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Abstract

In the paper a single-locus sexual population is considered, where the phenotypic
selection process is described by an evolutionary game. First, in order to recover the
genetic process from di�erent observations, observability is guaranteed by the linea-
rization method developed in earlier papers of the authors for systems with invariant
manifold. Then, based on a known result of nonlinear systems theory, an observer
system is constructed that makes it possible to asymptotically recover the solution
of the original system from the observation. In the numerical illustrations the selec-
tion is described by a �rock-scissors-paper� type game widely studied in evolutionary
game theory. For the corresponding evolutionary dynamics a Hopf bifurcation result
is also obtained.
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1 Introduction

In the applications of mathematical systems theory, the reconstruction of the
state process from available measurements is an important issue for several
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reasons. In biology, this problem naturally arises in relation with phenoty-
pic observation of genetic processes. In static situation, in Garay and Garay
(1998) biological conditions were given for the allele frequency � phenotype
frequency correspondence to be one-to-one. In a dynamical situation, less res-
trictive conditions can guarantee that from the observation of time-dependent
phenotypic characteristics the allele process can be uniquely recovered. In en-
gineering practice, under the condition of observability and stability, for the
e�ective approximate calculation of the state process from the observation, an
auxiliary system, the so-called observer is constructed, the solution of which
asymptotically produces the state process of the original system, in most cases
with an exponential rate of convergence.

In earlier papers (López et al., 2006a, 2006b) observers have been constructed
for di�erent density-dependent population system models. In these models, for
an observability analysis, it was enough to apply the classical su�cient con-
dition of Lee and Markus (1971) for local observability. Since for frequency-
dependent selection processes the dynamic model has an invariant manifold,
in order to guarantee local observability, we need to apply the linearization
method developed in Varga (1992) for systems with invariant manifold. To
e�ectively recover the genetic process from the phenotypic observation, an ob-
server system will be designed, applying the results of Sundarapandian (2002).
In the next section we shortly recall the basic concepts and theorems of the
above observability and observer design methodology. In Section 3 evolutio-
nary dynamics for an evolving sexual population is set up. In Section 4 a Hopf
bifurcation for the evolutionary dynamics is obtained. Section 5 is dedicated
to the observer design for two di�erent phenotypic observation situations in
the considered evolutionary model.

2 Local observability and observer design

De�nition 2.1. For given n ∈ N with n > 1, and k ∈ 1, n− 1 a nonempty
set M ⊂ Rn is called a regular k-dimensional submanifold, if there exist an
open set G ⊂ Rn and a function φ ∈ C1(G,Rn−k) such that, for all x ∈ G, for
the range of the derivative φ′(x), we have Rφ′(x) = Rn−k and M = φ−1(0).

For a continuously di�erentiable function f : Rn → Rn, we consider the di�e-
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rential equation
ẋ = f(x). (1)

Given a regular k-dimensional submanifold M ⊂ Rn, let x∗ ∈ M be an equi-
librium of system (1): f(x∗) = 0. Then there exists a neighbourhood of x∗

and T ∈ R+ such that any solution of (1) starting from any point of this
neighbourhood is de�ned at least in [0, T ].

For this section we suppose that M is locally positively invariant for system (1)
at x∗, that is, any solution of (1) starting from any point of a neighbourhood
of x∗ in M , remains in M .

For a given m ∈ N, let h : Rn → Rm be a continuously di�erentiable function
with h(x∗) = 0. We de�ne an observation system as

ẋ = f(x)

y = h ◦ x (2)
where y is called the observed function corresponding to solution x.
De�nition 2.2. We shall say that observation system (1)-(2) is locally obser-
vable in M at x∗, if there exists ε ∈ R+ with the property that conditions

for i ∈ 1, 2 zi ∈ M, |zi − x∗| < ε,
ẋi(t) = f(xi(t)) (t ∈ [0, T ]),

xi(0) = zi,

h(x1(t)) = h(x2(t)) (t ∈ [0, T ]),

imply
z1 = z2 (and consequently x1(t) = x2(t) (t ∈ [0, T ])).

Local observability in M at x∗ means that, if instead of the solution we can
observe a transformation of it, then from this observed function we can recover
the solution in a unique way, provided the solution starts at a point of M near
the given equilibrium x∗.

To formulate a su�cient condition which guarantees the local observability of
system (1)-(2), we linearize system (1)-(2) at the equilibrium:

L := f ′(x∗), C := h′(x∗),

and de�ne
Q :=

[
C CL · · · CLn−1

]T

.
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Now we recall a theorem proved by Varga (1992), in which in �geometric�
terms a su�cient condition is given for local observability.
Theorem 2.3. Suppose that

T∗ ∩KerQ = {0} (3)

where T∗ is the tangent space to M at x∗. Then system (1)-(2) is locally ob-
servable in M at x∗.

Now we adopt the standard concept of an observer to the case of an observation
system with invariant manifold (1)-(2).
De�nition 2.4. Given a continuously di�erentiable function G : Rn ×Rm →
Rn, dynamical system

ż = G(z, y) (4)

is called a local (exponential) observer for observation system (1)-(2), if the
composite system (1)-(2),(4) satis�es the following requirements:

i) If x(0) ∈ M and z(0) = x(0), then z(t) = x(t) for all t ∈ R+.
ii) There exists a neighborhood V of the equilibrium x∗ such that for all

x(0), z(0) ∈ V
⋂

M , the estimation error z(t)− x(t) tends to 0 (at expo-
nential rate) as t tends to ∞.

For the observer design we shall apply the following result (Sundarapandian,
2002):
Theorem 2.5. Suppose that system (1) is Lyapunov stable at equilibrium x∗,
and there exists a matrix K (called gain matrix) such that matrix L−KC is
stable. Then system

ż = f(z) + K[y − h(z)] (5)

is a local exponential observer for observation system (1)-(2).

3 Evolutionary dynamics for an evolving sexual population

Following Cressman et al. (1996), we shall consider a large panmictic diploid
Mendelian population with alleles A1, . . . , An, at a single autosomal locus.
By assumption, zygotes are produced according to the Hardy-Weinberg pro-
portions. We consider N possible pure phenotypes or behaviour strategies
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identi�ed with the vertices of the standard simplex of the phenotype vectors,

∆N = {(s1, . . . , sN) ∈ RN | sk ≥ 0 (k ∈ 1, N),
N∑

k=1

sk = 1}.

We also suppose that the phenotype of a zygote is uniquely determined by
its genotype: for each genotype AiAj let Sij ∈ ∆N be the phenotype of an
AiAj zygote. (A mixed individual phenotype s ∈ ∆N has the usual probabi-
listic interpretation: sk is the probability for an individual to exhibit the pure
phenotype ek). For each allelic state vector p ∈ ∆n, the vector

S(p) :=
n∑

i,j=1

pipjSij (6)

is the mean phenotype of the population. Given a pay-o� matrix, A ∈ RN×N ,
the �tness of an AiAj zygote of a population in allelic state p ∈ ∆n is

Sij·AS(p) =
N∑

k,l=1

Sij,kaklSl(p),

where · stands for the scalar product of vectors, Sij,k and Sl(p) are the k-th
and the l-th components of the vectors Sij and S(p), respectively. Let now
p(t) be the allelic frequency vector in the zygote population at time t. Then
the standard continuous-time evolutionary dynamics for the considered sexual
population reads as follows:

ṗi = pi




n∑

j=1

piSij −
n∑

k,l=1

pkplSkl


 · A ∑

k,l

pkplSkl (i ∈ 1, n). (7)

For any p ∈ ∆n introducing the e�ective (or marginal) phenotype of allele Ai,

Si(p) :=
n∑

j=1

pjSij, (8)

for the above dynamics we obtain the following compact form

ṗi = pi

[
Si(p)− S(p)

]
· AS(p) (i ∈ 1, n). (9)

Remark 3.1. It is known that ∆n and int∆n are positively invariant for sys-
tem (9), furthermore, if for some equilibrium p∗ ∈ int∆n, S(p∗) is an evolutio-
narily stable strategy (ESS), and e�ective phenotypes are linearly independent
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at p∗, then p∗ is asymptotically stable, see Cressman et al. (1996) and also
Gámez et al. (2003). For further details on this dynamics we refer to Garay
and Varga (1998a), (1998b).

4 Hopf bifurcation for the evolutionary dynamics

Now we consider a three-allele system with cyclic dominance A1 Â A2 Â
A3 Â A1, where the homozygotes exhibit pure phenotypes represented by the
canonical basic vectors of R3 :

S11 := e1, S22 := e2, S33 := e3.

Then the dominance structure is represented by the hypermatrix

[Sij] :=




e1 e1 e3

e1 e2 e2

e3 e2 e3




. (10)

Consider now dynamics (9) with the following payo� matrix: �x an ε ∈ R and
de�ne

A(ε) :=




−ε 1 −1

−1 −ε 1

1 −1 −ε




. (11)

We remind that the payo� matrix A(ε) de�nes a generalized �rock-scissors-
paper� game in the sense that for ε := 0 it reduces to the payo� matrix of the
standard �rock-scissors-paper� game well-known in evolutionary game theory
(see e.g. Hofbauer and Sigmund, 1988).
Now the parametrized family of systems corresponding to (9) is

ṗi = pi

[
Si(p)− S(p)

]
· A(ε)S(p) (i ∈ 1, 3). (12)

For a qualitative analysis of this three-dimensional system, by the invariance
of the simplex, let us reduce it to a two-dimensional one, substituting p3 =

1 − p1 − p2 and putting q := (p1, p2). The obtained two-dimensional system
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will be written in the compact form

q̇ = ϕ(q, ε). (13)

An easy calculation shows that for all ε ∈ R, q∗ :=
(

1

3
,
1

3

)
is an equilibrium

for this system.
Next, we shall prove that in system (13) a Hopf bifurcation occurs at ε := 0.
To this end �rst we recall the following classical theorem (see e.g. Hale and
Koçak, 1991).
Theorem 4.1. (Poincaré-Andronov-Hopf) Given an open interval I with
0 ∈ I, and an open set U ⊂ R2 with 0 ∈ U , functions F : I → R2×2 and
Φ : U × I → R2 such that the right-hand side of the parametrized system

u̇ = F (ε)u + Φ(u, ε)

is C3. Suppose that

a) for all ε ∈ I we have Φ(0, ε) = 0 and D1Φ(0, ε) = 0; and
b) for the eigenvalues α(ε)± iβ(ε) of F (ε) we have α(0) = 0, β(0) 6= 0 and

α′(0) 6= 0.

Then, for any neighbourhood V of 0 in R2, and any ε0 ∈ R+ there exists
ε1 ∈ ]− ε0, ε0[ such that the di�erential equation u = F (ε1)u + Φ(ε1, u) has a
nontrivial periodic orbit in V around the origin.

Applying this theorem to the family of parametrized systems (13), we obtain
the following bifurcation result:
Theorem 4.2. For any neighbourhood W of q∗ in R2, and any ε0 ∈ R+ there
exists ε1 ∈ ] − ε0, ε0[ such that the di�erential equation q̇ = ϕ(q, ε) has a
nontrivial periodic orbit in W , around equilibrium q∗.

Proof. For each ε ∈ R, let F (ε) be the Jacobian of ϕ(·, ε) calculated at the
equilibrium, F (ε) := D1ϕ(q∗, ε). For any solution q of system (13), de�ne
u := q − q∗. Then we have

u̇ = ϕ(q, ε)− ϕ(q∗, ε) = F (ε)u− F (ε)u + ϕ(q, ε). (14)

Now de�ne
Φ(u, ε) := −F (ε)u + ϕ(q∗ + u, ε),
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and take an arbitrary ε ∈ R. Since q∗ is an equilibrium for system (14), we
get Φ(0, ε) = 0 and also D1Φ(0, ε) = F (ε) − F (ε) = 0. Therefore, conditions
a) of Theorem 4.1 are satis�ed for the system

u̇ = F (ε)u + Φ(u, ε) (15)

obtained from (14). To check condition b) we calculate the Jacobian of (15)
to get

F (ε) =




2− 2ε

9

4

9

−4

9
−2 + 2ε

9


 .

For the eigenvalues of F (ε) we have

α(ε)± iβ(ε) = −2

9
ε± 3

√
3

9
, (16)

implying α(0) = 0, β(0) 6= 0 and α′(0) 6= 0, so conditions b) of Theorem 10
are also ful�lled. Let W be an arbitrary neighbourhood of q∗ in R2, ε0 ∈ R+

and ε1 ∈ ] − ε0, ε0[ the parameter value �guring in Theorem 10. Putting
V := W − q∗, there exists a periodic solution u of system

u̇ = F (ε1)u + Φ(u, ε1)

in V , around the origin, implying q := q∗ + u is the required periodic solution
of system (13), in W around q∗.
Example 4.3. From the eigenvalues (16) we see that equilibrium q∗ is asymp-
totically stable for ε > 0 and unstable for ε < 0. Numerical calculations sug-
gest that the above periodic solution is a stable limit cycle, and a supercritical
Hopf bifurcation occurs at ε := 0, as shown in Figures 1 and 2.
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Fig. 1. Periodic orbit for ε := −0.05, as the w-limit set of the solution with initial
value (0.3, 0.4)
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Fig. 2. Periodic orbit for ε := −0.05, as the w-limit set of the solution with initial
value (0.5, 0.5)
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5 Phenotypic observation and observer design in an evolving se-
xual population

In this section we will see how to recover the genetic evolution from phenotypic
observation, constructing an observer system for two observation situations.

5.1 Observation of the mean phenotype

First let us consider the general n-dimensional evolutionary dynamics (9)

ṗi = pi

[
Si(p)− S(p)

]
· AS(p) (i ∈ 1, n), (17)

and assume we observe the mean phenotype of the population, which means
that in terms of the notation of Section 2 we have

h(p) := S(p)− S(p∗). (18)

(For technical reason the observed quantity is the deviation of the mean phe-
notype from its equilibrium value). For the application of Theorem 3 we linea-
rize observation system (17)-(18) at equilibrium. Denoting the right-hand side
of system (9) by f , and using the notation of Section 2, for the linearization
we obtain matrices

L := f ′(p∗) and C := h′(p∗).

The observer we shall construct will not only approximate the solution of the
original system, but the solution of the observer is also a substitute of the
latter in the sense that the interior of the simplex is long-term invariant for
the observer system. We begin with this general statement on the observer
constructed for the observation system (17)-(18).
Theorem 5.1. Considering the observation system (17)-(18), suppose that an
interior equilibrium p∗ is asymptotically stable for system (17), for a matrix
K ∈ Rn×n with some k0 ∈ R for all j ∈ 1, n,

∑
i kij = k0 holds, and L−KC is

a stable matrix. Then for any solution p of system (17), that is initially close
enough to p∗, int∆n is locally long-term invariant for the observer system

ż = f(z) + K[y − S(z)] (19)

10



at equilibrium p∗. (The latter means that for any z(0) from an appropriate
neighbourhood of p∗ in int∆n, there exists a t0 ∈ R+ such that z(t) ∈ int∆n

for all t ∈ ]t0,∞[).

Proof. By the asymptotic stability of p∗ we can suppose that lim∞ p = p∗.
Taking into account that y is the observation corresponding to p, let us sum
the coordinates of system (19)

(
∑

i zi)
′ =

∑
i fi(z) +

∑
i

∑
j kij[yj − Sj(z)] =

∑
i fi(z) +

∑
j[Sj(p)− Sj(z)]

∑
i kij

=
∑

i fi(z) + k0
∑

j[Sj(p)− Sj(z)].

Since ∑
i fi(z) = 0 and ∑

j Sj(p) =
∑

j Sj(z) = 1, we have (
∑

i zi)
′ = 0, im-

plying ∑
i zi(t) = 1, if ∑

i zi(0) = 1. Moreover, since lim∞(z − p) = 0 and
lim∞ p = p∗ ∈ int∆n, there exists t0 ∈ R+ such that z(t) ∈ int∆n for all
t ∈ ]t0,∞[.
Example 5.2. Now we illustrate the observer design for the three-allele three-
phenotype model of Section 4, namely, we consider the dynamic model of the
evolution of a sexual population, given by equations (12). Since in this section
we shall deal with a �xed value ε ∈ R+, in the notation the dependence of the
payo� matrix A can be suppressed:

ṗi = pi

[
Si(p)− S(p)

]
· AS(p) (i ∈ 1, 3) (20)

with hypermatrix [Sij] de�ned in (10), and matrix A is given in (11). Let us
�x ε := 0.5. From the previous section we know that this system has a positive
equilibrium p∗ := (1/3, 1/3, 1/3). It is easy to check that for this game, the
phenotypic image of equilibrium p∗, i.e., the mixed phenotype

S∗ := S(p∗) = (1/3, 1/3, 1/3)

is an ESS, see e.g. López, (2003). As an observation the three-dimensional
version of (18) is considered:

h(p) := S(p)− S(p∗) (21)
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For the matrices of the linearization we obtain

L =




−0.0185185 0.314815 −0.12963

−0.12963 −0.0185185 0.314815

0.314815 −0.12963 −0.0185185




(22)

and
C = 2

[
S∗1 S∗2 S∗3

]
,

where S∗1, S∗2, S∗3 are the marginal fenotypes at the equilibrium:

S∗1 = S1(p∗) = (2/3, 0, 1/3),

S∗2 = S2(p∗) = (1/3, 2/3, 0),

S∗3 = S3(p∗) = (0, 1/3, 2/3).

(23)

Hence

C =




4/3 2/3 0

0 4/3 2/3

2/3 0 4/3




.

From the linear independence of vectors (23), by Remark 3.1 we obtain that
equilibrium p∗ = (1/3, 1/3, 1/3) is asymptotically stable.

Applying Theorem 3, in Gámez et al. (2003) it has been shown that system
(20)-(21) is locally observable in int∆3 at p∗. In other words, observing the
�phenotypic evolution� of the population, in principle we can recover its �gene-
tic evolution�, i.e. the state process. For an e�ective (although approximate)
calculation of this state process we apply the observer design method provided
by Theorem 2.5.

For

K =




1 0 0

0 1 0

0 0 1




we obtain that matrix L−KC has eigenvalues with negative real parts. The-
refore L−KC is stable and from the linear independence of vectors (23), by
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Remark 3.1 we obtain that equilibrium p∗ = (1/3, 1/3, 1/3) is asymptotically
stable. Hence by Theorem 2.5 we can construct a local exponential observer
for observation system (20)-(21):

żi = zi(S
i(z)− S(z))AS(z) + K[S(p)− S(z)] (i ∈ 1, 3) (24)

By the particular choice of the gain matrix K, the conditions of Theorem
5.1 are also satis�ed, implying that for any solution p of system (20), that
is initially close enough to p∗, int∆n is locally long-term invariant for the
observer system (24).

Now we illustrate how the observer approximately provides the required so-
lution from the observed function. Suppose that the initial condition is p0 =

(0.3, 0.4, 0.3) for the original system (20) and z0 = (0.35, 0.3, 0.35) for the ob-
server system (24). In the next three �gures the coordinates zi (i ∈ 1, 3) of
the solution z of the observer system practically end up in the corresponding
coordinates pi (i ∈ 1, 3) of the solution p of the original system (20). Since
p∗ is asymptotically stable, if a solution p is initially close enough to p∗, the
�unknown� solution p could also be asymptotically approximated by another
solution w of system (20), with the same initial value as z. The coordinates
wi (i ∈ 1, 3) of this solution are also represented in the �gures, showing that
the observer performs much better.
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Fig. 5. 3rd coordinates of p, z and w

5.2 Observation of a component of the mean phenotype

Since in Example 5.2, matrix C is invertible, by the inverse function theorem
h is locally invertible at p∗. This means that near p∗, solution p can also
be calculated from the observed function y by a point-wise inversion. In the
following example h is not invertible, so the observer design is the only real
option.
Example 5.3. We consider again the evolutionary model (17), �xing again the
value of ε at 0.5. Let us suppose now that we observe only the �rst coordinate
of the mean phenotype:

h(p) := S1(p)− S1(p
∗). (25)

The linearization matrix L is the same as in (22), but now

C := h′(p) =
[
4/3 2/3 0

]
.

Again in Gámez et al. (2003), using transversality condition (3), the local
observability of system (20),(25) has been proved. Now we also construct a
corresponding observer. Choosing K := [ 0 1 0 ]T , we obtain that matrix
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L−KC is stable. Applying Theorem 2.5 we obtain the observer system

żi = zi(S
i(z)− S(z))AS(z) + K[S1(p)− S1(z)] (i ∈ 1, 3). (26)

Both for the original system (17) and for the observer (26) we set the same ini-
tial conditions as in Example 5.2, p0 = (0.3, 0.4, 0.3), and z0 = (0.35, 0.3, 0.35).
The coordinates of the corresponding solutions are presented in Figures 6, 7
and 8. Figure 9 shows how we can improve the approximation of the third
coordinate of p, by taking an appropriate gain matrix K := [ 0 100 0 ]T .
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Fig. 6. 1st coordinates of p and z, for K := [0 1 0]
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6 Discussion

The problem of reconstruction of the state process from an observed transform
of it, in a natural way arises in the context of the evolution of a sexual popu-
lation, where certain phenotypic characteristics are observed and the state of
the population is described in terms of allele frequencies.

The application of an observer system seems to be an e�cient tool for the
approximation of an unknown solution, if the corresponding observation is
known. In the considered dynamic evolutionary model, in a panmictic Men-
delian population a particular type of evolutionary matrix game is played at
phenotypic level. In the case of three alleles and three pure phenotypes, redu-
cing the model to a planar vector �eld, the stability analysis results in a Hopf
bifurcation with respect to the parameter of the matrix game. The asympto-
tic stability obtained for positive parameter values is also important for the
observer design.

Numerical results also show how the appropriate choice of the gain matrix the
rate of convergence of the asymptotic approximation can be improved. The
applied observer design methodology may be also useful for the observation
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analysis and monitoring of di�erent evolutionary and population system mo-
dels (see e.g. Cressman et al. 2001, Cressman and Garay 2003a, Cressman and
Garay 2003b, Garay and Varga 2000, Cressman, et al. 2004, Garay et al. 2003,
Cressman and Garay 2006)).
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