilibrium x∗.

To formulate a sufficient condition which guarantees the local observabil-
ity of system (2), we linearize system (2) at the equilibrium,

L := f ′(x∗), C := h′(x∗),

and define

Q :=



C

CL

.

.

.

CLn−1


.
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Now we recall a basic theorem proved by Varga (1989), in which a suffi-
cient condition is given for local observability in “geometric” terms.

Theorem 2.3. Suppose that

T∗ ∩KerQ = {0}. (3)

Then system (2) is locally observable, where T∗ is the tangent space to M at
x∗.

Remark 2.4. For an insight to the transversality condition (3) let us consider
a linear observation system

ẋ = Lx (4)

y = Cx, (5)

without any condition on the invariance of a linear subspace. (Formally, with
the notation of Definition 2.1 we would have k = n, M = IRn). Then the
classical necessary and sufficient condition for (“global”) observability of the
system is

rank Q = n, (6)

see e.g. Kalman (1969).

Since now T∗ = IRn, the condition of transversality is equivalent to the
condition of Kalman (6). Let K ⊂ IRn be a k−dimensional linear subspace
and suppose K is positively invariant for system (4). According to condition
(6) it would seem reasonable to think that for the (“global”) observability
inside the invariant subspace K a sufficient condition would be

rank Q ≥ k.

As a matter of fact, this is not the case, as we can see in

Example 2.5. In space IR2 let us consider the observation system

ẋ = x

y = Cx with C := [1,−1].
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Then K := {z ∈ R2 | z1 = z2} is a lineal subspace, positively invariant for
the system. Now

rank

[
C

CL

]
=

[
1 −1

1 −1

]
= 1 = dimK,

while the system is not observable because, for instance, both to the solution

beginning at point

[
1

1

]
and to the trivial solution there correspond the

observation zero. (We can see that in this example we have T∗ ∩ KerQ =

K ∩ K 6= {0}.) This situation explains why the condition of transversality
and not the rank condition is the one that can be generalized to non-linear
systems with invariant manifold.

Remark 2.6. For n ∈ N let us consider the standard simplex

∆n := {z ∈ IRn | z ≥ 0,
n∑
i=1

zi = 1}.

It is easy to see that the interior
◦
∆n of this simplex is an (n−1)−dimensional

sub-manifold in IRn. In the following sections this will be the invariant man-
ifold for the considered dynamics.

3 Observability of the replicator model

Now, let us recall the replicator model of phenotypic evolution of an asexual
population. Given an N × N pay-off matrix A, we suppose that the indi-
viduals are replicators in the sense of having always the phenotype of the
“father", this dynamics is given by the following model

ṡi = si[(As)i − sAs] (i ∈ 1, 2, ..., N), (7)

where si represents the frequency of individuals of type i in the population
and (As)i = eiAs is the mathematical expectation of the pay-off to an indi-
vidual of ei type in terms of fitness, from its conflict with a randomly chosen
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individual of the population (see Hofbauer and Sigmund, 1988), while sAs is
the average phenotype of the population (here ei represent the i−th canonical
basic vector of IRN).

For an appropriate choice of an equilibrium s∗ we start out from the
concept of ESS.

Definition 3.1.. A phenotypic state S∗ ∈ ∆N is called an evolutionarily
stable strategy (ESS) if the following conditions hold:

i) equilibrium condition:
sAS∗ ≤ S∗AS∗ for all s ∈ ∆N ,

ii) stability condition:
sAs < S∗As for all s ∈ ∆N \ {S∗} with equality in i)

It is easy to see that the set
◦
∆N with Cφ =

◦
IRN

+ and φ(x1, . . . , xN) =

1−
∑N

i=1 xi is an (N − 1)−dimensional regular sub-manifold of IRN .

We prove now that the simplex ∆N and its interior
◦
∆N are positively

invariant for replicator dynamics. Since these statements are often used in
the literature withouth a proof or reference, for the reader’s convenience we
below provide the proofs. The invariance will be proved for a more general
dynamics which can be also applied to the dynamics of section 4. We shall
consider the following dynamics:

ẋi = xi[gi(x)−
N∑
j=1

xjgj(x)], i ∈ {1, 2, . . . , N} (8)

where gi : IRN → IR are continuously differentiable functions. In our partic-
ular case

gi(x) :=
∑
j

aijxj, i ∈ {1, 2, . . . , N}

where aij are the entries of the corresponding pay-off matrix, and system (8)
takes the form

ẋi = xi(
∑
j

aijxj −
∑
l,r

alrxlxr), i ∈ {1, 2, . . . , N}
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which is the classical replicator dynamics.

Theorem 3.2. The simplex ∆N is positively invariant for the dynamics (8).

Proof. If we add the equations of system (8) we have∑
i

ẋi =
∑
i

xigi(x)−
∑
i

xi
∑
j

xjgj(x). (9)

Introducing the functions σ :=
∑

i xi ; b :=
∑

i xigi(x), the equation (9) can
be written as

σ̇ = b− σb = b(1− σ).

Then for the function v = 1− σ we obtain the equation

v̇(t) = −σ̇(t) = −b(t)v(t), (t ∈ IR+).

Let x(0) ∈ ∆N we have to prove x(t) ∈ ∆N (t ∈ IR+). To this end we
verify the conditions:

A1)
∑

i xi(t) = 1.

A2) xi(t) ≥ 0, i ∈ {1, 2, . . . , N}.
From

∑
i xi(0) = 1 we have v(0) = 0 and therefore we the have the initial

value problem
v̇(t) = −b(t)v(t); v(0) = 0,

for a linear homogeneous differential equation. Its unique solution is v ≡ 0,
that is, σ(t) =

∑
i xi(t) = 1 which proves A1).

In order to see A2), fix x(0) ∈ ∆N .

Case 1. If xi(0) > 0 for all i ∈ {1, 2, . . . , N} then also xi(t) > 0. Suppose the
contrary: there exists some i ∈ {1, 2, . . . , N} and t1 ∈ IR such that xi(t) > 0

for all t ∈ [0, t1[ and xi(t1) = 0. Since xi is a solution of the i−th equation of
(8), by the uniqueness of the solution, we have xi ≡ 0 which is a contradiction
to the condition xi(t) > 0 in [0, t1[.
Case 2. If xi(0) = 0 for some i ∈ {1, 2, . . . , N}, then according to what we
have seen in the Case 1, xi(t) ≡ 0 for all t.

Therefore, joining both possibilities we have that x(t) ≥ 0 for all t which
completes the proof.
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Remark 3.3. From the proof of this result we can also see that any sub-
simplex of ∆N is positively invariant.

Theorem 3.4. The interior of simplex ∆N is positively invariant for the dy-
namics (8). In particular it is locally positively invariant at any equilibrium.

Proof. Let x(0) ∈
◦
∆N Then from part A1) of the proof of Theorem 3.2, we

have that ∑
i

xi(t) = 1, (t ∈ IR+)

and from the Case 1 of the above proof it is verified that xi(t) > 0 for all
i ∈ {1, 2, . . . , N} and t ∈ IR+, which completes the proof.

We present now results for N = 3 in which sufficient conditions are pro-
vided under which the replicator dynamics model is locally observable at the
equilibrium s∗ The latter means that, observing some of the phenotype fre-
quencies we can recover the frequencies of the rest of phenotypes, provided
that initially the vector of phenotypes was near s∗.

Theorem 3.5. Given a pay-off matrix A ∈ IR3×3. Let s ∈
◦
∆3 an equilibrium

and suppose

−a12 + a13 +
3∑
i=1

s∗i (ai2 + ai3) 6= 0. (10)

Then the observation system{
ṡi = f(s) = si[(As)i − sAs]
y = h(s) = s1

(11)

is locally observable in
◦
∆3 at the equilibrium s∗.

Proof. Applying Theorem 2.3, let z ∈ T∗∩KerQ be, since C = h′(s∗), we
have C = (1 0 0). On the other hand, from z ∈ KerQ and Q = (C,CL,CL2)

we obtain that Cz = 0. Hence we have

z1 = 0 and z2 = −z3 (12)
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since z ∈ T∗ (that is, z1 + z2 + z3 = 0).
Following Cressman (1996) we obtain that the linearization of equation

(7) at the equilibrium s∗ :

Lij =

{
δij[(As

∗)i − s∗As∗] if s∗i = 0

s∗i [aij − (s∗A)j − (As∗)j] if s∗i 6= 0

Hence the coordinates of the column vector [Lz]3×1 are

(Lz)k = s∗k

3∑
j=1

[akj − (s∗A)j − (As∗)j]zj, k = 1, 2, 3. (13)

From z ∈ KerQ we get

CLz = s∗1

3∑
j=1

[a1j − (s∗A)j − (As∗)j]zj = 0.

Applying equation (12) and condition s∗1 6= 0 (s∗ ∈
◦
∆3) we have that

3∑
j=1

[a1j −(s∗A)j −(As∗)j]zj =[(−a12 + a13)+(s∗A)2 +(As∗)2 −(s∗A)3 −(As∗)3]z3

=[(−a12 + a13) +
∑
i

s∗i (ai2 + ai3) = 0.

From this by (10) we obtain z3 = 0 and by (12) also z = 0. Therefore from
Theorem 2.3 we have that the system (11) is locally observable at s∗.

Remark 3.6. Of course, the above theorem can be immediately generalized
to the case when the observation function correspond to another coordinate
of the phenotypic frequencies vector, that is, h(s) = sk, with k = 2 or 3.

Remark 3.7. The condition (10) of Theorem 3.5 reduces to a12 6= a13, if the
play-off matrix A is symmetric.

Next we present another result on observability in which the observed
function are given by the addition of two of the coordinates of phenotypic
state vector, for example, h(s) = s1 +s2. Although the observation of s1 +s2
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is clearly equivalent to the observation of s3, the theorem below will provide
an alternative sufficient condition for local observability. To this end we
introduce the following definition and notation.

Definition 3.8. Given A ∈ IRn×n, the matrix A = (aij) will be called the
symmetrized matrix of where

aij =
aij + aji

2
i, j ∈ {1, 2, . . . , n}.

Theorem 3.9. Given the pay-off matrix A3×3, let us suppose that the con-
dition

1

2

2∑
i=1

(−1)is∗i ai• + (s∗1 − s∗2)
3∑

j,k=1

s∗kakj 6= 0 ( where ai• =
∑
j

aij) (14)

is verified.
Then the observation system{

ṡi = f(s) = si[(As)i − sAs]
y = h(s) = s1 + s2

(15)

is locally observable in
◦
∆3 at the equilibrium s∗.

Proof. Let z ∈ T∗ ∩KerQ, and let us denote h(s) = s1 + s2 = Is where
I := (1 1 0). Then C = h′(s∗) = I.
On the other hand, by z ∈ KerQ, we have

Cz = Iz = z1 + z2 = 0 ⇒ z2 = −z1, (16)

implying z3 = 0, since z ∈ T∗.
According to (13), we have

(Lz)k = s∗k

3∑
j=1

[akj − (s∗A)j − (As∗)j]zj, k = 1, 2, 3
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implying

CLz =
∑3

i=1 Iis
∗
i

∑3
j=1[aij − (s∗A)j − (As∗)j]zj

= s∗1
∑3

j=1[a1j − (s∗A)j − (As∗)j]z1 + s∗2
∑3

j=1[a2j − (s∗A)j − (As∗)j]z2

= (s∗1[
∑

j a1j −
∑

j(s
∗A)j −

∑
j(As

∗)j]− s∗2[
∑

j a2j −
∑

j(s
∗A)j −

∑
j(As

∗)j])z1

= [s∗1
∑

j a1j − s∗2
∑

j a2j +
∑

j(s
∗A)j(s

∗
2 − s∗1) +

∑
j(As

∗)j(s
∗
2 − s∗1)]z1

= [s∗1a1• − s∗2a2• + (s∗2 − s∗1)
∑

j

∑
k s
∗
k(akj + ajk]z1

= 2[1
2
(s∗1a1• − s∗2a2•) + (s∗2 − s∗1)

∑
j,k s

∗
k
1
2
(akj + ajk)]z1

= −2[1
2

∑2
i=1(−1)is∗i ai• + (s∗1 − s∗2)

∑
j,k s

∗
kakj]z1 = 0.

Hence by (14), we get z1 = 0 and by (16) z2 = 0, implying z = 0. Therefore,
again by Theorem 2.3 system (15) is locally observable at the equilibrium s∗.

Remark 3.10. This theorem permits us to separate the frequencies of the
phenotypes 1 and 2, observing their sum. The theorem can be adapted
immediately, to the case in which the observed function is the sum of any
two coordinates of phenotypic state vector.

Examples for the observability

We are going to see some concrete examples where we can apply the results
of Theorems 3.5 and 3.9.

Example 3.11. For a given ε ∈ IR+, we consider the replicator dynamics
(7) with the following pay-off matrix

A :=

 −ε 1 −1

−1 −ε 1

1 −1 −ε

 . (17)
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The corresponding matrix game is a kind of “rock-scissors-paper” game,
see Hofbauer and Sigmund (1988), also Kósa and Varga (1996). It is known
that S∗ := (1/3, 1/3, 1/3) is an ESS.

We assume now that we observe the phenotype frequency of the individ-
uals of type 1, that is, h(s) := s1 with s ∈ ∆3. Since

−a12 + a13 +
3∑
i=1

s∗i [(ai2 + a2i)− (ai3 + a3i)] = −1− 1 +
1

3
·0 = −2 6= 0

verifying condition (10) and by the Theorem 3.5 we get that the considered
system is locally observable at the equilibrium S∗ = (1

3
, 1
3
, 1
3
).

Example 3.12. We consider the replicator dynamics (7) with the following
pay-off matrix

A :=

 0 −1 3

2 0 −1

−1 2 0

 .

This is a classical rock-scissors-paper game, therefore applying a necessary
and sufficient condition in this type of games for the calculation of ESS (see
Hofbauer Sigmund) it is easy to check that S∗ = 1

26
(9, 10, 7) is an ESS for this

matrix. Let us check the sufficient condition (14) of Theorem 3.9 in order to
obtain the local observability of system (15) at S∗.

The symmetrized matrix of A is

A :=

 0 1
2

1
1
2

0 1
2

1 1
2

0

 ,

on the other hand,

a1• =
∑
j

a1j = 0 + (−1) + 3 = 2, a2• = 2 + 0− 1 = 1.

Hence if we calculate (14), we obtain that

1

2

2∑
i=1

(−1)is∗i ai• + (s∗1 − s∗2)
3∑

j,k=1

s∗kakj =
−69

338
6= 0.
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Therefore, applying the Theorem 3.9 we deduce that the considered system
is locally observable at S∗ = 1

26
(9, 10, 7) (see Figure 1)

4 Observability of strategic model of selection.

In this section, for the sexual populations, we shall deal with observation sys-
tems corresponding to different phenotypic characteristics. We suppose that
in a large panmictic diploid population there are n alleles A1, . . . , An at an
autosomal locus and the phenotype of a zygote is uniquely determined by its
genotype: for each genotype AiAj, let Sij ∈ ∆N be the phenotype of a zygote
Aij (N is the number of pure phenotypes). An individual mixed phenotype
s ∈ ∆N has the usual probabilistic interpretation, sk is the probability for
an individual to exhibit the pure phenotype k. We emphasize that Sij and
Sji are not supposed to be the same.

For each vector of allelic state p ∈ ∆n, the vector

S(p) :=
n∑

i,j=1

pipjSij (18)

is the mean phenotype of the population. On the other hand, given a pay-off
matrix A ∈ IRN×N , the viability (or fitness) of a zygote AiAj of a population
in allelic state p ∈ ∆n is defined as

Sij·AS =
N∑

k,l=1

Sij,kaklSl(p)

where · stands for the scalar product of vectors, Sij,k and Sl(p) are the k-th
and the l-th components of the vectors Sij and S(p), respectively.

For each p ∈ ∆n, the vector

S
i
(p) :=

n∑
j=1

pjSij (i ∈ {1, . . . , n} (19)

is the effective (or marginal) phenotype of allele Ai, where Sij = 1
2
(Sij +Sji).
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Figure 1: Observability of the replicator dynamics. Example 3.12.
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Let now p(t) be the vector of allelic frequency in the adult population at
time t. Then the continuous model-time is given by the following system

ṗi = pi[S
i
(p)− S(p)]AS(p); i ∈ {1, . . . , n}, (20)

where S(p) :=
∑n

k,l=1 pipjSij. It is easy to check that S(p) = S(p) in terms
of which the model (20) reads as follows,

ṗi = pi[S
i
(p)− S(p)]AS(p); i ∈ {1, . . . , n}. (21)

Throughout this section we shall suppose that S∗ is a polymorphic ESS
(S∗ ∈

◦
∆N) and p∗ is a polymorphic allelic state (p∗ ∈

◦
∆N) realizing this

ESS: S(p∗) = S∗. Moreover p∗ is an equilibrium of the dynamics (21)(see
Cressman et al. (1996)).

Finally, we check that the interior
◦
∆n of simplex ∆n is an (n − 1) di-

mensional regular sub-manifold of IRn positively invariant for the strategic
dynamics and the simplex ∆n is positively invariant for this dynamic too.
For that uniquely it is enough to apply Theorems 3.2 and 3.4 considering
dynamics (8) with

gi(x) := Si(x) · AS(x).

Now we present some results giving sufficient conditions for local observ-
ability of the strategic model at the equilibrium p∗.

Observation of mean phenotype and effective phenotype

If we consider dynamics (21) with the observation function defined by

h : IRn → IRN , h(p) := S(p)− S∗ (22)

where S now stands for the obvious extension of S in (18), to IRn. For the
effective phenotypes at the equilibrium of the dynamics, we introduce the
notation S∗i := S

i
(p∗) (i ∈ {1, . . . , n}).
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Theorem 4.1. If the vectors

S
∗1
, S
∗2
, . . . , S

∗n

are linearly independent then observation system (21)-(22) is locally observ-
able at equilibrium p∗.

Proof. In order to apply the Theorem 2.3, it is not even necessary to linearize
of the dynamics, since we easily obtain the derivative of h at p∗,

C = h′(p∗) = 2[S
∗1
, S
∗2
, . . . , S

∗n
].

Let z ∈ T∗ ∩KerQ, then Cz = 0 implying
∑n

i=1 ziS
∗i

= 0. Hence, by the
independence of vectors S∗i (i ∈ {1, . . . , n}), we have z = 0 which implies
the local observability of considered system at p∗ which was to be proved.

Remark 4.2. From Gámez (2003) we recall that the linear independence of
vectors S∗1, . . . , S∗n, in cases of Mendelian symmetry, implies asymptotic
stability of the equilibrium p∗.

Remark 4.3. Since the linear independence of vectors S∗1, . . . , S∗n is equiva-
lent to the geometric transversality condition (3) of Theorem 2.3, the unique
way of applying the general sufficient condition of Theorem 2.3 is requiring
the lineal independence of the effective phenotypes at the equilibrium p∗.

Let us suppose now that for some i ∈ {1, . . . , n} of (21), we observe the
effective phenotype of allele Ai, that is

h : IRn → IRN , h(p) := S
i
(p)− Si(p∗) (23)

where Si stands for the extension of Si in (19), to IRn.
Similarly to the proof of Theorem 4.1, we obtain the following sufficient

condition for the observability of the considered model:

Theorem 4.4. If the vectors

Si1, Si2, . . . , Sin

are linearly independent then the observation system (21)-(23) is locally ob-
servable at p∗.
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Partial observation of the mean phenotype

We consider again dynamics (21), however, with the observation defined by
the following function

h : IRn → IR, h(p) := S1(p)− S1(p
∗) (24)

where S1(p) is the first coordinate of mean phenotype S(p).

For the case N = 3, the following theorem provides sufficient conditions
for the local observability at the equilibrium p∗, with an important difference
in comparison to the previous theorems: In the present case items of the
pay-off matrix are also involved in the sufficient conditions. In this sense
the following theorem also illustrates how the considered dynamics can help
to guarantee local observability without local invertibility of the observation
function h.

Theorem 4.5. If
S
∗1
1 = S

∗2
1 , (25)

S
∗1
1 6= S

∗3
1 (26)

and
3∑
j=2

3∑
i=1

(S
∗3
i − S∗i )aij(S

∗1
j − S

∗2
j ) 6= 0 (27)

then the observation system (21)-(24) is locally observable at the equilibrium
allelic state p∗.

Proof. Let z ∈ T∗ ∩KerQ. Then from

C = h′(p∗) = 2[S
∗1
1 , S

∗2
1 , S

∗3
1 ]

we have Cz =
∑3

i=1 2S
∗i
1 zi. Hence by (25) and z ∈ T∗ ∩KerQ, we have

Cz = 2[S
∗1
1 (z1 + z2) + S

∗3
1 z3] = 2[S

∗1
1 (−z3) + S

∗3
1 z3] = 2(−S∗11 + S

∗3
1 )z3 = 0.

Therefore, by (26) we get z3 = 0 and from z ∈ T∗, we obtain that z1 = −z2.

18



On the other hand, for the linearization of model we calculate the Jaco-
bian of the right-hand side of the dynamics:

Lij = p∗i [(sij − 2S
∗j

)AS∗ + 2(S
∗i − S∗)AS∗j] (i, j = 1, 2, 3),

for the coordinates of the vector (Lz)3×1 we have

(Lz)k = p∗k(S
∗k − S∗)A2

3∑
i=1

S
∗i
zi, (k = 1, 2, 3).

Therefore,

CLz = 2
3∑
j=1

S
∗j
1 p
∗
j(S

∗j − S∗)A2
3∑
i=1

S
∗i
zi = 0 (z ∈ KerQ). (28)

If we develop
∑3

j=1 S
∗j
1 p
∗
j(S

∗j − S∗), we obtain

3∑
j=1

S
∗j
1 p
∗
j(S

∗j − S∗) = S
∗1
1 [p∗1(S

∗1 − S∗) + p∗2(S
∗2 − S∗)] + S

∗3
1 p
∗
3(S

∗3 − S∗)

where

p∗1(S
∗1 − S∗) + p∗2(S

∗2 − S∗) = p∗1S
∗1

+ p∗2S
∗2 − (p∗1 + p∗2)S

∗

= S∗ − p∗3S
∗3 − (1− p∗3)S∗ = −p∗3(S

∗3 − S∗),

that is,
3∑
j=1

S
∗j
1 p
∗
j(S

∗j − S∗) = (−S∗11 + S
∗3
1 )p∗3(S

∗3 − S∗). (29)

Now developing
∑3

i=1 S
∗i
zi we obtain

3∑
i=1

S
∗i
zi = S

∗1
z1 + S

∗2
z2 = (S

∗1 − S∗2)z1, (30)

since z3 = 0 and z2 = −z1.
Substituting (29) and (30) into (28), we get

CLz = 2(−S∗11 + S
∗3
1 )p∗3(S

∗3 − S∗)A2(S
∗1 − S∗2)z1.
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From p∗3 > 0 since p∗ ∈
◦
∆3 we have p∗3 > 0 and by hypothesis −S∗11 +

S
∗3
1 6= 0, implying

(S
∗3 − S∗)A(S

∗1 − S∗2)z1 = 0. (31)

If we calculate now the vectors (S
∗3 − S∗)A ∈ IR1×3 and (S

∗1 − S∗2) ∈ IR3×1

by coordinates, we obtain

[(S
∗3 − S∗)A]l =

3∑
i=1

(S
∗3
i − S∗i )ail, (l = 1, 2, 3)

and
[S
∗1 − S∗2]k = S

∗1
k − S

∗2
k , (k = 2, 3).

where by (25), [S
∗1 − S∗2]1 = 0. Hence,

(S
∗3 − S∗)A(S

∗1 − S∗2) =
3∑
j=2

3∑
i=1

(S
∗3
i − S∗i )aij(S

∗1
j − S

∗2
j ),

which by (27) is different from zero. The lather, together with (31) imply
that z1 = 0 and so z = 0. Therefore, according to the Theorem 2.3 the
system is locally observable at p∗, which complete the proof.

Remark 4.6. This theorem can be adapted in an obvious way to the case
obtain by permutation of the corresponding indices.

Illustration of Theorem 4.5.

In the following we present an example (the so called case of semi-dominance)
where we apply Theorem 4.5.

We assume that the homozygotes exhibit pure phenotypes represented by
the canonical basic vectors of IR3 :

S11 := e1, S22 := e2, S33 := e3.

Then the dominance structure is represented by the hypermatrix

[Sij]3×3 =

 e1 α12e1 + (1− α12)e2 α13e1 + (1− α13)e3

α21e2 + (1− α21)e1 e2 α23e2 + (1− α23)e3

α31e3 + (1− α31)e1 α32e3 + (1− α32)e2 e3
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with αij ∈ [0, 1], i, j ∈ {1, 2, 3}.
Particular cases:

1. If αij = αji = 1 (i, j = 1, 2, 3) we have a paternal inheritance system.

2. If αij = αji = 0 (i, j = 1, 2, 3) we get a maternal inheritance system.

3. If αij = α (i, j = 1, 2, 3) we obtain a convex combination of the
paternal and maternal inheritance.

4. Suppuse αij = 1 − αji (i, j = 1, 2, 3). Then the hipermatrix [Sij] is
symmetrical. In order to study this case, we consider the dynamics
(21) with the pay-off matrix A of (17) with ε = 1. Now we know that
S∗ := (1

3
, 1
3
, 1
3
) is an ESS. In order to simplify the calculations, we take

αij = 1
2
, for all i, j. From the corresponding calculations we get

S
∗1

=
1

6
(4, 1, 1), S

∗2
=

1

6
(1, 4, 1), S

∗3
=

1

6
(1, 1, 4)

implying
3∑
j=2

3∑
i=1

(S
∗1
i − S∗i )aij(S

∗2
j − S

∗3
j ) =

1

2
6= 0.

Therefore by Theorem 4.5 we obtain that the considered system is
locally observable at the equilibrium.

5 Conclusion

The approach of mathematical systems theory as an effective tool in discov-
ering certain qualitative properties of dynamic evolutionary models.

Earlier results on local observability have been extended, on the one hand,
to the replicator dynamics describing the phenotypic evolution of an asexual
population. On the other hand, for sexual populations, we provided exten-
sions to non-symmetric inheritance patterns such as the maternal (paternal)
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and the semi-dominant ones. Because of the nonlinearity of the models the
observability results are only local, admitting to recover the state of system
from the observed phenotypic characteristics near equilibrium.
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