
An index based load balancer to enhance transactional
application servers' QoS

J.A. Alvarez-Bermejo, J. Roca-Piera

Dpt. Arquitectura de Computadores y Electrónica
Campus La Cañada de San Urbano

Universidad de Almería.
Almería. España

Abstract— The Web is the preferred interface for the new

generation of applications. Web services are an ubiquitous

concept for both, developers and managers. These Web

applications require distribution systems of web requests that

allow and support the dynamism of these environments, to

provide service availability and resource usage, commonly

heterogeneous. Web services provide an entry point to the Web

application business logic. Therefore, the design of appropriate

load balancing strategies, taking into account the dynamic

nature of the application servers' activity, is essential. In this

work we present a load balancing policy and its integration in-

between static and dynamic layers of any web application that

uses application servers. The strategy gets the status report of

each application server, used to later distribute web requests.

Results that show how the strategy succeed are presented.

Keywords- QoS; web applications; load balancing; application

servers.

I. INTRODUCTION

A number of services are now on the Web, and the number
raises in a continuing trend. The Web is not anymore the unique
reason for an application to be used. Many other things should
come into consideration, such as the user experience. The Web
infrastructure is turning into a determining factor, therefore,
corporations try to design high availability and fault tolerant
services [1] making it necessary to provide the applications with
strategies to offer the fastest path to reach the service provided
[2], this has a two-fold consequence: clients get what they need
when they need it (user experience), corporations' popularity
climb the ranks due to their efficiency. The need of efficient web
load balancing strategies is a direct drawback. These load
balancing strategies must deal with a heterogeneous environment,
where the servers and their workloads do not follow any strict
patterns and are submitted to an unpredictable flow of requests.

High availability services [2], [3] reduce the response time
when servers are overloaded or suffering from networking
problems. These services should therefore make use of load
balancing strategies to derive requests to alternative servers or
networks. When referring to transactions that a web service
might serve, then it would be ideal to have replicated application
servers in order to make an efficient distribution of the workload.
As this is unaffordable for a number of applications' owners, then
policies to optimize the usage of existing servers (or event virtual
servers) is advisable. High availability is even harder to ensure
when the network that provides the services is the Internet. Thus
when defining high availability and high throughput in a Web
system where the Internet is an important component, there is no

other option than focusing on the server's side availability and
throughput.

The core side of a web application (built on the service
oriented architecture) is the web service. The web service is
related to some kind of computation that, usually, is wrapped into
a transaction. There exist many solutions to improve the Quality
of Service (QoS) of the web services, such as the one described
in [23]. Our approach is not on the sequence of web services but
on providing them the best of the executing scenarios available
with the minimum hardware duplication as possible, making it a
portable solution for a wide variety of applications. QoS must be
understood as an issue where Load Balancing plays an important
role. The most popular Load Balancing strategy is based on the
number of requests submitted to each server. In contrast we show
how a load balancing strategy integrated into the application
server, considering factors such as the number of busy threads, or
the fact that this load balancer is transparent to the business logic,
improves different performance parameters.

This work shows how transaction's response times improves

when monitoring the application server's health and reacting
accordingly.

A. HPC Transactional Web Applications.

The RojaDirecta saga should make clear why the software
industry -and the content industry- is looking for new
enforcement tools [24]. When the Internet was not so
popular, sharing licenses was hard and the methods
employed to protect software were merely based in built-in
passwords. As the Internet began to be used as a medium to
distribute licensed software (p2p networks are the proof), the
licensing protection mechanism began to be weaker. As the
Internet acquired more relevance, protecting licenses and
software became harder. Software is illegally cracked and
then redistributed; in a high percentage malware is included
in the distributed packages. As a solution, many
authentication services were moved to Internet servers -and
implemented as web services-, using licensed software
means that it might be necessary establishing a first
connection to a server in order to authenticate the software
and let it run.
Implementing a license protection mechanism is a hot spot in
software factories (and when done it is a high computational
demanding task) like the antivirus industry. As an example,
an antivirus need a license to retrieve (as fast as possible)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143456216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

updated virus signatures databases in order to keep the
system protected. Antivirus companies invest so much effort
in building such databases. Duplicated license harness this
useful effort. Checking the concurrent usage of licenses that
would trigger the alarm system, is a costly operation and the
requests should check the application servers' health to
schedule the transaction in the best possible scenario. An
example, see fig. 0, of a Web Service composed by several
transactions operating concurrently with the streaming of
multimedia content to preserve user experience.

Figure 0. Transactional Licensing Watchdog WebService

Figure 0 shows an implementation of a licensing protection
mechanism, used to provide multimedia content through the
Internet, when a user logs, the transaction is started and the
protocol is ignited to avoid illegal usage of licenses. Obviously
as the fast the protocol executes, the sooner we can provide
multimedia content to the legally validated user. In the
meanwhile, for the sake of the user experience, content should
be provided with low quality. To avoid the streaming of too
much content to an illegal validated user, the protocol should
run in the best and healthy application server. A more detailed
description on the cryptographic protocol used to detect illegal
licenses can be found in [25]. We propose in this paper a
method and a feasible architecture to provide throughput when
accessing services through the Internet that may need using
licenses that cannot be replicated, duplicated, shared, or even
cracked. This paper is structured as follows; section 2 is
devoted to giving a description of the current transactions logic
infrastructure. Section 3 underlines the needs raised within the
former infrastructure description; a solution proposal is
therefore sketched. Section 4 gathers results from the solution
proposed and are evaluated against several metrics considered
of interest to what we are measuring and conclusions are
exposed at the end of the section.

II. A THREE LAYER ARCHITECTURE FOR SERVICE-
ORIENTED WEB APPLICATIONS

The most commonly used architecture to build a web service-

oriented application is that in which three layers are used in a
way that the Web server is the first layer, the middle layer is that
where the dynamic engines (application servers) are present (i.e.
JSP, ASP, PHP,..) this layer is commonly called the business
layer. The back-end layer is, obviously, the data storage layer.

Layers are integrated to form a whole, each layer serves to
each other as a compliment to fulfil the web request: the client
sends a request to the Web server (Apache web server in our
case). The Web server formats this request using the second
layer's dynamic logic, which in turn may have used access to data
by interacting with the third layer. So for the sake of simplicity,
stating the difference among web server and application server
(see reference [4]) is as simple as indicating that web servers only
act as a mere intermediary among client and the information that
is being requested. The Application server is the logic used by
the web server to build a response for each request from the
client side, the second layer is its advisable homeland. One of
the most popular and widely used technologies for this second
layer (application servers) is Java Enterprise Edition, aka J2EE
[4], [5]. Two important components of a J2EE application server
are:

• Servlet Engine: for providing an architecture independent
environment to let the dynamic execution entities (java
server pages) prepare, collect, results that are to be sent to
the Web Server.

• Entreprise Bean Engine: sandbox where business logic
procedures are executed in the context of a JSP.

Apache and JBoss [5] were selected as the target platform

to test our load balancing proposal due to their open source
nature and their wide usage in the corporation environment.
Fig. 2 shows how these two components can be
accommodated to fit the three layer model cited above.

Figure 1. Specific Architecture using the selected components.

As can be seen, Fig. 2 states that as a solution to balance the

load in a first stage, corporations tend to use hardware based
load balancers. This way all the clients that are connected at that
time to the web servers are evenly redirected to servers that will
serve their requests. But, not all the requests of a client trigger
the same computational needs from the back-end. These load
balancers know nothing or very little about the conditions of the
computer that hosts the Apache or JBoss servers, or about the
thermal conditions under which the server is running. Therefore
a second load balancer layer may be advisable to prevent the

system to downgrade. It is possible to install load balancers in
the JBoss side [6], as well as in Apache application servers [7],
[8] by using a special module (namely mod_jk) provided within
Apache, in fact this module establishes several predefined load
balancing policies to choose from which JBoss will be
responsible for the computation associated to a client's request.
The predefined policies are:

• Round robin: the next JBoss to be used is the one that has
the oldest request. . Not advisable, see [9]

• Bytes sent: The next to be used is the one that is sending
fewer bytes through the net. Useful when the network is a
handicap.

• Active sessions: The selection is based on the one with
the smallest number of active sessions; this is useful
when the memory associated with a session is a bottle
neck.

The usage of the load balancing policies into the mod_jk
module is effective only when there is no session associated to
the current request, in this case, the request can be scheduled to
run in any active JBoss [10].

Currently none of the load balancing policies predefined in
Apache can be adapted to serve real applications. The reasons
are:

• Network traffic: this factor can be ignored due to the
current network technologies, bandwidth and sharing
issues provided by the communication protocols.

• Request number: only useful for homogeneous
environments.

• Active sessions: 64-bits architectures and current
memory technologies reduce this risk.

•

III. OUR APPROACH for LOAD BALANCING

The most used policy is the one based on the number of

requests. The profile of an ideal load balancing policy that
overcomes the cited issues can be found in [11] and in [12]. The
load balancing strategy that is proposed in this paper considers
how the application server (JBoss in this particular case) behaves
with respect to the characteristics exposed in [11], in contrast to
studies where load balancers are integrated into the JBoss [9],
considering factors such as the number of busy threads, or the
fact that this load balancer is transparent to the business logic.
Our strategy is implemented in the core of the Apache web server
by means of the mod_jk module. Results are compared with the
conventional strategy based on the number of requests.

 Fig. 2 shows the case of how our strategy can be
used to fairly distribute requests between the JBoss servers.

Figure 2. Sample case of the strategy developed

As can be seen in Fig. 2, if the conventional strategy is used,
five requests are redirected to each one of the two active JBoss
servers, of course, the balancer is not taking into consideration
that each server may not be solving the same number of tasks.
The original module distributes the requests equally, but JBoss2
is overloaded, it only hosts 3 idle threads and its response time is
therefore high. JBoss1 is idle and therefore more request should
be redirected to it, as our approach does, getting a higher
average throughput.

Consequently, if a strategy is able to inspect the current

resource usage of any of the application servers then it could be
possible to make a better partition of the work. For this purpose
we have defined several metrics:

• Busy threads: any JBoss server uses a pool of threads to
execute every incoming request. If there are no idle
threads for an incoming request, then the server will
reject it, downgrading the performance of the whole
system. We set the risk threshold to 80% to enter an
overload situation.

• Busy memory: as we are running in a Java environment,
the garbage collector is our cornerstone. When put into
action, every component is stopped to allow a clean
reorganization of the memory. Reaching a memory
occupation of 90% would trigger the garbage collector
and this would cause a performance issue.

• Average CPU load: this value is related to the physical
processor where the JBoss is being run (not the virtual
machine). This value, taken as an average, can give us a
snapshot of what the situation was in the past million
cycles, so making a forecast for the upcoming next
thousand cycles may not be a difficult task. If we
consider the number of installed cores as a reference to
understand this value, then a value equal to the number of
cores means 100% processor usage, which is not bad.
Below this point may indicate under utilization, over this
point would mean overload; this is a situation that we
should avoid. We may consider that an average usage of
75-80% of the computing capabilities of the processor is
a good watermark for the JBoss’ health.

Our strategy tries to load balance the requests maintaining a
trade between resources and system’s stability. So, once all the
values are evaluated, the strategy decides the percentage of
requests that can be redirected to the JBoss. This load balancing
procedure is based on the classical procedure that uses the
number of requests [10], but it was improved to consider, also,
the status of the JBoss servers that are under its control. This
procedure ensures that the load balancer is acting properly and
preserving the following principles:

• Dynamic, the percentage of requests is modified as
soon as the JBoss status changes, which is advisable
[12].

• Automatic, no human interaction is needed.
• Scalable, will not introduce any overhead into the

system.

• Safe, no vulnerabilities may appear as a consequence of
mod_jk.

• Justified, system administrators must check its
behaviour through logs.

Our strategy, clearly, needs two differentiated components:

one for building a status report for every JBoss, another for
changing the decisions in the mod_jk side. To implement this we
have built a system with three differentiated components:

• Standard J2EE Web component [13], [14]: integrated into
the JBoss [15] server to collect performance and status
information such as the ratio of threads in use versus
runnable threads. This information is calculated as the
HTTP request designed for it, is received. This
component is also designed to change these values for
test purposes.

• Shell scripting components[16], [17]: it runs beside the
JBoss instance and gathers all the necessary information
to build an index we named JBoss availability Index,
composed by values, such as ratio of occupied/free
threads –http request-, percentage of used memory after
last garbage collector activity and average CPU load
(obtained through system calls [18]). This component
builds the availability index and presents it to the Apache
module. This process runs independently from the JBoss
address space, a global view of the machine is therefore
available. This index must be calculated in the back-end
to make this information available to each Apache server
that might redirect requests to it, so it is calculated only
once, periodically, and made available for every Apache
server. Back-ends, also usually have more computing
power.

• Apache module [19],[20]: analyze the information from
the other two components and creates the percentage of
requests that can be redirected and processed to each
JBoss, previous studies such as [21] explore this method,
our approach adds the dynamic status report evaluation
gathered from the JBoss application servers.

These three components are coordinated to maintain a fair

workload on every JBoss server. Fig. 4 shows how these three
components coordinate and work to achieve this goal.

Figure 3. Global interaction between the three developed components.

The availability index is calculated periodically to define
an almost real status sketch of the JBoss servers. In order to
build this index it is necessary to set up three elements:
metrics –cited above- , thresholds –one per metric- and
penalties –values that are used to correct the availability
index when the thresholds are overcome-. Table I shows
metrics, thresholds and penalties to build our availability
index.

TABLE I. HOW TO BUILD THE AVAILABILITY ÍNDEX.

Metrics:
o Mt: ratio (per thousand) of busy / idle threads by AJP1.3 (port 8009).
o Mm: % used memory in the JVM alter “garbage collector” operation
o Mc: average load of the processor during the last minute.

Thresholds: To define the transition from a healthy state to a risky state.

o Ttw: Threshold related to threads in use for "warning" state. Ttw = 800.
o Ttc: Threshold (threads in use) for "critical" state. Ttc = 900
o Tmw: Memory threshold for "warning" state. Tmw = 70
o Tmc: Memory threshold for "critical" state : Tmc = 85
o Tcw: average CPU load threshold for "warning" Tcw = 6
o Tcc: average CPU load threshold for "critical" Tcc = 12

Penalties:
o Pt: Penalty for excessive threads in use.

Pt = { 0 (Mt < Ttw); 2 (Ttw <= Mt < Ttc); 5 (Mt >= Ttc)
o Pm: Penalty for excessive memory used after a Garbage Collector

operation.
Pm = { 0 (Mm < Tmw); 2 (Tmw <= Mm < Tmc); 5 (Mm >= Tmc)

o Pc: Penalty for exceeding the average load
Pc = { 0 (Mc < Tcw); 2 (Tcw <= Mc < Tcc); 5 (Mc >= Tcc)

We define a one digit based availability Index (0 <= I <= 9)

for each running instance of JBoss application server, composed

as follows

 9-(Pt+Pm+Pc) if (Pt+Pm+Pc <= 9)
I =
 0 if (Pt+Pm+Pc > 9)

Once the environment is defined and the metrics are exposed

together with the method used to compose the availability index,
we run tests to verify the performance and efficiency achieved,
Fig. 5 shows the tested configurations used.

 Although the strategy can be ported to any application which
complies with a three tier architecture and is based in a
transactional model, our approach was tested in the context of
the cryptographic web service, that build transactions for each
customer for authentication purposes. Although the operations
are against a huge data matrix, they are all the same. We
configured three different sets of workload suites to test it, as
depicted in section IV.

IV. RESULTS AND CONCLUSIONS

To evaluate the performance of the web server and
application servers, we used JMeter [22], a tool from the Apache
foundation to monitor performance. Tests are launched in pairs,
we launch a workload with the original mod_jk and after that we
repeat the workload with mod_jk (servers are restarted to avoid
warm caches and index contamination due to CPU average
variations). Table II shows the resources available for the tests.

TABLE II. CONFIGURATION AND RESOURCES

JBoss configuration table

Physical
Memory

JVM
Memory

Tomcat
Threads

1536 MB 1280 MB 200

ht
tp
://
10
.0
.0
.4
5:
82
/jk
st
at
us
/

http:
//10.

0.0.4
5:81

/Info
JBos

s/Inf
o?pe

ticion
=Ca

rga&
Itera

cione
s=60

0

AJP1.3 port 8009

AJP1.3 port 8009

http://10.0.0.53:8080/indice.dat

mod_jk module

IP: 10.0.0.45
Apache http://10.0.0.51:8080/indice.dathttp://10.0.0.52:8080/indice.dat

Virtual

machine apache45

A
JP
1.3 port 8009

Student

Watch jkstatus

information web

JMeter client

Meassures thoughput

running load

Physical

machine 1

Physical

machine 2

Physical

machine 3

Agent
JBoss

Virtual machine jboss52

IP: 10.0.0.52

J2EE application

index.dat

Agent
JBoss

Virtual machine jboss51

IP: 10.0.0.51

J2EE application

index.dat

Agent
JBoss

Virtual machine jboss53

IP: 10.0.0.53

J2EE application

index.dat

Figure 4. Configuration used to simulate a real application scheme.

Each workload has three configurations:

• Average workload, which lasts from five to ten

minutes. Normal to high client concurrence (60 clients)
and from 120 to 300 requests per client.

• High workload: moderate duration (ten to fifteen
minutes). High client concurrence (80).

• Durable workload: which lasts from twenty to thirty-
five minutes, 80 clients and 300-600 requests/client.

Fig. 6 graphically shows the evolution of each availability

index for durable workload test, using three JBoss servers.

Figure 5. Availability Index during the test

If the evolution of the application servers is analyzed, using
the data plotted in Fig. 6, it can be said that JBoss1 was the best
performing server (best average and low variance). JBoss2 had a
similar index as JBoss1 but its high variance indicates that it
suffered very different periods of load. JBoss3 experienced the
worst I index but the best variance and therefore the best
stability.

A. Metrics and their values gathered during the tests

This subsection will show the metrics gathered for each test.
Results show that our method performs better than the original
method. We have collected values for performance, throughput,
average time and maximum time for solving a request.

Table III shows the configurations used in the system for each
type of workload defined for the tests. Table IV and table V,
contain the results obtained from the tests launched using two
JBoss servers and three JBoss servers respectively.

TABLE III. CONFIGURATION PARAMETERS USED FOR THE TESTS

Configuration parameters for the tests
Average workload

Servers Number of

concurrent clients

Requests per

Client
Total requests

2 60 120 7200
3 60 300 18000

High workload

Servers
Number of

concurrent clients

Requests per

Client
Total requests

2 80 120 9600
3 80 300 24000

Durable workload

Servers
Number of

concurrent clients

Requests per

Client
Total requests

2 80 300 24000
3 80 600 48000

TABLE IV. METRICS OBTAINED FOR TWO JBOSS SERVERS.

Average workload
Load Bal.

Strategy
Performance

(sec)

Throughput

(requests/sec)

Average

time/request

Max. T./

request

90%

TimeLine

Original 402 17,9 3163 26062 9992
New 378 19,2 2951 18968 8362

High workload
Load Bal.

Strategy
Performance

(sec)

Throughput

(requests/sec)

Average

time/request

Max. T./

request

90%

TimeLine

Original 550 17,5 4366 26661 12682
New 500 19,2 3912 30774 10890

Durable workload

Load Bal.

Strategy

Performance

(sec)

Throughput

(requests/sec)

Average

time/request

Max. T./

request

90%

TimeLine

Original 1368 17,5 4462 30334 16939
New 1150 20,9 3712 26042 10043

The performance measurement is related to the number of

seconds in solving (from start to end) a request. Throughput is
related to the number of requests solved per second; this metric is
useful in tracking the server's behaviour when submitted to load
peaks. The average time per request is that related to the average
of the times for all the requests during a workload test; from each
workload we picked the request that lasted longest and kept this
time as the maximum time (useful for tuning purposes and
defining timeout intervals). We also show in 90% TimeLine
column, the maximum time reached when we consider the 90%
of the values with less dispersion (ignoring values whose
dispersion is high).

TABLE V. METRICS OBTAINED FROM THREE JBOSS SERVERS.

Average workload

Load Bal.

Strategy

Performance

(sec)

Throughput

(requests/sec)

Average

time/request

Max. T./

request

90%

TimeLine

Original 622 29 1929 21216 7191
New 557 32,3 1736 18873 5907

High workload

Load Bal.

Strategy

Performance

(sec)

Throughput

(requests/sec)

Average

time

/request

Max. T./

request

90%

TimeLine

Original 909 26,4 2905 27575 10519
New 789 30,5 2515 29840 8546

Durable workload

Load Bal.

Strategy

Performance

(sec)

Throughput

(requests/sec)

Average

time

/request

Max. T./

request

90%

TimeLine

Original 1898 25,3 3042 101277 10266
New 1403 34,2 2067 62224 6173

We can see in Table VI and Fig. 7, using the strategy we

propose, remarkable improvements in performance. The tests
show improvements of 35% for durable workloads. Throughput
also follows the same trend, improving when the workload is
incremented to high workload, we can see that we even obtain
improvements when the workload is upgraded to a durable
workload (maintaining the same number of concurrent clients),
this is accomplished by doubling the number of requests per
client. The improvements are more remarkable the longer the

test is being run. The longer the workload, the lower overhead
we reported by the proposed method.

The relative improvement obtained gathering all metrics
obtained, is analyzed in the upcoming datasets. The
performance is related to the number of seconds employed in
having a request fulfilled. Low performance, therefore, means
that for a certain unit of work, the system resources were
underused, so they will be available to do more work.

Figure 6. Relative performance improvement

As it can be seen in figure 6, a 35% of improvement was
obtained with the module designed according to the load
balancing strategy proposed, during the durable workload for
3JBoss servers. regarding throughput, fig. 7, it is related to
the average number of requests solved per second. A higher
throughput means a better utilization of hardware, and the
ability to server more work at the same expense. This metric
can reflect how the system behaves when submitted to peaks
of load.

Figure 7. Relative througput improvement (requests/sec)

As we can see, there is a very evident throughput
improvement of a 35%, like performance improvement, with
the new module for the same scenario: durable workload and
3JBoss. This improvement is higher when we the load is
increased, moreover this happen also when the time of the
test is increased with the same number of concurrent clients
(doubling the number of request of each client).
Consequently, we get a better throughput when the system is
running more time. This can be justified because the
overhead is lower due to the load addressed based in the new

index. The JBoss that receive more loads has to generate a
higher number of resources like threads and memory to
process them and are useful for new requests without more
overhead. When referring to Time by Requests, see Fig. 8,
in seconds, it is related to the average computed running time
of all URL requests send in the test. Less time by requests
means that a better feeling is transmit to the user because a
less time is waiting for the answer and less time the
resources are captured. It exists less possibility of blockings
avoiding bottle necks and in consequence a great scalability.

Figure 8. Relative time/request improvement

Using this metric the gains when using our strategy are more
than evident, this metric shows the best relative
improvement. Requests are 47,2% faster using the new
model, for the case of having 3 JBoss and a durable load.

90% Time Line is related to those samples whose response
is in the 90% of the timings, the "rare" cases where rejected,
therefore this metric offers the point of view of reliability.

Figure 9. Improvements achieved inside of 90% line

Results shows that the new Load Balancing strategy
proposed in this work has meant a higher improvement in all
tests. Next table summarizes the relative improvement values
get for the metrics in the three different situations.

TABLE VI. RELATIVE IMPROVEMENTS ACHIEVED FOR EACH TEST.

Relative Improvement

JBoss Workload Performance
Throughput

(requests/sec)

Time /

request

90%

TimeLine

Low workload 6,3% 7,3% 7,2% 19,49%
High workload 10,0% 9,7% 11,6% 16,46% 2 JBoss

Durable workload 19,0% 19,4% 20,2% 68,66%
Low workload 11,7% 11,4% 11,1% 21,74%

High workload 15,2% 15,5% 15,5% 23,09% 3 JBoss

Durable workload 35,28% 35,18% 47,17% 66,30%

The average time per request is the value that experiments

the best improvements when the new method is used. As it can
be seen, values can achieve improvements of up to 47.2% when
using three JBoss servers and a durable workload, and
improvements of 66.3% if we consider the 90% of the values,
with less dispersion.

B. Conclusions

It has been shown that the proposed load balancing strategy
and its integration into application servers, comes down to
performance benefits for the applications (notable performance
and throughput improvements). In addition, servers can be
equipped with a tool to dynamically adapt the requests that must
be redirected to each of the JBoss servers available. A direct
consequence of using the strategy proposed is that aspects like
system stability, resource usage and availability, global system
performance and user experience were directly improved.

ACKNOWLEDGMENT

This work has been funded by grants from the Spanish
Ministry of Science and Innovation (TIN2008-01117), and Junta
de Andalucía (P08-TIC-3518), in part financed by the European
Regional Development Fund (ERDF).

REFERENCES

[1] G. Huang, W. Wang, T. Liu, H. Mei, “Simulation-based analysis of
middleware service impact on system reliability: Experiment on Java
application server”, Journal of Systems and Software, Volume 84,
Issue 7, ,Pages 1160-1170, ISSN 0164-1212, July 2011.

[2] J. Guitart, D. Carrera, V. Beltran, J. Torres, E. Ayguade, “Designing
an overload control strategy for secure e-commerce applications”,
Computer Networks, Volume 51, Issue 15, 24, Pages 4492-4510,
October 2007.

[3] K. Birman, R. van Renesse, W. Vogels, "Adding high availability and
autonomic behavior to Web services," Software Engineering, 2004.
ICSE 2004. Proceedings. 26th International Conference on , vol., no.,
pp. 17- 26, 23-28 May 2004

[4] A. Guruge, Java and Web Services, Web Services, Digital Press,
Burlington, 2004, Pages 227-270, ISBN 978-1-55-558282-1, DOI:
10.1016/B978-155558282-1/50008-7.

[5] H. Xiaotao, D. Chaozhi, “Design of high-available architecture for
distributed application based on J2EE and its analysis[JA]. Huazhong
Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong
University of Science and Technology (Natural Science Edition).2005,
44-47.

[6] Y. Liu, L. Wang, S. Li, "Research on self-adaptive load balancing in
EJB clustering system," Intelligent System and Knowledge
Engineering, 2008. ISKE 2008. 3rd International Conference on ,
vol.1, no., pp.1388-1392, 17-19 Nov. 2008

[7] T. Bourke, T. Server Load Balancing. O’Reilly & Associates Press.
2001.

[8] V. Viswanathan. Load Balancing Web Applications. OnJava.com.
2001. http://onjava.com/pub/a/onjava/2001/09/26/load.html

[9] G. Lodi, F. Panzieri,, D. Rossi, E. Turrini, "Experimental Evaluation
of a QoS-aware Application Server," Network Computing and
Applications, Fourth IEEE International Symposium on , vol., no.,
pp.259-262, 27-29 July 2005

[10] Apache Software Foundation. The Apache Tomcat Connector -
Reference Guide. 2010. http://tomcat.apache.org/connectors-
doc/reference/workers.html

[11] [11] K. Gilly de la Sierra-Llamazares. Tesis: An adaptive admission
control and load balancing algorithm for a QoS-aware Web system.
Universitat de les Illes Balears. 2009.
http://www.tesisenxarxa.net/TDX-1211109-113725/index_cs.html

[12] H. Elmeleegy, N. Adly, and M. Nagi. “Adaptive Cache-Driven
Request Distribution in Clustered EJB Systems”. Proceedings of the
Tenth International Conference on parallel and Distributed Systems
(ICPADS’04), 179-186, 2004,

[13] R. Johnson,. Expert One-on-One J2EE Design and Development.
Wrox Press. 2003.

[14] R. B’Far, Mobile Computing Principles: Designing and Developing
Mobile Applications with UML and XML. Cambridge University
Press. 2005.

[15] N. Richards, S. Griffith. JBoss: A Developer's Notebook. O'Reilly,
2005.

[16] M. Garrels, Bash Guide for Beginners. 173 págs. 2008.

http://tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

[17] M. Cooper. Advanced Bash-Scripting Guide: An in-depth exploration

of the art of shell scripting, 2010. http://tldp.org/LDP/abs/abs-
guide.pdf

[18] L. Wirzenius, J. Oja, S. Stafford, and A. Weeks. The Linux System
Administrators' Guide. 2005. http://tldp.org/LDP/sag/sag.pdf

[19] N. Kew, The Apache Modules Book: Application Development with
Apache. Prentice Hall. 592 págs, 2007.

[20] Apache Software Foundation. 2010. The Apache Tomcat Connector.
Quick Start HowTo. http://tomcat.apache.org/connectors-
doc/generic_howto/quick.html

[21] K. Suryanarayanan, K.J Christensen, "Performance evaluation of new
methods of automatic redirection for load balancing of Apache servers
distributed in the Internet," Local Computer Networks, 2000. LCN
2000. Proceedings. 25th Annual IEEE Conference on , vol., no.,
pp.644-651, 2000.

[22] Q. Wu, Y. Wang, "Performance Testing and Optimization of J2EE-
Based Web Applications," Education Technology and Computer
Science (ETCS), 2010 Second International Workshop on , vol.2, no.,
pp.681-683, 6-7 March 2010.

[23] El Hadad, J.; Manouvrier, M.; Rukoz, M.; , "TQoS: Transactional and
QoS-Aware Selection Algorithm for Automatic Web Service
Composition," Services Computing, IEEE Transactions on , vol.3,
no.1, pp.73-85, Jan.-March 2010
doi: 10.1109/TSC.2010.5
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432
150&isnumber=5440876

[24] Picker, R.C.: The yin and yang of copyright and technology. Commun.
ACM 55(1) (2012) 30{32

[25] J.A. Alvarez-Bermejo J.A. Lopez-Ramos. Tracking Traitors in Web
Services via Blind Signatures. http://hdl.handle.net/10835/1520

