
Creating datasets for data analysis through a
cloud microservice-based architecture

Antonio J. Fernández-Garćıa, Javier Criado, Antonio Corral, and Luis Iribarne

Applied Computing Group, University of Almeŕıa, Spain
{ajfernandez,javi.criado,acorral,luis.iribarne}@ual.es

Abstract. Data analysis is a trending technique due to the tendency of
analyzing patterns or generating knowledge in different domains. How-
ever, it is difficult to know at design time what raw data should be
collected, how it is going to be analyzed or which analysis techniques
will be applied to data. Service-oriented architectures can be applied to
solve these problems by providing flexible and reliable architectures. In
this paper, we present a microservice-based software architecture in the
cloud with the aim of generating datasets to carry out data analysis. This
architecture facilitates acquiring data, which may be located in a data
center, distributed, or even on different devices (ubiquitous computing)
due to the rise of the IoT. It provides an infrastructure over which mul-
tiple developer’ groups can work in parallel on the microservices. These
microservices also provide a reliable and affordable adaptability to the
lack of specific requirements in some functionalities and the fast evolution
and variability of them, due to the fast changing of client needs.

1 Introduction

Data has a great value today. It can be used to innovate generating new products
and services as well as selling them using marketing strategies; to generate new
knowledge in science or research facilities; to make faster and better decisions in
politics, retail, weather, sport, science, research, real estate, sports or healthcare
among multiple others fields; to reduce costs in engineering or industry, and in
general, any aspect that needs to reduce resources consumption.

In traditional software systems, data is located in a data center easily ac-
cessible. Overtime, given the need to access big data volumes stored in different
forms (relational databases, non-relational databases, files, logs...), data can be
stored distributed in several data centers. Recently, due to the rise of ubiquitous
computing to support concepts such as Smart Cities or Internet of Things (IoT),
data can be stored (processed and analyzed) in multiple devices that emphasize
proximity to end-users such as smartphones, tablets or sensors distributed in
buildings or facilities as well as located along cities (fog computing [6]).

In addition, data has a great variability due to the continuous incorporation
of new data sources and forms of acquisition. Furthermore, data consumption
and exploitation suffer great variability as people that use data to take decisions
need to have the analyzed data at the right time in a changing environment

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143455118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where data sources and the objectives pursued suffer constants alterations. That
reasons make that a dynamic data analysis process, capable of dealing with these
circumstances, must be implemented [2].

In this paper, given the existence of having many possibilities to exploit the
data, which may be complementary or not, and the variability of data sources, a
microservices-based architecture is proposed. This architecture enables a dataset
generation process from data stored in many sources, devices and locations. The
proposal takes into account the objectives variability and different contexts in
which data should be analyzed as well as the fast-changing sources of the data.

2 Microservice-based Architecture suitability

The microservices-based architecture structures the application as a modular set
of services collaborating together avoiding the monolithic applications difficulty
of decomposing or scaling. In this architecture, microservices [5, 7] are indepen-
dently deployable services where each component in the system is a stand-alone
entity that interacts with others across a network with a well-defined interface.
Each of the microservices added to the architecture microservices pool has a
concrete purpose, significantly different than the others.

This microservices-based architecture will allow several developers (or work
teams) interested in creating datasets, work in parallel at any time. They can
even use the best suitable technology for each case or use the technology with
they are more familiar. This architecture also facilitates Continuous Integration
(CI) and Continuous Delivery (CD) due to the facility of produce software in
short cycles, ensuring that the software can be reliably released at any time
[1, 4]. The whole pool of microservices has defined boundaries and respects the
interface-segregation principle (ISP), one of the SOLID [3] principles, that says
that a client should not be forced to depend on methods it does not use. This is
really useful when it is necessary to refactor, change or redeploy the system.

Furthermore, this architecture allows having concrete microservices to serve
one specific purpose coded with that focus. This is highly aligned with the single
responsibility principle (SRP) from SOLID, that says that every module should
have responsibility over a single part of the functionality, which should be entirely
encapsulated by the class. If one microservice falls, the others will continue
working properly because their functionality is isolated.

Figure 1 shows the datasets creation process, through a microservice-based
architecture. As it can be seen, there is a pool of microservices. Each one of
these microservices can connect to a data center, to distributed data centers or
to several near-user devices and query them through the data controller in order
to obtain the data that needs for its purpose.

3 Creating Datasets

The necessary steps to implement a microservice go from acquiring data of
the database to create optimized datasets by applying feature engineering tech-



Fig. 1. Architecture of microservices for addressing the creation of datasets

niques. A Web service is included in each microservice to improve its commu-
nications and provide access to other microservices or third-party applications.
Finally, there is an automatized process that periodically generates the datasets
so they can be always updated and accessible without the need of generating
them in real time. All these processes are shown in Figure 2.

Data acquisition (#1) is intended to acquire the data to build the dataset.
It is necessary to deeply analyze the data centers, databases, logs, sensors or de-
vices that may contain useful data and manage how to access them. When the
relevant data is identified, the hosts that contain it are accessed to collect the
required data. Feature engineering (#2) is a process that transforms the
acquired raw data to create features that have better representation and thus,
it is possible to create better predictive models. Much of the success that can
be obtained by applying data analysis depends on the feature engineering ap-
proach that has been following. Web Service Communication (#3) may be
incorporated to microservices to provide access to processed datasets. As well, in
many occasions, communications between microservices occurs and it is neces-
sary to provide the way for this to happen. For that reason, some microservices
must implement a Web Service for communication. Datasets from a microservice
can be generated on demand by other microservices or by third-party clients ac-
cessing the web service (automation of the generation process (#4)). To

Fig. 2. Process inside a microservice



automatize the process, a daemon can periodically be executed performing the
task of calling the APIs of each microservice and generates updated datasets.
Occasionally, microservices can receive feedback from the data analysis pro-
cess (#5). That can happen for many reasons, one of them could be that some
knowledge inferred want to be stored from the microservices in order to offer
it to others microservices or third party application that can make use of it. In
that case, the microservice could be interested in incorporate a web service to
expose this knowledge to other microservices or third party clients.

4 Conclusions

A microservice-based software architecture with the aim of generation datasets
to carry out data analysis has been presented. The proposed architecture deals
with (a) variability of data: the architecture proposed is suitable to work on fog
computing environments where data is highly distributed in many data centers
and multiple near-user devices or sensors, which make it advisable in Internet
of Things or Smart Cities environments; and (b) variability of objectives: the
flexibility of the proposed architecture make it easy adaptable to fast-changing
objectives, thus datasets can be continuously updated to deal with changes in
requirements as well as new information that decision-maker needs in order to
successfully execute strategies.

Also, the proposal architecture can be easily orchestrated with other services
due to the microservices granularity that allows multiple teams work in parallel
with different purposes that make the architecture advisable to highly config-
urable projects in constant evolution.

Acknowledgements: This work was funded by the EU ERDF and the Spanish Min-
istry of Economy and Competitiveness (MINECO) under Project TIN2013-41576-R.
A. J. Fernandez-Garcia has been funded by a FPI Grant BES-2014-067974.

References

1. L. Chen. Continuous delivery: Huge benefits, but challenges too. IEEE Software,
32(2):50–54, Mar 2015.

2. A.J. Fernandez-Garcia, L. Iribarne, A. Corral, and J. Z. Wang. Evolving mashup
interfaces using a distributed machine learning and model transformation method-
ology. In OTM 2015 LNCS 9416, pages 401–410. Springer International Pub., 2015.

3. M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002.

4. J. Humble and D. Farley. Continuous delivery: Reliable software releases through
build, test, and deployment automation. The Addison-Wesley signature series.
Addison-Wesley, Upper Saddle River, NJ, Boston, Indianapolis, 2011.

5. J. Lewis and M. Fowler. Microservices: a definition of this new architectural term.
http://martinfowler.com/articles/microservices.html.

6. I. Stojmenovic and S. Wen. The fog computing paradigm: Scenarios and security is-
sues. In 2014 Federated Conference on Computer Science and Information Systems,
pages 1–8, Sept 2014.

7. J. Thones. Microservices. IEEE Software, 32(1):116–116, Jan 2015.


