
Review Article
Milestones in Software Engineering and Knowledge
Engineering History: A Comparative Review

Isabel M. del Águila,1 José Palma,2 and Samuel Túnez1

1 Department of Informatics, University of Almeŕıa, Spain
2Department of Information and Communication Engineering, University of Murcia, Spain

Correspondence should be addressed to Isabel M. del Águila; imaguila@ual.es

Received 25 August 2013; Accepted 27 October 2013; Published 27 January 2014

Academic Editors: F. Barnes and G. Magoulas

Copyright © 2014 Isabel M. del Águila et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering
because “those who cannot remember the past are condemned to repeat it.” This retrospective represents a further step forward to
understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to
remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also
define a set of milestones that represent a convergence or divergence of the software development methodologies.These milestones
do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help
in the evolution of the other one.

1. Introduction

Software is present in every-day human activities; as Bjarne
Stroustrup observed, “our civilization runs on software.”
Computer applications serve as the basis for modern scien-
tific research, contribute to solving engineering problems,
assist in decision making in business, and are the key factor
that differentiates modern products and services. People
often leave their welfare, security, jobs, entertainment, and
their own decisions in the hands of a software application.
But software, as an industrial product, is invisible to most
of the world, except when it fails or crashes. In order
to maintain its transparency, software product must be
developed by engineering methods that ensure the quality
of the resulting product. Software engineering (SE) is a
discipline that has evolved since it was originally proposed
[1] and can now be defined as “. . .a discipline that adopts
engineering approaches, such as established methodologies,
processes, tools, standards, organization methods, manage-
ment methods, quality assurance systems, and the like, in the
development of large-scale software seeking to result in high

productivity, low cost, controllable quality, and measurable
development schedule” [2].

We present a survey of the evolution of SE, comparing
it against an other computer science discipline, knowledge
engineering (KE). Historically KE and SE have followed a
similar pattern of evolution but along parallel paths. Sum-
marizing the history of KE and SE is hard, as there are very
many prestigious works in both disciplines [3, 4], and there is
no unified timeline. We extend the initial proposal of Endres
[5] and Liao [6] by defining disjoint eras and divide each one
into periods, which can be overlapped. Each period has its
own goals, methods, and tools, and also each one has its own
challenges. Progress usually appears in terms of research long
before they are stabilized. For example, client-server system
appeared before 1993, but we have considered the inclusion
of any new idea in the evolution when it has been extended
to the research or to the commercial community.

The rest of the paper is organized in six sections. Sections
2 and 3 summarize the timeline of SE and the main method-
ologies. The same description for KE appears in Sections 4
and 5. Section 6 outlines the major milestones that highlight

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 692510, 10 pages
http://dx.doi.org/10.1155/2014/692510

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143456049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

Table 1: Software engineering timeline.

Software engineering
Era Periods Description Methodologies

Mastering machine
(1956–1967)

Batch Hardware dependent
high level languages

Interactive Online. Code and fix

Mastering process
(1968–1982)

Process Crisis. Development process
software engineering SREM, SADT

DSED, JSP
SSADMFormal Ensure correctness. Models

inapplicability in big problems

Mastering complexity
(1983–1992)

Structured Personal computer. Expanding
data and functional convergence

Modern SSADM
JSD OMT
Booch JacobsonObject oriented Reusing new programming approach

Mastering communications
(1993–2001)

Industrial Internet. Client/server
complex projects CORBA

RUP/UML
Distributed Integrated methods

quality

Mastering productivity
(2002–2010)

Abstraction Conceptual level expansion
Customer productivity
Customer involvement

MDA
XP
ScrumAgile

Mastering market
(2011–. . .)

Service Outsourcing services
Orchestrating services
Market demands. Downloads

BPMN/BPEL
SOA-Cloud
APPMobility

the similarities in the evolution of both disciplines. Finally, in
Section 7 we give some conclusions.

2. Timeline of Software Engineering

Table 1 shows the characteristics of each era and period of the
SE timeline, together with the most popular methodologies.
We start this timeline in 1956 because it is generally thought
that the first operating system was produced in 1956 by
General Motors.

2.1. SE Era I: Mastering the Machine (1956–1967). The term
software engineering had not yet been coined. Code devel-
opment was strongly influenced by outside forces. The main
purpose of any piece of software was to optimize exploitation
of the limited hardware resources. The first compilers were
defined; operating systems were noninteractive. These prim-
itive environments continued evolving up to the definition
of the first low-level Computer Aided Software Engineering
tools (CASE tools) facilitating interactive editing, compiling,
and debugging. The lack of software development methods
led to high risk and the origin of a new stage is easily
noticeable.

2.2. SE Era II: Mastering the Process (1968–1982). The first
software crisis in this stage led to the birth of software
engineering [1]. The aim was to reduce risk during devel-
opment and improve quality and productivity. Software

development methodologies appeared to define and monitor
software building. An important contribution of this stage
was the formal modeling approach that enables implementa-
tion automation. But for industry, this formal approach was
unfeasible due to a lack of tools and training. Furthermore,
formal methods become unmanageable for large system
development. In conclusion, in this stage, the need to focus
on predesign phases and the use of more or less formal
models for software specification began to appear. A num-
ber of structured methods, such as Software Requirement
Engineering Methodology (SREM) [7] and the Structured
Analysis and Design Technique (SADT) [8] were developed
allowing the development of specification documents for
business management software.

2.3. SE Era III: Mastering the Complexity (1983–1992). The
up to then dominion of hardware over software ended. Per-
sonal computers arrived and opened the fields of computer
applications. The software development process would now
comprehensively address analysis and design from the spec-
ification. Graphical user interface and visual programming
brought software closer to customers. The use of structured
family and data modeling methodologies was extended
[9]. Several CASE tools facilitated software development.
However, data modeling (database) and function modeling
(structured methods) still followed separate paths.These two
modeling paths converged in object-oriented (OO) methods
like early on in structured methodologies, they were first



The Scientific World Journal 3

introduced in coding and design, and finally in specification
and analysis [10–12]. This approach enables efficient reuse of
object-oriented software and thus improves building software
productivity.

2.4. SE Era IV: Mastering the Communications (1993–2001).
The emergence of the Internet brought with it a new software
concept. The decentralization of functions and data led to
the rapid development and expansion of areas of computing,
such as concurrent programming and distributed architec-
tures, which up to then had been limited to a narrower
context. In addition to client/server applications, and in
general, any distributed systemdevelopment, there was now a
new engineering software discipline called Web engineering
[13]. Moreover, software development was viewed as an
industrial process in which quality should bemonitored.This
requires an effective separation between process and product.
Some tasks related to managing and improving both the
product and process appeared as new SE components, such
as CMM (capability maturity model) and CMMI (capability
maturity model integrated) [14].

2.5. SE Era V: Mastering the Productivity (2002–2010). Most
software systems created in this stage are called management
information systems. They were designed to be an important
part of businessmanagement in large companies.This has led
to a need for the methodologies to be adapted by increasing
the abstraction levels in software engineering tasks up to the
abstraction level in which the problem is described. New
tools enabling analysis level programming, such as Model
Driven Architecture (MDA) [15], appeared in this stage. The
other major significant period in this stage was marked by
the emergence of agile methodologies. Agile projects focus
on creating the best software to meet customer needs. This
means that the development team focuses only on tasks and
processes that provide the customer with added value in the
product being created, improved, or implemented [16]. The
most popularmethodologies are ExtremeProgramming (XP)
[17] and Scrum [18].

2.6. SE Era VI: Mastering the Market (2011–. . .). Now,
there are new platforms for integration and interoperability
between different information systems. The concept of Ser-
vice Oriented Architecture (SOA) coined in the early decade
is widely extended. It is based on the combination of basic
services (own or outside) that provide the functionality at
business level for a specific domain problem. These services
are orchestrated to perform more complex tasks, becoming
composite services. These ubiquitous real-time services can
be sold as a product, which is the origin of Cloud computing.
On the other hand, customers demand several applications
to be used in their smartphones, tablets, or laptops. The
applications (i.e., apps) are small programs that can be
downloaded and installed on mobile devices that allow users
to perform some tasks at the place that they are in any
moment. They are grouped into virtual stores and many
of them are free, so usually they are closer to marketing
challenges than software development challenges. They tend

to be more dynamic than traditional programs and are the
ultimate expression of agile methods and MDA.

3. Main SE Methodologies

Methodologies that are currently in use are the evolution
and/or the unification of methodologies defined and applied
in previous eras. Reporting the history of the SE methodolo-
gies was hard work outside of this paper.This section collects
a brief summary of the distinctive features of several selected
SE development methodologies. We identify three groups
ofmethodologies: structuredmethodologies, object-oriented
methodologies, and agilemethodologies. Table 2 summarizes
the most relevant methodologies including the main features
of structured methodologies are some of them obsolete, but
with a clear influence on today’s methods.

First techniques that could be called methodologies, such
as SREMand SADT, extended the concepts ofmodularization
and information hiding, previously applied in structured
programming, from design to specification phase. After these
initials works, Structured System Analysis and Structured
System Design (SSADM) were proposed to support the tasks
of analysis and design [9].

Object-oriented methodologies apply the OO program-
ming paradigm (OOP), which came to represent in the
nineties what structured programming was for the seventies.
OOP defines the software as a set of objects that interact with
each other. Their purpose is getting more consistent, robust,
and reusable software systems.

Since the nineties, modeling is the core in all the activities
executed during software development. When OO method-
ologies are applied, the building software process starts with
the problem domain model. This model will gradually evolve
towards the solution domain models, being the last model
the OO code. This modeling approach was applied by a great
number of OO methods. After this rush of new method-
ologies, conflicts began to appear between similar methods,
each one with its own alternative approach. Due to this fact,
rational proposed an integration of different projects led by
the creators of the main methods, which led to the design
of a Unified Modeling Language (UML). This integration
provided interoperability toOO-basedmethodologies, which
helped the stabilization of the OO market. The current
version of UML is 2.4.1 [19].

Agile methods promote a disciplined project manage-
ment process that encourages frequent inspection and adap-
tation. These methodologies are based on iterative devel-
opment. Their basie foundations were published in the
Agile Manifesto by a groups of software practitioners and
consultants [20]. These focal values are: individuals and
iterations over processes and tools, working out software
over comprehensive documentation, customer collabora-
tions over contract negotiations, and responding to changes
over following a plan. Agile methods break the tasks into
small increments with minimal planning, each one called
timebox. Each iteration is a full development cycle, generat-
ing a release that needs to be demonstrated to stakeholders. A
method can be considered agile when software development



4 The Scientific World Journal

Table 2: SE methodologies summary.

Artefact Notation Stages/workflows
Structured system analysis and design methodology (SSADM) [9]

Requirement specification
Analysis model
Design model

Data flow diagrams
Data dictionary
Structured English
Structure chart

Specification or analysis
Design
Coding and test
Maintenance

Data structured systems development methodology (DSSD) [48]

Data model
Functions
Results

Data structured diagram
Warnier/Orr diagram
Assembly-line diagram
Entities diagram

Context definition
Function definition
Results definition

Jackson system development (JSD) [49]

Initial model
Functional model

Entity life history diagrams
Structured English

Entity/action step
Initial model step
Interactive function step
Information function step
System timing step
System implementation step

OMT methodology [12]

Object model
Dynamic model
Functional model

Class and object diagram
Modules diagram
States diagram
Process diagram
Interaction diagram

Conceptualization
Analysis
Design
Evolution

UML and RUP [19]

Use case model
Analysis model
Design model
Deployment model
Implementation model
Test model

Class diagram
Use case diagram
Interaction diagram
State diagram
Components diagram
Activity diagram
Components diagram
Deployment diagram

Dynamic:
inception, elaboration,
construction, and transition

Static:
business modeling requirement,
analysis and design,
implementation, test, and deployment

Extreme programming [17]

Software releases
All SE techniques

Communication
Feedback
Simplicity
Courage
Respect

Coding
Testing
Listening
Designing

Scrum [18]

Software releases
Meetings

Main roles:
ScrumMaster
Product Owner
Team

Sprint planning meeting
Daily Scrum meeting
Team work
Sprint review meeting
Sprint retrospective

is incremental (small software releases, with rapid cycles),
cooperative (customer and developers working together with
close communication), straightforward (the method itself is
easy to learn and to modify), and adaptive (able to make last
moment changes).

Currently due to the popularity of mobile applications
(apps), methodologies need to migrate to this new kind
of software products. An app can be property of private
programmers or any enterprise. They do not usually embody
complex programming skills. However, programmers have to
manage a wide array of screen sizes, hardware specifications
and configurations because of intense competition in mobile
platforms. However, there is not a new methodology for this

kind of software; we believe that agile methods are a good
alternative.

4. Timeline of Knowledge Engineering

Knowledge engineering (KE) is another computer science
field that shares some of the SE objectives. KE is required
when the software to be developed has to behave in a heuristic
way. The goal of KE is similar to that of SE: “. . .constructing
Knowledge Based System (KBS) in a systematic and control-
lable manner. This requires an analysis of the building and
maintenance process itself and the development of appro-
priate methods, languages and tools suitable for developing



The Scientific World Journal 5

Table 3: Knowledge engineering timeline.

Knowledge engineering
Era Periods Description Methodologies
Mastering intelligence
(1956–1978)

General solvers
KBS Knowledge

Mastering process
(1979–1989)

Process Crisis. Knowledge engineering
Shells

Buchanan
KLIC
IDEALSpecialization Domain specific application

Mastering complexity
(1990–2000)

Second generation KBS transfer
Knowledge industry MIKE

Protégé
CommonKADSReusing Tasks libraries

Knowledge management

Mastering communications
(2001–2010)

Distributed Ontologies
Semantic Web

Mas-CK
MASE
W3C RDF
METHONTOLOGYData mining Database availability

Automatic learning
Mastering productivity
(2010–. . .)

Expanding
Integration

Transfer to many domains
Integrated approach SKEngineering

KBSs” [21]. Due to the fact that the two disciplines propose
building software using engineering principles, there should
be similarities between the methods, techniques, and tools
used in both fields. In fact, they have experimented a similar
evolution but almost with a decade of delay. However, KE
and SE have ignored each other, against some basic principles
of any engineering (e.g., reuse, cooperation, or work parti-
tion) [2]. We summarize KE evolution in Table 3.

4.1. KE Stage I: Mastering Intelligence (1956–1978). In this
stage, knowledge engineering had not yet appeared.The term
Artificial Intelligence (AI)was coined, although some authors
such as Alan Turing (from 1900 to 1956) had previously
made proposals close to what would later be called AI. AI
seeks to develop systems that can “think” like human experts.
During this period, most work was directed at the devel-
opment of general problem-solving techniques, such as the
STRIPS (Stanford Research Institute Problem Solver System)
planning system [22] or GPS (General Problem Solver) [23].
But these techniques were insufficient to solve real concrete
problems, since they required specific domain knowledge
rather than general knowledge, for which techniques for
transferring knowledge from the expert to computers are
required. This vision gave birth to the first KBSs, such as
PROSPECTOR [24] and MYCIN [25], without the support
of any development methodology.

4.2. KE Stage II:Mastering the Process (1979–1989). Due to the
lack of clear methods, the transition of KBSs from research
to commercial products was a failure in most cases. As no
engineering method existed, the development process had
to face many problems. Time and cost estimates were not
satisfied, products did not meet the customers’ expectations,
and maintenance and testing tasks became costly. Basically,
building a KBS was conceived as a process of transferring
human expert knowledge to a computer knowledge base
[21]. In this approach, knowledge acquisition became the

most important task as well as the main bottleneck in KBS
development. In the same way the software crisis resulted
in establishing SE as a discipline; early KBSs development
problems made clear the need for more methodological
approaches and a better analysis of the process applied [26];
knowledge engineering was born. Moreover, the wide scope
of applicability of Artificial Intelligence techniques drove this
discipline to specialize and diversify in new disciplines such
as data mining, computer vision, and pattern recognition.

4.3. KE Stage III: Mastering the Complexity (1990–2000).
A is an attempt to overcome the knowledge acquisition
bottleneck, a new generation of methodologies in the early
nineties redefined KE from transfer/mining to a modeling
perspective. This approach is based on the knowledge level
concept proposed by Nevell, in which a level above the sym-
bolic level provides sufficient abstraction for the knowledge to
be represented, regardless of its implementation [27]. Once
KBS development was defined as a modeling process and
generic knowledge models were identified, a methodology
to assist in the specification of the different models was
required. Based on these ideas, a second generation of KE
methodologies came to light. The most commonly used were
CommonKADS (Compressive Methodology for KBS Devel-
opment) [28], MIKE (Model-based and Incremental Knowl-
edge Engineering) [29], andProtégé-II [30].They represented
the first attempts to provide a complete methodology for the
entire KBS development lifecycle. Moreover, as in SE, the
need to improve productivity led to the empowerment of
knowledge component reuse, in the sameway that classes and
objects are reused in object-oriented development.

4.4. KE Stage IV: Mastering Communications (2001–2010).
The new concept of distributed software was also extended
to KBS, making it possible to apply this technology to a wider
range of domains and more complex problems. During the
last decade, the exponential growth of information on the



6 The Scientific World Journal

World Wide Web (WWW) made the ability to understand
and manage the semantics of the data of paramount impor-
tance for the successful discovery, sharing, distribution,
and organization of this information. Thus new challenges,
such us those related to the recovery, extraction, publica-
tion, and sharing of knowledge on the WWW, have to be
confronted. Two new interrelated disciplines have emerged
to help face these problems, ontological engineering [31]
and Semantic Web [32]. They conceive the WWW as an
intelligent network, where computers are able to understand
data and then use them to infer new conclusions. In an
era dominated by communications, the availability of large
amounts of data about specific areas of application requires
the use of machine learning and data mining techniques to
make it possible for computers to learn. Such programs must
be able to generalize behavior from unstructured informa-
tion available in the form of examples and on the WWW
[33].

4.5. KE Stage V: Mastering the Productivity (2010–. . .). An
important issue in this stage is related to making AI tech-
niques commercially viable to extend them to a new gener-
ation of consumer products, such as interactive smart toys,
or their application to specific domains in which, up to now,
they had not entered, such as SE itself (i.e., Search Based
Software Engineering (SBSE)) [34]. Moreover, the widening
scope of software solutions covers larger, more commercially
complex systems, inwhich the need for software systems to be
able to coordinate information and knowledge management
in a single product is evident. The development of this
kind of software should be approached from a coordinated
application of KE and SE methodologies, because products
generated by both development approaches can be combined,
giving end users a single view of the software product. This
is the main aim of a new methodological approach called
SKEngineering [35].

5. Main KE Methodologies

Originally, pioneering KBS development methodologies
focused on acquiring knowledge. Software construction was
understood as the transfer and transformation of experience
in problem-solving knowledge from any source (in most
cases a human expert) to computer software. According to
Buchanan et al. [26], this transfer required the intervention
of a knowledge engineer intermediary. The most relevant KE
methods are summarized in Table 4.

Buchanans main contribution was identification of
knowledge acquisition as the KBS development bottleneck.
Buchanan proposed a knowledge acquisition lifecycle cover-
ing all the steps in system development, that is, from initial
system definition to its maturity. It was the first attempt at a
commercial KBS development approach. During the follow-
ing years,many changes and improvements inmethodologies
were promoted. As a result, new methodologies developed
KBS from an SE perspective, KLIC (Knowledge Based System
Life Cycle) [36], and IDEAL [37].

In the early nineties, when KE went from knowledge
transfer to knowledgemodeling, second-generationmethod-
ologies enable analysis of the system at knowledge level. This
new approach makes it possible to specify the problem at
different granularity levels and define reusable knowledge
components. These methodologies are based on the mod-
eling approach, which has its roots in previously proposed
ideas, but which were, however, still far from being con-
sidered methodologies [38, 39]. KADS (Knowledge Acqui-
sition and Design Structuring) and Protégé were the first
projects addressing the problem of knowledge acquisition
from the modeling point of view. Based on these projects,
more complete methodologies have been developed, among
which, are CommonKADS [28], MIKE [29], and Protégé-II
[30].

The last group of KE methods are ontology engineer-
ing. Ontological engineering refers to all the activities that
concern ontology development: ontology life cycle, meth-
ods and methodologies for building ontologies, and tool
suites and languages that support them [31]. We considered
Cyc as the oldest ontological engineering project [40]. A
more formal approach is used by TOVE (Toronto Virtual
Enterprise) Project. It uses a first order logic approach to
represent ontologies in business integration architectures
[41]. METHONTOLOGY is the best known ontology devel-
opment methodology and the most complete and detailed
of the development processes, proposing a process model,
an ontology lifecycle, and a specification for all activities.
These activities are classified into three categories: manage-
ment, development/building, and support and they allow
ontologies to be built at the knowledge level, using IEEE
Standard 1074-1995. An othermethod based onUML and use
cases is UPON (United Process for Ontologies) that has an
incremental and iterative lifecycle [42].

6. Convergence and Divergence Milestones

We can outline six major milestones in the evolution of
methodologies for building software, which have a slight
delay between their appearance in SE and KE. Each of those
milestones is a unification moment between methodologies
or is a bifurcation towards new approaches (see Figure 1). All
milestones have a thin gap between their appearances in the
KE and SE, and are points of inflection in the evolution of the
methodologies.

The first one is the need for development methodologies.
This milestone was the origins SE and KE, as a result of
both crises. The second milestone is the migration to the
modeling approach of; here the goal is the development of
models that support the construction of software; today it is a
fundamental and necessary step of all software developments.
The need to evolve toward the modeling approach appears in
KE faster than in SE, because KEmethods are applied inmore
complex domains, where models become a necessity.This led
to the boom of the second-generation KE methodologies.

The third milestone appears when SE and KE need to
develop their projects in a more controlled way. That is, the
process itself reaches the same importance that the artifacts



The Scientific World Journal 7

Table 4: KBS development methodologies.

Artefact Notation Stages/workflows
Buchanan [26]

Knowledge bases
Inference methods

Rules
Frames

Identification
Conceptualization
Formalization
Implementation
Validation

IDEAL [37]
Plan
Use case model
Static conceptual model
Process and control model
Formal model
Computational model

Rule languages
LISP

Identification of the tasks
Development of prototypes
Execution of integrated system
Perfective maintenance
Technology transfer

CommonKADS [28]
Organization model
Task model
Agent model
Knowledge model
Communication model
Design model

Inference diagrams
Task-methods diagrams
Class diagrams
State diagrams
Use case diagrams
Templates

Revision
Risks study
Monitoring

MIKE [29]

Elicitation model
KARL model
Design model

KARL
Design KARL

Acquisition
Interpretation
Formalization
Design
Implementation
Evolution

Protégé [30]

Knowledge model Knowledge elicitation tool
Knowledge base —

METHONTOLOGY [31]

Ontologies:
concepts,
relationships

Ontology languages:
OIL
DAML + OIL
OWL

Predevelopment
Development
Postdevelopment
Management and support

UPON [42]
Domain and reference lexicon
UML class diagrams
UML activity diagrams
Semantic network, ontology

OWL

Requirement
Analysis
Design
Implementation

generated during a project. The processes and the products
have their own lifecycle that can be enhanced and controlled
separately.The process versus productmilestone can be clearly
shown in SE evolution, but we can see in Figure 1 that when
KE methodologies reached the enough maturity to deal with
this milestone, they were hit by another big change or bust
that we labeled as a second crisis.

This fourth milestone (called second childhood) appeared
in the KE due to the lack of success of the commercial soft-
ware developed under KE discipline. This fact, together with
the establishment and successful development of ontologies
and Semantic Web, led KE back to childhood. Development
efforts focus on building and publishing sets of useful con-
cepts within a domain and the relationships between those
concepts (i.e., ontology engineering). The milestone where
developers returned to a second childhood has also occurred
in the SE field. Agile methods appear in order to enhance the

quality of the final software product by introducing check-
points where customer’s requirements can be reassigned.The
agile development is a radical deviation from other software
development methods, focusing on adapting the software
quickly to changes in realities. It represents a big change in
SE evolution.

These four milestones are points of convergence between
existing methodologies, which collect and adapt the best of
each method, or they are divergence points towards other
applicable approaches. We propose other twomilestones that
are not completely stable today. Hybrid software development
suggests that development of a software system must be
treated from KE and SE points of view, by integrating the two
behaviors that can be present in a software system: algorithm
and heuristic [35, 43].The common challengemust be now to
integrate the best of each approach in a new holistic approach
(i.e., SKEngineering). But nowadays, market pressure gives



8 The Scientific World Journal

Development
methodologies

Modeling
approach

Process
versus product

Second
childhood

Hybrid
software
systems

Market
pressure?

SAD

SAD, real time
DSED

JDS

Structured

Jacobson
Booch

OMT

Buchanan KLIC
IDEAL

KADS

MIKE

RUP/UML

Agile methods

SKEngineering

CommonKADS

Ontologies Ontology engineering

1980 1990 2000 2010

SE

KE

Prot ́e ́eg ́e IIg ́e/prot

· · ·

Figure 1: Methodologies evolution and milestones.

rise to a strong divergence milestone in SE in order to define
good processes and practices (i.e., methodologies) for new
approaches as Cloud computing or apps development. This
milestone is a challenge for SE but for KE is yet unknown.

7. Conclusions

This work presents a timeline of six major eras of SE and
compares that against the major development approaches of
KE with the aim to search for a unified scenario to develop
software systems, which represents a further step forward to
understand the current state of both types of engineering.
Software developers must learn about the computer science
history in order to avoid divergent approaches that make our
work hard when a software project is addressed.

The lack of cooperation between SE and KE can be
avoided if a computer science discipline gives to the other
those capabilities in which it has more experience, more
potential, and more expressiveness. These interactions have
been fruitful and beneficial, achieving a synergistic effect [44,
45]. For example, KE can learn from SE about the production,
reuse, maintenance, and management [46], and SE can
learn from KE about information acquisition techniques
to improve communication with customers, or how to get
specifications that best fit customers’ needs [47], or how to
use AI techniques in order to enhance SE process [34].

The industrial and business scenario could help to mix
up modern approaches of KE and SE in order to find inte-
gration under the same shadow of techniques and methods
applied in both types of engineering. This joined approach

(SKEngineering) allows the development of quality products
using SE or KE methods, since there are many cases in
which companies require deploying software systems that
integrate components based and not based on knowledge in a
transparent way. Nowadays, when it is necessary to combine
KE and SEmethods in a project, the solution consists of doing
an early separation of activities related to each discipline
following each one’s own path. This unified scenario should
provide a reference point to support the entire software
development project, which must be able to be adapted and
instantiated to the development teams and the nature of the
project. But there are many other challenges under study,
as how KE must treat the market pressure. This evolution
milestone can be assisted bywell knownArtificial Intelligence
techniques as machine learning or fuzzy approaches.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] P. Naur and B. Randell, “Software engineering,” Tech. Rep.,
NATO Science Commitee, Garminch, Germany, 1969.

[2] Y. Wang and D. Patel, “Editors’ introduction: comparative soft-
ware engineering: review and perspectives,” Annals of Software
Engineering, vol. 10, pp. 1–10, 2000.

[3] B. G. Buchanan, “A (very) brief history of artificial intelligence,”
AI Magazine, vol. 26, no. 4, pp. 53–60, 2005.



The Scientific World Journal 9

[4] M. S. Mahoney, “Finding a history for software engineering,”
IEEE Annals of the History of Computing, vol. 26, no. 1, pp. 8–19,
2004.

[5] A. Endres, “A synopsis of software engineering history: the
industrial perspective,” in History of Software Engineering,
Position Papers for Dagstuhl Seminar 9635, pp. 20–24, 1996.

[6] S.-H. Liao, “Expert system methodologies and applications-
a decade review from 1995 to 2004,” Expert Systems with
Applications, vol. 28, no. 1, pp. 93–103, 2005.

[7] M. W. Alford, “A requirements engineering methodology for
real-time processing requirements,” IEEE Transactions on Soft-
ware Engineering, vol. 3, no. 1, pp. 60–69, 1977.

[8] D. T. Ross and K. E. Schoman Jr., “Structured analysis for
requirements definition,” IEEE Transactions on Software Engi-
neering, vol. 3, no. 1, pp. 6–15, 1977.

[9] E. Yourdon, Modern Structured Analysis, Prentice Hall, Engle-
wood Cliffs, NJ, USA, 1988.

[10] P. Coad and E. Yourdon, Object-Oriented Analysis, Prentice
Hall, Englewood Cliffs, NJ, USA, 1989.

[11] P. Coad and E. Yourdon, Object-Oriented Design, Prentice Hall,
Englewood Cliffs, NJ, USA, 1991.

[12] J. R. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and
W. Premerlani, Object-Oriented Modeling and Design, Prentice
Hall, Englewood Cliffs, NJ, USA, 1990.

[13] IEEE, “IEEE recommendedpractice for internet practices—web
page engineering—intranet/extranet applications,” Tech. Rep.,
IEEE, 1999.

[14] C. Paulk, B. Curtis,M.Chrissis, andV.Weber, “Capabilitymatu-
rity model for software, ver. 1.1,” Tech. Rep. CMU/SEI-93-TR-
24, ESC-TR-93-177, Software Engineering Institute, Carnegie
Mellon University, 1993.

[15] OMG, “MDA guide version 1.0.1,” Tech. Rep., Object Manage-
ment Group, 2003.

[16] K. Beck, M. Beedle, A. Bennekum et al., “The agile manifiesto,”
Tech. Rep., Agile Alliance, 2001.

[17] K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change, Addison-Wesley, 2nd edition, 2004.

[18] K. Schwaber and M. Beedle, Agile Software Development with
Scrum, Prentice Hall, Englewood Cliffs, NJ, USA, 2001.

[19] OMG, “OMG unified modeling language TM (OMG UML),
infrastructure version 2.4.1,” Tech. Rep., Object Management
Group, 2011.

[20] K. Beck, M. Beedle, A. Bennekum et al., “The agile manifiesto,”
Tech. Rep., Agile Alliance, 2001.

[21] R. Studer, D. Fensel, S. Decker, and V. Benjamins, “Knowl-
edge engineering: survey and future directions,” in XPS-99:
Knowledge-Based Systems. Survey and Future Directions, F.
Puppe, Ed., vol. 1570 of Lecture Notes in Computer Science, pp.
1–23, Springer, Berlin, Germany, 1999.

[22] R. E. Fikes and N. J. Nilsson, “Strips: a new approach to the
application of theorem proving to problem solving,” Artificial
Intelligence, vol. 2, no. 3-4, pp. 189–208, 1971.

[23] A. Newell and H. A. Simon, “GPS, a program that simulates
human thought,” in Computers and Thought, E. A. Feigenbaum
and J. Feldman, Eds., pp. 279–293,McGraw-Hill, NewYork, NY,
USA, 1963.

[24] P. E. Hart, R. O. Duda, and M. T. Einaudi, “PROSPECTOR—a
computer-based consultation system for mineral exploration,”
Journal of the International Association for Mathematical Geol-
ogy, vol. 10, no. 5, pp. 589–610, 1978.

[25] E. H. Shortliffe, Computer-Based Medical Consultations, Else-
vier, New York, NY, USA, 1976.

[26] B. G. Buchanan, D. Barstow, R. Bechtal et al., “Constructing an
expert system,” in BuildIng Expert Systems, F. Hayes-Roth, D. A.
Waterman, and D. B. Lenat, Eds., pp. 127–167, Addison-Wesley,
London, UK, 1983.

[27] A. Newell, “The knowledge level,” Artificial Intelligence, vol. 18,
no. 1, pp. 87–127, 1982.

[28] G. Schreiber, H. Akkermans, A. Anjewierden et al., Knowledge
Engineering and Management: The CommonKADS Methodol-
ogy, MIT Press, Cambridge, Mass, USA, 1999.

[29] J. Angele, D. Fensel, D. Landes, and R. Studer, “Developing
knowledge-based systems with MIKE,” Automated Software
Engineering, vol. 5, no. 4, pp. 389–418, 1998.

[30] H. Eriksson, Y. Shahar, S.W. Tu, A. R. Puerta, andM. A.Musen,
“Task modeling with reusable problem-solving methods,” Arti-
ficial Intelligence, vol. 79, no. 2, pp. 293–326, 1995.

[31] A. Gómez-Pérez, M. Fernández-López, and O. Corcho, Onto-
logical Engineering: With Examples from the Areas of Knowledge
Management, E-Commerce and the Semantic Web, Springer,
London, UK, 1st edition, 2004.

[32] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[33] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and
Techniques, Morgan Kaufmann, 2nd edition, 2006.

[34] M. Harman, “The current state and future of search based
software engineering,” in Proceedings of the Future of Software
Engineering (FoSE ’07), pp. 342–357, IEEE Computer Society,
May 2007.

[35] I. M. del Águila, J. Cañadas, J. Palma, and S. Túnez, “Towards a
methodology for hybrid systems software development,” in Pro-
ceeding of the International Conference of Software Engineering
and Knowledge Engineering, pp. 188–193, 2006.

[36] G. Guida and C. Tasso, Design and Development of Knowledge-
Based Systems: From Life Cycle to Methodology, John Wiley &
Sons, New York, NY, USA, 1994.

[37] F. Alonso, A. de Antonio, A. L. Gonzalez, J. L. Fuertes, and L.
Martinez, “Towards a unified methodology for software engi-
neering andKnowledgeEngineering,” inProceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, vol.
5, pp. 4890–4895, IEEE, October 1998.

[38] B. Chandrasekaran and T. R. Johnson, “Generic tasks and task
structures: history, critique and new directions,” in Second Gen-
eration Expert Systems, pp. 232–272, Springer, Berlin, Germany,
1993.

[39] J. McDermott, “Preliminary steps toward a taxonomy of
problem- solving methods,” in Automating Knowledge Acqui-
sition for Expert Systems, S. Marcus, Ed., pp. 225–256, Kluwer
Academic Publishers, Boston, Mass, USA, 1988.

[40] D. B. Lenat, “CYC: a large-scale investment in knowledge
infrastructure,” Communications of the ACM, vol. 38, no. 11, pp.
32–38, 1995.

[41] M. Gruninger and M. Fox, “Methodology for the design and
evaluation of ontologies,” in Proceedings of the Workshop on
Basic Ontological Issues in Knowledge Sharing (IJCAI ’95), vol.
95, pp. 6.1–6.10, 1995.

[42] A. deNicola,M.Missikoff, and R.Navigli, “A software engineer-
ing approach to ontology building,” Information Systems, vol.
34, no. 2, pp. 258–275, 2009.

[43] I. M. del Águila, J. del Sagrado, S. Túnez, and F. J. Orellana,
“Seamless software development for systems based on Bayesian



10 The Scientific World Journal

networks: an agricultural pest control system example,” in
Proceedings of the 5th International Conference on Software and
Data Technologies (ICSOFT ’10), pp. 456–461, July 2010.

[44] S. K. Chang,TheHandbook of Software Engineering and Knowl-
edge Engineering, Volume 2: Emerging Technologies, World
Scientific Publishing, Singapore, 1st edition, 2002.

[45] F. Meziane and S. Vadera, Artificial Intelligence Applications
for Improved Software Engineering Development: New Prospects,
Advances in Intelligent Information Technologies, Information
Science Reference, 1st edition, 2009.

[46] I. M. del Águila, S. Túnez, J. Cañadas, A. Bosch, and R. Maŕın,
“A proposal for project management using CommonKADS,” in
Computer Aided SystemsTheory—EUROCAST 2001, vol. 2178 of
Lecture Notes in Computer Science, pp. 160–171, Springer, Berlin,
Germany, 2001.

[47] L. C. Briand, “On the many ways software engineering can
benefit from knowledge engineering,” in Proceedings of the
14th International Conference on Software Engineering and
Knowledge Engineering (SEKE ’02), pp. 3–6, ACM, Ischia, Italy,
July 2002.

[48] K. T. Orr, Structured Systems Development, Yourdon, New York,
NY, USA, 1977.

[49] A. Sutcliffe, Jackson System Development, Prentice Hall, Engle-
wood Cliffs, NJ, USA, 1988.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


