-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almeria (Spain)

Composing Model Transformations at Runtime:
an approach for adapting Component-based User Interfaces

Diego Rodriguez—Gracia1 , Javier Criado', Luis Iribarne!,
Nicolas Padilla' and Cristina Vicente-Chicote?
YApplied Computing Group, University of Almeria, Spain
2ppt. of Info. Communication Technologies, Tech. University of Cartagena
{diegorg, javi.criado, luis.iribarne, npadilla} @ual.es, cristina.vicente @upct.es

Keywords: Adaptive Transformation, Rule Selection, MDE

Abstract:

Nowadays, large part of the efforts in software development are focused on achieving systems with an as high

as possible level of adaptation. With the traditional technique of model-driven development this can be largely
accomplished. The inconvenience of these techniques however, is that the models are usually manipulated at
design-time by means of fixed transformation. Furthermore, the transformations that manipulate these models
cannot change dynamically according to the current execution context. This paper presents a transformation
pattern aimed to adapt architectural models at runtime, this means that these models may change dynamically
at runtime. The transformations that produce this model adaptation are not fixed, but dynamically composed
by selecting the most appropriate set of rules from those available in a repository. As an example scenario for
the application of these transformations, we chose architectural models representing component-based Uls.

1 INTRODUCTION

Model Driven Engineering (MDE) is based on the
construction of models using formal modeling lan-
guages, which can be either general-purpose (e.g.,
UML) or domain-specific. In order to allow models
to dynamically evolve, we need to use model transfor-
mations. This mechanism enables automatic model
redesign and improves model maintainability. Model
transformations usually show a static behavior which
prevents models to adapt to requirements not taken
into account a priori. Therefore, it is necessary to
provide model transformations with a dynamic behav-
ior that allows them to vary in time according to new
application or user requirements. The proposal pre-
sented in this paper aims to provide model transfor-
mations with such a dynamic behavior. In particular,
our proposal addresses the adaptation of architectural
models by means of transformations that are them-
selves adapted at runtime (Blair et al., 2009). The
architectural model definition is described in (Criado
et al.,, 2010a). We present a transformation pattern
according to which the transformations that carry out
the adaptation are not prepared a priori, but dynami-
cally composed at runtime from a rule model. At each
transformation step, this rule model evolves by apply-
ing a rule selection algorithm which selects the most

appropriate set of rules (from those available in a rule
repository) according to the current situation.

In order to achieve these goals, we use model-
to-model and model-to-text transformations'. When-
ever an adaptation of the architecture is required (e.g.,
when the user or the system trigger an event), a new
adaptation process is invoked. It takes the current ar-
chitectural model (containing information about the
current context) and generates an M2M transforma-
tion, specifically composed to carry out the adapta-
tion. We have implemented our M2T transformation
using Java Emitter Templates®, while the generated
M2M transformations are defined in ATL (Jouault
et al.,, 2008). We selected ATL as it enables the
adoption of an hybrid (of declarative and impera-
tive) M2M transformation approach (Czarnecki and
Helsen, 2003). In fact, in ATL it is possible to de-
fine hybrid transformation rules in which both the
source and the target declarative patterns can be com-
plemented with an imperative block. It is in this im-
perative logic where the rule selection algorithm has
been implemented. We have also defined a rule meta-
model, aimed to help designers: (1) to define correct
transformation rules (the metamodel establishes the

'EMP - http://www.eclipse.org/modeling/
2JET - http://www.eclipse.org/modeling/m2t/

https://core.ac.uk/display/143456614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

structure of these rules and how they can be com-
bined), and (2) to store these rules in a repository.

As a case study, we have chosen the domain of
user interfaces as part of a project of the Spanish
Ministry to develop adaptive user interfaces at run-
time (Criado et al., 2010b). Here, user interfaces
are described by means of architectural models that
contain the specification of user interfaces compo-
nents (Iribarne et al., 2010). These architectural mod-
els (which represent the user interfaces) can vary at
runtime due to changes in the context—e.g., user
interaction, a temporal event, visual condition, etc.
Therefore, our proposal is useful to adapt component-
based architecture systems at runtime (such as user
interfaces based on components) by means of mod-
els and model-driven engineering techniques. Our
approach presents two main advantages concerning
the adaptation of architectural models: (a) the model
transformation applied to the architectural model is
not fixed, but dynamically composed at runtime, and
(b) this composition is made by selecting the appro-
priate set of rules from those available in a repository,
making the adaptation logic for the architectural mod-
els be upgradable by changing the rule repository.

The rest of the article is organized as follows: Sec-
tion 2 introduces the goal of adapting component-
based Uls. In Section 3 we detail the proposed ap-
proach to achieve model transformation adaptation at
runtime. Section 4 reviews related work. Finally, Sec-
tion 5 outlines the conclusions and future work.

2 UI ADAPTATION

The main objective of our proposal is to achieve
the adaptation of user interfaces at runtime. Specif-
ically, we are interested in simple and friendly User
Interfaces (UI) based on software components, in a
similar way as iGoogle widget-based user interfaces
do (i.e., a set of Ul components). Thus, user inter-
faces are described by means of architectural models
that contain the specification of user interfaces com-
ponents. These architectural models (which represent

User Interface 2
GUI

User Interface 1

Video Audio

Architectural Model 1 Architectural Model 2

—

Figure 1: User Interface Adaptation

the user interfaces) can vary at runtime due to changes
in the context —e.g., user interaction, a temporal event,
visual condition, etc. For example, let us suppose an
user that is performing a communication by a chat
with other users. Consequently, the graphical user in-
terface offered by the system contains an UI compo-
nent providing the Chat service. Then, due to causes
out of the scope of this work, the system detects the
need for adapting the user interface to change the
communication method. This adaptation will aim to
to remove the chat component while audio and video
components will be inserted.

Figure 1 illustrates that the adaptation process is
performed at the level of architectural models repre-
senting the user interfaces. Once the new architec-
tural model is obtained, it will be executed a regener-
ation process to show the adapted user interface. This
regeneration process is not described because in this
paper we focus on the model transformation process
adapting the architectural models and how this M2M
is dynamically composed from a rule repository.

3 ADAPTATION PROCESS

As previously advanced, models created at design
time from model definition language are, in principle,
static elements. Here we will define design-time ar-
chitectural models and we want them to be changing
and adapting to the system’s requirements by means
of automatic changes. In order to modify our archi-
tectural models, we follow an MDE methodology so
that we can achieve their change and adaptation by
M2M transformations. We will design an M2M trans-
formation where both the input and output metamod-
els are the same: the abstract architectural metamodel
(AMM). Therefore, this process will turn an abstract
architectural model AM; into another AM 1.

This ModelTransformation process enables the
evolution and adaptation of architectural models. Its
behaviour is described by the rules of such transfor-
mation. Thus, if our goal is to make the architectural
model transformation not be a predefined process but
a process adapted to the system’s needs and require-
ments, we must get the transformation rules to change
depending on the circumstances. In order to achieve
this goal, we based on the following conditions: (a)
Build a rule repository where all rules that may be
applied in an architectural model transformation are
stored; (b) Design a rule selection process that takes
as input the repository and generates as output a sub-
set of rules; (c) Ensure that the rule selection process
can generate different rule subsets, depending on the
circumstances; (d) Develop a process that takes as in-

put the selected rule subset and generates an architec-
tural model transformation; and (e) Ensure that both
the described processes and their elements are within
the MDE framework. According to these steps, we
observed a variety of similarities and analogies be-
tween the elements present here. Such similarities
have been generalized and expressed in the transfor-
mation pattern described in Section 3.1.

3.1 Transformation Pattern

Building a transformation pattern allows us to model
the structure and composition of generic elements that
may exist in our transformation schema. Such ele-
ments provide us with some information about the
types of modules that can be included in possible
transformation configurations and how they connect
with the rest of the schema elements. Furthermore,
this pattern offers us the possibility of changing such
schema by creating a different model from the meta-
model defined in Figure 2.

B TransformationSchemal
I

. metamodels 0.*
0.* | transformations 5 Metamodel
1
conforms_to| 1

N 0.+
s models
source

Bwmam | B Model

I
T
1 .
L f target 1

target source

Figure 2: Transformation Pattern

A TransformationSchema is made up of three
different types of elements: transformations, mod-
els and metamodels. Metamodel elements describe
the model definitions of the transformation schema.
Model elements identify and define the system mod-
els. Transformation elements can be classified into
two groups: M2M and M2T. M2M transformations repre-
sent model-to-model transformation processes; there-
fore, they will have one or more schema models asso-
ciated both as input and output through the source
and target references, respectively. On the other
hand, M2T transformations represent the transforma-
tion processes that take as input one or more system
models (through source) and generate as output a
model-to-model transformation (through target).

3.2 Transformation Schema

In accordance with the transformation pattern in Sec-
tion 3.1, we developed our adaptive transformation
for architectural models at runtime whose transforma-
tion schema is shown in Figure 3. The behaviour and
sequence are as follows:

(a) RuleSelection, is the rule selection process that
starts when an attribute from a defined class in the
initial architectural model (AM;) takes a specific
value (i.e., when the user or the system trigger an
event). This process, that is carried out at runtime,
is obtained as an instance of the M2M concept. It
takes as input the repository model (RRM) and the
AM; (step #1 in Figure 3), and generates as output
(step #2) a rule transformation model (RM;) for
architectural models, being RM; C RRM.

<<model>> conforms_to[~ __ "~ 7
RRI e RMM
(repository)

/I\ 1: source /?\ conforms_to

T
[|
<<transformation>>
<<model>>

RuleSelection — > Ril;

Q2m)
2: target
3: source

. <<transfornation>>
SE=Em U RuleTransformation
2Ty

\l/4: target

state i+l
1: source
o <<transfornation>>
<<model>> -
mode’ ModelTransformation;

<<model>>
AM; M2Mm) AMj+1

5: source 6:| target

Figure 3: Transformation Schema

(b) RuleTransformation, is obtained as an instance
of the M2T concept. It takes as input (step
#3 in Figure 3) the rule model (RM;) and gen-
erates as output (step #4) a new transforma-
tion process for architectural models at runtime
(ModelTransformation;).

(¢) ModelTransformation, is obtained as an in-
stance of the M2M concept and generates as output
(step #6 in Figure 3) a new architectural model at
runtime (AM;; 1) starting from the initial architec-
tural model (AM;).

3.3 Transformation Rules

As previously indicated, our goal is to achieve the
adaptability of architectural model transformations at
runtime. To this end, and given a transformation rule
repository (RRM), the system generates the models of
selected rules (RM;) adapting the architectural models
to the context. That is why we focus on the descrip-
tion of the transformation rules and the attributes that
affect the rule selection process (RuleSelection) and
the RRM, where the transformation rules of the archi-
tectural models are stored.

Both the RM; and the RRM are defined accord-
ing to the transformation rule metamodel (RMM). In
such metamodel, we will focus on describing the class

Table 1: Example rule repository (RRM)

Table 2: Model of selected rules (RM;)

(Rule) which is directly involved with the rule selec-
tion logic belonging to the rule model generation pro-
cess (RuleSelection). The class Rule has the follow-
ing attributes: (a) rule_name, which is unique and
identifies the rule; (b) purpose, which indicates the
purpose of the rule. Only those rules of the rule repos-
itory (RRM) whose purpose coincides with one of
the values of the the purposes attribute defined in the
architectural model (AM;), will belong to the trans-
formation rule model (RM;); (c) is_priority, which
is boolean typed. If its value is true in a specific
rule of the rule repository (RRM!Rule.is_priority
= true), it indicates that the rule must always be
inserted in the transformation rule model (RM;),
provided that it satisfies the condition detailed in
purpose; (d) weight, which indicates the weight of
the rule. That rule in the rule repository (RRM)
which satisfies the purpose condition, has the at-
tribute is_priority = false and has the biggest
weight of all rules satisfying such conditions, will be
inserted in the transformation rule model (RM;).

The transformation rules that will adapt the archi-
tectural models are stored in the rule repository model
(RRM). It is a model defined according to a rule meta-
model (RMM) and is made up of the transformation
rules. Table 1 shows different rules belonging to the
rule repository. As previously mentioned, those rules
that fulfil a specific metric are chosen through the rule
selection process (RuleSelection).

3.4 Rule Selection

After an overview of the transformation rules de-
scribed in Section 3.3, we studied the transformation
process known as RuleSelection through which rule
models (RM;) are generated from the rule repository
(RRM) to get the transformation adaptation at run-
time. According to our transformation schema, this
process is obtained as an instance of the M2M concept
of the transformation pattern. Hence, RuleSelection
is an M2M transformation process that takes the ini-
tial architectural model (AM;) and the rule repository
model (RRM) as source. As target, it generates the
transformation rule model (RM;).

Rule Repository Model (RRM) Rule Model (RM;)

rule_name purpose is_priority | weight rule_name purpose is_priority | weight
Insert_Chat InsertComponentChat true 9 Insert_AudioHighQuality InsertComponentAudioHQ true 5
Insert_AudioLowQuality InsertComponentAudioLQ false 8 Insert-VideoMediumQuality InsertComponentVideoMQ false 7
Insert_AudioHighQuality InsertComponentAudioHQ true 5 Delete_Chat DeleteComponentChat true 1
Insert_VideoLowQuality InsertComponentVideoLQ false 6
Insert_VideoMediumQuality InsertComponentVideoMQ false 7
Insert_VideoHighQuality InsertComponentVideoHQ false 3
Delete_Chat DeleteComponentChat true 1 The sequence of this M2M transformation process
Delete-Audio DeleteComponentAudio true ! is as follows. It starts when an attribute of a class
Delete_Video DeleteComponentVideo true 1

defined in the AM; takes a specific value. This class
is known as Launcher. The RM; is generated start-
ing from the RRM. This new rule model is made
up of a subset of rules existing in the rule repository;
their purpose attribute will coincide with one of the
purposes attribute of the class Launcher, defined in
the AM; and they must fulfil a selection metric based
on specific values of the is_priority and weight at-
tributes. The selection logic is as follows: those rules
a priori defined as priority (is_priority = true)
in the RRM will be copied in the RM; regardless of
the weight value assigned at state i, provided that the
value of the purpose attribute of the rule coincides
with one of the values of the purposes attribute of
the architectural model (AMi!Launcher.purposes
contains RRM!Rule.purpose). Regarding those
rules not defined as priority in the rule repository
(is_priority = false), the process will copy in the
transformation rule model the rule with the biggest
weight value among all assigned to the rules of the
RRM, where the value of the purpose attribute of the
rule coincides with one of the values of the purposes
attribute of the AM;.

As an example, let’s suppose that we take as
input an AM; where AMi!Launcher.purposes =
[‘DeleteComponentChat’, ‘InsertComponentAu-
dioHQ’, ‘InsertComponentVideoMQ’]. We as-
sume the RRM is the one specified in Table 1. If the
state of the running attribute of the AM; changed
into true, the RuleSelection process would start.
Then, the RM; would be generated by selecting those
rules with the purpose attribute equals to one of the
purposes indicated by the Launcher which have
the biggest weight or which have their attribute
is_priority = true, as shown in Table 2.

3.5 Rule Transformation

Starting from the rule model generated by the Rule-
Selection, the next process involved in the adap-
tive transformation is known as RuleTransformation.
Within our transformation schema, this process is ob-
tained as an instance of the M2T concept of the trans-
formation pattern (Section 3.1). Therefore, the Rule-
Transformation process is an M2T transformation
process that takes as input (source) the rule model

Table 3: Example of the RuleTransformation process

Portion of transformation M2T

module tl;
create
<c:iterate var="model_ref" select="/RuleSet/model_ref[@model_type =
OUT’]" delimiter=",">
<c:get select="$model_ref/@model_name"/> :
<c:get select="$model_ref/conforms_to/@metamodel_name"/>
</c:iterate>
from
<c:iterate var="model_ref" select="/RuleSet/model_ref[@model_type =
TIN']" delimiter=",">
<c:get select="$model_ref/@model_name"/> :
<c:get select="$model_ref/conforms_to/@metamodel_name"/>
</c:iterate>;

M2M generated

module t1;
create

AMOUT : AMM
from

AMIN : AMM;

selected by the RuleSelection process and generates
as output (target) an M2M transformation file.

The main goal here is to generate an M2M trans-
formation that is responsible for changing the sys-
tem’s architectural models (ModelTransformation;).
As indicated in our transformation pattern, this new
transformation is an instance of the M2M concept
whose source is an architectural model (AM;) and
target is another architectural model (AM;,1). Since
the rule models of the RuleSelection process will
be changing depending on the system’s require-
ments, the RuleTransformation process (that takes
them as its input) is responsible for creating a run-
time architectural model transformation that contains
new rules considered to be necessary. Hence, this
ModelTransformation; process will achieve the adap-
tation of the architectural models at runtime.

Table 3 shows the code fragment of the RuleTrans-
formation process transforming the part of the M2T
transformation that generates the header section of the
ATL file of the ModelTransformation; process. For
each element of the RM;, there is a part of the Rule-
Transformation process that is in charge of translat-
ing the rules into the ATL code, which constitutes the
M2M transformation of the ModelTransformation;
process. Despite the RuleTransformation process has
been developed in order to adapt architectural mod-
els representing user interfaces, this approach is ex-
tendable to generate any type of M2M transformation,
which is executed on a rule model.

4 RELATED WORK

Nowadays there are different proposals to achieve
adaptive transformations for architectural models at
runtime. To this end, in (Gray et al., 2006) the au-

thors developed meta-transformations as transforma-
tions which produce transformations. However, un-
like this proposal, in our approach the new transfor-
mations are created to get adaptability in the architec-
tural models (horizontal transformations) rather than
make the transformation from PIM to PSM models
(vertical transformations). In (Floch et al., 2006), the
architectural models must contain variation and selec-
tion criteria so the middleware can automate the trans-
formation. In contrast, we propose to store the adap-
tation logic in a repository of transformation rules.

Other approaches face the problem of achieving
model-adaptability at runtime through high level lan-
guage implementations. For instance, in (Serral et al.,
2010) the authors used Java modules executed in-
side an OSGi platform. In our case, we achieved the
runtime model adaptation and update through model
transformations (M2M and M2T). Such transforma-
tions are made by means of rules implemented in
the ATL model transformation language. One of the
features of ATL which made us use this language
to implement rules, is that it enables to use explicit
rule calls internally as a mechanism for rule integra-
tion (Kurtev et al., 2007); thus, rules are assembled so
that one rule calls another one.

Different proposals of internal composition tech-
niques for model transformation languages haven
been developed. In (Wagelaar, 2008) the authors
present an internal composition mechanism of model
transformation, implemented in a rule-based model
transformation language which uses ATL language as
an example. The authors suggest creating transforma-
tion modules that can be either called from other mod-
ules or imported from an ATL transformation file. To
our opinion, as ATL is the metamodel of these mod-
ules, it would be harder to manage and interpret them
automatically. Thus, we chose to create ATL rules
defined by a DSL and dynamically build ATL trans-
formation modules.

On the other hand, in (Tisi et al., 2009) the au-
thors suggested the use of M2M transformations to
generate as output transformation models in order
to adapt or modify an M2M transformation process.
This composition method for transformation process
guarantees well-built transformation modules, since
we used the ATL metamodel as reference to generate
transformation models; however, these Higher-Order
Transformations (HOT) are very complex to be built
when there are significant rule modifications or when
we wish to create an ATL transformation model from
a rule model of our system.

The approach developed in (Porres, 2005) pro-
poses to describe and execute model refactorings
based on transformation rules or checked actions

where rules have formal parameters that are matched
with a model subset. The main difference with our
proposal is that we used specific MDD tools, Ecore
models instead of UML ones and ATL language
rather than Python. We carried out the selection of
transformation rules through model transformations.

5 CONCLUSION

Here we presented our proposal of adaptive trans-
formations for architectural models at runtime. Thus,
we developed a transformation pattern that enables to
model the structure and composition of the generic el-
ements that may exist in our transformation schema.
With this pattern, it is also possible to change the
transformation schema by creating a different model
starting from the metamodel that defines it. This
provides our proposal with a high degree of flexibil-
ity and scalability. We got the transformation rules
to change depending on the context. Therefore ,the
transformation rules define the degree of adaptabil-
ity of our system; the adaptability is determined by
the ability of the transformation rule model (RM;) to
modify itself in view of external events of the system,
where both the degree and scope of adaptability are
also defined by means of the rule selection logic.

As future work, we intend to achieve a higher de-
gree of adaptability for our proposal taking into ac-
count, in the selection logic, factors as use frequency
of transformation rules, rule weight management pol-
icy, etc. We also intend to possibly carry out, through
HOT (Tisi et al., 2009), the process by which we turn
rule models into transformation processes applied to
architectural models. We will focus on providing our
system with a decision-making technique to be able to
manipulate the rule repository so that the system can
evolve at runtime and adapt itself to the interaction
with the user.

ACKNOWLEDGEMENTS

This work has been supported by the EU (FEDER)
and the Spanish Ministry MICINN under grant of
the TIN2010-15588 and TRA2009-0309 projects, and
under a FPU grant (AP2010-3259), and also by the
JUNTA ANDALUCIA ref. TIC-6114.

REFERENCES

Blair, G., Bencomo, N., France, R.B.: Mod-
els@run.time (Special issue on Models at Run

Time). Computer, 40(10):22-27 (2009)

Criado, J., Vicente-Chicote, C., Iribarne, L., Padilla,
N.: A Model-Driven Approach to Graphi-
cal User Interface Runtime Adaptation. Mod-
els@Run.Time, CEUR-WS Vol 641 (2010)

Criado, J., Padilla, N., Iribarne, L., Asensio, J.: User
Interface Composition with COTS-UI and Trad-
ing Approaches: Application for Web-Based En-
vironmental Information Systems. WSKS’2010,
Part I, CCIS 111, pp. 259-266, Springer (2010)

Czarnecki, K., Helsen, S.: Classification of model
transformation approaches. In: Proceedings
of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven
Architecture, pp. 1-17. Citeseer (2003)

Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F,
Lund, K., Gjgrven, E.: Using Architecture Mod-
els for Runtime Adaptability. IEEE Software,
23(2):62-70 (2006)

Gray, J., Lin, Y., Zhang, J.: Automating change evo-
lution in model-driven engineering. Computer,
39(2):51-58 (2006)

Hearnden, D., Lawley, M., Raymond, K.: Incre-
mental model transformation for the evolution of
model-driven systems. Model Driven Engineer-
ing Languages and Systems, pp. 321-335 (2006)

Iribarne, L., Padilla, N., Criado, J., Asensio, J., Ayala,
R.: A Model Transformation Approach for Au-
tomatic Composition of COTS User Interfaces in
Web-Based Information Systems. Information
Systems Management, 27(3):207-216 (2010)

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL:
A model transformation tool. Science of Com-
puter Programming, 72(1-2):31-39 (2008)

Kurtev, 1., van den Berg, K., Jouault, F.: Rule-
based modularization in model transformation
languages illustrated with ATL. Science of Com-
puter Programming, 68(3):138-154 (2007)

Porres, I.: Rule-based update transformations and

their application to model refactorings. Software
and Systems Modeling, 4(4):368-385 (2005)

Serral, E., Valderas, P., Pelechano, V.: Supporting
runtime system evolution to adapt to user be-
haviour. In: Advanced Information Systems En-
gineering, pp. 378-392. Springer (2010)

Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin,
J.: On the use of higher-order model transforma-
tions. ECMDA-FA, pp. 18-33 (2009)

Wagelaar, D.: Composition techniques for rule-based
model transformation languages. ICMT, pp.
152-167 (2008)

