
Enhancing SpatialHadoop with
Closest Pair Queries

Francisco Garćıa-Garćıa1,?, Antonio Corral1,?, Luis Iribarne1,?,
Michael Vassilakopoulos2,?, and Yannis Manolopoulos3,?

1 Dept. of Informatics, University of Almeria, Almeria, Spain.
E-mail: {paco.garcia,acorral,liribarn}@ual.es

2 Dept. of Electrical and Computer Engineering, University of Thessaly,
Volos, Greece. E-mail: mvasilako@uth.gr

3 Dept. of Informatics, Aristotle University,
Thessaloniki, Greece. E-mail: manolopo@csd.auth.gr

Abstract. Given two datasets P and Q, the K Closest Pair Query
(KCPQ) finds theK closest pairs of objects from P×Q. It is an operation
widely adopted by many spatial and GIS applications. As a combination
of the K Nearest Neighbor (KNN) and the spatial join queries, KCPQ
is an expensive operation. Given the increasing volume of spatial data, it
is difficult to perform a KCPQ on a centralized machine efficiently. For
this reason, this paper addresses the problem of computing the KCPQ
on big spatial datasets in SpatialHadoop, an extension of Hadoop that
supports spatial operations efficiently, and proposes a novel algorithm in
SpatialHadoop to perform efficient parallel KCPQ on large-scale spatial
datasets. We have evaluated the performance of the algorithm in several
situations with big synthetic and real-world datasets. The experiments
have demonstrated the efficiency and scalability of our proposal.

Keywords: Closest Pair Queries, Spatial Data Processing, SpatialHadoop, MapReduce.

1 Introduction

Given two point datasets P and Q, the K Closest Pair Query (KCPQ) finds the
K closest pairs of points from P ×Q according to a certain distance metric (e.g.,
Manhattan, Euclidean, Chebyshev, etc.). The KCPQ has received considerable
attention from the database community, due to its importance in numerous
applications, such as spatial databases and GIS [1, 2], data mining [3], metric
databases [4], etc. Since both the spatial join and theK Nearest Neighbor (KNN)
queries are expensive, especially on large datasets, KCPQ, as a combination of
both, is an even more costly query. Lots of researches have been devoted to
improve the performance of the KCPQ by proposing efficient algorithms [4, 5].

? Work funded by the MINECO research project [TIN2013-41576-R] and the Junta
de Andalucia research project [P10-TIC-6114]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143456138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

However, all these approaches focus on methods that are to be executed in a
centralized environment.

With the fast increase in the scale of the big input datasets, processing large
data in parallel and distributed fashions is becoming a popular practice. A num-
ber of parallel algorithms for spatial joins [6, 7], KNN joins [8, 9] and top-K
similarity join [10] in MapReduce [11] have been designed and implemented.
But, to the authors’ knowledge, there is no research works on parallel and dis-
tributed KCPQ in large spatial data, which is a challenging task and becoming
increasingly essential as datasets continue growing.

Actually, extreme-scale data, parallel and distributed computing using shared-
nothing clusters is becoming a dominating trend in the context of data processing
and analysis. MapReduce [11] is a framework for processing and managing large-
scale datasets in a distributed cluster, which has been used for applications such
as generating search indexes, document clustering, access log analysis, and vari-
ous other forms of data analysis [12]. MapReduce was introduced with the goal
of providing a simple yet powerful parallel and distributed computing paradigm,
providing good scalability and fault tolerance mechanisms.

However, as also indicated in [13], MapReduce has weaknesses related to ef-
ficiency when it needs to be applied to spatial data. A main shortcoming is the
lack of any indexing mechanism that would allow selective access to specific re-
gions of spatial data, which would in turn yield more efficient query processing
algorithms. A recent solution to this problem is an extension of Hadoop, called
SpatialHadoop [14], which is a framework that inherently supports spatial index-
ing on top of Hadoop. In SpatialHadoop, spatial data is deliberately partitioned
and distributed to nodes, so that data with spatial proximity is placed in the
same partition. Moreover, the generated partitions are indexed, thereby enabling
the design of efficient query processing algorithms that access only part of the
data and still return the correct result query. As demonstrated in [14], various
algorithms are proposed for spatial queries, such as range and KNN queries, spa-
tial joins and skyline query [15]. Efficient processing of KCPQ over large-scale
spatial datasets is a challenging task, and it is the main target of this paper.

Motivated by these observations, we first propose a general approach of
KCPQ for SpatialHadoop, using plane-sweep algorithms, and its improved ver-
sion, using the computation of an upper bound of the distance of the K-th closest
pair from sampled data points. The contributions of this paper are the following
– A novel algorithm in SpatialHadoop to perform efficient parallel KCPQ on

big spatial datasets,
– Improving the general algorithm with the computation of an upper bound

of the distance value of the K-th closest pair from sampled data,
– The execution of an extensive set of experiments that demonstrate the ef-

ficiency and scalability of our proposal using big synthetic and real-world
points datasets.
This paper is organized as follows. In Section 2 we review related work on

Hadoop systems that support spatial operations, the specific spatial queries us-
ing MapReduce and provide the motivation for this paper. In Section 3, we
present preliminary concepts related to KCPQ and SpatialHadoop. In section

2

4 the parallel algorithm for processing KCPQ in SpatialHadoop is proposed,
with an improvement to make the algorithm faster. In Section 5, we present
representative results of the extensive experimentation that we have performed,
using real-world and synthetic datasets, for comparing the efficiency of the pro-
posed algorithm, taking into account different performance parameters. Finally,
in Section 6 we provide the conclusions arising from our work and discuss related
future work directions.

2 Related Work and Motivation

Researchers, developers and practitioners worldwide have started to take advan-
tage of the MapReduce environment in supporting large-scale data processing.
The most important contributions in the context of scalable spatial data pro-
cessing are the following prototypes: (1) Parallel-Secondo [16] is a parallel spatial
DBMS that uses Hadoop as a distributed task scheduler; (2) Hadoop-GIS [17]
extends Hive [18], a data warehouse infrastructure built on top of Hadoop with
a uniform grid index for range queries, spatial joins and other spatial operations.
It adopts Hadoop Streaming framework and integrates several open source soft-
ware packages for spatial indexing and geometry computation; (3) SpatialHadoop
[14] is a full-fledged MapReduce framework with native support for spatial data.
It tightly integrates well-known spatial operations (including indexing and joins)
into Hadoop; and (4) SpatialSpark [19] is a lightweight implementation of several
spatial operations on top of the Apache Spark in-memory big data system. It
targets at in-memory processing for higher performance. It is important to high-
light that these four systems differ significantly in terms of distributed comput-
ing platforms, data access models, programming languages and the underlying
computational geometry libraries.

Actually, there are several works on specific spatial queries using MapReduce.
This programming framework adopts a flexible computation model with a simple
interface consisting of map and reduce functions whose implementations can be
customized by application developers. Therefore, the main idea is to develop map
and reduce functions for the required spatial operation, which will be executed
on-top of an existing Hadoop cluster. Examples of such works on specific spatial
queries include: (1) Range query [20, 21], where the input file is scanned, and
each record is compared against the query range. (2) KNN query [21, 22], where
a brute force approach calculates the distance to each point and selects the
nearest K points [21], while another approach partitions points using a Voronoi
diagram and finds the answer in partitions close to the query point [22]. (3)
Skyline queries [15, 25, 26]; in [25] the authors propose algorithms for processing
skyline and reverse skyline queries in MapReduce; and in [15, 26] the problem of
computing the skyline of a vast-sized spatial dataset in SpatialHadoop is studied.
(4) Reverse Nearest Neighbor (RNN) query [22], where input data is partitioned
by a Voronoi diagram to exploit its properties to answer RNN queries. (5) Spatial
join [14, 21, 23]; in [21] the partition-based spatial-merge join [24] is ported to
MapReduce, and in [14] the map function partitions the data using a grid while

3

the reduce function joins data in each grid cell. (6) KNN join [8, 9, 23], where
the main target is to find for each point in a set P , its KNN points from set
Q using MapReduce. Finally, (7) in [10], the problem of the top-K closest pair
problem (where just one dataset is involved) using MapReduce is studied.

The KCPQ (where two spatial datasets are involved) has received consider-
able attention from the spatial database community, due to its importance in
numerous applications. SpatialHadoop is equipped with a several spatial opera-
tions, including range query, KNN and spatial join [14], and other fundamental
computational geometry algorithms as polygon union, skyline, convex hull, far-
thest pair, and closest pair [26]. And recently, two new algorithms for skyline
query processing have been also proposed in [15]. And based on the previous ob-
servations, efficient processing of KCPQ over large-scale spatial datasets using
SpatialHadoop is a challenging task, and it is the main motivation of this paper.

3 Preliminaries and Background

3.1 K Closest Pairs Query

The KCPQ discovers the K pairs of data elements formed from two datasets
that have the K smallest distances between them (i.e. it reports only the top
K pairs). It is one of the most important spatial operations when two spatial
datasets are involved. It is considered a distance-based join query, because it
involves two different spatial datasets and use distance functions to measure
the degree of nearness between pairs of spatial objects. The formal definition
of KCPQ for point datasets (the extension of this definition to other complex
spatial objects is straightforward) is the following:

Definition 1. (K Closest Pairs Query, KCPQ) Let P = {p0, p1, · · · , pn−1}
and Q = {q0, q1, · · · , qm−1} be two set of points in Ed, and a natural num-
ber K (K ∈ N,K > 0). The K Closest Pairs Query (KCPQ)) of P and Q
(KCPQ(P,Q,K) ⊆ P×Q) is a set of K different ordered pairs KCPQ(P,Q,K)
= {(p1, q1), (p2, q2), · · · , (pK , qK)}, with (pi, qi) 6= (pj , qj), i 6= j, 1 ≤ i, j ≤ K,
such that for any (p, q) ⊆ P × Q − {(p1, q1), (p2, q2), · · · , (pK , qK)} we have
dist(p1, q1) ≤ dist(p2, q2) ≤ · · · ≤ dist(pK , qK) ≤ dist(p, q).

This spatial query has been actively studied in centralized environments, re-
gardless whether both spatial datasets are indexed or not [1, 2, 5, 28]. In this
context, recently, when the two datasets are not indexed and they are stored
in main-memory, a new plane-sweep algorithm for KCPQ, called Reverse Run,
was proposed in [5]. Additionally, two improvements to the Classic PS algorithm
for this spatial query were also presented. Experimentally, the Reverse Run PS
algorithm proved to be faster and it minimized the number of Euclidean dis-
tance computations. However, datasets that reside in a parallel and distributed
framework have not attracted similar attention.

An example of this query using big data [14] could be to find the K closest
pairs of buildings and water resources (since you may examine of other, more

4

ecological, sources of water supply for buildings). Moreover, due to the growing
popularity of mobile and wearable location-aware devices that have access to the
Web, KCPQs on big data are expected to appear in emerging new applications.

3.2 SpatialHadoop

SpatialHadoop [14] is a full-fledged MapReduce framework with native support
for spatial data. Notice that MapReduce [11] is a scalable, flexible and fault-
tolerant programming framework for distributed large-scale data analysis. A
task to be performed using the MapReduce framework has to be specified as
two phases: the Map phase is specified by a map function takes input (typ-
ically from Hadoop Distributed File System (HDFS) files), possibly performs
some computations on this input, and distributes it to worker nodes; and the
Reduce phase which processes these results as specified by a reduce function.
An important aspect of MapReduce is that both the input and the output of
the Map step are represented as Key/Value pairs, and that pairs with same key
will be processed as one group by the Reducer : map : (k1, v1)→ list(k2, v2) and
reduce : k2, list(v2) → list(v3). Additionally, a Combiner function can be used
to run on the output of Map phase and perform some filtering or aggregation to
reduce the number of keys passed to the Reducer.

Fig. 1. SpatialHadoop system architecture [14].

SpatialHadoop, see in Figure 1 its architecture, is a comprehensive extension
to Hadoop that injects spatial data awareness in each Hadoop layer, namely, the

5

language, storage, MapReduce, and operations layers. In the Language layer,
SpatialHadoop adds a simple and expressive high level language for spatial data
types and operations. In the Storage layer, SpatialHadoop adapts traditional
spatial index structures as Grid, R-tree and R+-tree, to form a two-level spatial
index [27]. SpatialHadoop enriches the MapReduce layer by new components to
implement efficient and scalable spatial data processing. In the Operations layer,
SpatialHadoop is also equipped with a several spatial operations, including range
query, KNNQ and spatial join. Other computational geometry algorithms (e.g.
polygon union, skyline, convex hull, farthest pair, and closest pair) are also
implemented following a similar approach [26]. Moreover, in this context, [15]
improved the processing of skyline query. Finally, we must emphasize that our
contribution (KCPQ as a spatial operation) is located in the Operations layer,
as we can observe in Figure 1 in the highlighted box.

Since our main objective is to include the KCPQ into SpatialHadoop, we
are interested in the MapReduce and operations layers. MapReduce layer is
the query processing layer that runs MapReduce programs, taking into account
that SpatialHadoop supports spatially indexed input files. And the operation
layer enables the efficient implementation of spatial operations, considering the
combination of the spatial indexing in the storage layer with the new spatial
functionality in the MapReduce layer. In general, a spatial query processing in
SpatialHadoop consists of four steps: (1) Partitioning, where the data is par-
titioned according to a specific spatial index. (2) Pruning, when the query is
issued, where the master node examines all partitions and prunes those ones
that are guaranteed not to include any possible result of the spatial query. (3)
Local spatial query processing, where a local spatial query processing is performed
on each non-pruned partition in parallel on different machines. And finally, (4)
Global processing, where a single machine collects all results from all machines
in the previous step and compute the final result of the concerned query. And
we are going to follow this query processing schema to include the KCPQ into
SpatialHadoop.

4 KCPQ Algorithms in SpatialHadoop

In this section, we describe our approach to KCPQ algorithms on top of Spa-
tialHadoop. This can be described as a generic top-K MapReduce job that can
be parameterized by specific KCPQ algorithms. In general, our solution is simi-
lar to how distributed join algorithm [14] is performed in SpatialHadoop, where
combinations of blocks from each dataset are the input for each map task, when
the spatial query is performed. The reducer then emits the top-K results from
all mapper outputs. In more detail, our approach make use of two plane-sweep
KCPQ algorithms for main-memory resident datasets [5].

The plane-sweep technique [29] has been successfully used in spatial databases
to report the result of KCPQ when the two datasets are indexed [1, 2], and
recently it has been improved for main-memory resident-point sets [5]. In this

6

paper we will use the algorithms presented in [5] and their improvements to
adapt them as MapReduce versions.

In [5], the Classic Plane-Sweep for KCPQ was reviewed and two new im-
provements were also presented, when the point datasets reside in main memory.
In general, if we assume that the two point sets are P and Q, the Classic PS
algorithm consists of the two following steps: (1) sorting the entries of the two
point sets, based on the coordinates of one of the axes (e.g. X) in increasing
order, and (2) combine one point (pivot) of one set with all the points of the
other set satisfying point.x − pivot.x ≤ δ, where δ is the distance of the K-th
closest pair found so far. The algorithm chooses the pivot in P or Q, following
the order on the sweeping axis. We must highlight that the search is only re-
stricted to the closest points with respect to the pivot, according to the current
distance threshold (δ). No duplicated pairs are obtained, since the points are
always checked over sorted sets.

In [5], a new plane-sweep algorithm for KCPQ was proposed for minimizing
the number of distance computations. It was called Reverse Run Plane-Sweep
algorithm and it is based on two concepts. First, every point that is used as a
reference point forms a run with other subsequent points of the same set. A
run is a continuous sequence of points of the same set that doesn’t contain any
point from the other set. During the algorithm processing, for each set, we keep
a left limit, which is updated (moved to the right) every time that the algorithm
concludes that it is only necessary to compare with points of this set that reside
on the right of this limit. Each point of the active run (reference point) is
compared with each point of the other set (comparison point) that is on the left
of the first point of the active run, until the left limit of the other set is reached.
And second, the reference points (and their runs) are processed in ascending
X-order (the sets are X-sorted before the application of the algorithm). Each
point of the active run is compared with the points of the other set (comparison
points) in the opposite or reverse order (descending X-order). Moreover, for each
point of the active run being compared with a current comparison point, there
are two cases: (1) if the distance (dist) between this pair of points (reference,
comparison) is smaller than the δ distance value, then the pair will be considered
as a candidate for the result, and (2) if the distance between this pair of points
in the sweeping axis (dx) is larger than or equal to δ, then there is no need to
calculate the distance (dist) of the pair, and we avoid this distance computation.

The two improvements presented in [5], called sliding window and sliding
semi-circle, can be applied both Classic and Reverse Run algorithms. For the
sliding window, the general idea consists of restricting the search space to the
closest points inside the window with width δ and a height 2 ∗ δ (i.e. [0, δ] in the
X-axis and [−δ, δ] in the Y -axis, from the pivot or the reference point). And for
the sliding semi-circle improvement, it consists of trying to reduce even more the
search space, we can only select those points inside the semi-circle (or half-circle)
centered in the pivot or in the reference point with radius δ.

The method for KCPQ in MapReduce is to adopt the top-K MapReduce
methodology. The basic idea is to have P and Q partitioned by some method

7

(e.g., grid) into n and m blocks of points. Then, every possible pair of blocks
(one from P and one from Q) is sent as the input for the Map phase. Each
mapper reads its pair of blocks and performs a KCPQ PS algorithm (Classic or
Reverse Run) between the local P and Q in that pair. That is, it finds KCPs
between points in the local block of P and in the local block of Q using a KCPQ
PS algorithm. To do so, each mapper sorts the local P and Q blocks in one axis
(e.g., X axis in ascending order) and then applies a particular KCPQ algorithm.
The K results from all mappers are sent to a single reducer that will in turn find
the global top-K of all the mappers. Finally, the results are written into HDFS
files, storing only the points coordinates and the distance between them.

Algorithm 1 KCPQ MapReduce General Algorithm

1: function MAP(P : set of points, Q: set of points, K: # pairs)
2: SortX(P)
3: SortX(Q)
4: KMaxHeap← KCPQ(P,Q, k)
5: if KMaxHeap is not empty then
6: for all DistanceAndPair ∈ KMaxHeap do
7: output(null, DistanceAndPair)
8: end for
9: end if

10: end function

11: function COMBINE, REDUCE(null, P : set of DistanceAndPair, K: # pairs)
12: Initialize(CandidateKMaxHeap, K)
13: for all p ∈ P do
14: Insert(CandidateKMaxHeap, p)
15: end for
16: for all candidate ∈ CandidateKMaxHeap do
17: output(null, candidate)
18: end for
19: end function

In Algorithm 1 we can see our proposed solution for KCPQ in SpatialHadoop
which consists of a single MapReduce job. The Map function aims to find KCPs
between the local pair of blocks from P and Q with a particular KCPQ algo-
rithm (e.g. Classic or Reverse Run). KMaxHeap is a max binary heap used to
keep record of local selected top-K closest pairs that will be processed by the
Reduce function. The output of the Map function is in the form of a set of Dis-
tanceAndPair elements, pairs of points from P and Q and their distance. As in
every other top-K pattern, the Reduce function can be used in the Combiner to
minimize the shuffle phase. The Reduce function aims to examine the candidate
DistanceAndPair elements and return the final KCP set. It takes as input a set
of DistanceAndPair elements from every mapper and the number of pairs. It
also employs a binary max heap, called CandidateKMaxHeap, used to calculate

8

the final result. Each DistanceAndPair p is inserted into the heap if its distance
value is less than the distance value of the top element stored in the heap. Oth-
erwise, that pair of points is discarded. Finally, candidate pairs which have been
stored in the heap are returned as the final result and stored in the output file.

4.1 Improving the Algorithm

It can clearly be seen that the performance of the proposed solution will depend
on the number of blocks in which the sets of points are partitioned. That is, the
set of points P is partitioned into n blocks and the set of points Q is partitioned
in m blocks, then we obtain n×m combinations or map tasks. Plane-Sweep-based
algorithms use a δ value, which is the distance of the K-th closest pair found so
far, to discard those combinations of pairs of points that are not necessary to
consider as a candidate of the final result. As suggested in [10], we need to find
in advance an upper bound distance δ of the distance of the K-th closest pair of
the datasets. As we can see in Algorithm 2, we take a small sample from both
sets of points and calculate the KCPs using the same algorithm that is applied
locally in every mapper. Then, we take the largest distance from the result and
use it as input for mappers. That δ value assures us that there will be at least K
closest pairs if we prune pairs of points with larger distances in every mapper.

Algorithm 2 Preprocessing δ Algorithm

1: function CALCULATEδ(P : set of points, Q: set of points, K: # pairs)
2: SampledP ← Sample(P, 1%)
3: SampledQ← Sample(Q, 1%)
4: SortX(SampledP)
5: SortX(SampledQ)
6: KMaxHeap← KCPQ(SampledP, SampledQ,K)
7: if KMaxHeap is not empty then
8: δDistanceAndPair ← pop(KMaxHeap)
9: δ ← δDistanceAndPair.Distance

10: output(δ)
11: end if
12: end function

13: function CELLSFILTER(C: set of cells, D: set of cells, δ: upper bound distance)
14: for all c ∈ C do
15: for all d ∈ D do
16: minDistance←MinDistance(c, d)
17: if minDistance ≤ δ then
18: output(c, d)
19: end if
20: end for
21: end for
22: end function

9

Furthermore, we can use this δ value in combination with the features of
indexing that provides SpatialHadoop to further enhance the pruning phase.
Before the map phase begins, we exploit the indexes to prune cells that cannot
contribute to the final result. CELLSFILTER takes as input each combination
of blocks / cells in which the input set of points are partitioned. Using Spatial-
Hadoop built-in function minDistance we can calculate the minimum distance
between two cells. That is, if we find a pair of blocks with points which cannot
have a distance value smaller than δ, we can prune that combination. Perform-
ing the δ preprocessing filtering using 1% samples of the input data we have
obtained results with a significant reduction of execution time.

5 Experimentation

In this section we present the results of our experimental evaluation. We have
used synthetic (Uniform) and real 2d point datasets to test our KCPQ algo-
rithms in SpatialHadoop. For synthetic datasets we have generated several files
of different sizes using SpatialHadoop built-in uniform generator [14]. For real
datasets we have used three datasets from OpenStreetMap1: BUILDINGS which
contains 115M records of buildings, LAKES which contains 8.4M points of water
areas, and PARKS which contains 10M records of parks and green areas [14].
We have implemented and compared the KCPQ PS algorithms (Classic and Re-
verse Run [5]). We have used two performance metrics, the running time and the
number of complete distance computations of each algorithm. All experiments
are conducted on a cluster of 20 nodes on an OpenStack environment. Each node
has 1 vCPU with 2GB of main memory running Linux operating systems and
Hadoop 1.2.1.

64 128 256 512
0

200

400

600

800

Mb

T
o
t
a
l
T
im

e
(
in

s
)

Uniform Datasets

25 50 75 100
0

200

400

600

800

% of samples

T
o
t
a
l
T
im

e
(
in

s
)

LAKESxPARKS

Without δ processing With δ processing

Fig. 2. Execution time vs. δ preprocessing phase.

Our first experiment is to examine the effect of the preprocessing phase to
compute an upper bound of the distance value of the K-th closest pair (δ). As
shown in Figure 2 the execution time for the algorithm without preprocessing

1 Available at http://spatialhadoop.cs.umn.edu/datasets.html

10

is smaller when using uniform datasets with less than 256MB, see left graph.
However, in the experiment with two grid partitioned datasets of 256MB the
execution time increases considerably reaching several hours. As any combination
of blocks is not removed, the calculation of KCPQ is performed on pairs of blocks
in which the value δ, that is being calculated, never exceeds the distance between
these points. As a result pruning is never performed locally and, therefore, the
calculation of all possible combinations of points is carried out. However, by
adding δ preprocessing phase there are combinations of blocks which are first
pruned obtaining times growing more or less linearly with the size of the datasets,
see Figure 2 right graph. As an example, when using the complete dataset from
LAKES and PARKS only 25 out of 64 possible combinations are considered for
K = 1. In Table 1 all possible combinations of partitions are shown, considering
different percentages of the datasets (LAKES×PARKS) and, with or without
the computation of the upper bound δ for K = 1 (for larger K values the
percentage of reduction was similar).

% of Datasets Without δ With δ

25 4 3

50 12 6

75 56 20

100 64 25
Table 1. Number of combinations of partitions without or with using the δ prepro-
cessing phase.

Classic Reverse

106

107

108

109

1010

plane-sweep algorithms

#
F
u
ll

D
is
t
a
n
c
e

C
a
lc

u
la

t
io

n
s BUILDINGSxLAKES

Normal Window Semi-circle

25 50 75 100
0

100

200

300

400

500

600

% of samples

T
o
t
a
l
T
im

e
(
in

s
)

BUILDINGSxPARKS

Grid Str Str+

Fig. 3. Number of complete distance computation vs. KCPQ algorithm (left) and
execution time vs. partition technique (right).

The second experiment aims to find which of the different plane-sweepKCPQ
algorithms has the best performance. The times obtained do not show significant
improvements between the different algorithms. This is due to various factors
such as reading disk speed, network delays, the time for each individual task,
etc. The metric shown in Figure 3 is based on the number of times the algorithm

11

performs a full calculation of the distance between two points. As shown in
the left graph, any improvement (sliding window, semi-circle) on the Classic
or Reverse Run algorithm obtains a much smaller number of calculations. The
difference between these is not very noticeable being the semi-circle reverse run
algorithm the one with better results in most of the cases.

The third experiment studies the effect of different spatial partitioning tech-
niques included in SpatialHadoop. As shown in Figure 3 right graph, the choice
of a partitioning technique greatly affects the execution time showing improve-
ments of 200% when using Str or Str+ instead of Grid. Using Grid partitioned
files we get 211 combinations of blocks from input datasets while using Str/Str+
partitioned files just 78 combinations are obtained. As expected, there is no real
difference in using Str or Str+. This experiment is also useful to measure the
scalability of the KCPQ algorithms, varying the dataset sizes. We can see that
in our approach execution time increases linearly.

1 10 102 103 104 105
150

200

250

300

K: # of closest pairs

T
o
t
a
l
T
im

e
(
in

s
)

BUILDINGSxLAKES

1 2 4 10 20

500

1,000

1,500

2,000

2,500

3,000

n: # of available computing nodes

T
o
t
a
l
T
im

e
(
in

s
)

BUILDINGSxPARKS

Fig. 4. Execution time vs. K value (left) and execution time vs. n (right).

The fourth experiment studies the effect of the increasing of the K value. As
show on Figure 4 left graph, the total execution time grows very little as the
number of results to be obtained increases. It could be concluded that there is
no real impact on the execution time but it must be taken into account that
a higher K, the greater the possibility that pairs of blocks are not pruned and
more map tasks could be needed.

The fifth experiment aims to measure the speedup of the KCPQ algorithms,
varying the number of computing nodes (n). Figure 4 right graph shows the im-
pact of different node numbers on the performance of parallel KCPQ algorithm.
From this figure, it could be concluded that the performance of our approach
has direct relationship with the number of computing nodes. It could be de-
duced that better performance would be obtained if more computing nodes are
added. When the number of computing nodes exceeds the number of map tasks
no improvement for that individual job is obtained.

In summary, the experimental results showed that:

– We have demonstrated experimentally the efficiency (in terms of total ex-
ecution time and number of distance computations) and the scalability (in
terms of K values, sizes of datasets and number of computing nodes) of the
proposed parallel KCPQ algorithm.

12

– We have improved this algorithm by using the computation of an upper
bound δ of the distance of the K-th closest pair from sampled data.

– Both plane-sweep-based algorithms (Classic and Reverse Run) used in the
MapReduce implementation have similar performance in terms of execution
time, although the Reverse Run algorithm reduces slightly the number of
complete distance computations.

– The use of an spatial partitioning technique included in SpatialHadoop as
Str or Str+ (instead of Grid) improves notably the efficiency of the parallel
KCPQ algorithm. This is due to these variants index all partitions according
to an R-tree structure (i.e. it can be viewed as a global index of partitions).

6 Conclusions and Future Work

The KCPQ is an operation widely adopted by many spatial and GIS applica-
tions. It returns the K closest pairs of spatial objects from the Cartesian Product
of two spatial datasets P and Q. This spatial query has been actively studied
in centralized environments, however, for parallel and distributed frameworks
has not attracted similar attention. For this reason, in this paper, we studied
the problem of answering the KCPQ in SpatialHadoop, an extension of Hadoop
that supports spatial operations efficiently. To do this, we have proposed a new
parallel KCPQ algorithm in MapReduce on big spatial datasets, adopting the
plane-sweep methodology. We have also improved this MapReduce algorithm
with the computation of an upper bound (δ) of the distance value of the K-th
closest pair from sampled data as a preprocessing phase. The performance of the
algorithm in various scenarios with big synthetic and real-world points datasets
has been also evaluated. And, the execution of such experiments has demon-
strated the efficiency (in terms of total execution time and number of distance
computations) and scalability (in terms of K values, sizes of datasets and num-
ber of computing nodes) of our proposal. Future work might cover studying of
KCPQ with other partition techniques not included in SpatialHadoop.

References

1. A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Closest pair
queries in spatial databases”, SIGMOD Conference, pp. 189-200, 2000.

2. A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Algorithms
for processingK-closest-pair queries in spatial databases”, Data Knowl. Eng. 49(1):
67-104, 2004.

3. A. Nanopoulos, Y. Theodoridis and Y. Manolopoulos: “C2P: Clustering based on
closest pairs”, VLDB Conference, pp. 331-340, 2001.

4. Y. Gao, L. Chen, X. Li, B. Yao and G. Chen: “Efficient k-closest pair queries in
general metric spaces”, VLDB J. 24(3): 415-439, 2015.

5. G. Roumelis, M. Vassilakopoulos, A. Corral and Y. Manolopoulos: “A new plane-
sweep algorithm for the K-closest-pairs query”, SOFSEM Conference, pp. 478-490,
2014.

13

6. S. Zhang, J, Han, Z. Liu, K. Wang and Z. Xu: “SJMR: Parallelizing spatial join
with MapReduce on clusters”, CLUSTER Conference, pp. 1-8, 2009.

7. S. You, J. Zhang and L. Gruenwald: “Spatial join query processing in cloud: Ana-
lyzing design choices and performance comparisons”, ICPP Workshops, pp. 90-97,
2015.

8. C. Zhang, F. Li and J. Jestes: “Efficient parallel k-NN joins for large data in
MapReduce”, EDBT Conference, pp. 38-49, 2012.

9. W. Lu, Y. Shen, S. Chen and B.C. Ooi: “Efficient processing of k nearest neighbor
joins using MapReduce”, PVLDB 5(10): 1016-1027, 2012.

10. Y. Kim and K. Shim: “Parallel top-K similarity join algorithms using MapReduce”,
ICDE Conference, pp. 510-521, 2012.

11. J. Dean and S. Ghemawat: “MapReduce: Simplified data processing on large clus-
ters”, OSDI Conference, pp. 137-150, 2004.

12. F. Li, B.C. Ooi, M.T. Özsu and S. Wu: “Distributed data management using
MapReduce”, ACM Comput. Surv. 46(3): 31:1-31:42, 2014.

13. C. Doulkeridis and K. Nørv̊ag: “A survey of large-scale analytical query processing
in MapReduce”, VLDB J. 23(3): 355-380, 2014.

14. A. Eldawy and M.F. Mokbel: “SpatialHadoop: A MapReduce framework for spatial
data”, ICDE Conference, pp. 1352-1363, 2015.

15. D. Pertesis and C. Doulkeridis: “Efficient skyline query processing in Spatial-
Hadoop”, Inf. Syst. 54: 325-335, 2015.

16. J. Lu and R.H. Güting: “Parallel Secondo: Boosting database engines with
Hadoop”, ICPADS Conference, pp. 738-743, 2012.

17. A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang and J.H. Saltz: “Hadoop-GIS:
A high performance spatial data warehousing system over MapReduce”, PVLDB
6(11): 1009-1020, 2013.

18. A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff
and R. Murthy: “Hive - A warehousing solution over a MapReduce framework”,
PVLDB 2(2): 1626-1629, 2009.

19. S. You, J. Zhang and L. Gruenwald: “Large-scale spatial join query processing in
cloud”, ICDE Workshops, pp. 34-41, 2015.

20. Q. Ma, B. Yang, W. Qian and A. Zhou: “Query processing of massive trajectory
data based on MapReduce”, CloudDB Conference, pp. 9-16, 2009.

21. S. Zhang, J. Han, Z. Liu, K. Wang and S. Feng: “Spatial queries evaluation with
MapReduce”, GCC Conference, pp. 287-292, 2009.

22. A. Akdogan, U. Demiryurek, F.B. Kashani and C. Shahabi: “Voronoi-based geospa-
tial query processing with MapReduce”, CloudCom Conference, pp. 9-16, 2010.

23. K. Wang, J. Han, B. Tu, J. Dai, W. Zhou and X. Song: “Accelerating spatial data
processing with MapReduce”, ICPADS Conference, pp. 229-236, 2010.

24. J.M. Patel and D.J. DeWitt: “Partition based spatial-merge join”, SIGMOD Con-
ference, pp. 259-270, 1996.

25. Y. Park, J.K. Min and K.Shim: “Parallel computation of skyline and reverse skyline
queries using MapReduce”, PVLDB 6(14): 2002-2013, 2013.

26. A. Eldawy, Y. Li, M.F. Mokbel and R. Janardan: “CG Hadoop: computational
geometry in MapReduce”, SIGSPATIAL Conference, pp. 284-293, 2013.

27. A. Eldawy, L. Alarabi and M.F. Mokbel: “Spatial partitioning techniques in Spa-
tialHadoop”, PVLDB 8(12): 1602-1613, 2015.

28. G. Gutierrez and P. Sáez: “The k closest pairs in spatial databases - When only
one set is indexed”, GeoInformatica 17(4): 543-565, 2013.

29. F.P. Preparata and M.I. Shamos: “Computational geometry: An introduction”,
Springer-Verlag, 1985.

14

