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Abstract

The effect of radiation on a cell population is described by a two-dimensional nonlin-
ear system of differential equations. If the radiation rate is not too high, the system
is known to have an asymptotically stable equilibrium. First, for the monitoring
of this effect, the concept of observability is applied. For the case when the total
number of cells is observed, without distinction between healthy and affected cells, a
so-called observer system is constructed, which, at least near the equilibrium state,
makes it possible to recover the dynamics of both the healthy and the affected cells,
from the observation of the total number of cells without distinction.

Results of simulations with illustrative data are also presented. If we want to
control the system into a required new equilibrium state, and maintain this new
equilibrium by a constant control, a technique of theory of optimal control can be
applied to construct a feedback control system.
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1 Introduction

The effect of radiation on a cell population has been modeled and studied by
a great number of authors, see e.g. Schöllnberger et al. (1999), Sachs et al.
(2001), Belostotski and Freedman (2005). Our investigations will be based on
the model considered in Freedman and Pinho (2008), where a two-dimensional
nonlinear system of ordinary differential equations describes the respective
dynamics of the population of the healthy cells and those affected by radiation,
and the interaction between them. In this model it is supposed that the growth
of the healthy cells is logistic.

In Section 2 from Freedman and Pinho (2008), we recall the description of
the model and some stability results. Section 3 is devoted to the problem of
observation. First, in terms of the model parameters, we obtain a sufficient
condition for local observability near equilibrium. Then we also prove a theo-
rem concerning the construction of observer systems for different observation
situations. The observer system makes it possible for us to asymptotically
estimate unknown (i.e. not observed) components of the original system. Il-
lustrative simulation results are also provided. For earlier applications of the
concept of observability and observer systems, see e.g. Varga et al. (2003),
López et al. (2007), Varga (2008) and Gámez et al. (2008). In Section 4 with
illustrative data we will show how the number of healthy cells can be steered
to a desired level, applying an appropriate feedback control. Finally, in Section
5, the methodology and the results are discussed.

2 Description of the model and preliminaries

We consider a dynamic model describing the interaction between the popula-
tions of healthy and radiated cells of an organ under the effect of a constant
radiation. Let x1(t) be the number of healthy cells, and x2(t) the number of
radiated cells at time t. For this situation, from Freedman and Pinho (2008)
we recall the following model:

ẋ1 = rx1

(
1− x1

K0

)
−∆x1 + px2

ẋ2 = ∆x1 − px2 − δx2.

(1)
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In this systems it is supposed that the growth of the healthy cells is logistic
as in Sachs et al.(1992) and Andronov et al. (1973). The number of radiated
cells with broken chromosomes are represented by ∆x1, where ∆ > 0 is the
radiation rate determined by the corresponding protocol, p > 0 is the rate at
which the radiated cells recombine into healthy cells, δ > 0 is the washout
rate of radiated cells, and finally, r > 0 is the Malthus parameter and K0 > 0

the carrying capacity for the healthy cell population.

Freedman and Pinho (2008) proved that the system leaves the nonnegative
orthant invariant. Moreover, they proved that system (1) has always a trivial
equilibrium (0, 0), and a “mathematical” equilibrium x∗ = (x∗1, x

∗
2), with

x∗1 =
K0[r(p + δ)−∆δ]

r(p + δ)
, x∗2 =

K0∆[r(p + δ)−∆δ]

r(p + δ)2
. (2)

Obviously x∗ > 0 if and only if

∆ <
r(p + δ)

δ
. (3)

Below from Freedman and Pinho (2008) we recall three statements. Later on,
we will use the Jacobian of the right-hand side of (1) calculated at equilibrium
x∗:

A =




r − 2rx∗1
K0

−∆ p

∆ −p− δ


 . (4)

Theorem 2.1
a) x∗ > 0 if and only if equilibrium (0, 0) is unstable.
b) If x∗ > 0, it is globally asymptotically stable, with respect to R2

+ \{(0, 0)}.
c) System (1) persists (uniformly) if and only if we have (3). Otherwise the

cell population becomes extinct.

3 Observability analysis of the model

First we recall some known concepts and results concerning observation sys-
tems, to be used in this paper.

Given m,n positive integers, we suppose that the following functions

f : Rn → Rn, h : Rn → Rm
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are continuously differentiable and for some x∗ ∈ Rn we have that f(x∗) = 0

and h(x∗) = 0.

We consider the following observation system

ẋ = f(x) (5)
y = h(x) (6)

where h is the observation function.

Definition 3.1 Observation system (5)-(6) is called locally observable near
the equilibrium x∗ over a given time interval [0, T ], if there exists ε > 0, such
that for any two different solutions x and x of system (5) with | x(t)−x∗ |< ε

and | x(t) − x∗ |< ε (t ∈ [0, T ]), the observed functions h ◦ x and h ◦ x are
different. (◦ denotes the composition of functions. For brevity, the reference
to [0, T ] will be omitted).

For the formulation of a sufficient condition for local observability consider
the linearization of the observation system (5)-(6) around x∗, consisting in the
calculation of the Jacobians

A := f ′(x∗) and C := h′(x∗).

Theorem 3.2 (Lee and Markus, 1971). Suppose that

rank[C | CA | CA2 | . . . | CAn−1]T = n. (7)

Then the observation system (5)-(6) is locally observable near the equilibrium
x∗.

Definition 3.3 A matrix A ∈ Rn×n will be called stable, if all its eigenvalues
have negative real parts.

We remind then how it is possible to construct the observer of a system.
Now, the construction of an observer system will be based on Sundarapandian
(2002).

Definition 3.4 Given a continuously differential function G : Rn×Rn → Rn,
dynamical system described by

ż = G(z, y), (8)
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is called a local asymptotic (respectively, exponential) observer for observation
system (5)-(6), if the composite system (5)-(6),(8) satisfies the following two
requirements.

i) If x(0) = z(0), then x(t) = z(t), for all t ≥ 0.
ii) There exists a neighborhood V of the equilibrium x∗ of Rn such that for

all x(0), z(0) ∈ V , the estimation error z(t)−x(t) decays asymptotically
(respectively, exponentially) to zero.

Theorem 3.5 (Sundarapandian, 2002). Suppose that x∗ is a Lyapunov stable
equilibrium of system (5), and that there exists a matrix K such that matrix
A − KC is stable, where A = f ′(x∗) and C = h′(x∗). Then dynamic system
defined by

ż = f(z) + K[y − h(z)] (9)

is a local exponential observer for observation system (5)-(6).

For the application of the above construction we will suppose x∗ > 0.

Case 1. We assume that the total number of cells is observed, i.e. the obser-
vation function is

h(x1, x2) := x1 + x2 − x∗1 − x∗2. (10)

Then for the observation system (1)-(10) we calculate the linearization around
the equilibrium x∗:

A =



−r + 2∆δ

p+δ
−∆ p

∆ −p− δ


 , C = (1 1).

It is easy to prove that rank[C|CA]T = 2 if and only if ∆ 6= (r−δ)(p+δ)
2δ

. In this
case, by Theorem 3.2 system (1)-(10) is locally observable.

Case 2. Now we present another result on observability, where only the radi-
ated cells are observed. Then the observation function is given by,

h(x1, x2) := x2 − x∗2. (11)

Hence, for the linearization of the observation system (1)-(11) we have

A =



−r + 2∆δ

p+δ
−∆ p

∆ −p− δ


 , C = (0 1).
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Now we have rank[C|CA]T = 2 without any further condition. Therefore,
again by Theorem 3.2 system (1)-(11) is locally observable.

For the construction of observer systems corresponding to Cases 1 and 2, we
will prove the following

Theorem 3.6 If for k1, k2 ∈ R inequalities

(i) k2 > max {r, δ}
(ii) k1 > p + 2

(
δ +

rk2

∆

)

hold, then with the corresponding choice of h, for systems (1)-(10) and (1)-
(11), a local observer is given by

ż1 = rz1

(
1− z1

K0

)
−∆z1 + pz2 + k1[y − h(z)]

ż2 = ∆z1 − pz2 − δz2 + k2[y − h(z)].

Proof. In both cases, denoting K := col(k1, k2) and applying the Routh-
Hurwitz criterion for n = 2, we have to guarantee that the coefficients of
the normed characteristic polynomial of matrix A − KC are positive, i.e. in
Cases 1 and 2, the following inequalities should hold:

Case 1.

r − 2∆δ

p + δ
+ ∆ + p + δ + k1 + k2 > 0, (12)

(
−r +

2∆δ

p + δ
−∆− k1

)
(−p− δ − k2)− (∆− k2)(p− k1) > 0. (13)

Case 2.

r − 2∆δ

p + δ
+ ∆ + p + δ + k2 > 0, (14)

(
−r +

2∆δ

p + δ
−∆

)
(−p− δ − k2)−∆(p− k1) > 0. (15)

Now, from (3) we immediately get −r + 2∆δ
p+δ

< r, furthermore, (i) and (ii)
imply k1 + k2 > r. Hence we easily obtain (12) and (14). Based on this, to see
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(13) it is enough to show that

k1 >
(r −∆)(δ + k2)

∆
. (16)

By (i) we have rδ < rk2, implying

(r −∆)(δ + k2) < 2rk2 + 2∆δ + ∆p =⇒ (r −∆)(δ + k2)

∆
< p + 2

(
δ +

rk2

∆

)
.

Hence, applying (ii) we obtain (16).

Finally, to see (15), it is enough to show

2∆δ

p + δ
(−p− δ − k2)−∆(p− k1) > 0.

For the latter it is sufficient to prove inequality

k1 > 2δ +
2δk2

p + δ
+ p,

which is implied by (ii), since from (3) we have

p + 2

(
δ +

rk2

∆

)
> 2δ +

2δk2

p + δ
+ p.

Now, the application of Theorem 3.5 concludes the proof.

Example. For an illustration set ∆ := 2, r := 2.1, K0 := 100, p := 1, δ :=

0.1 In this case x∗ > 0 and is globally stable. Moreover, we easily get the
corresponding rank condition for local observability in both Cases 1 and 2.
On the other hand, for these parameter values, the conditions (i) and (ii) of
Theorem 3.6 are satisfied:

k2 > 2.1 , k1 > 1 + 2(0.1 + 1.05k2).

Therefore, with K := col(150, 50) we obtain the following observer system:

ż1 = 2.1z1

(
1− z1

100

)
− 2z1 + z2 + 150(y − h(z))

ż2 = 2z1 − z2 − 0.1z2 + 50(y − h(z)).

(17)

Let us consider Case 1, and solve systems (1) and (17) with the respective ini-
tial conditions x(0) = (100, 0) and z(0) = (150, 50), with observation function
(10).
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In Figure 1 we can see that the observer system (17) asymptotically recovers
the solution of the original system.

0 0.5 1 1.5 2
0

50

100

150

time

z2

x2

z1

x1

Fig. 1. Solutions of (1) and (17) with initial conditions x(0) = (100, 0) and
z(0) = (150, 50)

Similarly, if we consider now Case 2, i.e. observation function (11), and solve
system (17) with z(0) = (150, 50), solution z approaches the solution of the
original system (1) with the initial condition x(0) = (100, 0).(See Figure 2.)

4 Linear feedback control for the radiation

For n, r ∈ N, L ∈ Rn×n, B ∈ Rn×r, and continuously differentiable function
g : Rn → Rn, consider the control system

ẋ = Lx + g(x) + BU, (18)

where U is a continuous control function. Assume that to a constant control
u∗ ∈ Rr, there corresponds an equilibrium state x∗, i.e.,

Lx∗ + g(x∗) + Bu∗ = 0. (19)
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0 0.5 1 1.5 2
0
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time

x2

z2

x1

z1

Fig. 2. Solutions of (1) and (17) with initial conditions x(0) = (100, 0) and
z(0) = (150, 50)

Then, from (18) and (19), for the new variables

y := x− x∗ ; u := U − u∗

we have

ẏ = Ly + q(y) + Bu, with q(y) := g(y + x∗)− g(x∗). (20)

Below a feedback control will be given which asymptotically steers system (20)
into the zero equilibrium.

Theorem 4.1 (Rafikov et al. 2008) If there exist matrices P , Q, R ∈ Rn×n;
P positive definite and Q symmetric, such that the function

l(y) := yT Qy − qT (y)Py − yT Pq(y) (y ∈ Rn)

is positive definite, and P satisfies the equation

PL + LT P − PBR−1BT P + Q = 0. (21)

Then the linear feedback

u(y) := −R−1BT Py (y ∈ Rn) (22)
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asymptotically steers any initial state y(0) to zero.

Remark 4.2 The statement lim∞ y = 0 is obviously equivalent to lim∞ x =

x∗.

Remark 4.3 According to Rafikov et al. 2008, the feedback control (22) also
minimizes the functional

φ(y) :=
∫ ∞

0
[l(y(t)) + uT (y(t))Ru(y(t))]dt, (23)

however, we will not use this statement.

Corollary 4.4 Using the notation of the previous theorem, let us suppose that
function l is locally positive definite. Then there exists a neighbourhood V of
zero in Rn such that for all x(0) ∈ V , for the solution x of system (19) we
have lim∞ x = x∗.

Proof. The proof of Theorem 4.1 available in Rafikov et al. 2007, is based on
the observation that under the conditions of the mentioned theorem, W (y) =

yT Py is a Lyapunov function implying (global) asymptotic stability of the
zero equilibrium of system (20). It is not hard to see that a similar reasoning
implies the following statement. If function W is locally positive definite, then
the zero equilibrium of system (20) is locally asymptotically stable. Hence, the
statement of the Corollary follows.

Now, we are going to apply the above corollary to system (1) to control cell
populations, utilizing the following control system

ẋ1 = rx1

(
1− x1

K

)
−∆x1 + px2

ẋ2 = ∆x1 − px2 − δx2 + U,

(24)

corresponding to system (18).

Our objective is to find a feedback control that steers the population of healthy
cells to a desired level x∗1 = x1d. The corresponding value x∗2 = x2d and u∗ can
be calculated solving the following system of linear equations:

rx∗1
(
1− x∗1

K

)
−∆x∗1 + px∗2 = 0

∆x∗1 − px∗2 − δx∗2 + u∗ = 0.

(25)
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We note that u∗ is interpreted as a constant radiation rate that would maintain
the desired level x∗1 = x1d of healthy cells.

Now, for systems (21) and (22), we can choose

L :=




r −∆ p

∆ −(p + δ)




and

h(y) :=



− r

K
(y2

1 + 2y1x
∗
1)

0


 (y ∈ R2).

If the conditions of Theorem 4.1 are satisfied, the required feedback control
can be obtained by (22).

For the parameters considered in previous model simulations r := 1, ∆ :=

5, K := 100, p := 1, and δ := 0.1, it is easy to prove that system (1) has
an asymptotically stable equilibrium, where x1 = 54. Now, we suppose that
the objective is to increase the number of healthy cells, for example to a level
x1d = 80. To this end, from system (25) we calculate x2d = 344 and u∗ = 21.6.
For matrices L and B we have

L =



−4 1

5 −1.1


 , B =




0

1


 .

Choosing

Q :=




1 0

0 1


 , R =

[
1

]
,

we calculate the matrix Riccati equation (21), and using the function LQR of
MATLABTM v 7.0, we obtain a solution

P =




1.2362 0.9862

0.9862 0.9451


 .
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Obviously P and Q are positive definite symmetric matrices. Furthermore, it
is easy to verify analytically that (0, 0) is a local minimum point for function
l (see also Figure 3), and by the Corollary to Theorem 4.1, we have the local
asymptotic stability of the zero equilibrium of system (20). Therefore, applying
(22), we obtain the required feedback control

u = −0.9862y1 − 0.9451y2 (26)

Hence, from inequalities x = x∗ + y and U = u∗ + u, we can calculate the
closed loop control system

ẋ1 = x1

(
1− x1

100

)
− 5x1 + x2

ẋ2 = 4.0138x1 − 2.045x2 + 425.576.

(27)

Figure 4 shows how the second coordinate of the solution of the controlled
system asymptotically reaches the desired value x1d = 80.

−1 −0.5 0 0.5 1 −1
0

116

17

18

19

20

21

22

y2
y1

l(y
1,

y2
)

(0,0)

Fig. 3. Function l(y) near equilibrium (0,0).
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x1 (Control)
x1d

x2 (Control)

Fig. 4. Solutions of (1) and (27) with the same initial value x(0) = (100, 0)

In Figure 5 we show the evolution of function U(t) in the controlled system.

0 10 20 30 40 50
0

50

100

150

200

250

300

350

time

U(t)

Fig. 5. Function U(t) in the controlled system (27)

As seen from Figure 5, function U(t) is always positive, which corresponds to
its physical interpretation as radiation intensity.
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5 Discussion

Using known results on the existence of an asymptotically stable equilibrium in
a cell radiation model, in the paper sufficient conditions have been obtained for
the local observability and for the observer design, corresponding to different
observation situations. As a result, on the one hand, we can estimate both
the population of healthy cells and those affected by the radiation, provided
the total number of cells is observed. Similarly, from the observation of the
radiated cells we can recover the number of healthy cells. In both cases, by
an appropriate choice of two auxiliary parameters, we achieve a quite quick
convergence of the asymptotic estimation.

We have also shown, how a desired number of healthy cells can be produced,
using a feedback control. We note that in the resulting closed-loop system
the system practically reaches the equilibrium much more quickly than in the
original system.

Finally, the methodology we offered can be easily extended to other cell radi-
ation models, too.
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