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Abstract

Copulas are closely related to the study of distributions and the dependence
between random variables. In this paper we develop a recurrence formula for
the moments of a measure associated with a copula (a bivariate distribution
function with uniform one-dimensional marginals) in the case that its support
is a fractal set. We do the same for its principal and secondary diagonals. We
also study certain measures of dependence or association for these copulas
with fractal supports.
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1. Introduction

Copulas are mathematical objects which started to be studied in depth
just a few years ago. Since Sklar proved his celebrated theorem in 1959, the
study of copulas and their applications has revealed itself as a tool of great
interest in several branches of mathematics. For an introduction to copulas
see the book by Nelsen [15].

In the literature we have examined, all the examples of singular copulas
(see (4) below) we have found, are supported by sets with Hausdorff dimen-
sion 1. However, it is implied in some papers (e.g. [19]) that the well-known
examples of Peano and Hilbert curves, originate self-affine copulas with self-
affine fractal support, since the Hausdorff dimension of their graphs is 3/2
(see [14, 22]).

Recently, Fredricks et al. [6], using an iterated function system, con-
structed families of copulas whose supports are fractals. In particular, they
give sufficient conditions for the support of a self-similar copula to be a fractal
whose Hausdorff dimension is between 1 and 2. The study of these functions
has continued in [1].

It is well known that for each copula C there exists an associated mea-
sure µC that is doubly stochastic (see (2) below). In the case in which the
support S of the copula C is a fractal set, the computations related with
the calculus of the integral of functions with respect to the measure µC are
rather complicated. Among the more interesting integrals to be computed,
we find the moments and the concordance or associated measures.

Let us recall that for a finite and positive measure µ, it is possible to give
a representation of complex polynomials

pn : C −→ C,

where pn(z) = pn(z, µ) = κnz
n + · · · + κ1z + κ0, with κn > 0, in such way

that they constitute an orthonormal system in L2 (µ) , that is

∫

pmpndµ =

{

0, if m 6= n
1, if m = n

.

These polynomials can be determined by the complex moments of the mea-
sure; they are the numbers σi,j =

∫

zizjdµ(z).
Therefore, the orthonormal polynomials are determined by the moments

∫ ∫

xmyndµC(x, y) (see, for example, [21] and [20]).
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On the other hand, integral calculus for functions is required to study
association measures for copulas. Again, computations are complicated when
the support of the copula is a fractal set.

In this paper we tackle these two problems in the context of the copulas
with fractal support introduced by Fredricks et al. [6]. Specifically, in Sec-
tion 3, we present a recurrence formula that gives rise to the real moments
for measures that are associated to copulas. Likewise, we do this for the
(primary) diagonal section and for the secondary (or opposite) diagonal sec-
tion of a copula. We provide algorithms to simplify computations on some
of these cases.

Moreover, we also provide several examples of the moments and polyno-
mials for particular cases.

Section 4 is devoted to the study of concordance measures for these cop-
ulas.

Although our study is restricted to the family of copulas with fractal
support with Hausdorff dimension s ∈]1, 2[, given by Fredricks et al. in [6],
the techniques we present to calculate moments and measures of association
can be applied to the study of any self-similar copula. In this general case,
it is also possible to obtain similar recurrent formulas to those in Section 3,
and to calculate measures of association as we have done in Section 4.

2. Preliminaries

This section contains background information.
(1) Let I be the closed unit interval [0, 1] and let I2 = I × I be the unit

square. A two-dimensional copula (or a copula, for brevity) C : I2 −→ I

is the restriction to I
2 of a bivariate distribution function whose univariate

marginals are uniformly distributed on I. Each copula C induces a probabil-
ity measure µC on I2 via the formula

µC ([a, b]× [c, d]) = C (b, d)− C (b, c)− C (a, d) + C (a, c) ,

in a similar fashion to joint distribution functions; that is, the µC-measure
of a set is its C-volume (that is, the probability mass). Through standard
measure-theoretical techniques, µC can be extended from the semi-ring of
rectangles in I2 to the σ-algebra B (I2) of the Borel sets. The measure µC is
doubly stochastic. For an introduction to copulas see [15].

(2) For our further consideration, we remark that Sklar’s theorem makes
the following statement: If C is a copula and F and G are distribution
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functions, then the function H, defined by H (x, y) = C (F (x), G(y)) , is a
joint distribution functions with marginals F and G.

(3) A transformation matrix T is a matrix with non-negative entries, for
which the sum of all the entries is 1 and neither the row nor the column sums
of entries are zero.

Following the paper by Fredricks et al. [6], we recall that each trans-
formation matrix T determines a subdivision of I2 into subrectangles Rij =
[pi−1, pi]× [qj−1, qj], where pi (respect., qj) denotes the sum of the entries in
the first i columns (respect., j rows) of T . For a transformation matrix T
and a copula C, T (C) denotes the copula that, for each (i, j), concentrates
its mass on Rij in the same way in which C concentrates its mass on I2.

Theorem 2 in [6] shows that for each transformation matrix T 6= [1], there
is a unique copula CT for which T (CT ) = CT .

(4) Let T be a transformation matrix. We now consider the following
conditions for T :

i) T has, at least, one zero entry.
ii) For each non-zero entry of T , the row and column sums through that

entry are equal.
iii) There is, at least, one row or column of T with two non-zero entries.
Theorem 3 in [6], shows that if T is a transformation matrix with i) in (4),

then CT is singular (that is, its support has either zero Lebesgue measure or
µCT

≡ µs
CT

).
We say that a copula C is invariant if C = CT for some transformation

matrix T . An invariant copula CT is said to be self-similar if T satisfies ii)
in (4).

Theorem 6 in [6] shows that the support of a self-similar copula CT for
which T satisfies i) and iii) in (4), is a fractal with Hausdorff dimension
between 1 and 2.

(5) Finally, a mapping f : Rn −→ R
n is called a contracting similarity

(or a similarity transformation of ratio r) if there is r, 0 < r < 1, such
that ‖f(x)− f(y)‖ = r ‖x− y‖, for all x, y ∈ Rn. A similarity transforms
subsets of Rn into geometrically similar sets. The invariant set (or attractor)
for a finite family of similitaries is said to be a self-similar set. Theorem
4 in [6] shows that the support of the copula CT is the invariant set for a
system of similarities obtained from the partitions of I2 determined by T (see
(3) above). For an introduction to the techniques of representation of some
fractals via iterated function systems, see [7, 8].
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3. A recurrence formula for the moments

In the last decades several papers have reported on the study of mo-
ments and their asymptotic values for singular distributions, motivated by
the fact that the coefficients of the orthogonal polynomials with respect to
a distribution are actually determined by these moments (see for example
[3, 10, 11, 13]).

In this section we give two recurrence formulas to compute the moments
of copulas with fractal support.

The main tools we use are self-similarity and the relation between a char-
acteristic function and the moments of the distribution.

3.1. First method

We note that a copula C can be considered as a particular case of a bivari-
ate distribution function (see (1)). Then, for C we have that its characteristic
function is defined by

φ (t1, t2) =

∫

I2

e(xt1+yt2)idµC(x, y), (t1, t2) ∈ C
2

and the moments are defined as (see [4, Sec. 26])

Mm,n =

∫

I2

xmyndµC(x, y).

Now, we recall that the notion of an iterated function system (IFS) may
be extended to define invariant measures supported by the attractor of the
system.

Definition 3.1. Let {F1, . . . , Fm} be an IFS on K ⊂ R
n and p1, . . . , pm be

“probabilities” or “mass ratios”, with pi > 0 for all i and
∑m

i=1 pi = 1. A
measure µ is said to be self-similar if µ (A) =

∑m
i=1 piµ

(

F−1
i (A)

)

for any
Borel set A.

The existence of such a measure is ensured by [9, Th. 2.8] or [12, §
4.4]. We introduce the following result for computational purposes (see (5)
above):
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Lemma 3.2. Let K ⊂ Rn and let µ be a self-similar measure associated
with the family of similarity transformations {F1, . . . , Fm} with respective
mass ratios {p1, . . . , pm}. Then, for any continuous function g : K → R and
any k, (1 ≤ k ≤ m), we have

∫

Fk(K)

g(x)dµ (x) = pk

∫

K

g(Fk (x))dµ (x) .

Proof. The map Fk is a self-similarity transformation, therefore, it is an
isomorphism between measurables spaces. As a consequence, there exists a
natural bijection from the step functions on K to Fk (K) (considering the
induced σ-algebra, in both cases). The measures of the measurable sets A
and Fk (A) are proportional to ratio pk, therefore, and the statement is true
in the case that g is a step function. Density arguments establish that the
statement is also true for all integrable functions.

(6) An immediate consequence derived from the above lemma is the
following useful expression:

∫

K

g(x)dµ (x) =

m
∑

k=1

pk

∫

K

g(Fk (x))dµ (x) .

Now, we consider the family of transformation matrices

Tr =





r/2 0 r/2
0 1− 2r 0
r/2 0 r/2





with r ∈
]

0, 1
2

[

. According to (3) and (4) above,
{

Cr = CTr
: r ∈

]

0, 1
2

[}

is
a family of copulas supported by a fractal with Hausdorff dimension in the
interval ]1, 2[.

In the following result, we apply (6) to the copulas CTr
.

Proposition 3.3 (Functional Equation). The characteristic function of
CTr

, which we denote by cr, satisfies:

cr(t1, t2) =
r

2

(

1 + ei(1−r)t1 + ei(1−r)t2 + ei(1−r)(t1+t2)
)

cr(rt1, rt2) +

+ (1− 2r) eir(t1+t2)cr((1− 2r)t1, (1− 2r)t2).
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Proof. A rewriting of (6) is sufficient when we take into account the weights
of the matrix, and the particular form of the involved function g.

This equation has a case of special interest. If r = 1/3, then the charac-
teristic function is given by an infinite convolution:

Corollary 3.4. If r = 1/3, then:

c1/3(t1, t2) =
∞
∏

k=1

(

1

6

(

1 + ei
2

3k
t1 + ei

2

3k
t2 + ei

2

3k
(t1+t2)

)

+
1

3
ei

1

3k
(t1+t2)

)

.

Therefore, the probability associated with the copula is given by an infinite
convolution of probabilities pk satisfying:

{

pk ((0, 0)) = pk

((

0, 2
k

3k

))

= pk

((

2k

3k
, 0
))

= pk

((

2k

3k
, 2

k

3k

))

= 1
6

pk
((

1
3k
, 1
3k

))

= 1/3.

Proof. The complex function in two complex variables

H ((t1, t2)) =

∞
∏

k=1

(

1

6

(

1 + ei
2

3k
t1 + ei

2

3k
t2 + ei

2

3k
(t1+t2)

)

+
1

3
ei

1

3k
(t1+t2)

)

is holomorphic (see for example [5]). If r = 1/3, then:

c1/3(t1, t2) =

(

1

6

(

1 + ei
2

3
t1 + ei

2

3
t2 + ei

2

3
(t1+t2)

)

+
1

3
ei

1

3
(t1+t2)

)

c1/3

(

t1
3
,
t2
3

)

.

In general, we have that:

c1/3

(

t1
3n+1

,
t2

3n+1

)

=
c1/3(t1, t2)

n
∏

k=1

(

1
6

(

1 + ei
2

3k
t1 + ei

2

3k
t2 + ei

2

3k
(t1+t2)

)

+ 1
3
ei

1

3k
(t1+t2)

)
;

and the continuity of c1/3 implies that:

c1/3(t1, t2)

H ((t1, t2))
= c1/3 (0, 0) = 1.
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Corollary 3.5. The moments for copula CTr
satisfy the relation:

Mm,n = m!n!
A+B + C +D

1 − 2rm+n+1 − (1− 2r)m+n+1
,

where


























A = r
2

∑m
a=1

(1−r)arm+n−aMm−a,n

a!n!(m−a)!
,

B = r
2

∑m
b=1

(1−r)brm+n−bMm,n−b

b!m!(n−b)!
,

C = r
2

∑m
a=0

∑n∗
b=0

(1−r)a+brm+n−a−bMm−a,n−b

a!b!(m−a)!(n−b)!
,

D = (1− 2r)
∑m

a=0

∑n∗
b=0

ra+b(1−2r)m+n−a−bMm−a,n−b

a!b!(m−a)!(n−b)!
.

(The asterisks mean that the sums run through the whole range, but a = b =
0.)

Proof. We use the series expansion to substitute the exponential function
in the integral

∫

I2

e(xt1+yt2)idµCr
(x, y).

Now, by the Monotone Convergence Theorem we can commute series and
integral:

cr(t1, t2) =

∫

[0,1]2

e(xt1+yt2)idµCr
(x, y) =

∞
∑

k=0

∑

n+m=k

im+n

m!n!
Mm,nt

m
1 t

n
2

=
∞
∑

m=0

∞
∑

n=0

im+n

m!n!
Mm,nt

m
1 t

n
2 .

To apply the functional equation, we substitute it in the equation above,
obtaining











cr(rt1, rt2) =
∞
∑

m=0

∞
∑

n=0

im+nrm+n

m!n!
Mm,nt

m
1 t

n
2 ,

cr((1− 2r)t1, (1− 2r)t2) =
∞
∑

m=0

∞
∑

n=0

im+n(1−2r)m+n

m!n!
Mm,nt

m
1 t

n
2 .

Now, if we multiply this series by the series of 1 + ei(1−r)t1 + ei(1−r)t2 +
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ei(1−r)(t1+t2) and (1− 2r) eir(t1+t2), then we obtain the equality:

∞
∑

m=0

∞
∑

n=0

im+n

m!n!
Mm,nt

m
1 t

n
2

=

∞
∑

m=0

∞
∑

n=0

r

2

im+n

m!n!
Mm,nt

m
1 t

n
2 +

+

∞
∑

m=0

∞
∑

n=0

r

2

m
∑

a=0

im+n (1− r)a rm+n−aMm−a,n

a!n!(m− a)!
tm1 t

n
2 +

+
∞
∑

m=0

∞
∑

n=0

r

2

m
∑

b=0

im+n (1− r)b rm+n−bMm,n−b

b!m!(n− b)!
tm1 t

n
2 +

+
∞
∑

m=0

∞
∑

n=0

r

2

m
∑

a=0

n
∑

b=0

im+n (1− r)a+b rm+n−a−bMm−a,n−b

a!b! (m− a)!(n− b)!
tm1 t

n
2 +

+

∞
∑

m=0

∞
∑

n=0

(1− 2r)

m
∑

a=0

n
∑

b=0

im+nra+b (1− 2r)m+n−a−b Mm−a,n−b

a!b! (m− a)!(n− b)!
tm1 t

n
2 .

Finally, doing equalities in exponent at tm1 t
n
2 , and working out the value

Mm,n, we deduce the equality in the statement.

3.2. Second method

Another way to prove the formula for the moments can be obtained via
the integral of xmyn.
Proof. Now, the application of (6) gives rise to:

∫

I2

xmyndµCr
=

r

2

∫

I2

(rx)m (ry)n dµCr
+

r

2

∫

I2

(rx+ 1− r)m (ry)n dµCr

+
r

2

∫

I2

(rx)m (ry + 1− r)n dµCr

+
r

2

∫

I2

(rx+ 1− r)m (ry + 1− r)n dµCr

+(1− 2r)

∫

I2

((1− 2r)x+ r)m ((1− 2r)y + r)n dµCr
.
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Let us compute into the integral:

Mm,n =
r1+n+m

2
Mm,n +

r1+n

2

m
∑

a=0

(

m

a

)

ra (1− r)m−a Ma,n

+
r1+m

2

n−1
∑

b=0

(

n

b

)

rb (1− r)n−bMm,b

+
r

2

n
∑

a=0

m
∑

b=0

(

m

a

)(

n

b

)

ra+b (1− r)n+m−a−b Ma,b

+(1− 2r)

n
∑

a=0

m
∑

b=0

(

m

a

)(

n

b

)

(1− 2r)a+b rn+m−a−bMa,b.

Finally, if we work out Mm,n, then we state the result.

3.3. Diagonal sections

For a given copula C, there are two distinguishing functions δ1, δ2 from I

to I defined by δ1(x) = C(x, x) (the primary diagonal section, or simply, the
diagonal of C), and δ2(x) = C(x, 1− x) (the secondary or opposite diagonal
section, or simply, the opposite diagonal of C). In general, the sections
of a copula are employed in the construction of copulas, and to provide
interpretations of certain dependence properties (see [15]). The diagonal
section is an absolutely continuous distribution function; but its moments
are rather complicated to compute.

Applying the same arguments as the above sections, and using the next
result on functional equations systems (we add the observation that a pertur-
bation exists produced by an absolutely continuous function), it is possible
to obtain two recurrence formulas for the moments of n-order with respect
to the family of copulas {CTr

: 0 < r < 1/2}.

Proposition 3.6 (Functional Equations). The diagonal section δ1 is the
unique function that satisfies the functional equations that follow:







δ1 (rx) =
r
2
δ1 (x)

δ1 (r + (1− 2r)x) = r
2
+ (1− 2r) δ1 (x)

δ1 (1− r + rx) = 1− 3r
2
+ r

2
δ1 (x) + rx.

These functional equations remind us those studied by De Rham in [16].
The De Rham functions have no an easy expression, but we can obtain it
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using representaion systems (see [2]). The term rx in the third equation can
be consider as a perturbation that provides absolute continuity to δ1, while
the De Rham functions are singular.

Proposition 3.7. The characteristic function of the diagonal section δ1 sat-
isfies the relation:

c (t) =
r

2

(

1 + ei(1−r)t
)

c (rt) + (1− 2r) eirtc ((1− 2r) t) + r
eit − eit(1−r)

it
.

Corollary 3.8. In the case that r = 1/3, then:

c(t) =
1

3it

∞
∑

k=0

3k
(

eit/3
k

− e2it/3
k+1

)

(

1

6
+

1

3
ei/3 +

1

6
e2i/3

)k

.

Corollary 3.9. The m-moment for the diagonal section, that is, Mm :=
∫ 1

0
xmdδ1 (x) equals to:

m−1
∑

k=0

(

m
k

)

(1− 2r)k+1 rm−kMk +
1
2

m−1
∑

k=0

(

m
k

)

(1− r)m−k rk+1Mk +
rm+1+1−(1−r)m+1

2(m+1)

1− rm+1 − (1− 2r)m+1 .

We recall that the opposite or secondary diagonal section it is not a distri-
bution function because the function δ2 is not monotone. But it is a bounded
variation function and, therefore, it has an associated signed measure, say
dδ2. We can study the corresponding moments for this signed measure:

Proposition 3.10 (Functional Equations). The opposite diagonal section
satisfies the following system of functional equations:







δ2 (rx) =
r
2
δ2 (x) +

r
2
x

δ2 (r + (1− 2r)x) = r
2
+ (1− 2r) δ2 (x)

δ2 (1− r + rx) = r
2
δ2 (x) +

r
2
(1− x) .

Proposition 3.11. The characteristic function of the opposite diagonal sec-
tion δ2, that is

∫ 1

0
eixdδ2 (x), satisfies the relation:

c (t) =
r

2

(

1 + ei(1−r)
)

c (rt)+(1− 2r) eirtc ((1− 2r) t)+
r

2

eitr + eit(1−r) − 1− e

it
.
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Corollary 3.12. The m-moment for the opposite diagonal section, that is,
M∗

m :=
∫ 1

0
xmdδ2 (x) , satisfies the relation:

M∗

m =

m−1
∑

a=0

(

m
a

)

(1− 2r)a+1 rm−a+1

2
M∗

a + 1
2

m−1
∑

a=0

(

m
a

)

(1− r)m−a+1 raM∗

a + r
2
rm+1

−1+(1−r)m+1

(m+1)

1− rm+1 − (1− 2r)m+1 .

Example 3.13. We give some examples we obtain using Corollaries 3.5, 3.9
and 3.12 with r ∈ ]0, 1[. Figure 1 shows the graphs for the moments M2,3,
M3,3 and M3,4. The graphs that correspond to the first eight moments of the
diagonal section of Cr are given in Fig. 2.

Figure 1: Graphs for the moments M2,3, M3,3 and M3,4

Figure 2: Graphs for the moments of the diagonal section

For the secondary diagonal section, corresponding graphs for the moments
M∗

8 to M∗

1 , from up to down, are showed in the Fig. 3.
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Figure 3: Graphs for the moments M∗

8
to M

∗

1

Example 3.14. We showed the graphs for several moments in the example
above. In general, the moments Mm,n are algebraic functions in r. With their
aid we can calculate the complex moments σi,j . Several of them are as follow:

σ2,3 =
1−i
20

9−18r+26r2

1−2r+3r2

σ4,3 =
1+i
280

164−984r+3539r2−7596r3+10769r4−8970r5+3879r6

1−6r+22r2−48r3+70r4−60r5+27r6

σ3,5 =
−i
28

26−156r+554r2−1176r3+1640r4−1344r5+567r6

1−6r+22r2−48r3+70r4−60r5+27r6

With these complex moments is possible to calculate the orthogonal poly-
nomial. We give some of them with r = 1/4 :

p0(z) = 1, p1(z) = 2.44949((−.5 + .5i) + z)
p2(z) = −.3816i(−i)− 2(1− i)z + 2z2),
p3(z) = .64523(1 + i)− 1.95982iz − .04824(1− i)z2 − 1.24222z3

p4(z) = 4.54935 + 3.44275i− (1.47926 + 8.99667i)z + (.42282− .2789i)z2

−(1.0742 + 1.03528i)z3 − 2.88825z4

p5(z) = −5.19255− .45243i+(5.43404+6.23741i)z− (.15014− .46633i)z2

+(1.34706− .26563i)z3 − (2.24282− 1.49228i)z4 − (.81381− .034468i)z5

4. Association (or concordance) measures

Let us recall that concordance or discordance is fundamental when intro-
ducing measures of association. Formally, two ordered pairs of real numbers,
(x1, y1) and (x2, y2) , are concordant if (x1 − x2) (y1 − y2) > 0. Otherwise
they are said to be discordant.

Let (X1, Y1) and (X2, Y2) be two continuous random pairs with the same
marginal distribution functions, and associated copulas C1 and C2, respec-
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tively. A concordance function is defined by

Q (C1, C2) = P [(X1 −X2) (Y1 − Y2) > 0]− P [(X1 −X2) (Y1 − Y2) < 0] .

For a review of concordance measures and the role that copulas play in the
study of dependence or association between random variables, see [15, Chap.
5]. Specifically, in the case the case that H1 and H2 are doubly stochastic
measures with the same marginal distribution functions F and G, the next
result is a main tool for studying the concordance function Q :

Theorem 4.1 ([15, p.159]). Let (X1, Y1) and (X2, Y2) be independent vec-
tors of continuous random variables with joint distribution functions H1 and
H2, respectively, and with common marginals F and G. Let C1 and C2 de-
note the copulas of (X1, Y1) and (X2, Y2) , respectively, so that H1(x, y) =
C1(F (x), G(y)) and H2(x, y) = C2(F (x), G(y)). Then

Q = Q (C1, C2) = 4

∫

I2

C2(x, y)dµC1
(x, y)− 1.

We recall three copulas of particular importance: Π(x, y) = xy,M(x, y) =
min(x, y) and W (x, y) = max(x+ y − 1, 0), for all (x, y) ∈ I2. Moreover, for
each copula C,

W ≤ C ≤ M.

Now, we study several measures of association which calculate the prob-
ability of concordance between random variables with a given copula.

Definition 4.2. Let (X, Y ) be a continuous random pair with associated cop-
ula C. The value Q(C,C) is a measure of association called the Kendall’s τ
of (X, Y ). Moreover, the value 3Q (C,Π) is a measure of association called
the Spearman’s ρ of (X, Y ). And, the value Q (C,M) +Q (C,W ) is another
measure of association for (X, Y ) called the Gini’s γ.

Now, by applying (6) and using (3) and (4), we can express the concor-
dance in terms of the family of copulas CTr

.

Proposition 4.3. Given the copula CTr
= Cr with parameter r ∈

]

0, 1
2

[

, the
following equalities hold:

a)
∫

I2
max(x+ y − 1, 0)dµCr

(x, y) = 1−r
8−10r

,
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b)
∫

I2
min(x, y)dµCr

(x, y) = 3−4r
8−10r

,

c)
∫

I2
xydµCr

(x, y) = 1/4,

d)
∫

I2
Cr(x, y)dµCr

(x, y) = 1/4.

Proof. a) Let us decompose the integral as a sum on five regions in the unit
square. To be precise: they are the sets Fi(I

2), with i = 1, 2, 3, 4, 5, where
the similarities Fi are given by F1(x, y) = (rx, ry), F2(x, y) = (rx+1−r, ry),
F3(x, y) = (rx, ry + 1 − r), F4(x, y) = (rx + 1 − r, ry + 1 − r), F5(x, y) =
((1−2r)x+r, (1−2r)y+r). The decomposition of the unit square, for r = 2,
is showed in Fig. 4.

Figure 4: Integration regions
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The measure µCr
is self-similar, and therefore:

∫

I2

W (x, y)dµCr
(x, y) =

r

2

∫

I2

W (rx, ry)dµCr
+

r

2

∫

I2

W (rx+ 1− r, ry)dµCr

+
r

2

∫

I2

W (rx, ry + 1− r)dµCr

+
r

2

∫

I2

W (rx+ 1− r, ry + 1− r)dµCr

+(1− 2r)

∫

I2

W ((1− 2r)x+ r, (1− 2r)y + r)dµCr

=
r

2

∫

I2

0 dµCr
+

r

2

∫

I2

rW (x, y)dµCr

+
r

2

∫

I2

rW (x, y)dµCr
+

r

2

∫

I2

(rx+ ry + 1− 2r) dµCr

+(1− 2r)2
∫

I2

W (x, y)dµCr

=
(

2r2 + (1− 2r)2
)

∫

I2

W (x, y)dµCr
(x, y) +

r (1− 2r)

2
;

and working out the integral, we have the statement.
b) We proceed as in the above case.
c) It is, in fact, the moment M11.
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d) We decompose the integral as in the first case:
∫

I2

Cr(x, y)dµCr
(x, y) =

r

2

∫

I2

Cr(rx, ry)dµCr
+

r

2

∫

I2

Cr(rx+ 1− r, ry)dµCr

+
r

2

∫

I2

Cr(rx, ry + 1− r)dµCr

+
r

2

∫

I2

Cr(rx+ 1− r, ry + 1− r)dµCr

+(1− 2r)

∫

I2

Cr((1− 2r)x+ r, (1− 2r)y + r)dµCr

=
r

2

∫

I2

r

2
Cr(x, y)dµCr

+
r

2

∫

I2

r

2
y +

r

2
Cr(x, y)dµCr

+
r

2

∫

I2

r

2
x+

r

2
Cr(x, y)dµCr

+
r

2

∫

I2

r

2
+ 1− 2r

+
r

2
(x+ y) +

r

2
Cr(x, y)dµCr

+(1− 2r)

∫

I2

r

2
+ (1− 2r)Cr(x, y)dµC

=
(

r2 + (1− 2r)2
)

∫

I2

Cr(x, y)dµCr
(x, y)

+
3

4
r2 + r(1− 2r),

and the result follows.
We conclude by pointing out an interesting and uncommon property con-

cerning the three measures of association defined above. Let us note that a
measure of concordance of zero indicates that there is no tendency for one
random variable to either increase or decrease when the other increases.

Corollary 4.4. Kendall’s τ, Spearman’s ρ, and Gini’s γ are zero for all
r ∈

]

0, 1
2

[

.
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Appendix

In this section we show the Java implementation for computing the mo-
ments described in corollaries 3.5, 3.9 and 3.12. Implementation of Corollary

17



3.5 is shown in Fig. 5. Figure 6 displays the implemention of Corollary 3.9
whilst the Java code for Corollary 3.12 can be found in Fig. 7. The meth-
ods in Fig. 8 are just instrumental, and they are used in the other three
implementations.

public double M5(int m, int n, double r) {

if ((m == 0) && (n == 0)) {

return (1.0);

}

double A = 0; double B = 0; double C = 0; double D = 0;

int a = 1;

while (a <= m) {

double numA = Math.pow((1 - r), a) * Math.pow(r, (m + n - a)) * M5(m - a, n, r);

double denA = factorial(a) * factorial(n) * factorial(m - a);

A = A + (numA / denA); a = a + 1;

}

A = A * r / 2;

int b = 1;

while (b <= n) {

double numB = Math.pow((1 - r), b) * Math.pow(r, (m + n - b)) * M5(m, n - b, r);

double denB = factorial(b) * factorial(m) * factorial(n - b);

B = B + (numB / denB);

b = b + 1;

}

B = B * r / 2;

a = 0;

while (a <= m) {

b = 0;

while (b <= n) {

if ((a + b) > 0) {

double t = M5(m - a, n - b, r);

double numC = Math.pow((1 - r), (a + b)) * Math.pow(r, (m + n - a - b)) * t;

double denC = factorial(a) * factorial(b) * factorial(m - a) * factorial(n - b);

C = C + (numC / denC);

double numD = Math.pow(r, (a + b)) * Math.pow((1 - 2 * r), (m + n - a - b)) * t;

D = D + (numD / denC);

}

b = b + 1;

}

a = a + 1;

}

C = C * r / 2; D = D * (1 - 2 * r);

double M = factorial(m) * factorial(n) * (A + B + C + D);

M = M / (1 - 2 * Math.pow(r, (m + n + 1)) - Math.pow((1 - 2 * r), (m + n + 1)));

return (M);

}

Figure 5: Java implementation of the moment in Corollary 3.5.
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public double M9(int m, double r) {

if (m == 0) {

return (1.0);

}

double den = 1 - Math.pow(r, (m + 1)) - Math.pow((1 - 2 * r), (m + 1));

double num = r * (1 - Math.pow((1 - r), (m + 1))) / (m + 1);

int k = 0;

while (k <= (m - 1)) {

double b = binom(m, k);

double mk = M9(k, r);

double sum = Math.pow((1 - 2 * r), (k + 1)) * Math.pow(r, (m - k))

+ 0.5 * Math.pow((1 - r), (m - k)) * Math.pow(r, (k + 1));

num = num + sum * b * mk;

k = k + 1;

}

return (num / den);

}

Figure 6: Java implementation of the moment in Corollary 3.9.

public double M12(int m, double r) {

if (m == 0) {

return (0.0);

}

double den = 1 - Math.pow(r, (m + 1)) - Math.pow((1 - 2 * r), (m + 1));

double num = ((Math.pow(r, (m + 1)) - 1 + Math.pow((1 - r), (m + 1)))) * r / (2 * (m + 1));

int a = 0;

while (a <= (m - 1)) {

double b = binom(m, a);

double ma = M12(a, r);

double sum = Math.pow((1 - 2 * r), (a + 1)) * Math.pow(r, (m - a + 1))

/ 2 + 0.5 * Math.pow((1 - r), (m - a + 1)) * Math.pow(r, a);

num = num + sum * b * ma;

a = a + 1;

}

return (num / den);

}

Figure 7: Java implementation of the moment in Corollary 3.12.
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public double binom(int x, int y) {

return (factorial(x) / (factorial(y) * factorial(x - y)));

}

public double factorial(int x) {

if (x <= 1) {

return (1.0);

} else {

return this.factorial(x - 1);

}

}

Figure 8: Technical methods used in the implementations of the moments.
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