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Abstract: If a nearly natural population system is deviated from its equilibrium, an 13 
important task of conservation ecology may be to control it back into equilibrium. In the 14 
paper a trophic chain is considered, and control systems are obtained by changing 15 
certain model parameters into control variables. For the equilibrium control two 16 
approaches are proposed.  First, for a fixed time interval, local controllability into 17 
equilibrium is proved, and applying tools of optimal control, it is also shown how an 18 
appropriate open-loop control can be determined that actually controls the system into 19 
the equilibrium in given time. Another considered problem is to control the system to a 20 
new desired equilibrium. The problem is solved by the construction of a closed-loop 21 
control which asymptotically steers the trophic chain into this new equilibrium. In this 22 
way, actually, a controlled regime shift is realized.    23 

 24 
Keywords: trophic chains, controllability, optimal control, equilibrium control  25 

 26 

1. Introduction  27 

The concept of control of a trophic chain is used in different senses in the 28 

literature. A possible classification is: internal natural control, external natural control, 29 

external control by management. (For an overview of the different types of ecosystem 30 

control see Fath, 2004). Our study joins the research line concerning external, human 31 

control of trophic chains.   32 

The human influence on ecosystems, in particular on population systems, is an 33 

important issue in conservation ecology. Moreover, sustainability of economic and 34 

social development in a broader sense also involves conservation aspects of ecology. On 35 

the one hand, ecosystems are often exposed to a strong human intervention, such as 36 

economic activity, wildlife management, fisheries or environmental pollution. On the 37 
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other hand, if the human activity breaks the equilibrium of the population system in 1 

question, we can try to control it back to the previous or a new equilibrium.  2 

These problems make it necessary to extend the traditional approach of theoretical 3 

biology focusing only on a biological object, to the study of systems consisting of a  4 

biological object and man that monitors or/and controls the biological object. This, in 5 

dynamic situation, i.e. in case of a long-term human intervention, typically requires the 6 

approach of mathematical systems theory (in frequently used terms, state-space 7 

modelling), see Kalman et al. (1969) for the basic results of this theory, and Chen et al. 8 

(2004) for a recent reference. This methodology offers solutions not only to controlling 9 

but also to monitoring (i.e. observation) problems of population systems. While by now, 10 

mathematical systems theory became quite familiar to system engineers, observability 11 

and controllability analysis of dynamic models in population biology is relatively new. 12 

The results on controllability and observability in frequency-dependent population 13 

genetics models are mostly based on the sufficient conditions obtained in Varga (1989), 14 

(1990) and (1992), for the control and observation of systems with invariant manifold. 15 

For the applications of these theorems see e.g. Kósa and Varga (1996), Scarelli and 16 

Varga (2002), López et al. (2004) and Varga (2008a).    17 

For the control and monitoring problems of density-dependent population systems, 18 

the corresponding mathematical tools can be found in Lee and Markus (1971);  19 

conditions for controllability and observability problems for different Lotka-Volterra 20 

type systems have been obtained e.g. in Varga et al. (2003), Gámez et al. (2008), López 21 

et al. (2007). A recent general overview of the different applications of mathematical 22 

systems theory in population biology is Varga (2008b). 23 

In the present paper ecological systems of non-Lotka-Volterra type will be 24 

considered, that form a trophic chain of type resource – producer – primary consumer, 25 

see e.g. Svirezhev and Logofet (1983), Yodzis (1989). Stability and observability results 26 

for such systems have been obtained in Shamandy (2005). We note that the monitoring 27 

of a somewhat different, four-level ecological interaction chain of type resource – 28 

producer – primary user – secondary consumer has been studied, applying the 29 

mathematical results on verticum type systems, published in Molnár (1987), (1988a-e), 30 

(1989), (1993), Molnár and Szigeti (1994).  31 

In Section 2, from Shamandy (2005), the model setup and basic conditions for the 32 

existence and stability of an equilibrium of the system are shortly recalled. Section 3 33 
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and 4 is the main body of the paper. In Section 3 we prove the trophic chain is locally 1 

controllable into the equilibrium in given time. We also show how to calculate a 2 

corresponding open-loop control, applying the toolbox developed for MatLab in Banga, 3 

et al. (2005) and Hirmajer et al. (2009). In Section 4, based on results of Rafikov et al. 4 

(2008), we construct a closed-loop (actually a linear feedback) control that steers the 5 

system into a desired equilibrium.  Section 5 is dedicated to the discussion of our 6 

results. Finally, in the Appendix we recall some basic concepts and results applied in the 7 

present paper.     8 

2. Description of the dynamic model  9 

For the presentation of our approach we consider a relatively simple food web, a 10 

trophic chain involving a resource, a plant and a herbivorous animal. In this section, 11 

from Shamandy (2005) we recall the dynamic model of a trophic chain of this type, see 12 

also Svirezhev and Logofet (1983), Jorgensen and Svirezhev (2004). For further details 13 

on trophic chains (and general food webs) we refer the reader to Yodzis (1989).   14 

The considered model describes how a resource moves through a trophic chain. 15 

A typical terrestrial trophic chain consists of  the following components: 16 

 resource, the 0th trophic level (solar energy or inorganic nutrient), 17 

which is incorporated by  18 

 a plant population, the 1st trophic level (producer),  19 

which transfers it to  20 

 a herbivorous animal population, the 2nd trophic level (primary consumer). 21 

We note that for a similar study a longer trophic chain can also be considered, where the 22 

herbivore can be consumed by a predator population, the 3rd trophic level (secondary 23 

consumer), which can be followed by top predator population (tertiary consumers). In 24 

the present paper, for technical simplicity, only trophic chains of the type resource – 25 

producer – primary consumer will be studied. According to the possible types of 0th 26 

level (energy or nutrient), two types of trophic chains will be considered: open chains 27 

(without recycling) and closed chains (with recycling). At the 0th trophic level, resource 28 

will be the common term for energy and nutrient. 29 

 Let us denote by 0x  the time-varying quantity of “free” resource present in the 30 

system, 1x  and 2x , in function of time, the biomass (or density) of the producer (species 31 

1) and the primary consumer (species 2), respectively. Let Q  be the resource supply 32 

considered constant in the model. Let 00 x  be the velocity at which a unit biomass of 33 
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species 1 consumes the resource, and it is assumed that this consumption increases the 1 

biomass of this species at rate 1k . A unit biomass of species 2 consumes the biomass of 2 

species 1 at velocity 1 1x , converting it into its own biomass at rate 2k . Both the plant 3 

and the animal populations are supposed to decrease exponentially in the absence of the 4 

resource and the other species, with respective rates of decrease (Malthus parameters) 5 

1m  and 2m .  6 

Recycling can also be included in the model: In a closed system the dead 7 

individuals of species 1 and 2 are recycled into free nutrient at respective rates 8 

10 1    and 10 2   , while for an open system (where there is no natural recycling) 9 

,01   02   holds. (If only one of the s- is positive, the system is called partially 10 

closed.) Then with model parameters  11 

0,,,, 2110 mmQ  ;  [,1,0[,  [;1,0], 2121  kk                        (2.1) 12 

the dynamic model for the trophic chain can be set up as follows: 13 

 2221111000 xmxmxxQx      (2.2) 14 

 )( 21001111 xxkmxx       (2.3) 15 

 )( 112222 xkmxx  .    (2.4) 16 

 17 
Let  function f  be defined in terms of the right-hand side of this system: 18 

 19 
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In Shamandy (2005), a necessary and sufficient condition has been obtained for 22 

the coexistence of the population system. The latter means that there exists a non-trivial 23 

ecological equilibrium x of dynamic system (2.2)-(2.4), where all components are 24 

present: system (2.2)-(2.4) has a unique equilibrium 0),,( *
2
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the resource supply is high enough, i.e. 26 
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and then the respective equilibrium values for the resource, plant and herbivore are 28 
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Throughout the paper condition (2.5) will be supposed. 4 

Remark 2.1.  For 01   the threshold 2Q  is lower than for 01  . Clearly, in the 5 

latter case the lack of recycling from species 1, a higher value of resource supply is 6 

necessary to produce the required positive equilibrium.   7 

Remark 2.2. It can be shown that, under the same condition the stable coexistence 8 

is also guaranteed, or in mathematical terms, this equilibrium *x  is asymptotically 9 

stable. In order to guarantee this stable coexistence *x , we shall suppose throughout the 10 

paper that condition (2.5) holds. 11 

Example 2.3. For an illustration, we consider system (2.2)-(2.4) with parameters  12 

 ;2.0:;1.0:;3.0:;10: 110  Q .5.0:;5.0:;4.0:;1.0:;3.0: 21212  kkmm   13 

Checking condition (2.5), we get 44.12  QQ , therefore  in this case the considered 14 

system (2.2)-(2.4) has a positive equilibrium )78.5,8,52.4(x calculated from 15 

(2.6)-(2.8), which is asymptotically stable (see Figure 1).   16 
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Figure 1. Some solutions of system (2.2)-(2.4) 

 1 

3. Open-loop control of the trophic chain into equilibrium in given time  2 

In this section we will deal with the following problem. Let us suppose that the 3 

system is deviated from its equilibrium, and we want to steer it back into equilibrium by 4 

changing certain model parameters into control variables. In mathematical terms this 5 

means that to the reference value of a model parameter (resource supply, recycling rate 6 

or Malthus parameter), a time-dependent control function is added. Open-loop control 7 

means that we want to determine in advance a control in function of time, such that the 8 

corresponding time-dependent state of the system reaches the original equilibrium in 9 

given time. (The closed-loop controls to be considered in the next section will depend 10 

on the current state of the system.) 11 

Case 1. Control of the resource supply 12 

Let us suppose first that the resource supply is controlled in function of time in the 13 

form )(tuQ  , considering control functions u defined on a fixed interval [0,T]. Then 14 

our model (2.2)-(2.4) takes the form 15 

2221111000 )( xmxmxxtuQx                 (3.1) 16 

)( 21001111 xxkmxx       (3.2) 17 

                                      )( 112222 xkmxx  .                            (3.3) 18 

Then (3.1)- (3.3) can be considered as a control system, and in terms of the notation of 19 

the Appendix, with  20 
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34  : RR F ,    
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Control system (3.1)-(3.3) takes the form 2 

))( ,( tuuxFx                                           (3.4) 3 

Obviously, to 0:u  and 0:)( tu   ]),0[( Tt , there corresponds the non-trivial 4 

ecological equilibrium x of dynamic system (2.2)-(2.4).  5 

Now we show that control system (3.4) is locally controllable to x  on ],0[ T .  6 

For the application of Theorem A.2 of the Appendix, let us calculate the Jacobians  7 





























00

0)0,(:

212

11101

22110010

1

xk

xxk

mmxx

xFDA





, 
















 

0

0

1

)0,(: 2 xFDB .  8 

Since  9 

0]||det[ 2

2

12
2

11
2

0
2   xxkkBAABB  , 10 

we get 3]||[ 2 BAABBrank , and applying Theorem A.2 we obtain the local 11 

controllability of system (3.1)-(3.3) into x  on interval ],0[ T .  12 

The obtained local controllability means that from nearby states, the system can 13 

be steered into the equilibrium applying an appropriate small control ],0[
0

TUu  . 14 

Now we proceed to the determination of such a control.  15 

Fix an initial state 0x  from a neighbourhood of local controllability of system 16 

(3.4), and for each control function u  small enough (i.e. ],0[
0

TUu  , see conditions of 17 

system (A1)-(A2) of the Appendix), let x  be the  solution of (3.4), defined on ],0[ T  18 

and corresponding to the initial value 0x . Then a control  uu   will steer initial state 19 

0x  into equilibrium x , if and only if it minimizes the functional  20 

2
)(:)(  xTxu . 21 

The above reasoning can be summarized in the following theorem: 22 

Theorem 3.1. For any parameter values (2.1), system (3.1)-(3.3) is locally 23 

controllable into equilibrium x  on interval ],0[ T , and an initial state 0x  will be steered 24 



8 

 

into x  by a control ],0[
0

TUu   if and only if the latter is a solution of the following 1 

optimal control problem: 2 

min)(:)(
2
 xTxu ,                                           (3.5) 3 

],0[
0

TUu  , 0)0( xx  ,                                                  (3.6) 4 

))( ,( tuuxFx   .                                                 (3.7) 5 

Remark 3.2. From the local controllability of the control system (3.4), we know 6 

that the optimal control problem (3.5)-(3.7) has at least one solution. 7 

 As a consequence of this theorem, for an effective calculation of an equilibrium 8 

control u , it is enough to solve the optimal control problem (3.5)-(3.7). To this end we 9 

can apply the toolbox developed for MatLab in Banga, et al. (2005) and Hirmajer et al. 10 

(2009). Next, using this toolbox we will illustrate the results of Theorem 3.1. 11 

Example 3.3. Let us consider system (3.1)-(3.3) with parameters of Example 2.3: 12 

 ;2.0:;1.0:;3.0:;10: 110  Q .5.0:;5.0:;4.0:;1.0:;3.0: 21212  kkmm    13 

Taking as initial condition )5,7,4(:0 x  and time interval T:=5, we apply the MatLab 14 

toolbox mentioned above. Figure 2a shows the solution u  of the optimal control 15 

problem, the corresponding solution x , ending at equilibrium )78.5,8,52.4(x  16 

calculated in Example 2.3. can be seen in Figure 2b.     17 

 18 

 

Figure 2a. Control function of system (3.1)-(3.3) for T=5, with  

initial value x(0)=(4,7,5) 

 19 
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 1 

 2 

We note that, since by Remark 2.2, for the uncontrolled system, x  is  asymptotically 3 

stable, the state would tend to x  , reaching it in “infinite time”, as seen in Figure 2.c. 4 

By our method the system state is steered into x   in given finite time.   5 

  

Figure 2c. Solution of system (2.2)-(2.4) for T=5, with initial 

value x(0)=(4,7,5) 

 6 

Case 2. Control of a recycle rate 7 

For the equilibrium control of the trophic chain, another possibility is to introduce 8 

the control in one of the recycling rates, e.g. 1 .  In this case the controlled system is of 9 

the form 10 

2221111000 ))(( xmxmtuxxQx           (3.8) 11 

 

Figure 2b. Solutions of system (3.1)-(3.3) for T=5, with initial 

value x(0)=(4,7,5) 
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 )( 21001111 xxkmxx         (3.9) 1 

 )( 112222 xkmxx  .    (3.10) 2 

Proceeding similarly to Case 1, with definition  3 
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control system (3.8)-(3.10) takes the form 5 

))( ,( tuuxFx   . 6 

The linearization process results in the same matrix A  as in Case 1, but in a different  7 
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Now 9 
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2
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2
0

2  xxmkkBAABB  , 10 

therefore 3]||[ 2 BAABBrank , and hence without any further assumption on the 11 

model parameters (2.1) Theorem A.2 implies local controllability of system (3.8)-(3.10) 12 

into x  on interval ],0[ T .  13 

Case 3. Changing Malthus parameter into control variable 14 

For this case, as example, let us consider the control of the birth rate of the plant 15 

species.  The obtained control system is 16 

2221111000 xmxmxxQx        17 

   ))(( 21001111 xxktumxx        18 

 )( 112222 xkmxx  .                    19 

Following the reasoning of the previous cases, matrix A again is the same as in 20 

Case 1, whereas for B  we get 21 
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Since condition  0011 xm   implies 23 
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and hence 3]||[ 2 BAABBrank , applying again Theorem A.2 of the Appendix, we 1 

obtain the following sufficient condition for the equilibrium control:  2 

Theorem 3.4. If the recycling rate of the plant is small enough (
1

00
1 m

x 




 ), then 3 

the trophic chain can be controlled to equilibrium, and an open-loop control can be 4 

found by solving an optimal control problem of the form (3.5)-(3.7).  5 

 6 

4. Closed-loop control to a new equilibrium  7 

Let us suppose that in an ecosystem over the past period an undesired stationary 8 

state has been formed. Then the objective of ecosystem management may be to control 9 

the system to a state where a given state component has a desired value, and keep it 10 

there in equilibrium, applying a constant control. Actually, in this way a controlled 11 

regime shift is realized.    12 

To this end we will find a closed-loop (actually a linear feedback) control that 13 

asymptotically steers the system state. Unlike the open-loop control, where the 14 

intervention is calculated on beforehand, closed loop control means that at every 15 

moment the control to be applied is calculated from the current state of the system. For 16 

the construction we will follow the optimal control methodology of Rafikov et al. 17 

(2008), recalled in the Appendix.  18 

The control of the trophic chain can be realized at different trophic levels. Below we 19 

present two possibilities: intervention either on the herbivore or on the plant, by adding 20 

or eliminating individuals of these populations.  21 

 22 

4.1. Steering the plant population to a given level by controlling the herbivore 23 

Let us suppose that we want to achieve a desired level *
dx1  of the plant species and 24 

keep it there in the long run, by means of changing the presence of the herbivore animal. 25 

Formally, let us consider the following control system 26 
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where U is a continuous control function. Given *
dx1 , by solving system (4.2) below, we 28 

find  an equilibrium ),,( 210
*

d
*
d

*
d

*
d xxxx   and a corresponding constant control R*u  29 

that would keep system (4.1) in equilibrium *
dx : 30 
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Then, from (4.1) and (4.2), for the new variables,  2 
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d uUu,xxy  ,  3 

we easily get the error system: 4 
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where matrices Â  and B̂  and the vector )(yq  are defined as follows: 6 
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 8 

Now, in order to apply Theorem A.3 of Rafikov et al. (2008) (see Appendix), it is 9 

enough to find positive definite matrices 33 xS,R,P R , P  and S  symmetric, such 10 

that P  satisfies the matrix Riccati equation 11 

0ˆˆˆˆ 1   SPBRBPPAAP TT ,                                     (4.5) 12 

and function 13 

 )( )( )( )( 3R yyPqyPyyqSyy:yl TTT             (4.6) 14 

is positive definite. 15 

At this point we will need the following lemma. 16 

Lemma 4.1. For any matrix 33 xP R  and  17 

,S
















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010

001
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



















2112

2111001

100

:)(

yyk

yyyyk

yy

yq





, 18 

function l defined in (4.6) attains a strict local minimum at the origin (0,0,0).  19 

Proof.  In the considered case, for all )( 3Ry  we have  20 

 2
2132231130

2
2121121110

2
0 ))(()))((1()( yypppyyppkpyyl    21 

           )))(2(1( 2322322212120
2
1 yppkpypy   22 

            ))))((())((( 231322311112102213113212110 ypppkpypypppkpyy   , 23 

and its first order partial derivatives are 24 

 22131132121112112111000 ))((()))((1(2)( ypppkpyyppkpyylD   25 
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                 ))))((( 23132231111210 ypppkpyp   1 

 2
23223113010210

2
0211211101 ))(())(()( yppppypyppkpylD   2 

          22131132121023223222121201 ))((()))2(1(2 ypppkpyyppkpypy   3 

               )))((( 23132231111210 ypppkpyp   4 

 103223111031132211212 )))(())((()( yyppkpppkppylD      5 

               21322311302
2
132232221120 ))((22)))(2(( yypppyyppkpp   . 6 

Obviously 7 

0)0()0()0( 210  lDlDlD , 8 

and for the Hessian of  l  at the origin we have  9 


















200

020

002

(0)Hl , 10 

which is obviously positive definite, implying that the origin is a strict local minimum 11 

point of function l .■ 12 

Now, from the above reasoning, combining Theorem A.3 with Corollary A.6 of 13 

Appendix, we obtain the following theorem. 14 

Theorem 4.2. Suppose that there exist positive definite matrices 33 xR,P R , P  15 

symmetric, such that with matrices B̂,Â   defined in (4.4), P is a solution of the matrix  16 

Riccati equation (4.5). Then the linear feedback  17 

)(:)( 31 R  yPyB̂Ryu T    (4.7) 18 

asymptotically steers any initial state )0(y  into zero. In particular, there exists a 19 

neighbourhood V of zero in 3R  such that for all initial value Vx )0( and control 20 

uuU   , for the solution x of system (4.1) we have 
  dxxlim . 21 

 Let us consider now an illustrative example.  22 

Example 4.3. Let us start from the uncontrolled system (2.2)-(2.4) with the same 23 

model parameters as in Example 2.3. As we have seen, system (2.2)-(2.4) has a positive 24 

equilibrium )7858524( .,,.x*  , which is asymptotically stable. 25 

Let us assume that we want to steer the biomass level to a desired level 41 
dx , 26 

intervening on the herbivore animal. From system of algebraic equations (4.2), we 27 

calculate *
dx0 , *

dx2  and *u , obtaining 73.2 ),65.13,4,76.9( **  uxd . 28 
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For matrices Â  and B̂  defined in (4.4) we have 1 
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and choosing 3 

 1:
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: 



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








 R,S , 4 

we calculate matrix P from the Riccati equation (4.5) using the Matlab 7.6 command 5 

LQR, obtaining 6 






















9.023.005.0

23.059.212.0

05.012.047.0

P . 7 

Obviously P and Q are positive definite symmetric matrices. Now, for the auxiliary 8 
function l we obtain  9 
 10 

2
21

2
22

2
121101

2
0 061.0)55.01()19.036.0()14.01()( yyyyyyyyyyyyl  , 11 

and its local definiteness is illustrated in Figure 3.  12 
 13 

  

Section y0=0 Section y1=0 Section y2= 0 

Figure 3. 3D sections of  l at the origin 

 14 

Applying Theorem 4.2, the feedback control 15 
 16 

210 90230050)( y.y.y.yu   17 

asymptotically steers the error system (4.3) to 0, implying that for the solution  x  of 18 

system (4.1) with the closed-loop control )(:)( *
dxxuuxU   , we have 19 

)65134769(lim .,,.xx d  
 , as shown in Figure 4.   20 
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Figure 4. Solution of system (4.1), with parameters of  Example 2.3,  

and initial value x(0)=x*=(4.52, 8, 5.78)  

 1 

4.2. Steering the animal population by controlling the plant  2 

Let us consider now the problem which in certain sense is the opposite to the 3 

previous one. We want to achieve a desired level *
dx2  of the animal population and keep 4 

it there in a stationary regime, means of changing the presence of the plant species.  5 

 The corresponding control system then is 6 

)(

)(
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   (4.8) 7 

where U is again, a continuous control function. We suppose that to a constant control 8 

Ru * , there corresponds a desired state 
dx , i.e., 9 

0)(

0)(

0
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222111100
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*
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*
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*
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xmxmxxQ


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

        (4.9) 10 

Reasoning in a way analogous to the previous case, applying Theorem 4.2 we can 11 

find an appropriate control that steers the system into the desired new equilibrium state, 12 

which can be seen in the following illustrative example.  13 

 Example 4.4. We consider the same model parameters of Examples 2.3 and 4.3 14 

that imply the positive asymptotically stable equilibrium )7858524( .,,.x  . Now, we 15 

intervene on the plant species in order to steer the herbivore population to a higher level, 16 
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102 
dx . From system (4.9) we calculate the constant control u , and the rest of 1 

coordinates corresponding to the desired state, obtaining 12.3;)10,8,73.4( **  uxd . 2 

Matrices Â  and B̂  in this case are 3 
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ˆ BA . 4 

Choosing S and R the same as in Example 4.3 and calculating matrix P from the 5 

corresponding Riccati equation we obtain 6 


















74.249.014.0

49.093.022.0

14.022.031.0

P . 7 

Now, from formula (4.7) the linear feedback for the error system is 8 

210 490930220(y) y.y.y.u  , 9 

and hence, for system (4.8) the required closed-loop )(:)( *
dxxuuxU    can be 10 

obtained. The resulting solution of the controlled system can be seen in Figure 5.  11 

 
Figure 5. Solution of system (4.8) with parameters of  Example 2.3,  

and initial value x(0)=x*=(4.52, 8, 5.78)   

 12 

4. Discussion  13 

In the paper a control-theoretic methodology has been proposed for a particular tasks 14 

of ecosystem management. We have shown how the technique of optimal control 15 

theory can be applied to deal with qualitative properties like open- or closed-loop 16 

equilibrium control of ecological systems.  For the different tasks we used different 17 
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approaches: the constructed open-loop control substitutes certain model parameter, 1 

while the closed-loop control necessarily acts on the state variables.  2 

In Petrosjan and Zakharov (1997) the controllability of predator-prey was already 3 

considered, but only with constant control. In Varga (2008b), sufficient condition it was 4 

obtained for a Lotka-Volterra system to locally controllable into equilibrium, but no 5 

method was proposed to calculate the existing equilibrium control. Concerning the 6 

open-loop equilibrium control, the novelty of our paper is that for the considered trophic 7 

chain, an efficient method for the calculation of the equilibrium control is proposed, by 8 

setting up and solving an optimal control problem. 9 

In Rafikov et al. (2008), an optimal feedback control was used in order to steer a 10 

Lotka-Volterra type predator-prey system asymptotically into a given equilibrium, in 11 

the context of biological pest control. We have shown, instead, that a similar approach 12 

can be also applied to find a closed-loop equilibrium control of a non-Lotka-Volterra 13 

type trophic chain into a new equilibrium, realizing a controlled regime shift. 14 

In the present paper the proposed methodology has been used for the control of 15 

simple trophic chain. However, it can be also applied to different types of  multi-16 

species dynamic population models, see e.g. Yodzis (1989), Cressman et al. (2001), 17 

Cressman and Garay (2003), (2006), (2009), Garay et al. (2003), Cressman et al. 18 

(2004), Garay (2002), (2009).   19 
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Appendix 32 

Controllability of nonlinear systems 33 
First, from Lee and Markus (1971), we recall some concepts and a theorem of nonlinear 34 

control theory. Given ,, Nsm  let msmF RRR :  be a continuously differentiable 35 

function. For a reference control value su R  , let  mx R be such that  36 

0),(  uxF . For technical reason we shall need a rather general class of controls. Let 37 

us fix a time interval ],0[ T , and for each R  define the class of essentially bounded 38 

 - controls 39 

 ],0[)(|],0[:],0[ TteveryalmostfortuTLuTU s 
  . 40 

Then it can be shown that there exists R0  such that for all ],0[
0

TUu   and 41 

mx R0  with 0
0  xx  the initial value problem 42 
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]),0[..())(,)(()( TteafortuutxFtx     (A.1) 1 

0)0( xx         (A.2) 2 

has a unique solution. We notice that x  is an equilibrium state for the zero-control 3 

system. 4 

Definition A.1. Control system (A.1)-(A.2) is said to be locally controllable to x  5 

on ],0[ T , if there exists ],0] 0   such that for all 0x  from the   -neighbourhood of 6 

x , there is a control ],0[ TUu   that controls the initial state 0x  to equilibrium x , 7 

i.e. for the solution x of the initial value problem (A.1)–(A.2), equality x(T)= x  holds. 8 

Let us linearize system (A.1)-(A.2) around ),(  ux , introducing the corresponding 9 

Jacobians 10 

    ),(: 1
 uxFDA ,   ),(: 2

 uxFDB .  11 

Then we have the following sufficient condition for local controllability:  12 

Theorem A.2 (Lee and Markus, 1971)  13 

If   nBAABBrang n 1...  then system (A.1)-(A.2) is locally controllable to x  on 14 

],0[ T . 15 

Closed-loop asymptotic control into equilibrium in nonlinear systems   16 

Now, from Rafikov et al. (2008) we recall the construction of a linear closed-loop 17 

control that asymptotically steers the system into a desired equilibrium. For given  18 

rxnnxn BArn RRN  ˆ,ˆ,,  and continuously differentiable function nng RR : , 19 

consider the control system 20 

                                 UBxgxAx ˆ)(ˆ  ,                               (A.3) 21 

where U  is a continuous control function. Assume that to a constant control ru R , 22 

there corresponds an equilibrium state *x , i.e., 23 

                             .0ˆ)(ˆ   uBxgxA                                (A.4) 24 

Then, from (A.3) and (A.4), with substitutions 25 

  uUuxxy :;:  26 

we obtain 27 

   uByqyAy ˆ)(ˆ  ,         where   )()(:)(   xgxygyq .           (A.5) 28 

Below a feedback control will be given which asymptotically steers system (A.5) into 29 

the zero equilibrium. 30 
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Theorem A.3 (Rafikov et al. 2008). If there exist positive definite matrices 1 

nxnSRP R,, , P  and S  symmetric, such that the function 2 

)()()(:)( nTTT yyPqyPyyqSyyyl R  3 

is positive definite, and P  satisfies the equation 4 

0ˆˆˆˆ 1   SPBRBPPAAP TT . 5 

Then the linear feedback  6 

)(ˆ)( 1 nT yPyBRyu R     (A.6) 7 

asymptotically steers any initial state )0(y  into zero. 8 

Remark A.4. The statement 0lim  y  is obviously equivalent to 
  xxlim . 9 

Remark A.5. According to Rafikov et al. 2008, the feedback control (A.6) also 10 

minimizes the functional 11 





0

))](())(())(([:)( dttyRutyutylyΙ T , 12 

however, we will not use this statement. 13 

Corollary A.6. (Gámez et al. 2009) Using the notation of the previous Theorem 14 

A.3, let us suppose that function l is locally positive definite. Then there exists a 15 

neighbourhood V of zero in nR  such that for all initial value Vx )0( , for the solution x 16 

of system (A.6) we have 
  xxlim . 17 


