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Abstract: The monitoring and analysis of the processes taking place in an ecosystem 
is a key issue for a sustainable human activity.  A system of populations, as the 
biotic component of a complex ecosystem is usually affected by the variation of its 
abiotic environment. Even in nearly natural ecosystems an abiotic effect like 
climatic implications of global warming may cause important changes in the 
dynamics of the population system. In ecosystems involving field cultivation or any 
industrial activity; the abiotic parameter in question may be the concentration of a 
substance, changing e.g. as a result of pollution, application of a pesticide, or a 
fertilizer, etc. In many cases the observation of the densities of each population may 
be technically complicated or expensive, therefore the question arises whether from 
the observation of the densities of certain (indicator) populations, the whole state 
process of the population system can be uniquely recovered. The paper is aimed at a 
methodological development of the state monitoring, under the conditions of a 
changing environment.  It is shown, how the technique of mathematical systems 
theory can be applied not only for the approximate calculation of the state process on 
the basis of the observed data, even under the effect of an exogene abiotic change 
with known dynamics; but in certain cases, also for the estimation of the unknown 
biological effect of the change of an abiotic parameter. The proposed methodology is 
applied to simple illustrative examples concerning a three-species predator-prey 
system.  
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1. INTRODUCTION 

Detection of the effect of human activities (e.g. pollution) and environmental change 
such as climatic variation, is an important part in the analysis of a composite system, 
including ecological, human and environmental subsystems. The effect of such factors 
on the parameters of population system models has been studied by several authors, 
see e.g. Gargani (2002), Xia (2007). The problem we consider is the following: 
Suppose we know that an abiotic change has an effect on the parameters of a 
population system, we want to estimate, at the same time both the whole state process 
and the change of the mentioned parameters, observing the densities of certain 
indicator populations.  
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For the solution of this problem a constructive method is proposed. Mathematical 
Systems  
Theory offers appropriate concepts and technique for the development such a 
methodology. The methodological foundations of the application of controllability and 
observability to frequency-dependent population models (described by systems with 
invariant manifold), have been set in Varga (1989) and Varga (1992), see also Scarelli 
and Varga (2002). The original problem of state monitoring of a population system as 
formulated in Varga et al. (2003) is that,  from the observation of the time-dependent 
densities of certain species, the whole state process of the population system is to be 
recovered. An important concept for the solution of this problem is observability.  The 
latter in this context means that from the observation of one or several (but not all) 
state variables, it is possible to recover the whole state process of the populations 
system, in a unique way (without determining, however, a constructive method to 
obtain this process.) Observability has been analysed in different population system 
models in Varga et al. (2002, 2003) and Shamandy (2005), see also López (2003), 
López et al. (2004). In order to prove observability, we use a general sufficient 
condition for local observability of nonlinear observation systems, published in Lee 
and Markus (1971). For a general review on the application of mathematical systems 
theory in population biology, see Varga (2008). 
 
Once local observability near an existing equilibrium is proved, we also need a 
constructive method for the estimation of the state process. To this end an auxiliary 
system, the so-called observer system can be applied. The latter is constructed from 
the observed data, and asymptotically estimates the complete state process with 
exponential speed of convergence, see Sundarapandian (2002) and López et al.  
(2007a, b). 
 
Now, if by human activities (e.g. pollution) any environmental disturbance takes 
place, the parameters of the population system model may change, which can be 
expressed in terms of unknown (constant or time-dependent) parameters, added to the 
known system parameters. In the paper we deal with cases. First, there is an unknown 
additive constant in certain biological parameters, and from the observation we 
estimate both these unknown constants, and the unknown solution of the population 
system model. In the second case, certain biological parameters change according to a 
known dynamics described by an additional system called exosystem. In Section 2, 
from nonlinear systems theory we briefly recall a concept and a theorem concerning 
observability. Section 3 is devoted to the observer design, and contains illustrative 
numerical examples for the application of the proposed methodology to both cases 
mentioned above.   If we apply the above state process estimation to the composite 
system including both the population system model and the exosystem, we obtain 
asymptotic estimation not only for the state process of the population system, but at 
the same time also for the unknown parameters indicating the abiotic disturbances. 
Using computer simulation, the above construction will be illustrated by a three-
species Lotka-Volterra model, where the Malthus parameters are changed as result of 
a human (environmental) intervention. 
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2. CONCEPT OF OBSERVABILITY. APPLICATION TO A 
PREDATOR-PREY MODEL 

Given positive integers m, n, let  

mnnn hf RRRR  :,:   

 

be continuously differentiable functions and for some  nx R*  we have that 
0)( * xf  and 0)( * xh . 

We consider the following observation system 
 
 

     )(xfx               (1) 
     )(xhy   ,               (2) 

 
 

where y  is called the observed function. 
 
Definition 2.1 Observation system (1)-(2) is called locally observable near 
equilibrium *x  , over a given time interval ],0[ T , if there exists 0 , such that for 

any two different solutions x  and x  of system (1) with  |)(| *xtx  and 

)],0[(|)(| * Ttxtx   , the observed functions xh   and xh   are different. (   
denotes the composition of functions. For brevity, the reference to ],0[ T  will be 
suppressed). 
For the formulation of a sufficient condition for local observability consider the 
linearization of the observation system (1)-(2), consisting in the calculation of the 
Jacobians 

 

)(: *xfA    and  )(: *xhC  . 

 
Theorem 2.2 (Lee and Markus, 1971). Suppose that 
 

.]|...|||[ 12 nCACACACrank Tn     (3) 
 

Then the observation system (1)-(1) is locally observable near the equilibrium *x . 
We consider now, the biological model of 2 preys and 1 predator of the form 

)(xfx  , determined by the following differential system 
 

)(

)(

)(

333232333

323222121222

212111111

xbxbaxx

xbxbxbaxx

xbxbaxx












   (4) 

 
with 0, iji ba for all .3,2,1, ji  
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It is easy to provide a simple algebraic condition for the existence of an equilibrium in 
mathematical sense, however its positivity depends on the model parameters. 
Throughout the paper we shall suppose that there exists an equilibrium 0* x  for the 
considered model. 
 
We suppose that we observe the total quantity of population preys with distinction 
between them, i.e., the observation equation is 

       ).,(:)( *
33

*
11 xxxxxhy   

 















100

001
)( *x

x

h
C  

 
And linearizing the Lotka-Volterra system (4) we obtain 
 

.

0

0

)(
*

333
*

332

*
223

*
222

*
121

*
112

*
111

*



























xbxb

xbxbxb

xbxb

x
x

f
A  

 
It is easy to check that, .3]||[ 2 TCACACrank  Thus, by Theorem 2.2 the system is 
locally observable near the equilibrium, and the whole system state can be monitored 
observing only the total prey populations with distinction.  
 

3.  CONSTRUCTION OF AN OBSERVER SYSTEM WITH 
ENVIRONMENTAL CHANGE 

Now, the construction of an observer system will be based on Sundarapandian (2002). 
Let us consider observation system (1)-(2).  

Definition 3.1.  Given a continuously differentiable function  nmnG RRR : , 
system  

                                                                  ),( yzGz                                          (5) 

 

is called a local asymptotic (respectively, exponential) observer for observation system 
(1)-(2) if the composite system (1)-(2),(5) satisfies the following two requirements.  

i) If )0()0( zx  , then )()( tztx  , for all 0t .  

ii) There exists a neighbourhood V  of the equilibrium *x of nR  such that for all 
Vzx )0(),0( , the estimation error )()( txtz   decays asymptotically (respectively, 

exponentially) to zero. 
Theorem 3.2. (Sundarapandian, 2002). Suppose that the observation system (1)-(2) is 
Lyapunov stable at equilibrium, and that there exists a matrix K  such that matrix 

KCA   is Hurwitz (i.e. its eigenvalues have negative real parts), where )( *xfA   

and )( *xhC  . Then dynamic system defined by 

)]([)( zhyKzfz     (6) 
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is a local exponential observer for observation system (1)-(2). 

Now, for the estimation of a change in the dynamical parameters of an ecosystem, we 
recall that Sundarapandian (2002) also considered the possibility of an “input 
generator” determined by an external system called exosystem )(wsw  ,  in terms of 
which we can form a composite (nonlinear) system with inputs of the form 

),(

)(

))(,(

xhy

wsw

wuxFx









    (7) 

where we suppose that kknkn sF RRRRR  :  ,:  are continuously 

differentiable and 0)( ,0)( ,0)0,( ***  wswuxF . Variable u  is interpreted as a 
time-dependent vector of system  parameters of the original system (1), corresponding 
to right-hand side f . For the construction of an observer for the composite system we 
can apply the following 

Theorem 3.3 (Sundarapandian, 2002).  Suppose that observation system (7) is 
Lyapunov stable at equilibrium. If the system (7) has a local exponential observer, and 
that there exists a matrix K  such that matrix KCA   is stable (its eigenvalues have 
negative real parts), where ),( ** wxFA   and )( *xhC  . Then dynamic system 
defined by 

 

)]([))(,( zhyKwuzFz      (8) 

 

is a local exponential observer for observation system (7). 

Applying this methodology, we can not only asymptotically recover the state process 
x  from the observation, but also estimate the unknown change of the model 
parameters of the population system.  

To apply this construction to our population system (4), we remind that in López et al. 
(2007) it was proved that system (4) is asymptotically stable for an equilibrium 

),,( *
3

*
2

*
1

* xxxx  . In fact, function  

 

)(:)(
*

3

3
*

2

2
*

1

1  

































x

x
H

x

x
H

x

x
HxV   )( 3

Rx ,  

 

with 

23
*

3
*

1

23
*

3
*

112
*

3
*

2

21 ,
1

,
bxx

b

xxbxx

b
  ,  
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and vvvH ln:)(  , ( Rv ) was shown to be a Lyapunov function, implying 

asymptotic stability of equilibrium *x for system (4), globally with respect to the 

positive octant of 3R . 

3.1.   Observer for a system with unknown environmental change 

Assume that a considered ecosystem consists, on the one hand, of a system of several 
interacting populations living in the given habitat, and the abiotic environment on the 
other. The latter may also be exposed to climatic (e.g. seasonal) changes and/or human 
intervention, such as e.g. pollution, described by certain abiotic parameters (e.g. 
temperature or concentration). In this sections considering the predator-prey model 
(4), we suppose that the reference value of certain abiotic parameters change to an 
unknown constant value.  The effect of this change will be described by a small 
additive term (disturbance) Rw  in certain model parameters. In our illustrative 
numerical examples we will illustrate how we can recover the whole state process of 
the population system and estimate the unknown disturbance at the same time, by 
constructing and solving the corresponding observer system. In Example 1 we admit 
disturbance in all Malthus parameters, while in  Example 1, the unknown disturbance 
appears in the interaction parameters.  

Consider first our population system, completed with a trivial equation for w ,  

0

)(

)(

)(

3332323333

3232221212222

2121111111







w

xbxbwcaxx

xbxbxbwcaxx

xbxbwcaxx









  (9) 

with 0,, iiji cba  for all .3,2,1, ji  

It is clear that with the equilibrium 0* x  of the previous section, )0,( *x  is an 
equilibrium for system (9). 

Now, for the estimation of both components ),( wx  of system (9), i.e. both the state 
process and the unknown parameter, we suppose that the densities of both preys are 
observed: 

   ).,()( *
33

*
11 xxxxxhy    

Then  



































0000

0

0

,
0100

0001
*

33
*

333
*

332

*
22

*
223

*
222

*
221

*
11

*
112

*
111

xcxbxb

xcxbxbxb

xcxbxb

AC . (10) 

 

Now, we easily obtain that 4]|||[ 32 TCACACACrank . Then by Theorem 2.2, the 
system is locally observable near the equilibrium, and applying the theory of 
Sundarapandian (2002) we can construct a corresponding observer system. 
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Example 1. As a numerical example, we consider the following two-prey one-
predator model with the presence of an unknown environmental disturbance w : 

 

.0

)7.08.06.3(

)5.02.03.01(

)1.01.11.02(

3233

32122

2111







w

xxwxx

xxxwxx

xxwxx









   (11) 

 

System (11) has an equilibrium: )0,6506.0,9307.3,4608.1(* x ,  and with 

 

T

K 









1.0000

1000
:  

 

matrix KCA   is Hurwitz, therefore by Theorem 3.2 we can construct the following 
observer system 

).1.0,1)](,([

)7.08.06.3(

)5.02.03.01(

)1.01.11.02(

*
33

*
114

32433

321422

21411

xzxzyz

zzzzz

zzzzzz

zzzzz















  (12) 

If we suppose that environmental perturbation corresponds to the value 2.0w  and 
we take an initial condition )2.0,4.0,1.3,3.1(:),( 00 wx , near the equilibrium of 

system (11), and similarly, we consider another nearby initial condition, 
)4.0,7.0,5.3,8.1(:0 z  for the observer system (12). Figure 1 shows that the 

corresponding solution z  tends to the solution x  of the original system.  

 

 

Figure 1. Solutions of systems (11) and (12) 
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Let us now consider the case when there is an environmental disturbance in each inter-
specific  interaction parameter.  We then have a system of the following form: 

0

))((

))()((

))((

33323232333

3232322212121222

21212111111







w

xbxwcbaxx

xwcbxbxwcbaxx

xwcbxbaxx









  (13) 

with 0,, ijiji cba for all .3,2,1, ji  As in the previous case,  is clear that with the 

equilibrium 0* x  of Section 2, )0,( *x  is an equilibrium for system (13). Observing 
again the two prey populations, we have  

).,()( *
33

*
11 xxxxxhy   

Then with matrices 

 






































0000

)(0

)()(

0)(

 ,
0100

0001

*
3

*
232

*
333

*
33232

*
3

*
223

*
2

*
121

*
22323

*
222

*
22121

*
2

*
112

*
11212

*
111

xxcxbxwcb

xxcxxcxwcbxbxwcb

xxcxwcbxb

A

C

 (14) 

 

we have again have 4]|||[ 32 TCACACACrank . Then by Theorem 2.2, we have 
observability, furthermore a corresponding observer system can be constructed, as 
illustrated by the following   

Example 2. We consider the following two-prey one-predator model with the 
presence of an unknown environmental change effect w  

 

0

)7.0)3.08.0(6.3(

))3.05.0(2.0)2.01(1(

))1.01.0(1.12(

3233

32122

2111







w

xxwxx

xwxxwxx

xwxxx









  (15) 

System (15) has the same equilibrium: )0,6506.0,9307.3,4608.1(* x  as in Example 
1, and  now with 

 

T

K 










1100

0011
: , 
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matrix KCA   is Hurwitz, providing the following observer system 

)1,0)](,([0

)1,0)](,([)7.0)3.08.0(6.3(

)0,1)](,([))3.05.0(2.0)2.01(1(

)0,1)](,([))1.01.0(1.12(

*
33

*
11

*
33

*
113233

*
33

*
1132122

*
33

*
11211







xzxzyw

xzxzyzzwzz

xzxzyzwzzwzz

xzxzyxwxzz z









(16) 

Calculating with the initial values 0.2) 0.4, 3.1, (1.3,),( 00 wx  and 

0.3) 0.5, 3, (1.5,0 z  as in the previous example, we obtain the required 

approximations seen in Figure 2.  

 

 

 

 

3.2. Observer for a system with exosystem describing environmental change 

 

In this section we will design observer for a population system, supposing that in the 
abiotic environment there is a continuous change obeying a known dynamic law, 
which affect certain parameters of the population system.  This abiotic process may be 
e.g. pollution produced by an industrial plant, a periodical (seasonal) change of 
temperature, or a monotonous increase of temperature due to global warming etc. In 
our illustrative examples below, this dynamics will be described by different 
differential equations. The situation can be handled in terms of a composite 
observation system of the form (7), with the above abiotic dynamics as exosystem.   

First we assume that, with known positive constants   and  , the external system  

 

Figure 2. Solution of system (15)-(16) 
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12

21

ww

ww









     (17) 

describes a  periodic change that affects the coefficients of the interaction between 
predator and preys in the following form  

,

))((

))()((

))((

12

21

333213232333

312323222112121222

211212111111

ww

ww

xbxwcbaxx

xwcbxbxwcbaxx

xwcbxbaxx





















 (18) 

where all ijc -s are positive. Since zero is a Lyapunov stable equilibrium of system  

(17), by a known result (see e.g. Isidori, 1995), equilibrium )0,( *x  system (18) is 

Lyapunov stable. With the same observation  ),()( *
33

*
11 xxxxxhy   as in the 

previous examples, and following Theorem 3.3, we can construct an observer for this 
system. 

Example 3. We consider the system 

12

21

32133

3121122

21111

1.2

3.1

)7.0)8.08.0(6.3(

))3.05.0(2.0)2.01(1(

))3.01.0(1.12(

ww

ww

xxwxx

xwxxwxx

xwxxx



















 (19) 

Now using matrix 

T

K 









000

001
:  

 

we obtain the following observer: 

12

21

32133

3121122

*
33

*
1121111

1.2

3.1

)7.0)8.08.0(6.3(

))3.05.0(2.0)2.01(1(

)0,1)](,([))3.01.0(1.12(

ww

ww

zzwzz

zwzzwzz

xzxzyzwzzz



















 (20) 

For the solution of the composite system (19), we set initial value 
)1.0,1.0,4.0,1.3,3.1(:),( 00 wx , and calculate the solution of the observer system (20) 

with initial value )7.0,5.3,8.1(:0 z . Figure 3 shows how the state process is 

approximated by the solution of the observer even in case of variable environment. 
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In our last example we consider a case when an abiotic parameter, e.g. temperature 
displays a limited growth, described by a logistic equation. Assume that both the 
reproduction rate of the prey populations and the death rate of the predator increase 
with temperature. Such an abiotic effect can be described by the following composite 
system: 

),1(

)(

)(

)(

3332323333

3232221212222

2121111111

ww

xbxbwcaxx

xbxbxbwcaxx

xbxbwcaxx

 













   (21) 

 

where 0ic  for .3,2,1i  

Since /1:* w  is an asymptotically stable equilibrium for )1( ww   ,  

equilibrium ),( ** wx  is  Lyapunov stable near its equilibrium for the composite system 
(20). Therefore, for the usual observation  

),()( *
33

*
11 xxxxxhy  , 

we can construct an observer for a concrete system in  

Example 4. Consider the system 

 

 

Figure 3. Solutions of systems (19) and (20) 
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)025.01(3.0

)7.08.06.06.3(

)5.02.03.01(

)1.01.11.02(

3233

32122

2111

ww

xxwxx

xxxwxx

xxwxx















   (22) 

Now, with 

T

K 









1.000

000
 

matrix KCA   is Hurwitz, and the corresponding observer is 

)1.0,0)](,([)025.01(3.0

)7.08.06.06.3(

)5.02.03.01(

)1.01.11.02(

*
33

*
11

3233

32122

2111

xzxzyww

zzwzz

zzzwzz

zzwzz















  (23) 

The initial condition is )11,7,6,2(:),( 00 wx  for system (22) and )6,5,1(:0 z  for its 

observer system (23). , we can check that the solution of the original system is 
recovered by the observer system, see Figure 4. 

 

 

 

4.    DISCUSSION 

 

As a continuation of our recent research line, the monitoring methodology has been 
further developed towards models with changing environment. With the applied 
methodology, monitoring is not restricted to the estimation of the population state 
process or the detection of a change in a constant (intrinsic growth rate or predation 

 

Figure 4. Solution of system (22) and (23) 
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rate) of the population system model, but also makes possible to trace the biological 
consequences of a continuous change in certain abiotic environmental factors, 
including industrial pollution and climate change.  

The problem of recovering an unknown solution of the population system model, is 
clearly equivalent to the problem of having information about its initial value at the 
beginning of the observation period. Therefore, the initial value for the observer is 
taken  arbitrary but near the equilibrium.  

We note that our approach can be naturally extended from the presented simple 
illustrative ecosystem model to more complex models even of non Lotka-Volterra 
type, e.g. to trophic chains with structure resource – producer - primary consumer, see 
Samandy (2005). 

For the application to real field data, our approach may also need an extension to 
discrete-time ecosystem models, based on nonlinear discrete-time observer design, see 
e.g. Sundarapandian (2005).  
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