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Abstract. The problem of the possibility to recover the time-dependent state
of a whole population system out of the observation of certain components has
been studied in earlier publications, in terms of the observability concept of
mathematical systems theory. In the present note a method is proposed to
effectively calculate the state process. For an illustration an observer system
for a simple food web is numerically constructed.

1. Introduction.

In population ecology and conservation biology we often face the problem of
planning an appropriate control of a population system into a desired state. Howe-
ver, before any human intervention we have to know the actual state of the system.
In many cases, for technical or/and economical reason we observe (measure) only
certain components of the state vector. Then, in a dynamical setting, from the
observed components we have to recover the whole state process. The concept of
observability of mathematical systems theory can guarantee at theoretical level that
the state process can be determined from the observation in a unique way. However,
the corresponding results don’t give a constructive method to calculate the state
process. In this note we propose the application of a so-called observer system (or
shortly observer), which makes it possible to effectively calculate the whole state
process, on the basis of the observed (indicator) species, at least asymptotically,
near the equilibrium.

A general sufficient condition for the local observability of nonlinear dynamical
systems with invariant manifold was developed and applied by [1]. Later, this
result became a useful tool in the analysis of different frequency-dependent models
of population genetics, evolutionary theory [2], [3], [4] and reaction kinetics ([5],
[6]). Observability problems for particular Lotka-Volterra models were considered
in [7]. In [8] sufficient conditions were obtained to guarantee local observability of
a simple trophic chain.

The design of observers for nonlinear observation systems is a widely studied
area of mathematical systems theory, motivated mainly by problems of control
engineering. In this note we apply the recent results by [9], to design a local
exponential observer for a 5-species food web. A numerical illustration is also
presented.

2. Model description and observability

We consider a food web with five species: one carnivore, two different herbivores
and two different plants, where the interaction between the species can be described
in the following way. On the one hand, species 3 (carnivore) is fed on species 2
(herbivore A) which is fed on species 1 (plant A). On the other hand, species 3
also is fed on species 4 (herbivore B) which is fed on species 5 (plant B). There
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is no other interspecific interaction. In order to reduce the calculations we also
suppose that intraspecific interaction in every single species, except species 3, can
be neglected. Therefore, the community matrix has the form

(2.1) Γ =




0 γ12 0 0 0
γ21 0 γ23 0 0
0 γ32 γ33 γ34 0
0 0 γ43 0 γ45

0 0 0 γ54 0




with
(2.2) γ33 > 0, γ21, γ32, γ34, γ45 < 0 and γ12, γ23, γ43, γ54 > 0.

We suppose that the Lotka-Volterra model describes the behaviour of these spe-
cies, such that for the time-dependent density xi of the ith-species we have the
differential equation

(2.3) ẋi = fi(x1, x2, x3, x4, x5) := xi[εi −
5∑

j=1

γijxj ]; i ∈ {1, 2, . . . , 5}

where εi are the Malthus parameters and Γ is the above community matrix, x =
(x1, . . . , x5) represents the state vector of the population; and define f : R5

+ → R5

with f = (f1, . . . , f5). (For the basic applications of the Lotka-Volterra models in
the study of food webs see e.g. [10]).

Throughout the paper we shall suppose that there exists a unique state of coexis-
tence in the system in the sense that Γ is invertible and the equilibrium x∗ = Γ−1ε
is positive (x∗ ∈ R5

+).
For a convenient description of the observation situation when certain coordina-

tes (or their sum) are observed, fix m ∈ {1, 2, 3, 4} and the indices of the observed
components of the system 1 ≤ j1 < . . . < jm ≤ 5.

Now, in terms of the corresponding basic unit vectors ej1 , . . . , ejm of R5 we define
the observation matrix C = [ej1 | . . . | ejm ]T .

Then, for any state vector x ∈ R5, the components of the vector Cx are the
observed coordinates. For technical reason, instead of the observation of the actual
densities, we shall consider their deviation from their equilibrium values:

(2.4) h : R5
+ → Rm, h(x) := C(x− x∗).

To keep the amount of calculations at a reasonable level, and to obtain still
biologically interpretable algebraic conditions, in this paper we will only consider
the observation of one or two coordinates of the state vector.

It may also be convenient or necessary to observe certain species without dis-
tinction. If these are species with indices 1 ≤ k1 < k2 < . . . < kr ≤ 5 with some
r ∈ {1, . . . , 5}, then in the observation function of (2.4) we put a row matrix C
with 1 in the positions k1, . . . , kr, and zero elsewhere.

In the Appendix we recall the linearization method of [11] which gives a general
sufficient condition for local observability of nonlinear systems. Now, we shall use
this method in order to obtain conditions for local observability of the considered
observation system.

i) Observation of the carnivore species
Let us observe the time varying density of species 3 (carnivores), i.e., the coor-

dinate x3 of the state of system (2.3), defining the observation matrix as C :=
[0 0 1 0 0]. For the application of the Theorem A1 of the Appendix, calculate the
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matrix A := f ′(x∗). Fix i, k ∈ {1, . . . , 5}. Then, for all x ∈ R5
+, for the partial

derivative functions we have

Dkfi(x) =
{ −γikxi if i 6= k,

εk −
∑5

j=1 γkjxj − γkkxk if i = k

Since x∗ is an interior equilibrium, at x∗ for both i 6= k and i = k we obtain

Dkfi(x∗) = −γikx∗i .

Hence the Jacobian of f at x∗ is

(2.5) A := −Diag x∗ Γ = −




0 γ12x
∗
1 0 0 0

γ21x
∗
2 0 γ23x

∗
2 0 0

0 γ32x
∗
3 γ33x

∗
3 γ34x

∗
3 0

0 0 γ43x
∗
4 0 γ45x

∗
4

0 0 0 γ54x
∗
5 0




.

Hence we obtain that

det[C | CA | CA2 | CA3 | CA4] = −γ21γ
2
32γ

2
34γ45x

∗
2(x

∗
3)

4x∗4(γ12γ21x
∗
1x
∗
2−γ45γ54x

∗
4x
∗
5)

2,

and by Theorem A1 of Appendix, we have the following

Theorem 2.1. Suppose that for the food chain described in Section 2 with com-
munity matrix (2.1), the interspecific interaction coefficients satisfy (2.2) and

(2.6) γ12γ21x
∗
1x
∗
2 6= γ45γ54x

∗
4x
∗
5.

Then system (2.3) with the observation of the carnivore species is locally obser-
vable near equilibrium x∗.

Thus, whenever an abiotic effect (change in the environment or a human inter-
vention causing a deviation from the equilibrium) is small enough, the whole system
state can be monitored only observing the carnivore population.

In the following we shall see some parallel statements for different observation
situations.

ii) Undistinguished observation of herbivore species
Let us suppose we observe the two herbivore populations, i.e., species 2 and 4,

without distinction. Then the observation matrix is C := [0, 1, 0, 1, 0].
Suppose now that, contrary to the hypothesis (2.6) of the previous subsection,

the following equality holds:

(2.7) γ12γ21x
∗
1x
∗
2 = γ45γ54x

∗
4x
∗
5.

Then we obtain that det[C | CA | CA2 | CA3 | CA4] is

γ12γ
2
21γ33γ45(γ32 − γ34)2(γ23x

∗
2 + γ43x

∗
4)

3x∗1(x
∗
2)

2(x∗3)
3x∗4.

Assume in addition that for the predator the “net conversion rate”, i.e. the
increase in relative growth rate due to its predation on species 2 and 4 is different
(γ32 6= γ34). Then by condition (2.2) and the positivity of the equilibrium, applying
Theorem A1 of Appendix, we obtain that the observation of both herbivore species
lumped together results in local observability near the equilibrium.

Remark. The basic conditions (2.6) and (2.7) for local observability in the above
cases i) and ii), respectively, are complementary. This means that, near the equili-
brium, for the monitoring of the whole population system in case i) the observation
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of the density of the predator population is reasonable. In case ii) the undistin-
guised observation of the two herbivore populations is enough, provided that for
predator the net conversion rates γ32 and γ34 are different.

iii) Observation of a plant species
Let us observe now the time-dependent density of species 1 (plant of type A),

i.e., the coordinate x1 of the state of system (2.3), defining the observation matrix
as C := [1 0 0 0 0].

Then it is easy to see that the columns of partitioned matrix [C | CA | CA2 |
CA3 | CA4] are linearly independent. Therefore, rank[C | CA | CA2 | CA3 |
CA4]T = 5 and by Theorem A1 of Appendix we obtain that observing only the
plant species 1 the whole system state can be monitored.

3. Construction of local observer

Now we shall construct a local observer system for the model (2.3) with obser-
vation of the carnivore species, applying a theorem of [9] recalled in the Appendix.

With matrices A in (2.5) and C := [0 0 1 0 0] we shall suppose that the hypotheses
of Theorem 2.1 are satisfied. Then the considered system is locally observable at
x∗. Now, we are going to define a matrix K such that A−KC is stable. Thus, by
Theorem A2 of Appendix we shall obtain the required local exponential observer
system.

Let us define
(3.1) K := col[k1 k2 k3 k4 k5]

where k1 = k2 = k4 = k5 = 0 and k3 > 0.
Then by the Routh-Hurwitz criterion (see e.g. [12]), matrix A−KC is stable and

therefore, by Theorem A1 of the Appendix we obtain the required local exponencial
observer for system (2.3) with Γ given in (2.1) and with the observation of the
carnivore species.

Summing up the above reasoning, we have the following

Theorem 3.1. Let us suppose that for the food chain described in Section 2 the
conditions of Theorem 2.1 are fulfilled, x∗ is Lyapunov stable and dynamical system

(3.2) ż = f(z) + K[y − h(z)]

with matrix K defined in (3.1), is a local exponencial observer for system (2.3) with
the observation of the carnivore species.

Illustrative example
We consider the food chain described in Section 2 with the following parameters

and the observation of the carnivore species

ẋ1 = x1(0.9− 4x2)
ẋ2 = x2(2 + 6x1 − 4.5x3)
ẋ3 = x3(0.8 + 4x2 − 2.6x3 + 5.8x4)
ẋ4 = x4(3− 4x3 + 2.8x5)
ẋ5 = x5(0.25− 3x4)
y = x3 − x∗3,

where the positive equilibrium is x∗ = (0.296474, 0.225, 0.839744, 0.0833333, 0.128205).
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Figure 1. State process of the food chain

Linearizing the system we obtain the following matrices

A =




0 −0.9 0 0 0
1.35 0 −1.0125 0 0
0 3.35898 0 4.87052 0
0 0 −0.333333 0 0.233333
0 0 0 −0.384615 0




and C =
[
0 0 1 0 0

]
.

It is easy to check that conditions (2.6) of Theorem 2.1 are verified, and matrix
A is stable (see also Figure 1). Therefore, we can guarantee that considered system
is locally observable. In order to construct the corresponding local observer system
we define matrix K as K = col [0 0 1 0 0] .

Then with this choice, if we calculate the eigenvalues of matrix A−KC we obtain
that it is stable. Then, Theorem 3.1 also provides a local exponencial observer
system,

ż1 = z1(0.9− 4z2)
ż2 = z2(2 + 6z1 − 4.5z3)
ż3 = z3(0.8 + 4z2 − 2.6z3 + 5.8z4) + x3 − z3

ż4 = z4(3− 4z3 + 2.8z5)
ż5 = z5(0.25− 3z4).

The error vector e = z − x satisfies the dynamics

ė1 = 0.9e1 − 4(e1 + x1)(e2 + x2) + 4x1x2

ė2 = 2e2 + 6(e1 + x1)(e2 + x2)− 6x1x2 − 4.5(e2 + x2)(e3 + x3) + 4.5x2x3

ė3 = 0.8e3 + 4(e2 + x2)(e3 + x3)− 4x2x3 − 2.6(e3 + x3)2 + 2.6x2
3

+5.8(e3 + x3)(e4 + x4)− 5.8x3x4 − e3

ė4 = 3e4 − 4(e3 + x3)(e4 + x4) + 4x3x4 + 2.8(e4 + x4)(e5 + x5)− 2.8x4x5

ė5 = 0.25e5 − 3(e4 + x4)(e5 + x5) + 3x4x5.

In Figure 2 we present a simulation to show how the error vector trajectories
tend to zero. We have considered the following initial conditions

x(0) = (2.00, 0.40, 0.10, 0.20, 0.13) ; z(0) = (2.03, 0.90, 0.35, 0.28, 0.16)
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Figure 2. Error vector trajectories

4. Conclusion

For many actual problems of ecology and conservation biology an efficient mo-
nitoring methodology is a key issue. Mathematical systems theory offers tools to
recover the whole state process of a population system, from the observation of
certain indicator species. Under the condition of stable coexistence of all species,
near this equilibrium an observer system can be constructed such that the solution
of the latter asymptotically provides the state process, with an exponential velocity
of convergence. From the construction of the observer system it can be seen that,
with the appropriate choice of an auxiliary matrix, the transient period of the ap-
proximation can be shortened, speeding up the convergence to the required state
process.

The same methodology in principle also applies to food webs with higher number
of species involved, however, the biological interpretation of the algebraic conditions
on the model parameters may be more difficult.
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Appendix

First we recall in technical terms the concept of local observability near the
equilibrium of a nonlinear system and a sufficient condition which guarantees this
property. With certain technical simplifications, our treatment is based in [11].

For a continuously differentiable function f : Rn → Rn (n ∈ N), we consider the
system
(4.1) ẋ = f(x).

Let x∗ ∈ Rn be such that f(x∗) = 0, that is, an equilibrium for (4.1). Given
T > 0, there exists a neighbourhood of x∗ such that any solution of (4.1) starting
at a point of this neighbourhood, can be continued in the interval [0, T ].

For given m ∈ N let h : Rn → Rm be a continuously differentiable function such
that h(x∗) = 0, and consider the observation system

(4.2)
{

ẋ = f(x)
y(t) : = h(x(t)), t ∈ [0, T ]

where y is interpreted as an observed function for system (4.1).

Definition 4.1. Observation system (4.2) is called locally observable near the
equilibrium x∗ over the interval [0, T ], if there exists ε > 0, such that for any two
different solutions x and x of system (4.1) with | x(t)− x∗ |< ε and | x(t)− x∗ |<
ε (t ∈ [0, T ]), the observed functions h(x(t)) and h(x(t)) (t ∈ [0, T ]) are different.

For the formulation of a sufficient condition for local observability, let us consider
the linearization of the observation system (4.2), consisting in the calculation of the
Jacobians A := f ′(x∗) and C := h′(x∗).

From [11] we have the following
Theorem A1: Suppose that

(4.3) rank[C | CA | CA2 | . . . | CAn−1]T = n.

Then observation system (4.2) is locally observable near the equilibrium x∗.
Throughout the main body of the paper, for the sake of simplicity, the term

“local observability near the equilibrium” is always used without reference on the
fixed time interval [0, T ].

Now, keeping the above notation let us consider observation system (4.2) over
the interval [0, +∞[. We recall the result of [9] we apply for the observer design.

Theorem A2: Suppose that x∗ is a Lyapunov stable equilibrium of system (4.1),
rank condition (4.3) holds, and there exists an n×m matrix K such that A−KC
is a stable matrix (i.e. all its eigenvalues have negative real parts). Then system

(4.4) ż = f(z) + K[y − h(z)]
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is a local exponential observer for observation system (4.2). (The latter means that
substituting a concrete observed function y of system (4.2), near equilibrium x∗, we
can approximate the state x by a solution of (4.4), at an exponential rate).
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