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Abstract. One considers probabilistic normed spaces as defined by Alsina, Sklar, and
Schweizer, but with non necessarily continuous triangle functions. Such spaces are endowed
with a generalized topology that is Fréchet-separated, translation-invariant and countably
generated by radial and circled O-neighborhoods. Conversely, we show that such generalized
topologies are probabilistically normable.
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1 Introduction

Probabilistic normed spaces (briefly, PN spaces) were first defined by Serst-
nev in the early sixties [see [13]], thus originating a fruitful theory that extended
the theory of ordinary normed spaces. Thirty years later, Alsina, Schweizer, and
Sklar gave in [1] a quite general definition of PN space, based on the definition
of Menger’s betweenness in probabilistic metric spaces; [see [14],p. 232].

We here consider PN spaces in which the involved triangle functions arc non
necessarily continuous. With regards to a generalized topology in the sense
of Fréchet and for probabilistic metric spaces, the problem was treated by
Hohle in [6] where he showed that all generalized topologies which are Fréchet-
separated and first-numerable are induced by certain probabilistic metrics. The
main result of this paper is a similar result for probabilistic norms, where the
t-norm has certain restriction:

1 Theorem. Let T be a t-norm such that supy<,.; T(x.z) < 1. Suppose
that T(z,y) < zy, whenever z,y < 6, for some § > 0. A Fréchet-separated,
translation-invariant, generalized topology (Uy)pes on a real vector space S is
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derivable from a Menger PN space (S,v,Tr, Tr+), if and only Uy admits a count-
able base of radial and circled subsets, where § is the origin of S.

In fact, this result also holds if one assumes 7T’ to be Archimedean near the
origin, i.e. there is a 6 > 0 such that 0 < T(z,z) < z, for all 0 <z < § [see
Remark [8], after Theorem [1]].

We think that a similar result could be interesting for fuzzy normed spaces
in the sense of Felbin [3], but allowing non-continuity of the ¢-norms, and (-
conorms involved in the fuzzy structure.

In [10] the authors use this generalized topology to define bounded subsets
in PN spaces (with non necessarily continuous triangle functions) and study its
relationship with D-bounded subsets (a concept which is defined in probabilistic
terms).

2 PM and PN spaces

Recall from [1] and [14] some definitions on probabilistic metric and proba-
bilistic normed spaces.

As usual, AT denotes the set of distance distribution functions, i.e. distri-
bution functions with F(0) = 0, endowed with the metric topology given by
the modified Lévy-Sybley metric d, [see 4.2 in [14]]. Given a real number a, €q
denotes the distribution function defined as g,(x) = 0 if # < a and eq(z) = 1
if + > a. Hence, the set of non-negative real numbers R™ can be viewed as a
subspace of AT, A triangle function 7 is a map from AT x AT — AT which
is commutative, associative, nondecreasing in each variable and has ¢y as the
identity. Such functions give rise to all possible extensions of the sum of real
numbers, so that (M3) below corresponds to the triangle inequality.

A probabilistic metric space (briefly, a PM space) is a triple (S, F,7) where
S is a non-empty set, F is a map from § x § — AT, called the probabilistic
metric, and 7 is a triangle function, such that:

(M1) F,, =c¢o if and only if p = gq.
(M2) Fpq = Fyp-
(M3) Fpy > 7(Fpry Frg)-

When only (M1) and (M2) are required, it the pair (S, F) is said to be a prob-
abilistic semi-metric space (briefly, PSM space).

A PN space is a quadruple (S,v,7,7*) in which 5 is a vector space over R,
the probabilistic norm v is a map S — AT, 7 and 7* are triangle functions®

n the definition of PN space given in [1] the triangle functions are assumed to be contin-
uous
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such that the following conditions are satisfied for all p, ¢ in S:

N1) v, = ¢ if and only if p = 6, where @ is the origin of S.

N3) Vptq = T(Vp,Vg)-

(N1)
(N2) v_p = vp.
(N3)
(N4) v, < 7*(Vap, Va—n)p) for every A € [0,1].

Observe that every PN space (S, v, 7,7*) is a PM space, where Fp g := Vp—q.

Recall that a t-norm is a binary operation on [0,1] that is commutative,
associative, nondecreasing in each variable, and has 1 as identity. Dually, a
t-conorm is a binary operation on [0, 1] that is commutative, associative, non-
decreasing in each variable, and has 0 as identity. If T" is a t-norm, its associated
t-conorm T* is defined by T*(z.y) := 1 =T (1 —x,1—y). Given a {-norm T' one
defines the functions 7 and 7r« by

7(F,G)(z) := sup{T(F(s),G(t)) : s +t =z},

and
77+ (F,G)(z) := inf{T*(F(s),G(t)) : s +t = z}.

Recall that if T is left-continuous then 77 is a triangle function [14, p. 100],
although this is not necessary; For example, if Z denotes the weakest ¢t-norm,
defined as Z(z,1) = Z(1,z) = z and Z(z,y) = 0 elsewhere, then 77 is a triangle
function which is not continuous.

A Serstnev PN space is a PN space (V, v, 7,7%) where v satisfies the following
Serstnev condition:

S) @) =1 <ﬁ> forallz € RT,peV and A € R\ {0}.

which clearly implies (N2) and also [see [1]](N4) in the strengthened form

vp = ™M (Vaps V(1-2)p)s (1)

for all p € V and A € [0, 1] [see [1, Theorem 1]], where M is the ¢-norm defined
as M(x,y) = min{z, y}.

Let T be a t-norm. A Menger PM space under T is a PM space of the form
(S, F, 7). Analogously, a Menger PN space under T'is a PN space of the form
(S, v, rr,7r+). Note that every metric space (S,d) is a Menger space (S, F,7r)
where Fpq = €4(p,q)- Analogously, every normed space (S, - ||) is a Menger and
Serstnev PN space (S, v, Tar. Tar) Where vy = €|
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3 Probabilistic metrization of generalized topologies

In [6] Hohle solved a problem posed by Thorp about the probabilistic metriza-
tion of generalized topologies. We recall some definitions and results that we
shall use in the next section.

Let S be a (non-empty) set. A generalized topology (of type Vp) on S is
a family of subsets (Up)pes, where U, is a filter on S such that p € U for all
U € U, [see e.g. [14, p. 38], [2, p. 22]]. Elements of U, are called neighborhoods
at p. Such a generalized topology is called Fréchet-separated if ﬂUeu,, U = {p}.

A generalized uniformity U on S is a filter on S x S such that every Velu
contains the diagonal {(p,p) : p € S}, and for all V € U, we have that Ve =
{(¢,p) : (p,q) € V} also belongs to U. Elements of U are called wvicinities (or
“entourages”). Every generalized uniformity U induces a generalized topology
as follows: for p € S,

Uy ={UCS|3Veld:UD{q€eS

(p,q) € V}} (2)

A uniformity U is called Hausdorff-separated if the intersection of all vicinities
is the diagonal on S. Theorem 1 in [6] claims:

2 Theorem. [Hohle] Every Fréchet-separated generalized topology (Up)pes
on a given set S is derivable from a Hausdorff-separated generalized uniformity
U in the sense of (2).

Let (S,F) be a PSM space. Consider the system (Np)pes, where N =
{Np(t) : t > 0} and

Np(t) :={q € S : Fpqlt) > 1 -t}

This is called the strong neighborhood system. If we define 8(p, q) := dr.(Fp.q; £0),
then ¢ is a semi-metric on S (i.e. it may not satisfy the triangle inequality of
the standard metric axioms), and N,(t) = {q : dp(Fpq.€0) < t}. Clearly p e N
for every N € N,, and the intersection of two strong neighborhoods at p is a
strong neighborhood at p. Furthermore, N, admits a countable filter base given
by {N,(1/n) : n € N}, hence the strong neighborhood system is first-countable.
The above explanation yields the following fact [see more details in [14], p. 191):

3 Theorem. Let (S, F) be a PSM space, then the strong neighborhood sys-
tem defines a generalized topology of type Vp which is Fréchet-separated and
first-countable.

This generalized topology is called the strong generalized topology of the
PSM space (S, F).

The main result in [6] is the following.
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4 Theorem. [Hihle] Let T be a t-norm such that supyc,ey T2, @) < 1.
A Fréchet-separated generalized topology (Up)pes on a set S is derivable from
a Menger PM space (S, F,T) if and only if there exists a Hausdorff-separated,
generalized uniform structure U having a countable filter base, such that U 1s
compatible with (Up)pes.-

5 Remark. If (S, F, 7) is a PM space with 7 continuous, then the associated
generalized topology is in fact a topology. This topology is called the strong
topology. Because of (M1) this topology is Hausdorfl. Since it is first-countable
and uniformable, it is metrizable [see [14, Theorem 12.1.6]].

Conversely, if supg<,<; T(z.2) = 1, then a Fréchet-separated, uniformable
topology is derivable from a Menger space (S, F,T) if and only if there exists a
Hausdorff uniformity U on S having a countable filter base [6].

4 Translation-invariant generalized topologies

Assume now that S is a vector space over R. A generalized topology (U)pes
on S is said to be translation-invariant if for all U € U, and ¢ € S, we have
¢+ U € Upyy Consequently, a translation-invariant generalized topology is
uniquely determined by the neighborhood system Uy at the origin 6 of S. In
this case, the generalized uniformity from which one can derive the generalized
topology is:

U:={VCSxS|Welp:V2{a|p-—qeU}}

Recall that a subset U of a vector space is called radial if —U = U it is called
circled (or balanced) if \U C U for all [A] < 1.

6 Theorem. Every PN space (S,v,7,7*) admits a generalized topology
(Up)pes of type Vp which is Fréchet-separated, translation-invariant, and counta-
bly-generated by radial and circled §-neighborhoods.

PRrROOF. Let (S,v,7,7*) be a PN space with 7 non-necessarily continuous.
Let (S, F) be its associated PSM space, where Fpq = 1—¢. The strong neigh-
borhoods at p are given by Ny(t) = {q € S : vp—y(t) > 1 -t} = p+Np(t). In par-
ticular, the generalized topology is translation-invariant. By (N1) we have that
this generalized topology is Fréchet-separated (as in the case of PSM spaces).
The countable base of #-neighborhoods is {Ng(%) : n € N}, whose elements are
clearly radial and circled, by axioms (N2) and (N4), respectively.

Note that the generalized topology induced by a PN space (S,v,7,7%) is
derivable from the following generalized uniformity:

Z/{::{VCSXS\EHEN:VQ{(p.q)\r/p_q<%>21—%}},
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which is translation-invariant and has a countable filter base of radial and circled
vicinities.

Adapting the methods in [6], we next show that a converse result holds for
such generalized topologies (or generalized uniformities).

Let S be a vector space and (Uy)pes be a Fréchet-separated, translation-
invariant, generalized topology of type Vp on S. Then, there is a unique transla-
tion-invariant, Hausdorff-separated generalized uniformity, which is defined as
follows

U={VCExS|Iel:V2{paq:p—qeU}}

The analogous result of Theorem 4 for PN spaces is the following. (Note that
there is an extra assumption on T):

7 Theorem. Let T be a t-norm such that supy<,«1 T(x,x) < 1. Suppose
that T(z,y) < xy, whenever x,y < 6, for some ¢ > 0. A Fréchet-separated,
translation-invariant, generalized topology (Up)pes on a real vector space S 1s
derivable from a Menger PN space (S, v, Tr.mr+), if and only Up admits a count-
able base of radial and circled subsets.

PRrROOF. The direct implication has been shown above. For the converse, let
B = {V, | n € N} be a countable filter base for Up consisting on radial and
circled @-neighborhoods.

Let Ny € N such that 1 — NLO > supg<y<1 1(®, 7). We can assume that
1\%} < 6§, s0 that T(z,y) < ay, forall z,y < NLD’ where 0 is given by hypothesis.

Before defining v, recall from [6, Theorem 2] the distribution functions F
(used to define the probabilistic metric F):

0 <0
Foo) o= 1-1/(No(n+ 1)), B< & oty
M) 1 - 1/(2Ng(n + 1)), = ZwE L

1_ 1/(2m+1N0(n +1)), m<z<m-+1 for m € N.

By putting “v, = Fpg” in [6, Theorem 2]) we define:

F07 p ¢V1
vp(z) :=¢ Fn, pE€Va\VaqrforneN
€0, P E NV,

We next check that (S, v, 77, 77+) is a PN space. Axiom (N1) holds because the
generalized topology is Fréchet-separable. (N2) holds because all V,’s are radial.
(N3) holds as in [6]:

T (Vp, Vo) (T) = TingT(Vp(T)v vg(5)) 1 —1/No < vpyq(r +s) = Vptq().
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Finally, for (N4): Let p € V, and A € [0,1]. Then, Ap and (1 — A)p are also in
V.., because V,, is circled. For x =7 + s, we have to show that
vp(@) < T (Wap(r), va-2)p(8))-

Suppose first that 7 and s are strictly greater than 1, 7,5 > 1. Let a,b,c € N
suchthata <r<a+1l,b<s<b+1l,andc<r+s<c+1 Then,

vap(r) = 1= 1/(2° ' No(n + 1)),
Va-ap(s) = 1= 1/(2" No(n + 1)),
vp(r +8) =1—1/(2°" No(n + 1)).
By the properties of T it follows that
T* (ap(r)s va-ap(8)) =1 = T(1 = vxp(7), 1 = v(1-2)p(s))
—1 — T(1/(2** No(n + 1)), 1/ (2 No(n + 1))
>1— (1/(2** No(n +1))) - (1/(2"" No(n + 1))
>1-1/(2°"' No(n + 1))
=vp(r + s) = vp(x).
In the third line we have used that the arguments of T are smaller than 1 /No,
thus we can apply T'(z,y) < zy. Then, we obtain v, < 71+ (Vaps V(1-2p)) @S
desired. The inequality for the other possible values of 7 and s, is checked in a
similar way. We conclude that (5. v, 7r, 7r+) is a Menger PN space under 7T'.

It only remains to show that the generalized topology induced by v is the
same as the one given at the beginning. As in [6], we have by construction that

1 1
V — g g > .
" {peb ‘Vp <'rz,+l> 1 No(n+1)}

Thus, the filter base {p € S | Vp(nrll—l) >1- ﬁ} induced by v is equivalent to

B, hence the proof is finished.

8 Remark. Theorem 6 also holds if instead of assuming T'(z,y) < xy near
the origin, one assumes that 7' is Archimedean near the origin (i.e. there is a
§ > 0such that 0 < T(x,z) < z, for all 0 < = < §). In that case, the distribution
function Fj, can be chosen as:

0 e <0
. 1—2z :0<$§n}r1
Fr(w) = 1-T(z,z2) e <g £l

1-Tm(z,2) :m<az<m+1 formeN,
where z = 1/(Ng(n + 1)), T (z,y) = T(z.y) and recursively
T"(2.) = T (,1), T (. 9).
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