
Efficient query processing on large spatial databases
A performance study

George Roumelis

Department of Informatics, Aristotle University, Thessaloniki, Greece.

Michael Vassilakopoulos

Department of Electrical & Computer Engineering, University of Thessaly, Volos, Greece.

Antonio Corral

Department on Informatics, University of Almeria, Almeria, Spain.

Yannis Manolopoulos

Department of Informatics, Aristotle University, Thessaloniki, Greece.

Abstract

Processing of spatial queries has been studied extensively in the literature. In most cases, it is accomplished by
indexing spatial data using spatial access methods. Spatial indexes, such as those based on the Quadtree, are important
in spatial databases for efficient execution of queries involving spatial constraints and objects. In this paper, we study
a recent balanced disk-based index structure for point data, called xBR+-tree, that belongs to the Quadtree family
and hierarchically decomposes space in a regular manner. For the most common spatial queries, like Point Location,
Window, Distance Range, Nearest Neighbor and Distance-based Join, the R-tree family is a very popular choice of
spatial index, due to its excellent query performance. For this reason, we compare the performance of the xBR+-
tree with respect to the R∗-tree and the R+-tree for tree building and processing the most studied spatial queries. To
perform this comparison, we utilize existing algorithms and present new ones. We demonstrate through extensive
experimental performance results (I/O efficiency and execution time), based on medium and large real and synthetic
datasets, that the xBR+-tree is a big winner in execution time in all cases and a winner in I/O in most cases.

Keywords: Spatial Databases, Spatial Access Methods, Quadtrees, xBR-trees, R-trees, Query Processing,
Performance Evaluation

1. Introduction

Due to the demanding need for efficient spatial access
methods in many spatial database applications [1, 2],
significant research effort has been devoted to the devel-
opment of new spatial index structures [3, 4, 5]. How-5

ever, as shown in several previous comparative studies
[6, 7, 8, 9], there is no unique index structure that works
efficiently, in all cases. These performance studies were
executed taking into account a great variety of modern
applications, where a variety of Spatial Queries arise.10
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The most common spatial queries where points are
involved are Point Location, Window, Distance Range,
Nearest Neighbor and Distance-based Join Queries.
Moreover, such queries have been also used as the ba-
sis of many complex operations in advanced applica-15

tions (e.g. multimedia databases [10], medical images
databases [11], geometric databases [12], CAD [13],
Geographical Information Systems (GIS) [14], etc).

Hierarchical index structures are useful because of
their ability to focus on the interesting subsets of data20

[3, 4]. This focusing results in an efficient representa-
tion and improved execution times on query processing
and is, thus, particularly useful for performing spatial
operations [5]. Important advantages of these structures
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are their conceptual clarity and their great capability for25

query processing. The Quadtree is a well known hier-
archical index structure, which has been applied suc-
cessfully on GIS, image processing, spatial informa-
tion analysis, computer graphics, digital databases, etc.
[14, 5]. It was introduced in the early 1970s [15], it30

is based on the principle of recursive decomposition of
space and has become an important access method for
spatial data [16].

The External Balanced Regular (xBR)-tree [17] is
a secondary memory structure that belongs to the35

Quadtree family (widely used in GIS applications [14]),
which is suitable for storing and indexing multidimen-
sional points (and, in extended versions, line segments,
or other spatial objects). We utilize an improved ver-
sion of xBR-tree, called xBR+-tree [18], which is also40

a disk-resident structure. The xBR+-tree improves the
xBR-tree in the node structure and in the splitting pro-
cess. The node structure of the xBR+-tree stores infor-
mation which makes query processing more efficient.

In this paper, we compare the xBR+-tree with popu-45

lar R-tree indexes, regarding storage requirements, time
needed for the tree construction and spatial query per-
formances. The family of R-trees has been populated
with lots of assorted variations. Each variation tries
to optimize a particular aspect (splitting, deletion, etc).50

However, we concentrate on the R∗-tree [19], because it
is the most commonly employed spatial indexing struc-
ture in the spatial database community [4, 2], and to the
R+-tree, because it is an index structure based on dis-
joint decomposition of space like the xBR+-tree.55

This paper substantially extends our previous work
[20] (where xBR-trees were compared to R∗-trees us-
ing single dataset queries and datasets of medium size
and it was shown that the two structures are compara-
ble) and [18] (where a new tree, the xBR+-tree, was60

presented and compared to the xBR-tree using single
dataset queries and datasets of medium size and it was
shown that the two structures are comparable in build-
ing, while the xBR+-tree is a winner in query process-
ing) and its contributions include the following:65

• The presentation of a new alternative Depth-
First (DF) algorithm for Distance Range Queries
(DRQs), K Nearest Neighbor Queries (KNNQs)
and Constrained K Nearest Neighbor Queries
(CKNNQs), utilizing a minimum binary heap70

(minHeap) instead of sorting on the xBR+-tree,
R∗-tree and R+-tree,

• The presentation of the first algorithms for K Clos-
est Pair Queries (KCPQs), εDistance Join Queries
(εDJQs) on the xBR+-tree, and presentation of75

new alternative DF algorithms for KCPQs and
εDJQs, utilizing a minHeap instead of sorting, on
R∗-trees and R+-trees,

• A detailed performance comparison (I/O and exe-
cution time) of xBR+-trees (non-overlapping trees80

of the quadtree family) against R+-trees (non-
overlapping trees of the R-tree family) and R∗-trees
(industry standard belonging to the R-tree family)
on tree building, single dataset queries (Point Lo-
cation Queries -PLQs-, Window Queries -WQs-,85

DRQs, KNNQs and CKNNQs) and dual dataset
(distance-based join) queries (KCPQs, εDJQs).
Note that the performance study was conducted
on medium and large spatial (real and synthetic)
datasets.90

Note that, in this paper we utilize large spatial datasets
(where the quantifier “large” designates several tens
of millions of spatial objects) since we believe that
such datasets can be effectively processed in central-
ized systems, if efficient methods are used. Even95

larger (huge) datasets would require the utilization of
methods on parallel and distibuted environments (e.g.
http://spatialhadoop.cs.umn.edu).

This paper is organized as follows. In Section 2 we
review related work on comparing spatial access meth-100

ods, regarding spatial query processing and provide the
motivation for this work. In Section 3, we briefly re-
view the main characteristics of the R-trees (highlight-
ing the R∗-tree and R+-tree). In Section 4, we describe
the xBR+-tree. In Section 5, we present the algorithms105

for processing spatial queries, where one or two datasets
are involved, over R-trees and the xBR+-tree. In Section
6, we show results of the extensive experimentation per-
formed, using real and synthetic datasets, for comparing
the performance of the two R-trees index structures (R∗-110

tree and R+-tree) and the xBR+-tree. Finally, in Section
7 we provide the conclusions arising from this research
work and discuss related future work directions.

2. Related Work and Motivation

The Quadtree belongs to a class of hierarchical data115

structures whose common property is that they are
based on the principle of recursive regular decompo-
sition of space. These structures are characterized as
space-driven access methods according to [1]. It is most
often used to partition a 2d space by recursively sub-120

dividing it into four quadrants or regions: NW (North
West), NE (North East), SW (South West) and SE
(South East). According to [21], Quadtrees can be clas-
sified by following three principles: (1) the type of data
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that they are used to represent (points, regions, curves,125

surfaces and volumes), (2) the principle guiding the de-
composition process, and (3) the resolution (variable or
not).

In order to represent Quadtrees, there are two
approaches: the pointer-based and pointerless ap-130

proaches. In general, the pointer-based Quadtree rep-
resentation is one of the most natural ways to represent
a Quadtree structure. In this method, every node of the
Quadtree will be represented as a record with pointers
to its four sons. Sometimes, in order to process spe-135

cific operations, an extra pointer from a node to its fa-
ther could also be included. The xBR+-tree belongs to
the category of pointer-based Quadtrees. On the other
hand, the pointerless representation of a Quadtree de-
fines each node of the tree as a unique locational code140

[14]. By using the regular subdivision of space, it is
possible to compute the locational code of each node in
the tree. The linear Quadtree is an example of pointer-
less Quadtree. We refer the reader to [14, 3, 5, 22] for
further details.145

The xBR+-tree [18] belongs to the category of
pointer-based Quadtrees and it is an extension of the
xBR-tree [17, 20]. The xBR+-tree has similarities
with other well-known multidimensional access meth-
ods [16]. For example, the form of nodes in xBR+-trees150

has similarities to the form of nodes of Generalized BD-
trees (GBD-trees) [23]. GBD-trees are based on kd-
tree-like decomposition of space, while xBR+-trees on
Quadtree-like decomposition. Moreover, the splitting
of internal nodes in xBR+-trees is handled in a more155

sophisticated way than in GBD-trees. The xBR+-tree
has also similarities to the hB-tree [24], where space is
also partitioned according to kd-trees (unlike the xBR+-
tree, where partitioning follows the data space hierar-
chy principle) and holey brick-like regions are created.160

Unlike the hB-tree, in the xBR+-tree, each internal node
has only one pointer to a child node and the entries of an
internal node are region-pointer pairs and not tree struc-
tures (kd-trees), as in the hB-tree. Finally, we refer the
reader to [14, 3, 16, 5, 22] for further details on multidi-165

mensional access methods.
Regarding the performance comparison of spatial

query algorithms using the most cited spatial access
methods (R-trees and Quadtrees), several previous re-
search efforts have been published. In [6] a qualitative170

comparative study was performed taking into account
three popular spatial indexes (R∗-tree [19], R+-tree [25]
and PMR Quadtree [26]), in the context of process-
ing spatial queries (point query, nearest line segment,
window query, etc.) in large line segment databases.175

The conclusion reached was that the R+-tree and PMR

Quadtree were the best when the operations involve
search, since they result in a disjoint decomposition of
space. On the other hand, the R∗-tree was more com-
pact than the R+-tree (and the PMR Quadtree) but its180

performance was not as good as the R+-tree, due to the
non-disjointness of the decomposition induced by it.

In [7], various R-tree variants (R-tree [27], R∗-tree
and R+-tree) and the PMR Quadtree have been com-
pared for the traditional spatial overlap join operation.185

They showed that the R+-tree and PMR Quadtree out-
perform the R-tree and R∗-tree using 2d GIS spatial
data. That is, with respect to the overlap join, the spa-
tial data structures based on a disjoint decomposition
of space (like the R+-tree and PMR Quadtree) outper-190

formed spatial data structures based on a non-disjoint
decomposition such as the numerous variants of the R-
tree including the R∗-tree. Moreover, as the size of the
output of the spatial join increases with respect to the
larger of the two inputs, methods based on a disjoint reg-195

ular decomposition (like the PMR Quadtree) performed
significantly better. Due to the good performance results
of the R+-tree for overlap join, in this research work, we
have compared this structure to the xBR+-tree for spa-
tial queries.200

Another interesting comparison was presented in [9],
where the R-tree and the Quadtree have been contrasted
in the context of Oracle Spatial, using a variety of range
and Nearest Neighbor (NN) queries on spatial data aris-
ing in 2d Geographical Information Systems (GISs). It205

was shown that, in general, the R-tree outperforms the
Quadtree. From this experimental comparison, Oracle,
in general, recommends using R-trees over Quadtrees,
due to higher tiling levels in the Quadtree that cause
very expensive preprocessing and storage costs.210

In [28], the R∗-tree and a Quadtree index enhanced
with Minimum Bounding Rectangle (MBR) keys for
the internal nodes (MBRQuadtree) have been compared
with respect to the All-Nearest Neighbor (ANN) query.
The ANN query takes as input two datasets of multi-215

dimensional points and computes for each point in the
first dataset the NN in the second one. Experimen-
tally, the authors showed that for ANN queries, the
MBRQuadtree is a much more efficient indexing struc-
ture than the R∗-tree index.220

In [8], the authors have compared the performance
of R-trees and Quadtrees index structures for evaluat-
ing the KNN and the K Distance Join (using the algo-
rithms described in [29]) query operations and the in-
dex construction methods (dynamic insertion for the R∗-225

tree and bucket Quadtree) and bulk-loading algorithm
(Sort-Tile-Recursive, STR, for the R-tree [30] and bulk-
loading for the Quadtree). It was shown that the query
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processing performance of the R∗-tree was significantly
affected by the index construction methods, while the230

Quadtree was relatively less affected by the index con-
struction method. The regular and disjoint partitioning
method used by the Quadtree has an inherent structural
advantage over the R∗-tree in performing KNN and K
Distance Join queries. The Quadtree-based index struc-235

ture could be a better choice than the widely used R∗-
tree for spatial queries when indices are constructed dy-
namically. Moreover, it was shown that when data are
static (i.e. when a bulk-loading algorithm is used for
an index construction) and KNNQs / K Distance Join240

Queries are executed, the STR built R-tree showed the
best performance. However, when data are dynamic
(i.e. there are frequent updates), a bucket Quadtree be-
gins to outperform the R∗-tree. This is due to over-
lap among MBRs that increases with increasing dataset245

sizes (once the dynamic R∗-tree algorithm is used), and
the R∗-tree performance is degraded.

In the context of performance studies, in [31], an in-
teresting performance comparison (with respect to num-
ber of disk read accesses, response time and memory re-250

quirements) of distance-based query (Distance Range,
K-Nearest Neighbors, K-Closest Pairs and εDistance
Join) algorithms (Depth-First Search -DFS-, Best-First
Search -BFS- and Recursive Best-First Search -RBFS-)
on R∗-trees was presented. The main conclusion was255

that BFS was the best for all studied distance-based
queries, but it may consume many main memory re-
sources. DFS was slightly worse than BFS (except
for the case where an LRU-buffer is included), but it
consumed less memory resources, since it needs linear260

space with respect to the height of the R∗-trees. RBFS
was the worst alternative (although it uses recursion and
it needs linear space) since it revisits internal nodes to
follow a best-first order.

In [20], the performance of R∗-trees and xBR-trees265

was compared for the most usual spatial queries, like
Point Location, Window, Distance Range, K Nearest
Neighbor and Constraint KNN queries. The conclu-
sions arising from this comparison showed that the two
indexes were competitive. The xBR-tree is more com-270

pact and it is built faster than the R∗-tree. The perfor-
mance of the xBR-tree was higher for PLQs, DRQs and
WQs, while the R∗-tree was slightly better for KNNQs
and needed less disk accesses for CKNNQs.

Finally, in [18] improvements of the xBR-tree (mod-275

ified internal node structure and tree building process)
were presented, leading to the xBR+-tree. An exten-
sive performance studio (I/O efficiency and execution
time) based on real and synthetic datasets was also pre-
sented, taking into account the tree building process and280

the processing of single dataset queries, using the two
Quadtrees-based structures. These results showed that
the two trees are comparable regarding their building
performance, however, the xBR+-tree was an overall
winner regarding spatial query processing.285

The main objective of this paper is to compare the
xBR+-tree performance [18] (the best index structure of
the xBR-tree family) against the performance of the most
popular spatial access method of the R-tree family, the
R∗-tree and a non-overlapping member of this family,290

the R+-tree, considering the most representative spatial
queries, where one or two indexes are involved and to
highlight the performance winner, considering the char-
acteristics of each query. Our contribution differs from
[8] in the following aspects:295

• We utilized a new dynamic, disk-resident, bal-
anced Quadtree-based index structure (called
xBR+-tree). In [8], a simple bucket Quadtree, a
partially RAM-resident, unbalanced structure was
utilized.300

• The performance comparison is carried out for
more spatial queries when one dataset is involved
(PLQ, WQ, DRQ and CKNNQ) and when two
datasets are involved (εDJQ), not only for the
KNNQ and KCPQ (called K Distance Join Query305

in [8]).

• We have compared the xBR+-tree with the R+-tree
also (an R-tree index based on disjoint decomposi-
tion of space), not only with the R∗-tree as in [8].

• We have used in our experiments two large real310

datasets from OpenStreetMap1 with 5.8 and 11.5
million of 2d points, whereas in [8], the authors
used artificial data from Palomar Observatory Sky
Survey2, choosing for their experiments just the
first 2 millions of records from the original data315

(from around 90 millions) and for creating 2d
points, the first two attributes of the 39 stored.

3. The R-tree Family

R-trees [27] are hierarchical, height balanced data
structures, derived from B-trees [32] and designed to be320

used in secondary storage. R-trees are considered as ex-
cellent choices for indexing various kinds of spatial data
(points, rectangles, line-segments, polygons, etc.) and

1http://spatialhadoop.cs.umn.edu/datasets.html
2http://astronomy.mnstate.edu/cabanela/MAPS Database/
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have been adopted in known commercial systems (e.g.
Informix [33], Oracle Spatial [34, 35], MySQL [36],325

PostGIS [37, 38], etc.). They are used for the dynamic
organization of a set of spatial objects represented by
their Minimum Bounding Rectangles (MBRs). The
MBR represents the smallest axes-aligned rectangle in
which the spatial objects are contained. A 2d MBR is330

determined by two 2d points that belong to its faces,
one that has the minimum and one that has the maxi-
mum coordinates (these are the endpoints of one of the
diagonals of the MBR). Using the MBR instead of the
exact geometrical representation of the object, its repre-335

sentational complexity is reduced to two points where
the most important features of the spatial object (posi-
tion and extension) are maintained. Consequently, the
MBR is an approximation widely employed, and the R-
trees belong to the category of data-driven access meth-340

ods [1], since their structure adapts itself to the MBRs
distribution in the space (the partitioning adapts to the
object distribution in the embedding space).

The rules obeyed by the R-tree are as follows.

1. All leaves reside on the same level.345

2. Each leaf node contains entries, E, of the form
(MBR, Oid), such that MBR is the minimum
bounding rectangle that encloses the object deter-
mined by the identifier Oid.

3. Internal nodes contain entries, E, of the form350

(MBR, Addr), where Addr is the address of the
child node and MBR is the minimum bounding
rectangle that encloses MBRs of all entries in that
child node (it is also called directory MBR).

4. Nodes (except possibly for the root) of an R-tree355

of class (m, M) contain between m and M entries,
where m ≤ dM/2e (M and m are called maximum
and minimum branching factor, or fan-out).

5. The root contains at least two entries, if it is not a
leaf.360

For more details about the R-tree structure, see [4].
Like other spatial tree-like index structures, an R-tree

partitions the multidimensional space by grouping ob-
jects in a hierarchical manner. A subspace occupied by
a tree node in an R-tree is always contained in the sub-365

space of its parent node, i.e. the MBR enclosure prop-
erty. According to this property, an MBR of an R-tree
node (at any level, except at the leaf level) always en-
closes the MBRs of its descendant R-tree nodes. This
property of spatial containment between MBRs stored370

in R-tree nodes is commonly used by spatial queries
as the WQ and spatial join. Another important prop-
erty of the R-trees that store spatial objects in a spatial
database is the MBR face property. This property says

that every face of any MBR of an R-tree node (at any375

level) touches at least one point of some spatial object
in the spatial database. Distance-based queries, like the
KNNQ, DRQ, KCPQ and εDJQ, use this last property.

3.1. The R∗-tree
Many variations of R-trees have appeared in the liter-380

ature (exhaustive surveys can be found in [16, 4]). One
of the most popular and efficient variations is the R∗-
tree [19]. The R∗-tree is a variant of the R-tree that pro-
vides several improvements to the insertion algorithm.
Essentially, these improvements aim at optimizing the385

following parameters: (1) node overlapping, (2) area
covered by a node, and (3) perimeter of an MBR of in-
ternal node. The latter is representative of the shape of
the rectangles because, given a fixed area, the shape that
minimizes the rectangle perimeter is the square.390

The R∗-tree added two major enhancements to the R-
tree, in case a node overflows. First, rather than just
considering the area, the node-splitting algorithm in the
R∗-tree also minimized the perimeter and overlap en-
largement of the MBRs. It tends to reduce the number395

of subtrees to follow for search operations. Second, the
R∗-tree introduced the notion of forced reinsertion to
make the tree shape less dependent to the insertion or-
der. When a node overflows, it is not split immediately,
but a portion of entries of the node is reinserted from the400

tree root. The forced reinsertion provides two important
improvements. First, it may reduce the number of splits
and, second it is a dynamic technique for tree reorga-
nization. With these two enhancements, the improved
split algorithm and the reinsertion strategy, the R∗-tree405

results in a much better organization with respect to the
original R-tree.

It is worth remembering that the data structures for
the R-tree and R∗-tree are the same. Hence, the data
retrieval operations defined for the R-tree remain valid410

for the R∗-tree. Due to the better organization of the
R∗-tree, the performance of the spatial queries is likely
to be significantly improved. For this reason, the R∗-
tree generally outperforms R-tree and it is commonly
accepted that the R∗-tree is one of the most efficient R-415

tree variants [1].
Figure 1 depicts a collection of points representing

16 capital cities and the corresponding R∗-tree (assum-
ing M = 4 and m = 2), where the tree nodes correspond
to disk pages. Observe that the index structure, while420

keeping the tree balanced, adapts to the skewness of
data distribution. Solid lines denote the MBRs of the
subtrees that are rooted in inner nodes (dotted rectan-
gles). In this figure, the leaves are represented by Li

(1 ≤ i ≤ 6), the MBRs enclosing points are denoted as425
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Ii (1 ≤ i ≤ 6) and Ri (1 ≤ i ≤ 2) correspond to the
MBRs enclosing Ii MBRs.
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Figure 1: A collection of points representing 16 capital cities, the
corresponding grouping to R∗-tree nodes and the R∗-tree structure.

3.2. The R+-tree
To overcome the problems associated with overlap-

ping of regions in the R-trees, in [25] an access method430

called the R+-tree was introduced. The main motivation
for the R+-tree is to avoid overlap among the MBRs.
Unlike the R-tree, the R+-tree uses clipping; that is,
there is no overlap between MBRs at the same tree level.
MBRs that intersect more than one MBRs have to be435

stored on several different nodes. The result of this data
structure is that there may be several paths, starting at
the root to the same rectangle. As a result of this pol-
icy and taking into account its structure, the R+-tree will
lead to an increase of the height of the tree. However,440

considering the retrieval time, point searches in R+-trees
correspond to single-path tree traversals from the root to
one of the leaves (and therefore, it tends to be faster than
the corresponding R-tree operation). On the other hand,
range searches usually lead to the traversal of multiple445

paths in both index structures.

The R+-tree can be characterized as follows [1]:

1. The root has at least two entries, except when it is
a leaf.

2. The MBRs of two internal nodes at the same level450

cannot overlap.
3. If node N is not a leaf (internal node), its MBR

contains all rectangles in the subtree rooted at N.
4. A rectangle of the collection to be indexed is as-

signed to all leaf nodes the MBRs of which it455

overlaps. A rectangle assigned to a leaf node N
is either overlapping N.MBR or is fully contained
in N.MBR. This duplication of objects into sev-
eral neighbor leaves is similar to what we encoun-
tered earlier in other space-driven structures (they460

are based on partitioning the embedding space into
rectangular cells, independently of the distribution
of the spatial objects).

Figure 2 presents an R+-tree for the same collection
of points. Note also that both at the leaf level and at in-465

ternal levels, node MBRs are not overlapping (different
organization of the nodes with respect to Figure 1). The
notation of internal nodes and leaves are the same as in
the R∗-tree of Figure 1.

The structure of an R+-tree node is the same as that470

of the R-tree. However, because we cannot guarantee
a minimal storage utilization m (as for the R-tree), and
because rectangles are duplicated, an R+-tree can be sig-
nificantly larger (in terms of height) than the R-tree built
for the same dataset. The construction and maintenance475

of the R+-tree are rather more complex than with the
other variants of the R-tree.

As examples of spatial query processing using R+-
trees, the point location query performance benefits
from the non-overlapping of nodes. As for space-driven480

structures [1], a single path down the tree is followed,
and fewer nodes are visited than with the R-tree. The
gain for window query is less obviously assessed. Ob-
ject duplication not only increases the tree size, but po-
tentially leads to expensive post-processing of the result485

(sorting for duplication removal).

4. The xBR+-tree

The xBR+-tree [18] (an extension of the xBR-tree
[17, 20]) is a hierarchical, pointer-based, disk-resident
index structure, built utilizing a regular decomposition490

of space (space-driven access method), suitable for in-
dexing multidimensional points. For 2d the hierarchi-
cal decomposition of space in the xBR+-tree is that
of Quadtrees (the space is recursively subdivided in 4
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Figure 2: The same collection of points, the corresponding grouping
to R+-tree nodes and the R+-tree structure.

equal subquadrants) and the space indexed is a square.495

The nodes of the tree are disk pages of two kinds:
leaves, which store the actual multidimensional data
themselves and internal nodes, which provide a mul-
tiway indexing mechanism.

4.1. Internal Nodes500

Internal node entries in xBR+-trees contain entries of
the form (Shape, qside, DBR, Pointer). Each entry cor-
responds to a child-node pointed by Pointer. The region
of this child-node is related to a subquadrant of the orig-
inal space. Shape is a flag that determines if the region505

of the child-node is a complete or non-complete square
(the area remaining, after one or more splits; explained
later in this subsection). This field is heavily used in
queries. DBR (Data Bounding Rectangle) stores the co-
ordinates of the rectangular subregion of the child-node510

region that contains point data (at least two points must
reside on the sides of the DBR), while qside (not stored
in xBR-tree internal node entries) is the side length of
the subquadrant of the original space that corresponds
to the child-node.515

The subquadrant of the original space related to the
child-node is expressed by an Address. This Address
(which has a variable size) is not explicitly stored in the
xBR+-tree (unike the xBR-tree), although it is uniquely
determined and can be easily calculated using qside and520

DBR (in fact, the coordinates of the subquadrant ex-
pressed by Address are calculated by query processing
algorithms using qside and DBR). Each Address repre-
sents a subquadrant which has been produced by Quad-
tree-like hierarchical subdivision of the current space525

(of the subquadrant of the original space related to the
current node). It consists of a number of directional dig-
its that make up this subdivision. The NW, NE, SW
and SE subquadrants of a quadrant are distinguished by
the directional digits 0, 1, 2 and 3, respectively. For 2d530

space, we use two directional bits, one for each dimen-
sion. The lower bit represents the subdivision on the
horizontal (X-axis) dimension, while the higher bit rep-
resents the subdivision on the vertical (Y-axis) dimen-
sion [17, 20]. It is easy to extend this representation535

to three or more dimensions by using a number of di-
rectional bits equal to the number of dimensions. For
example, the Address 1 represents the NE quadrant of
the current space, while the Address 10 the NW sub-
quadrant of the NE quadrant of the current space. The540

address of the left child is * (has zero digits), since the
region of the left child is the whole space minus the re-
gion of the right child.

However, the actual region of the child-node is, in
general, the subquadrant of its Address minus a number545

of smaller subquadrants, the subquadrants correspond-
ing to the next entries of the internal node (the entries
in an internal node are saved sequentially, in preorder
traversal of the Quadtree that corresponds to the inter-
nal node). For example, in Figure 3 an internal node (a550

root) that points to 2 internal nodes that point to 7 leaves
is depicted. The region of the root is the original space,
which is assumed to have a quadrangular shape. The re-
gion of the right child is the NW quadrant of the origi-
nal space. The region of the left child is the whole space555

minus the region of the NW quadrant, a non-complete
square. The * symbol is used to denote the end of a
variable size address. The Address of the right child is
0*, since the region of this child is the NW quadrant
of the original space. The Address of the left child is560

* (has zero directional digits), since the region of this
child refers to the remaining space. Each of these Ad-
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dresses is expressed relatively to the minimal quadrant
that covers the internal node (each Address determines
a subquadrant of this minimal quadrant). For example,565

in Figure 3, the Address 3* is the SE subquadrant of
the NW subquadrant of whole space (absolute Address
03*). During a search, or an insertion of a data element
with specified coordinates, the appropriate leaf and its
region is determined by descending the tree from the570

root.

Figure 3: The same collection of points, the corresponding grouping
to xBR+-tree nodes and the xBR+-tree structure.

Note that all the fields of an xBR+-tree internal node
entry have a fixed size. By avoiding storing the variable-
sized field Address (unlike the xBR-tree), processing of
internal nodes is simplified, since their capacity is fixed.575

Moreover, the use of the DBR field (not stored in xBR-
tree internal node entries) makes processing of spatial
queries more efficient, since it signifies the subregion of
the child-node that actually contains data, which is (in

general) different to and smaller than the region of this580

child-node, leading to higher selectivity of the paths that
have to be followed downwards when descending the
tree and deciding the parts of the tree that may contain
(part of) the query answer.

4.2. Leaf Nodes585

External nodes (leaves) of the xBR+-tree simply con-
tain the data elements and have a predetermined capac-
ity C. When C is exceeded, due to an insertion in a
leaf, the region of this leaf is partitioned in two sub-
regions. The one (new) of these subregions is a sub-590

quadrant of the region of the leaf which is created by
partitioning the region of the leaf according to hierar-
chical (Quadtree like) decomposition, as many times as
needed so that the most populated subquadrant (that cor-
responds to this new subregion) has a cardinality that is595

smaller than or equal to C. The other one (old) of these
subregions is the region of the leaf minus the new sub-
region. In [18], the criterion of choosing the new subre-
gion was the cardinality of this subregion to be smaller
or equal to xC, where 0.5 < x < 1, however the crite-600

rion we use in this paper was more effective and simple.
Note also that in the xBR+-tree, data elements are stored
in leaves in X-order (the elements are sorted in ascend-
ing order of their X-axis coordinate). This order permits
us to use the plane sweep technique (when appropriate)605

during processing of the data elements of a leaf, in the
process of answering certain query types.

4.3. Splitting Process of Nodes
When an internal node of the xBR+-tree overflows, it

is split in two. The goal of this split is to achieve the610

best possible balance between the space use in the two
nodes.

4.3.1. Splitting of internal nodes
The split in the xBR+-tree is either based on existing

quadrants or in ancestors of existing quadrants. First, a615

Quadtree is built that has as nodes the quadrants speci-
fied in the internal node [17]. This tree is used for de-
termining the best possible split of the internal node in
two nodes that have almost equal number of bits, as pro-
posed in [17], or entries (a simpler and equally effective620

criterion, according to experimentation).

4.3.2. Splitting of leaves
Splitting of a leaf creates a new entry that must be

hosted by an internal node of the parent level. This can
cause backtracking to the upper levels of the tree and625

may even cause an increase of its height. More details
appear in [17].
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5. Spatial Query Processing

In this section, we outline algorithms for processing
PLQs, WQs, DRQs, KNNQs, CKNNQs, KCPQs and630

εDJQs on the R-tree family (query processing in R∗-
trees, R+-trees and R-trees, in general, is similar) and
xBR+-trees. In general terms, the definitions of these
spatial queries are as follows:

• Given an index IP and a query point q, the PLQ635

returns true if q belongs to IP, false otherwise.

• Given an index IP and a query rectangle r, the re-
sult of the WQ is the set of all points in IP that are
completely inside r.

• Given an index IP, a query point q and a distance640

threshold ε ≥ 0, the DRQ returns all points of IP,
that are within the specified distance ε from q (ac-
cording to a distance function).

• Given an index IP, a query point q, and a value
K > 0, the KNNQ returns K points of IP which are645

closest to q based on a distance function.

• Given an index IP, a query point q, a value K > 0
and a distance threshold ε ≥ 0, the CKNNQ re-
turns K closest points of IP which are within the
distance ε from q.650

• Given two indexes IP and IQ, and an integer value
K > 0, the KCPQ [39, 40] returns a set of K dif-
ferent pairs of points (pi, p j) ∈ IP × IQ, such that
pi ∈ IP, pi ∈ IQ, with the K smallest distances
between all possible pairs of points that can be655

formed by choosing one point of IP and one point
of IQ, based on a distance function.

• Given two indexes IP and IQ, and a real value ε ≥
0, εDJQ [31] returns all the possible different pairs
of points (pi, p j) ∈ IP × IQ that can be formed by660

choosing one point pi ∈ IP and one point p j ∈ IP,
having a distance smaller than or equal to ε of each
other, based on a distance function.

To answer the aforementioned spatial queries using
members of the R-tree family, or xBR+-trees a two-step665

procedure is followed [41]. Filter step: the collection of
all spatial objects whose MBRs/DBRs satisfy the given
spatial query is found. These spatial objects constitute
the candidate set. Refinement step: the actual exact ge-
ometry of each member of the candidate set is examined670

to eliminate false hits and find the final answer to the
spatial query. In the following, we will describe in more

detail the query processing techniques that have devel-
oped for each spatial query type. Since the Refinement
step is orthogonal to the Filtering step, the developed675

techniques have mainly focused on the latter.

5.1. Algorithmic techniques used

All the single dataset queries above can be processed
in a top-down manner beginning from the root of the
tree. There are two, well known, basic techniques that680

can be applied.
The first one is processing the nodes of the tree in

Depth-First (DF) mode: By examining the relation of
an entry of the current internal node to the query ob-
ject, point or area, we decide on recursively applying685

the same procedure on the child node pointed by this
entry. When this recursive call returns, another entry of
this internal node may be examined, depending on the
query being processed and the result calculated so far.
When a recursive call reaches a leaf node, the Refine-690

ment step is applied.
The second one is processing the nodes of the tree

in Best-First (BF) mode: By examining the relation of
each entry of the current internal node to the query ob-
ject, point or area, we decide about inserting this entry695

in a global priority queue, where there may already ex-
ist entries inserted during earlier stages of the algorithm.
After all entries of the current node have been examined,
the entry with top priority is extracted from the queue
and processing continues with the node pointed by this700

entry.
We applied four versions of DF algorithms.

• The first one, named Normal Depth First (N-DF)
algorithm, is the simplest of all. The query ob-
ject is tested first against each entry of the current705

node, in the order that the entries are stored. The
criterion for such a test depends on the query being
processed and the result calculated so far and its
result is boolean (true / false). If the result for the
entry tested is true, then the algorithm is applied710

recursively on the child node pointed by this entry.

• The second one is named Depth First (DF) algo-
rithm. For each entry of the current node (in the
order that the entries are stored), the minimum dis-
tance, mindist, between the query object and the re-715

gion of the entry is calculated. If the (non-boolean)
value of this metric for the entry examined satisfies
the criterion corresponding to the query being pro-
cessed and the result calculated so far, then the al-
gorithm is applied recursively on the node pointed720

by this entry.
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• The third one, named Sorted Depth First (S-DF) al-
gorithm, is a fairly used and efficient DF technique.
There is an initial step that must be implemented
when an internal node is visited, so as to select the725

entry of this node that best satisfies the criterion
corresponding to the query being processed and the
result calculated so far. In this step, for all entries
of the current node, mindist(q, M) values are calcu-
lated, inserted in an array and sorted. Then the al-730

gorithm is applied recursively on the node pointed
by the entry corresponding to the lowest mindist
value. When this recursive call returns, recursion is
possibly (depending on the query being processed
and the result calculated so far) applied on the en-735

try with the next mindist value.

• The fourth one, named Heap Depth First (H-DF)
algorithm, is a new technique that utilizes one local
(to the current node) minimum Heap (minHeap)
prioritized by the mindist metric. The minHeap re-740

places the sorted array of S-DF and this is expected
to speed up the selection process of the next best
entry for applying recursion. In fact, the fewer the
entries of the current node that will be eventually
used for recursive calls, the more the algorithm will745

accelerate (since extracting from minHeap part and
not all of its entries corresponds to a partial ap-
plication of HeapSort, in contrast to always com-
pletely sorting the respective array of S-DF).

We also applied one BF algorithm.750

• In the following, this is called BF algorithm and it
is iterative. It keeps a global (to the whole tree)
minimum binary heap, minHeap, holding (part
of) the entries of the nodes visited so far, priori-
tized by their mindist to the query object. Initially,755

minHeap contains the tree root. Iteratively, the en-
try at the root of minHeap is removed from the
heap and the node pointed by this entry is visited;
its entries are potentially added to the heap, accord-
ing to the relation of mindist of each entry to the760

criterion of the query being processed and the re-
sult calculated so far. The algorithm continues by
visiting the node pointed by the entry with the min-
imum mindist in minHeap until the heap becomes
empty or the mindist value of the entry located in765

the root of the heap does not satisfy the criterion
corresponding to the query being processed and
the result calculated so far. When the algorithm
reaches a leaf node, the Refinement step is applied.

All the dual dataset queries above can be processed in770

a top-down manner by synchronous tree traversals, be-

ginning from the roots of the two trees. Again, the basic
ideas of processing the nodes of the trees in DF and BF
mode are utilized.

We applied three versions of DF algorithms for dual775

dataset queries. N-DF cannot be applied, due to its
boolean criterion. We did not apply a version analo-
gous to DF, since, when the entries of two nodes (one
from each tree representing a different dataset) are com-
bined, the number of combinations that should be exam-780

ined is large, unless a technique that reduces the number
these combinations is applied. Thus, we applied ver-
sions analogous to S-DF and H-DF, only.

• The first one, is named Sorted Depth First for 2
datasets (S-DF-2) algorithm. We start at the roots785

of the two trees (current pair of nodes). For each
pair of entries formed by combining the entries of
the current pair of nodes, the minimum distances,
mindist values, between the regions of the elements
of the pair are calculated (these are distances be-790

tween rectangular regions), inserted in an array and
sorted. Then the order of this array is used for
recursive application of the algorithm. If mindist
of the next array entry (a pair of nodes) satisfies
the criterion corresponding to the query being pro-795

cessed and the result calculated so far, then the al-
gorithm is applied recursively on the nodes pointed
by the elements of this pair. In case a recursive call
reaches a pair of nodes where one of its elements
is a leaf, then the pairs of entries are formed by800

the region of this leaf and the entries of the node
pointed by the other element of the pair (which is
an internal node). In case a recursive call reaches a
pair of nodes where both of its elements are leafs,
the Refinement step is applied.805

• The second one, named Heap Depth First for
2 datasets (H-DF-2) algorithm, is a new tech-
nique that utilizes one local (to the current pair of
nodes) minimum Heap (minHeap) prioritized by
the mindist metric that replaces the sorted array of810

S-DF-2. For the reasons described above, this al-
gorithm is expected to speed up the selection pro-
cess of the next best entry for applying recursion.

• The third one, is named Classic Plane Sweep
Depth First for 2 datasets (C-DF-2) algorithm. In815

this algorithm, when a pair of nodes is visited, for
each node of this pair, the starting coordinate of
one of the axes, w.l.o.g. let’s assume this is x-axis,
of the rectangular regions of this node entries are
sorted and Classic Place Sweep [42] is applied be-820

tween the two sorted coordinate sequences. If x-
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distance of the pair of entries under examination
is smaller than the current threshold corresponding
to the query being processed and the result calcu-
lated so far, then the actual mindist is calculated for825

this pair of entries and, if the calculated value satis-
fies the criterion corresponding to the query being
processed and the result calculated so far, the algo-
rithm is applied recursively on the nodes pointed
by the elements of this pair. Unlike S-DF-2 and H-830

DF-2, this algorithm avoids unnecessary calcula-
tions of mindist values. Note that in C-DF-2, when
a recursive call reaches a pair of nodes where one
of its elements is a leaf, plane sweep is not applied
(plane sweep makes sense when two sets of rectan-835

gular regions are combined), but the region of this
leaf is combined with all the entries of the other
node.

We also applied one BF algorithm for dual dataset
queries.840

• This is called Classic Plane Sweep Best First for 2
datasets (C-BF-2) algorithm and also utilizes Clas-
sic Place Sweep [42]. This algorithm is iterative. It
keeps a global (to the whole pair of trees) minimum
binary heap, minHeap, holding (part of) the pairs845

of entries of the pairs of nodes visited so far, pri-
oritized by their mindist. Initially, minHeap con-
tains the two tree roots. Iteratively, the entry at
the root of minHeap is removed from the heap and
the pair of nodes pointed by this entry is visited.850

For the pairs of entries formed from this pair of
nodes plane sweep is applied, like in C-DF-2 and,
each pair of entries that satisfies the criterion corre-
sponding to the query being processed and the re-
sult calculated so far is inserted in minHeap. The855

algorithm continues by visiting the pair of nodes
pointed by the pair of entries with the minimum
mindist in minHeap until the heap becomes empty
or the mindist value of the pair of entries located
in the root of the heap does not satisfy the criterion860

corresponding to the query being processed and the
result calculated so far. In case the algorithm vis-
its a pair of nodes where one of its elements is a
leaf, then the pairs of entries are formed by the re-
gion of leaf and the entries of the node pointed by865

the other element of the pair (which is an internal
node) and plane sweep is not applied, but the re-
gion of this leaf is combined with all the entries of
the other node. In case the algorithm visits a pair
of nodes where both of its elements are leafs, the870

Refinement step is applied.

5.2. Point Location and Window Queries
PLQs and WQs can be processed using N-DF algo-

rithm on both the R-tree and xBR+-tree families. The
query object in the case of PLQs is the query point and875

the testing criterion is whether there is overlapping be-
tween the query point and the the MBR/DBR of the cur-
rent entry of the R-tree/xBR+-tree. The query object in
the case of WQs is the query window (rectangle) and the
testing criterion is whether there is intersection between880

the query window and the the MBR/DBR of the current
entry. Since the criterion can only get one of two possi-
ble values TRUE/FALSE, there is no way or reason the
values of the criterion to be compared between entries.
When the node pointed by the Addr is a leaf then Re-885

finement step is applied. For PLQs, the query point is
searched between the points of the leaf and if it is found
the result is returned in the calling procedure in order
the searching process to be terminated. For WQs, the
set of points of the current leaf within the query win-890

dow are found and this set of points is returned. The
searching process will be terminated when all entries of
the root node have been tested.

Especially for the xBR+-tree, as noted in Subsection
4.1, the entries in an internal node are saved in preorder895

traversal of the Quadtree that corresponds to the internal
node and are examined in reverse sequential order (this
means that first a subregion is examined before any en-
closing region of this subregion, and in this way, mul-
tiple examinations of overlapping regions are avoided).900

So the last entry of the current internal node is examined
first. Moreover, for the xBR+-tree, in WQs a termination
condition can be applied and the searching process can
be terminated before all entries of the current node have
been tested: whenever the query window is contained905

within the REG of the current entry of the node process-
ing stops. This is due to no overlapping between regions
of the nodes.

5.3. Distance Range Queries
DRQs can be performed with all variants of DF and910

BF algorithms that were described above in Subsection
5.1 on both the R-tree and xBR+-tree families. The
query object is a circle centered on the query point with
radius a given value ε. Since in N-DF algorithm the
testing criterion is whether there is intersection between915

the query circle and the MBR/DBR of the current en-
try, in order to simplify processing, the query circle is
replaced by its MBR in the Filter step, while in the Re-
finement step the points inside the actual query circle are
selected. Especially for the xBR+-tree, the same termi-920

nation condition noted in Subsection 5.2 can be applied
in the N-DF algorithm.
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For the other four algorithms (DF, H-DF, S-DF and
BF) the query object is the circle described above and
mindist is the distance between the center of the query925

circle and the MBR/DBR of the current entry. The test-
ing criterion is whether this mindist value is smaller than
or equal to ε. The special termination condition of the
xBR+-tree for the DF algorithm can be applied just like
the N-DF one, while for the other three algorithms (S-930

DF, H-DF and BF) it must be partially changed, since
the examination of the entries is not in the reverse order
in which they are saved in the node. Thus, if the query
circle is contained in the REG and the region of the en-
try is a complete square then the termination condition935

is applied.

5.4. Nearest Neighbor Queries

Based on the branch-and-bound paradigm, the K
Nearest Neighbor Query algorithms use several metrics
to prune the search space [43]. The most important met-940

ric is mindist, the minimum distance between the query
object and the region of the entry under examination.
Another metric, minmaxdist, refers to the minimum dis-
tance from the query object within which a point in the
region of the entry under examination is guaranteed to945

be found. Finally, maxdist is the maximum distance be-
tween the query object and any point in the region of the
entry under examination.

The first Nearest Neighbor Query (NNQ) algorithm
for R-trees, proposed in [43], traverses the tree recur-950

sively in a DF manner. Starting from the root, all entries
are sorted according to their mindist from the query ob-
ject, and the entry with the smallest mindist is visited
first. The process is repeated recursively until the leaf
level is reached, where a potential NN is found. Dur-955

ing backtracking to the upper levels, the algorithm only
visits entries whose mindist is smaller than or equal to
the distance of the NN found so far. This algorithm was
enhanced in [44], proving that any node can be pruned
by using minmaxdist [43] distance function. A BF al-960

gorithm for NNQ was proposed in [45] for Quadtrees
and in [46] for R-trees. BF keeps a minimum binary
heap, minHeap, with the entries of the nodes visited
so far, prioritized according to their mindist. Initially,
minHeap contains the entries of the tree root. When965

the root of minHeap is chosen for processing, it is re-
moved from the heap and the entries of its tree node
are added to the heap. The algorithm continues visit-
ing the entry with the minimum mindist in minHeap,
until the heap becomes empty or the mindist value of970

the node entry located in the root of heap is larger than
the distance value of the nearest neighbor that has been

found so far (i.e. the pruning distance). BF is I/O op-
timal because it only visits the nodes necessary for ob-
taining the NN. The generalization to find the K Near-975

est Neighbor (KNN) is straightforward. An additional
data structure is just needed, a maximum binary heap,
maxKHeap (prioritized by the distance from the query
point), holding the K nearest points encountered so far.

It is obvious that the four algorithms (DF, S-DF, H-980

DF and BF) described in Subsection 5.1 can be adapted
to KNNQs on both the R-tree and xBR+-tree families.
The query object is the circle centered at the query point
and having radius equal to the key of the root of the full
maxKHeap; otherwise (not full maxKHeap) this cir-985

cle covers the whole space. The testing criterion (Fil-
ter step) is whether there is an intersection between the
query circle and the MBR/DBR of the current entry; in
the Refinement step the points inside the actual query
circle are selected.990

Especially for the xBR+-tree, the same termination
condition noted in Subsection 5.3 can be applied in the
algorithms for KNNQs; when the region of the current
entry is square and contains the query circle then the
process is terminated. More details about this algorithm995

appear in [20, 47].
The CKNNQ is a combination of the KNNQ and

DRQ; for this uery, we can adapt the DF, S-DF, H-DF or
BF algorithms for NNQ on both the R-tree and xBR+-
tree families. The query object is the circle with center1000

the query point and radius the given maximum ε value
for the case of not full maxKHeap, otherwise the radius
is the key of the root of the full maxKHeap. The testing
criterion (Filter step) is whether there is intersection be-
tween the query circle and the MBR/DBR of the current1005

entry in the Filter step; in the Refinement step the points
inside the actual query circle are selected. Especially
for the xBR+-tree, the same termination condition can
be applied as in the the NNQ algorithms.

5.5. Distance Join Queries1010

Be reminded that the KCPQ asks for the K closest
pairs of spatial objects in the Cartesian Product of two
datasets. If both datasets are indexed by R-trees, the
concept of synchronous tree traversal and DF or BF
traversal order can be combined for query processing1015

[29, 39, 48, 40]. Details on such DF and BF algorithms
on two R∗-trees, from the non-incremental point of
view, using several optimization techniques (i.e. plane-
sweep, distance functions like minmaxdist and maxdist)
appear in [40]. In the following, we outline the distance1020

join algorithms we applied on all the three trees.
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• For KCPQs, we applied all the four algorithms
S-DF-2, H-DF-2, C-DF-2 and C-BF-2 described
in Subsection 5.1. The testing criterion is based
on the distance threshold which is, either equal1025

to the key of the root of the maxKHeap, in case
of a full maxKHeap, or to an infinite length, in
case of a non-full maxKHeap. The testing cri-
terion is whether the distance of the pair objects
(MB R/DBR) under examination is smaller than the1030

distance threshold. In the Refinement step (when
the algorithm visits a pair of leaves), Classic Plane
Sweep is applied between the points of the two
leaves. If a pair of points consists of points with
a distance smaller than the distance threshold, this1035

pair is inserted in maxKHeap.

• For the εDJQ (ε ≥ 0), the above DF or BF algo-
rithms for KCPQ (for all trees) are adapted in a
straightforward way. There is no maxKHeap, or
limit on the cardinality of the result and the dis-1040

tance threshold always equals ε. Starting from the
root nodes, tree nodes are traversed down to the
leaves, depending on the result of whether mindist
of the pair of entries under examination is less than
or equal to ε. When the algorithm reaches a pair1045

of leaves, Classic Plane Sweep is applied between
the points of the two leaves. All the pairs of points
with a distance smaller than or equal to ε are added
to the answer set.

These algorithms (except for H-DF-2, which is new)1050

have been proposed in the past for the R-tree family.
However, algorithms for the KCPQ and the εDJQ have
not been presented for the xBR+-tree before. In this
work, we adapted the existing R-tree algorithms and ap-
plied the H-DF-2 technique on the specific structure of1055

xBR+-tree.

6. Experimentation

We designed and run a large set of experiments to
compare xBR+-trees with respect to R-tree variants (R∗-
tree and R+-tree).1060

6.1. Experimental Settings

We used 6 real spatial datasets of North America, rep-
resenting cultural landmarks (NAclN with 9203 points)
and populated places (NAppN with 24491 points), roads
(NArdN with 569082 line-segments) and rail-roads1065

(NArrN with 191558 line-segments). To create sets
of 2d points, we have transformed the MBRs of line-
segments from NArdN and NArrN into points by taking

the center of each MBR (i.e. |NArdN| = 569082 points,
|NArrN| = 191558 points). Moreover, in order to get1070

the double amount of points from NArrN and NArdN,
we chose the two points with min and max coordinates
of the MBR of each line-segment (i.e. |NArdND| =

1138164 points, |NArrND| = 383116 points). The data
of these 6 files were normalized in the range [0, 1]2.1075

We have also created synthetic clustered datasets of
125000, 250000, 500000 and 1000000 points, with
125 clusters in each dataset (uniformly distributed in
the range [0, 1]2), where for a set having N points,
N/125 points were gathered around the center of each1080

cluster, according to Gaussian distribution. We have
also used two large real spatial datasets (retrieved from
http://spatialhadoop.cs.umn.edu/datasets.html [49]) to
justify the use of spatial query algorithms on disk-
resident data instead of using them in-memory. They1085

represent water resources of North America (Water)
consisting of 5836360 line-segments and parks or green
areas of all world (Park) consisting of 11504035 poly-
gons. To create sets of points, we have transformed the
MBRs of line-segments from Water into points by tak-1090

ing the center of each MBR and we have considered the
centroid of polygons from Park.

The experiments were run on a Ubuntu Linux v.
14.04 machine with Intel core duo 2x2.8 GHz proces-
sor, 4 GB of RAM and a Seagate Barracuda 3TB SATA1095

3 hard disk, using the GNU C/C++ compiler (gcc).
For page (node) sizes of 1KB, 2KB, 4KB, 8KB and

16KB we run experiments for tree building, counting
tree characteristics and creation time and experiments
for all spatial queries studied here (PLQ, WQ, DRQ,1100

KNNQ, CKNNQ, KCPQ and εDJQ), counting disk read
accesses (I/O) and total execution time (I/O and CPU).

6.2. Experiments for comparing index structures
In these experiments, we built the xBR+-tree, the R∗-

tree and the R+-tree. We constructed each tree, using1105

LRU-buffer1 of 1024 pages. For each dataset, the inser-
tion order of the data was the same for all trees. In Ta-
ble 1, construction characteristics of the three trees, for
a representative set of dataset and node size combina-
tions (for the sake of presentation length), are depicted.1110

Regarding tree heights, studying the complete set of
construction characteristics of the three trees (for all
dataset and node size combinations), we conclude that:

• The xBR+-tree and R∗-tree have similar tree
heights.1115

1The improvement of the creation times of the xBR+-tree in rela-
tion to the respective creation times in [18] is due to the use of the
LRU-buffer.
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Dataset
Num Node Tree height Tree size (MBytes) Creation time (secs)
Elem size xBR+ R∗ R+ xBR+ R∗ R+ xBR+ R∗ R+

(×103) (KB)
NAclN 9.203 1 4 4 4 0.615 0.669 0.652 0.0511 0.3119 0.1252
NAppN 24.491 1 4 4 4 1.600 0.820 1.718 0.2286 1.0239 0.2663
NArrN 191.558 2 4 4 4 11.61 13.47 12.39 2.5324 15.385 2.8480
NArrND 383.180 4 4 3 4 22.78 26.82 24.03 6.5064 86.771 8.0914
NArdN 569.082 8 3 3 3 34.73 40.67 34.97 12.112 461.78 19.558
NArdND 1138.19 16 3 3 3 69.31 82.10 67.95 39.606 3450.7 66.697
125KCN 125.000 2 4 4 4 7.578 7.984 7.242 1.0643 8.6246 1.5947
250KCN 250.000 4 3 3 3 15.09 15.90 14.23 2.9603 46.682 4.5291
500KCN 500.000 8 3 3 3 30.02 31.83 28.06 8.5643 339.39 15.969
1000KCN 1,000.00 16 3 3 3 59.33 63.49 56.19 28.882 2360.6 60.635
Water 5,836.36 2 5 5 11 359.2 438.1 395.4 114.97 584.23 286.98
Water 5,836.36 4 4 4 5 352.9 443.6 382.3 139.92 1638.6 262.23
Park 11,504.0 8 4 4 4 684.0 839.7 731.6 402.91 9460.3 947.12
Park 11,504.0 16 3 3 3 682.7 855.5 719.0 565.42 37174 1240

Table 1: Tree construction characteristics.

• The R+-tree for the large real spatial datasets and
the smaller node sizes (1KB and 2KB) is signifi-
cantly higher.

This is due to the fact that the R+-tree, to avoid over-
lapping, in many cases, splits internal nodes and several1120

of their descends at subsequent levels, creating nodes
with limited occupancy. For a smaller node size, an in-
ternal node is more likely to be split unevenly and the
new node with the smaller occupancy may not increase
significantly its occupancy in the future, if there are not1125

enough new data within its region. This shows the sen-
sitivity of the R+-tree to the order of insertion of the
data.

Regarding tree sizes, the three trees have similar
sizes, since the largest part of each tree consists of1130

leaves and the leaves exhibit similar occupancy in all
trees (average leaf occupancy of the xBR+-tree, the R∗-
tree and the R+-tree is 65.14%, 68.24% and 65.14%,
respectively). In conclusion:

• For real datasets the xBR+-tree needs less space in1135

disk (i.e. it is more compact).

• For synthetic datasets the R+-tree has the smallest
disk size.

Regarding creation times:

• The xBR+-tree is always the fastest.1140

This is due to the regular way that the xBR+-tree di-
vides the space. Moreover, node splitting follows a sin-
gle path, starting from the leaf level and ending, on the

worst case, at the root level. On the contrary, in the R+-
tree splits may be propagated to parent, as well as, to1145

children nodes [25].

• The R∗-tree is always the slowest.

This is due to forced reinsertion and the multiple paths
while searching for the appropriate leaf that will host
the new point [19].1150

6.3. Creation of input for queries on single datasets

We split the whole space into 24, 26, · · · , 216 equal
rectagular windows, in a row-order mapping manner.
These windows were used as query windows for WQs.
The centroids of these windows were used as query1155

points PLQs, K-NNQs and CK-NNQs. The incircles of
these windows were used as query ranges for DRQs (the
centroid of each of these windows was used as the cen-
ter of a query range and the extend of this range, ε, was
equal to the half of the side length of this window). For1160

K-NNQs and CK-NNQs, we used the set of K values {1,
10, 100, 1000}.

6.4. Experiments for non distance-based queries on
single datasets (PLQs and WQs)

As the number of experiments performed was huge,1165

we show only representative results, since they were
analogous for each query category. For PLQs we ex-
ecuted two sets of experiments using the N-DF algo-
rithm. In the first set we used as query points the orig-
inal datasets and in the second one we used as query1170
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points the centroids of the query windows. Indicative
results for the Water dataset are shown in Figures 4.a
(I/O) and 4.b (execution time) and for the 1000KCN
dataset are shown in Figures 4.c (I/O) and 4.d (execu-
tion time).1175

These figures show that the results are different for
the two cases of experiments. For the case of the query
shown in Figures 4.a and 4.b (Water), when searching
for an existing point into the spatial dataset, the num-
ber of disk read accesses needed by the R+-tree and the1180

xBR+-tree is equal to the tree height. On the other hand,
the number of disk read accesses for the R∗-tree is a lit-
tle larger than the height of the tree. The execution time
of R∗-tree is smaller than the one of the R+-tree and a
little larger than the one of the xBR+-tree.1185

Studying the complete set of results of PLQs using
as query points the original datasets, we find out that
the same situation appears. Regarding I/O, we conclude
that:

• For both the xBR+-tree and the R+-tree, the num-1190

ber of disk read accesses is equal to the height of
the tree for every query point, if this point exists in
the dataset, because of the single path that has to
be followed until this point is found.

• For the R∗-tree, the number of disk read accesses1195

is a little larger than the height of the tree because
of the multiple paths that are possibly needed to be
followed until the point is found.

Summarizing the results for the execution time:

• The xBR+-tree was faster than the R+-tree in all1200

cases (60/60) and faster than the R∗-tree in most
cases (56/60).

• The R∗-tree was faster than the R+-tree in all cases,
for all datasets and node sizes.

• Especially, for the node size of 16KB, the xBR+-1205

tree needed fewer disk read accesses for all
datasets, with an average relative difference of
5.75% to the R∗-tree.

• Moreover, it was faster for all datasets (12/12) with
an average relative difference of 70.9% to the R∗-1210

tree.

For the case of the experiment shown in Figures 4.c and
4.d (1000KCN dataset), the number of disk read ac-
cesses needed by the R+-tree when searching for a point
non-existing in the spatial dataset is equal to the tree1215

height. Note that for this dataset, the tree height of the
R+-tree, the R∗-tree and the xBR+-tree equals 6, 5, 6 for

1KB nodes, 4, 4, 5 for 2KB nodes, 4, 4, 4 for 4KB nodes
and 3, 3, 3 for 8KB and 16KB nodes, respectively. In
the case of the xBR+-tree, the number of disk read ac-1220

cesses needed is less than the tree height for most query
points. In the case of R∗-tree, the number of disk read
accesses depends on the size of the empty space in rela-
tion to the occupied space (inside MBRs) and is larger
than the tree height for all node sizes. Studying the re-1225

sults for the execution time, we note that there is a fairly
constant difference in favor of the xBR+-tree against the
other two trees. This query (PLQ) is related to the tree
height and the size of MBRs that enclose the data points.
So it seems easier for the R∗-tree to decide that the query1230

point does not exist in the dataset, than for the xBR+-
tree. But this fact is not enough to make the R∗-tree
faster than the xBR+-tree, since CPU processing of the
tree structure is lighter for the xBR+-tree.

Studying the complete set of results of PLQs using1235

as query points the centroids of the query windows,
we find out that for R∗-trees, the number of disk read
accesses is smaller than the height of the tree for all
real datasets, while for synthetic datasets this number is
larger than the height of the tree. For R+-trees, the num-1240

ber of disk read accesses is always equal to the height
of the tree because there is no overlapping between its
leafs. For xBR+-trees, the number of disk read accesses
is always smaller than the tree height. Summarizing I/O
results, we find out that:1245

• The R∗-tree needed the smallest number of disk
read accesses in most cases (41/60).

• The xBR+-tree needed the smallest number of disk
read accesses in 18/60 cases.

• Only in one case the R+-tree needed the smallest1250

number of disk read accesses.

The results for the execution time showed that:

• The xBR+-tree is faster for all datasets and node
sizes (60/60).

The WQ was executed using the N-DF algorithm, for1255

all datasets (12) and all node sizes (5), searching for
the points residing inside the query windows of vari-
ous sizes (6). The results of the WQ for the NArdND
dataset, using 212 windows that cover the whole data
space, regarding the number of disk read accesses per1260

query (Table 2) and the execution time vs. the node size
(Table 2 and Figure 5.a) are shown as a representative
case. The use of the table is preferred due to the large
difference of values between R+-tree and the other two
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Figure 4: PLQ: disk read accesses (a) and exec. time (b) vs. node size (Water) with query points all dataset points and disk read accesses (c) and
exec. time (d) vs. node size (1000KCN) with query points the centroids of the query windows.
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Figure 5: WQ: exec. time vs. (a) node size (NArdND, 212, query win-
dows) and (b) number of query windows (Park with node size=4K).

Node Disk Read Accesses Execution Time (µs)
Size R+ R∗ xBR+ R+ R∗ xBR+

1 144.4 24.60 21.81 241.6 41.62 19.72
2 69.05 13.82 11.71 182.7 33.40 14.39
4 36.33 9.049 7.039 165.0 34.19 13.62
8 20.75 5.714 4.113 173.0 36.38 14.30
16 14.71 4.267 3.139 239.5 47.98 18.31

Table 2: WQ: disk read accesses and exec. time per query on NArdND
(212 query windows) vs. node size.

trees, especially for the cases of small node sizes (1KB,1265

2KB).
In Table 2, it is shown that the xBR+-tree needed

fewer disk read accesses (Acc) than the other two trees.
As the node size increases, the absolute I/O difference
between the trees becomes smaller, but the relative dif-1270

ference (AccR+ − AccR∗ )/AccR+ has values (0.83, 0.80,
0.75, 0.72, 0.71) that are all in favor of R∗-tree, while
the relative difference (AccR∗ − AccxBR+ )/AccR∗ has val-
ues (0.11, 0.15, 0.22, 0.28, 0.26) that are all in favor of
xBR+-tree. Note the reduction of the difference from1275

the smallest node size (1KB) to the largest size (16KB).
This is due to the reduction of tree height, as the node
size increases. In Table 2 and in Figure 5.a, it is shown
that the xBR+-tree is the fastest and the R∗-tree is faster
than the R+-tree, for all node sizes. All three trees1280

needed less total execution time (I/O and CPU) for the
node size equal to 4KB, even though larger node sizes
needed fewer disk read accesses.

The results of the WQ on the large dataset Park in-

Number Disk Read Accesses Execution Time
Query R+ R∗ xBR+ R+ R∗ xBR+

Wins ×103 ×103 ×103 µs µs µs
24 26.18 11.38 11.085 120,510 44,651 17,375
26 10.71 2.865 2.773 49,653 11,272 4,338
28 4.869 0.726 0.695 22,350 2,861 1,088
210 2.312 0.188 0.175 10,997 739.0 280.6
212 1.122 0.051 0.045 5,170 198.4 75.09
214 0.555 0.015 0.013 2,638 59.18 24.91

Table 3: WQ: disk read accesses and exec. time per query on Park
(node size=4KB) vs. number of Query Windows.

dexed by trees with node size=4KB, for windows with1285

variable size, regarding the number of disk read ac-
cesses (Table 3) and the execution time (Table 3 and
Figure 5.b) vs the number of query windows are shown
as one representative case. The use of a table is pre-
ferred due to the large difference of values between R+-1290

tree and the other two trees. For both metrics (disk read
accesses and execution time), the xBR+-tree has the best
performance and the R+-tree the worst.

Studying the complete set of results (360 experi-
ments) of WQs, we validate the above performance be-1295

havior. Regarding I/O:

• The number of disk read accesses per query win-
dow for the xBR+-tree was the smallest for the
most experiments (323/360).

• For the R∗-tree, it was smallest for the remainder1300

of the experiments (37/360).

Regarding the execution time metric:

• The xBR+-tree had the best performance in all
cases (360/360).

• The average relative difference of execution time1305

performance between the R∗-tree and the xBR+-
tree is between 49.6% and 64.7%, increasing with
the enlargement of the node size.

• In all trees, the execution time is reduced as the
node size is increased. It is minimized for node1310
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Figure 6: DRQ: exec. time vs. (a) node size (NArrND, 212

query ranges) and (b) number of query ranges (500KCN with node
size=4K).

size equal to 4KB, or 8KB. This is due to a tradeoff

between I/O cost and CPU processing.

This behavior holds for the experiments of all datasets
and all query windows.

6.5. Experiments for distance-based queries on single1315

datasets (DRQs)
The DRQ was executed for all datasets (12) and all

node sizes (5), searching for the points inside the incir-
cles of the query windows, for various radius sizes (6
ε-values). Five Algorithms, N-DF, DF, S-DF, H-DF and1320

BF, were tested for all (360) experiments. The number
of disk read accesses is the same for the algorithms DF,
S-DF, H-DF and BF because they all use the mindist
metric and the query object is fixed. The R+-tree re-
sponded best with the algorithms using the mindist in all1325

cases (360/360) in disk read accesses and faster with the
DF algorithm (216/360 in execution time). The R∗-tree
responded best with the algorithms using the mindist in
all cases (360/360) and faster with the BF algorithm in
most cases (350/360 in execution time). The xBR+-tree1330

responded best with the algorithms using the mindist in
most cases (327/360) and faster with the DF algorithm
(191/360 in execution time). So the performance com-
parison for the DRQ was performed among the R+-tree
with the DF, the R∗-tree with the BF and the xBR+-tree1335

with the DF algorithm. The results of the DRQ exe-
cuted on the NArrND dataset for the 212 ranges (with
ε ≤ 1

2 ×
1
√

212
) scanning the data space are shown as a

representative case. The number of disk read accesses
per query (Table 4) and the execution time (Table 4 and1340

Figure 6.a) vs node size, are depicted. The use of a ta-
ble is preferred because of the large difference of values
between R+-tree and the other two trees, especially for
the cases of small node sizes (1KB, 2KB, 4KB).

In this table, it is shown that the xBR+-tree needed1345

fewer disk read accesses (Acc) than the other two trees.
As the node size increases, the I/O difference between
the trees remains almost stable. The relative difference

Node Disk Read Accesses Execution Time (µs)
Size R+ R∗ xBR+ R+ R∗ xBR+

(DF) (BF) (DF) (DF) (BF) (DF)
1 46.95 8.606 8.238 78.70 15.92 9.288
2 24.47 5.441 4.769 65.47 14.72 7.585
4 11.72 3.519 3.845 53.90 15.74 8.587
8 10.07 2.825 2.410 86.92 20.17 9.034
16 5.554 2.500 2.185 93.70 31.52 12.43

Table 4: DRQ: disk read accesses per query on NArrND (212 query
ranges) vs. node size.

Number Disk Read Accesses Execution Time (µs)
Query R+ R∗ xBR+ R+ R∗ xBR+

Points (DF) (BF) (DF) (DF) (BF) (DF)
24 725.5 376.5 413.0 3,463 1,822 724.3
26 303.9 106.9 108.5 1,427 516.1 191.6
28 136.6 35.43 31.30 629.3 170.0 57.80
210 65.48 14.38 10.48 295.3 66.15 21.62
212 33.69 7.721 5.090 152.1 34.14 12.00
214 18.56 5.343 4.187 87.52 22.67 9.738

Table 5: DRQ: disk read accesses and exec. time per query on
500KC1N (node size=4KB) vs. number of Query Ranges.

(AccR+−AccR∗ )/AccR+ has values (0.82, 0.78, 0.70, 0.72,
0.55) that are all in favor of the R∗-tree, while the rela-1350

tive difference (AccR∗−AccxBR+ )/AccR∗ has values (0.04,
0.12, -0.09, 0.15, 0.13) that are all (except the nega-
tive one) in favor of the xBR+-tree. Note the reduction
of the difference from the smallest node size (1KB) to
the largest one (16KB). This is due to the reduction of1355

the tree height as the node size increases. In Table 4
and in Figure 6.a, it is shown that the xBR+-tree is the
fastest and the R∗-tree is faster than the R+-tree, for all
node sizes. The R+-tree needed less total execution time
(I/O and CPU) with node size equal to 4KB, while the1360

other two trees needed less execution time with node
size equal to 2KB, even though larger node sizes needed
fewer disk read accesses.

The results of the DRQ on the synthetic dataset
500KCN indexed by trees with node size=4KB, for1365

various ε sizes, regarding the number of disk read ac-
cesses (Table 5) and the execution time (Table 5 and
Figure 6.a) vs. the number of query ranges are shown.
The xBR+-tree has the best performance regarding disk
read accesses in most of the cases (except the one for1370

node size=4KB) and the R+-tree has the worst, while
the xBR+-tree has always the best execution time per-
formance and the R+-tree the worst.

Studying the complete set of results (360 experi-
ments) of DRQs, we validate the above performance be-1375

havior. Regarding I/O:

• The xBR+-tree had the best performance in most
experiments (292/360).

• The R∗-tree had the best performance in the re-
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Node Disk Read Accesses Execution Time (µs)
Size R+ R∗ xBR+ R+ R∗ xBR+

(BF) (BF) (H-DF) (BF) (BF) (H-DF)
1 268.1 16.93 26.28 514.1 40.00 43.88
2 125.7 12.23 15.11 400.1 45.58 39.12
4 89.92 9.022 9.636 625.9 55.10 37.41
8 43.91 5.979 7.655 444.0 68.53 51.27

16 26.92 5.227 5.860 533.9 99.92 60.99

Table 6: K(=100) NNQ: disk read accesses per query on NArdN (212

query points) vs. node size.

mainder of the experiments (68/360).1380

Regarding the execution time metric:

• The xBR+-tree had the best performance in all
cases (360/360).

• The average relative difference of execution time
performance between the R∗-tree and the xBR+-1385

tree is between 49.3% and 68.4%, increasing with
the enlargement of node size.

6.6. Experiments for neighboring queries on single
datasets (K-NNQs and CK-NNQs)

The KNNQ was executed for all datasets (12) and all1390

node sizes (5), searching for the points near the cen-
troids of the (212) query windows, for various values
of K (4). Four Algorithms, DF, S-DF, H-DF and BF,
were tested for all (240) experiments. The R+-tree re-
sponded best with the BF algorithm (222/240 in disk1395

read accesses and 201/240 in execution time). The R∗-
tree responded best with the BF algorithm (224/240 in
disk read accesses and 239/240 in execution time). The
xBR+-tree responded best with the BF algorithm in disk
read accesses in most cases (166/240) and was faster1400

with H-DF algorithm in 161/240 cases. We consid-
ered as most important criterion the execution time and
selected the BF algorithm for both R-trees and the H-
DF algorithm for the xBR+-tree to continue the perfor-
mance comparison for KNNQs. In Figures 7.a and 7.b,1405

we can see the results of the KNNQ with K=100 ex-
ecuted on the NArdN dataset for the 212 query points,
distributed evenly in data space, as one representative
case. The number of disk read accesses per query point
and the execution time vs. the node size are shown. Be-1410

cause of the large difference of values between R+-tree
and the other two trees, it is not easy to distinguish the
differences between xBR+-tree and R∗-tree. Therefore,
Table 6 has been included.

In this table and in Figure 7.a, it is shown that the1415

R∗-tree needed fewer disk read accesses (Acc) than the
other two trees. As the node size increases, the I/O dif-
ference between the trees decreases. The relative dif-
ference (AccR+ − AccR∗ )/AccR+ has values (0.94, 0.90,

0.90, 0.86, 0.81) that are all in favor of the R∗-tree and1420

the relative difference (AccR∗ − AccxBR+ )/AccR∗ has val-
ues (-0.55, -0.24, -0.07, -0.28, -0.12) that are also all in
favor of the R∗-tree. As the node size is increased expo-
nentially, the number disk read accesses is reduced but
not with the same ratio. For the R+-tree the ratio of the1425

numbers of disk read accesses between two consecutive
node sizes varies (from 0.47 up to 0.72). For the R∗-tree
the ratio of the numbers of disk read accesses between
two consecutive node sizes presents smaller variation
(from 0.66 up to 0.87) while for the xBR+-tree this ratio1430

presents an intermediate level of variation (from 0.58 up
to 0.79). In Table 6 and in Figure 7.b, it is shown that
the xBR+-tree is faster than R∗-tree for node sizes larger
than 1KB, and the R∗-tree is faster than the R+-tree, for
all node sizes. All three trees have different behavior in1435

total execution time (I/O and CPU). For the R+-tree, the
total execution time varies without any monotony. For
the R∗-tree the execution time has monotonous enlarge-
ment with node size. Contrary to the previous behav-
iors, the xBR+-tree needed less total execution time for1440

a node size equal to 4KB, even though larger node sizes
needed fewer disk read accesses.

In Figures 7.c and 7.d, we can see the results of the
KNNQ on the synthetic dataset 250KCN indexed by
trees with node size=4KB, for 212 query points, regard-1445

ing the number of disk read accesses and the execution
time vs. the value of K. The xBR+-tree has the best per-
formance regarding disk read accesses looking for the 1
or 10 NNs, while R∗-tree has best performance for the
102 or 103 NNs. The R+-tree needed the most disk read1450

accesses for all values of K. The xBR+-tree has always
the best execution time performance and the R+-tree has
the worst.

Studying the complete set of results (240 experiments
for each tree) of the KNNQ we validate the above per-1455

formance behavior:

• The number of disk read accesses per query point
was the smallest for the R∗-tree in most experi-
ments (173/240).

• It was the smallest for the xBR+-tree in the rest of1460

the experiments (67/240).

• Regarding the execution time metric, the xBR+-
tree had the best performance in most cases
(209/240).

• The xBR+-tree has the minimum number of best1465

performance cases in execution time with the
smallest node size (26/48) and has the maximum
number of best performance cases with the biggest
node size (48/48).
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Figure 7: K(=100) NNQ: disk read accesses (a) and exec. time (b) vs. node size (NArdN, 212 query points) and disk read accesses (c) and exec.
time (d) vs. K values of NN (250KCN with node size=4K, 212 query points).

Node Disk Read Accesses Execution Time (µs)
Size R+ R∗ xBR+ R+ R∗ xBR+

(BF) (BF) (BF) (BF) (BF) (BF)
1 20.04 4.094 4.273 36.06 10.21 6.703
2 11.83 2.977 3.128 33.58 10.65 6.389
4 8.067 2.215 2.214 40.53 12.47 7.556
8 5.113 2.169 2.135 45.50 17.72 8.641
16 4.648 2.131 2.147 77.13 50.07 13.31

Table 7: CKNNQ: disk read accesses per query on NArrN (212 query
points) vs. node size.

• The average relative difference of execution time1470

performance between the R∗-tree and the xBR+-
tree in the node size of 16KB is 49.2%.

The CKNNQ was executed for all datasets (12) and
all node sizes (5), searching for the points inside the in-
circles of the (212) query windows (with ε ≤ 1

2 ×
1
√

212
),1475

for various values of K (4). Four Algorithms, DF, S-DF,
H-DF and BF, were tested for all (240) experiments. All
the three structures responded best with the BF algo-
rithm. In detail, the R+-tree responded best in 197/240
experiments in disk read accesses and in 191/240 in exe-1480

cution time. The R∗-tree responded best 202/240 in disk
read accesses and in 132/240 in execution time. Finally,
xBR+-tree responded best 144/240 in disk read accesses
and in 190/240 in execution time. In Figures 8.a and
8.b, we can see the results of the CKNNQ executed on1485

the NArrN dataset for the 212 query points, distributed
evenly in data space, as one representative case. The
number of disk read accesses per query point and the
execution time vs. the node size are shown. Because of
the large difference of values between R+-tree and the1490

other two trees, it is not easy to distinguish the differ-
ences between xBR+-tree and R∗-tree. Therefore, Table
7 is depicted.

In this table and in Figure 8.a, it is shown that the R∗-
tree and xBR+-tree needed an almost equal number of1495

disk read accesses (Acc). As the node size increases, the
I/O difference between the trees decreases. The relative
difference (AccR+ −AccR∗ )/AccR+ has values (0.80, 0.75,
0.73, 0.58, 0.54) that are all in favor of the R∗-tree and

the relative difference (AccR∗ − AccxBR+ )/AccR∗ has val-1500

ues (-0.04, -0.05, 0.00, 0.02, -0.01), the 3 negative ones
being in favor of the R∗-tree. For the R+-tree the ratio of
the numbers of disk read accesses between two consec-
utive node sizes varies widely (from 0.59 up to 0.91).
For the R∗-tree this ratio presents a smaller variation1505

(from 0.73 up to 0.98) and for the xBR+-tree it presents
a similar variation (from 0.73 up to 1.01). In Table 7
and in Figure 8.b, it is shown that the xBR+-tree is the
fastest and the R∗-tree is faster than the R+-tree, for all
node sizes. All three trees have similar behavior in to-1510

tal execution time (I/O and CPU). The total execution
time has monotonous increment with node size. In Fig-
ures 8.c and 8.d, we can see the results of the CKNNQ
on the large real dataset Water indexed by the three trees
with node size=4KB, for 212 query points, regarding the1515

number of disk read accesses and execution time vs. the
value of K. Because of the large number of nodes in this
dataset the number of disk read accesses is quite stable
for all trees. It is most stable for the R+-tree while for
the other two trees varies between 1.4 and 1.8 for R∗-1520

tree and 1.8 and 2.2 for the xBR+-tree. The R∗-tree has
the best performance regarding disk read accesses and
the R+-tree the worst, while the xBR+-tree has always
the best execution time performance and the R+-tree has
the worst.1525

Studying the complete set of results (240 experiments
for each tree) of the CKNNQ, we validate the above per-
formance behavior.

• The number of disk accesses per query point for
the xBR+-tree was the smallest in most experi-1530

ments (138/240) and for the R∗-tree it was the
smallest in the rest of the experiments (102/240).

• Regarding the execution time metric, the xBR+-
tree has the best performance in all the experiments
(240/240).1535

• The average relative difference of execution time
performance between the R∗-tree and the xBR+-
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Figure 8: CKNNQ: disk read accesses (a) and exec. time (b) vs. node size (NArrN, 212 query points) and read disk read accesses (c) and exec. time
(d) vs. K values of NN (Water with node size=4K, 212 query points).

tree is between 39.6% and 60.5%, increasing with
the enlargement of the node size.

6.7. Creation of input for queries on dual datasets1540

In order to evaluate the performance of the trees in
spatial queries where two indexes are involved (dis-
tance join queries), we have used ten combinations be-
tween real and synthetic spatial datasets. Four com-
binations between real datasets of North America (i.e.1545

NAppN×NArrN, NAppN×NArdN, NArrN×NArdN
and NArrND×NArdND), four combinations between
two separate instances of synthetic clustered datasets
(i.e. 250KC1N × 250KC2N, 500KC1N × 500KC2N,
500KC1N × 500KC2N, and 1000KC1N × 1000KC2N)1550

and two combinations between the largest real datasets
(i.e. NArdND×Water and Water×Park) for query
processing of the KCPQ and εDJQ. For KCPQs, the
number K of closest pairs gets values from the set
{1, 10, 102, 103, 104} and for εDJQs, the maximum dis-1555

tance (ε) gets values from the set {0, 1.25 × 10−5, 2.5 ×
10−5, 5 × 10−5, 10 × 10−5}.

6.8. Experiments for join (dual dataset) queries
(KCPQs and εDJQs)

In the experiments performed, the effect of LRU-1560

buffer has also been studied, because a node of the one
tree can be paired with several nodes of the other tree, in
successive or not time points. Moreover, both trees cor-
responding to a combination of datasets were of equal
node size.1565

6.8.1. Selection of buffer size and algorithms for the
KCPQ

All combinations of datasets (10) and all node sizes
(5), for various values of K (5) and with several val-
ues of LRU-buffer size (5) were used. In this series of1570

experiments the target was to find out for which buffer
size and with which algorithm among S-DF-2, H-DF-2,
C-DF-2 and C-BF-2 each tree responded better. It is ob-
vious that as the size of the LRU-buffer increases, the

number of disk read accesses decreases and the related1575

results will be omitted. So for the above target, only the
execution time per query will be studied.

In Figure 9.a, we can see the results of the KCPQ
on the combination of synthetic datasets 1000KC1N ×
1000KC2N, both indexed by R+-trees with node1580

size of 2KB, searching for the K=1000 closest pairs
with all four algorithms, using LRU-buffer sizes of
0, 26, 28, 210, 212 pages, as one representative case. It
is shown that with the C-DF-2 and C-BF-2 algorithms
the R+-tree is approximately 3 times faster than with1585

the other algorithms for all buffer sizes. The lowest
execution time value is with a buffer size of 210 pages
(nodes) for all algorithms and the minimum execution
time value, 72,450 ms (72 sec), with the C-DF-2 algo-
rithm.1590

Considering the complete set of 45/50 experiments
for the 5 buffer sizes (the biggest of the 10 dataset com-
binations, Water×Park, was not tested for all node sizes
because of the big execution time values it required), we
collected the minimum execution time values for each1595

combination and these results are shown in Table 8. It is
shown that there is not a single best buffer size, neither
a single best node size. We conclude that for combina-
tions between small real datasets it is better to have no
buffering, while for combinations of small synthetic and1600

larger real datasets it is better to have buffering larger
than 28 pages (nodes). The best algorithm for R+-trees
executing the KCPQ is the C-BF-2 (in 9/10 cases).

In Figure 9.b, we can see the results of the KCPQ on
the combination of real datasets NArdND×Water, both1605

indexed by R∗-trees with node size=2KB, searching for
the K=1000 closest pairs with all four algorithms, using
LRU-buffer sizes of 0, 26, 28, 210, 212, as one representa-
tive case. It is shown that with the C-BF-2 algorithm the
R∗-tree is from 1.6 up to 2 times faster than the best of1610

the other tree algorithms for all buffer sizes. The small-
est execution time value was achieved with buffer size
of 0 pages (nodes) for all algorithms and the minimum
execution time value, 42.418 ms, was achieved with the
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Figure 9: KCPQ with (a) R+-tree on 1000KC1N× 1000KC2N; (b) R∗-tree on NArdND×Water; (c) xBR+-tree on NArdND×Water: exec. time
vs. buffer size per Algorithm with K=103 and node size=2KB.

Exec Node Buffer
Combination time size size Algo-
of datasets (s) (KB) (pages) rithm
NAppN×NArrN 0.1725 1 28 C-BF-2
NAppN×NArdN 0.4091 1 0 C-DF-2
NArrN×NArdN 1.0496 8 0 C-BF-2
NArrND×NArdND 1.8803 8 0 C-BF-2
250KC1N× 250KC2N 1.7793 8 210 C-BF-2
500KC1N× 500KC2N 5.6271 16 28 C-BF-2
500KC2N× 1000KC1N 12.112 16 212 C-BF-2
1000KC1N× 1000KC2N 28.515 16 212 C-BF-2
NArdND×Water 342.64 16 212 C-BF-2

Table 8: K(= 103) CPQ with R+-tree: Min Exec Time per query for
all combinations of datasets.

Exec Node Buffer
Combination time size size Algo-
of datasets (ms) (KB) (pages) rithm
NAppN×NArrN 56.640 2 0 C-BF-2
NAppN×NArdN 136.46 4 0 C-BF-2
NArrN×NArdN 157.64 1 28 C-BF-2
NArrND×NArdND 310.96 1 28 C-BF-2
250KC1N× 250KC2N 206.93 4 26 C-BF-2
500KC1N× 500KC2N 405.03 4 26 C-BF-2
500KC2N× 1000KC1N 599.60 8 26 C-BF-2
1000KC1N× 1000KC2N 845.10 16 0 C-BF-2
NArdND×Water 30.255 1 0 C-BF-2
Water×Park 1,031.9 4 0 C-BF-2

Table 9: K(= 103) CPQ with R∗-tree: Min Exec Time per query for
all combinations of datasets.

C-BF-2 algorithm.1615

Considering the complete set of all (50) experiments
for the 10 dataset combinations and 5 buffer sizes, we
collected the minimum execution time values for each
combination. These results are shown in Table 9. It is
shown that R∗-tree responded best in half of the cases1620

(5/10), including the combination between large real
datasets, without buffering, while in the 4 combinations
with synthetic datasets it responded best with 26 pages
in LRU-buffer (in 3/4 cases). The best algorithm for R∗-
trees executing the KCPQ is the C-BF-2.1625

Finally, in Figure 9.c, we can see the results
of the KCPQ on the combination of real datasets
NArdND×Water, both indexed by xBR+-trees with
node size=2KB, searching for the K=1000 closest pairs,

Exec Node Buffer
Combination time size size Algo-
of datasets (ms) (KB) (pages) rithm
NAppN×NArrN 17.302 16 0 C-DF-2
NAppN×NArdN 34.306 4 0 H-DF-2
NArrN×NArdN 57.432 8 0 C-BF-2
NArrND×NArdND 114.51 16 0 C-BF-2
250KC1N× 250KC2N 42.111 4 0 C-BF-2
500KC1N× 500KC2N 71.459 8 0 C-BF-2
500KC2N× 1000KC1N 99.164 8 0 C-BF-2
1000KC1N× 1000KC2N 124.28 8 0 C-BF-2
NArdND×Water 30.706 2 0 C-BF-2
Water×Park 473.56 4 0 C-BF-2

Table 10: K(= 103) CPQ with xBR+-tree: Min Exec Time per query
for all combinations of datasets.

with all four algorithms, using LRU-buffer sizes of1630

0, 26, 28, 210, 212, as one representative case. It is shown
that with the C-BF-2 algorithm the xBR+-tree is from
3.0 up to 3.3 times faster than the best of the S-DF-2
and C-DF-2 algorithms and from 1.1 up to 1.2 faster
than the H-DF-2 algorithm for all buffer sizes. The low-1635

est execution time value was achieved with buffer size
of 0 pages (nodes) for all algorithms and the minimum
execution time value, 30.706 ms, was achieved with the
C-BF-2 algorithm.

Considering the complete set of all (50) experiments1640

for the 10 dataset combinations and 5 buffer sizes, we
collected the minimum execution time values for each
combination and these results are shown in Table 10.
It is shown that xBR+-tree responded best in all the
cases (10/10) without buffering. The best algorithm for1645

xBR+-trees executing the KCPQ was the C-BF-2 (in
8/10 cases).

In conclusion, we note that:

• There is no meaning for a comparison between the
R+-tree and the other two trees because of the very1650

large difference in execution times observed (the
R+-tree was mainly designed for PLQs and WQs).

• Based on the above results, we continue the perfor-
mance comparison between the R∗-tree and xBR+-
tree, using the C-BF-2 algorithm for both trees1655
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without LRU-buffer (0 pages) for all node sizes, for
various values of K (1, 10, 102, 103 and 104) and
for both performance metrics (i.e. the number of
disk read accesses and the execution time).

6.8.2. Performance study of the KCPQ1660

In Figures 10.a and 10.b, we can see the results of
the KCPQ with K = 103, executed on the combination
of large real datasets Water×Park, as one representative
case. The number of disk read accesses per query point
and the execution time vs. the node size are shown. The1665

xBR+-tree needed fewer disk read accesses (Acc) than
the R∗-trees having node sizes between 2KB and 8KB.
As the node size increases, the ratio of the I/O difference
between the two trees varies. The relative difference
(AccR∗ − AccxBR+ )/AccR∗ has values (-1.59, 0.22, 0.20,1670

0.12, -0.23), the 3 positive one being in favor of the
xBR+-tree. For the R∗-tree, the ratio of the numbers of
disk read accesses between two consecutive node sizes
presents a small variation (from 0.5 up to 0.6) and is al-
ways decreased. For the xBR+-tree, this ratio presents1675

a similar variation from 0.6 up to 0.8 (except the first
case from 1 to 2 KB where it is 0.2). In Figure 10.b,
it is shown that the xBR+-tree is faster than R∗-tree for
all node sizes bigger than 1KB. For both trees the ex-
ecution time has a minimum value with a node size of1680

4KB, even though larger node sizes needed fewer disk
read accesses. In Figures 10.c and 10.d, we can see the
results of the KCPQ on the same combination of large
real datasets indexed by trees with node size of 4KB,
regarding the number of disk read accesses and the ex-1685

ecution time vs. the value of K. The number of disk
read accesses needed by both trees remains stable al-
though the number of K is increased exponentially. The
xBR+-tree has the best performance regarding disk read
accesses in all the cases.1690

Studying the complete set of results (250 experiments
for each tree) for the KCPQ, we validate the above per-
formance behavior.

• The number of disk accesses per query for the
xBR+-tree was the smallest for most experiments1695

(224/250).

• The xBR+-tree was faster than the R∗-tree in all
experiments with node sizes of 2KB and 16KB, in
46/50 cases with node size of 4KB, while, in total,
it was faster in 231/250 cases.1700

• The average relative difference of execution time
performance between the R∗-tree and the xBR+-
tree is between 62.7% and 71.9%.

Exec Node Buffer
Combination time size size Algo-
of datasets (ms) (KB) (pages) rithm
NAppN×NArrN 0.146 1 210 H-DF-2
NAppN×NArdN 0.347 1 0 H-DF-2
NArrN×NArdN 0.873 1 210 H-DF-2
NArrND×NArdND 2.085 1 210 H-DF-2
250KC1N× 250KC2N 5.994 1 28 H-DF-2
500KC1N× 500KC2N 25.16 1 28 H-DF-2
500KC2N× 1000KC1N 29.98 1 210 H-DF-2
1000KC1N× 1000KC2N 55.97 1 28 H-DF-2
NArdND×Water 2,202 4 210 C-BF-2

Table 11: εDJQ (ε = 1.25 × 10−5) with R+-tree: Min Exec Time per
query for all combinations of datasets.

6.8.3. Selection of buffer size and algorithms for the
εDJQ1705

For the εDJQ the same scenario of experiments to
the one of KCPQ was performed to find out for which
buffer size and with which algorithm among S-DF-2, H-
DF-2, C-DF-2 and C-BF-2 each tree responded better,
regarding the execution time metric.1710

In Figure 11.a, we can see the results of the εDJQ
on the combination of synthetic datasets 1000KC1N ×
1000KC2N, both indexed by R+-trees, with node size
of 4KB, searching for the pairs with distance ≤ 1.25 ×
10−5 with all four algorithms, using LRU-buffer sizes of1715

0, 26, 28, 210, 212 pages, as one representative case. We
chose to present the same dataset combinations to the
previous query (KCPQ) because of the similarity which
exists between the two types of queries. It is shown that
with the C-DF-2 algorithm the R+-tree is slightly faster1720

than with the other algorithms for all buffer sizes. The
lowest execution time value is achieved with buffer size
of 210 pages (nodes) for all algorithms and the minimum
execution time value, 152,541 ms (152 sec), is achieved
with the C-DF-2 algorithm.1725

Considering the complete set of 45/50 experiments
for the 5 buffer sizes (the biggest combination Wa-
ter×Park was not tested for all node sizes because of
the big execution time values) we collected the mini-
mum execution time values for each combination and1730

these results are shown in Table 11. It is shown that
there is not a single best buffer size, while 9/10 best
execution times were achieved with node size equal to
1KB. We conclude that for combinations between small
real datasets it is better to have 210 pages in LRU-buffer,1735

while for combinations of small synthetic and large real
datasets it is better to have 28 buffer pages (nodes). The
best algorithm for R+-trees executing the εDJQ is the
H-DF-2 (in 9/10 cases).

In Figure 11.b, we can see the results of the εDJQ on1740

the combination of real datasets NArdND×Water, both
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Figure 10: KCPQ on large real datasets Water×Park: disk read accesses (a) and exec. time (b) vs. node size (K=103) and disk read accesses (c)
and exec. time (d) vs. K values of CP (node size=4K).
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Figure 11: εDJQ with (a) R+-tree on 1000KC1N× 1000KC2N; (b) R∗-tree on NArdND×Water; (c) xBR+-tree on NArdND×Water: exec. time
vs. buffer size per Algorithm with ε = 1.25 × 10−5 and node size=4KB.

indexed by R∗-trees with node size of 4KB, searching
for the pairs with distance ≤ 1.25 × 10−5 with the four
algorithms, using LRU-buffer sizes of 0, 26, 28, 210, 212

pages, as one representative case. It is shown that with1745

the C-BF-2 algorithm the R∗-tree is from 1.1 up to 1.4
times faster than the best of the other tree algorithms
for all buffer sizes. The lowest execution time value is
achieved with buffer size of 0 pages (nodes) for all algo-
rithms and the minimum execution time value, 37.8371750

ms, is achieved with the C-BF-2 algorithm.
Considering the complete set of all (50) experiments

for the 10 dataset combinations and 5 buffer sizes, we
collected the minimum execution time values for each
combination and these results are shown in Table 12. It1755

is shown that R∗-tree responded best in half cases (5/10),
including the combinations between large real datasets,
without buffering, while in the 4 combinations between
synthetic datasets it responded best with 26 pages in
LRU-buffer (in 3/4 cases). The best algorithm for R∗-1760

trees executing the εDJQ is the C-BF-2.
Finally, in Figure 11.c, we can see the results

of the εDJQ on the combination of real datasets
NArdND×Water, both indexed by xBR+-trees with
node size of 4KB, searching for the pairs with distance1765

≤ 1.25 × 10−5 with all four algorithms, using LRU-
buffer sizes of 0, 26, 28, 210, 212 pages, as one represen-
tative case. It is shown that with the C-BF-2 algorithm
the xBR+-tree is from 2.8 up to 3.5 times faster than
the best among the S-DF-2 and C-DF-2 algorithms and1770

Exec Node Buffer
Combination time size size Algo-
of datasets (ms) (KB) (pages) rithm
NAppN×NArrN 50.619 4 0 C-BF-2
NAppN×NArdN 129.48 4 0 C-BF-2
NArrN×NArdN 157.00 1 28 C-BF-2
NArrND×NArdND 319.55 1 28 C-BF-2
250KC1N× 250KC2N 176.06 8 26 C-BF-2
500KC1N× 500KC2N 356.79 16 26 C-BF-2
500KC2N× 1000KC1N 532.82 16 0 C-BF-2
1000KC1N× 1000KC2N 782.53 16 26 C-BF-2
NArdND×Water 25.698 1 0 C-BF-2
Water×Park 1,212.5 4 0 C-BF-2

Table 12: εDJQ (ε = 1.25 × 10−5) with R∗-tree: Min Exec Time per
query for all combinations of datasets.

from 1.03 up to 1.13 faster than the H-DF-2 algorithm
for all buffer sizes. The lowest execution time value
was achieved with buffer size of 26 pages (nodes) for
all algorithms and the minimum execution time value,
33.437 ms, was achieved with the C-BF-2 algorithm.1775

Considering the complete set of all (50) experi-
ments, we collected the minimum execution time val-
ues for each combination of datasets and these results
are shown in Table 13. It is shown that xBR+-tree re-
sponded best without buffering in all combinations of1780

datasets. The best algorithm for xBR+-trees executing
the εDJQ is the H-DF-2 (8/10 cases).

In conclusion, we note that:

• There is no meaning for a comparison between the
R+-tree and the other two trees for εDJQ, because1785
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Combination of Exec Node Buffer Algo-
datasets Time(s) size size bfrithm
NAppN×NArrN 11.094 16 0 H-DF-2
NAppN×NArdN 27.156 4 0 H-DF-2
NArrN×NArdN 46.244 4 0 H-DF-2
NArrND×NArdND 119.86 2 0 H-DF-2
250KC1N× 250KC2N 21.346 16 0 C-BF-2
500KC1N× 500KC2N 47.708 8 0 H-DF-2
500KC2N× 1000KC1N 73.090 8 0 H-DF-2
1000KC1N× 1000KC2N 102.57 8 0 H-DF-2
NArdND×Water 23.360 2 0 C-BF-2
Water×Park 682.02 4 0 H-DF-2

Table 13: εDJQ (ε = 1.25 × 10−5) with xBR+-tree: Min Exec Time
per query for all combinations of datasets.

of the very big difference in execution times ob-
served (the R+-tree was mainly designed for PLQs
and WQs).

• We continue the performance comparison between
the R∗-tree and xBR+-tree, using the C-BF-2 al-1790

gorithm for the first one and the H-DF-2 algo-
rithm for the second one, without LRU-buffer (0
pages) for all node sizes, for various values of
ε(0, 1.25 × 10−5, 2.5 × 10−5, 5 × 10−5, 10 × 10−5)
and for both performance metrics (i.e. the number1795

of disk read accesses and the execution time).

6.8.4. Performance study of the εDJQ
In Figures 12.a and 12.b, we can see the results of the

εDJQ with ε = 1.25 × 10−5 executed on the combina-
tion of large real datasets Water×Park, as one represen-1800

tative case. The number of disk read accesses per query
and the execution time vs. the node size are shown.
The xBR+-tree needed fewer disk read accesses (Acc)
than the R∗-tree for all node sizes. As the node size in-
creases, the ratio of the I/O difference between the two1805

trees varies. The relation between I/O performance and
the node size is quite stable (almost linear). The rela-
tive difference (AccR∗−AccxBR+ )/AccR∗ has values (0.76,
0.71, 0.66, 0.61, 0.49), all in favor of the xBR+-tree.
For the R∗-tree, the ratio of the numbers of disk read1810

accesses between two consecutive node sizes presents
a small variation (from 0.42 up to 0.49 and always is
decreased) and for the xBR+-tree this ratio presents a
similar level of variation, from 0.51 up to 0.60. In Fig-
ure 12.b, it is shown that the xBR+-tree is faster than1815

the R∗-tree for all node sizes. For both trees the exe-
cution time has minimum value with node size of 4KB,
even though larger node sizes needed fewer disk read
accesses. In Figures 12.c and 12.d, we can see the re-
sults of the εDJQ on the same combination of large real1820

datasets indexed by trees with node size of 4KB, re-
garding the number of disk read accesses and the ex-
ecution time vs. the value of ε. The number of disk

read accesses needed by xBR+-tree remains very stable
although the value of ε is increased exponentially. The1825

xBR+-tree has the best performance regarding disk read
accesses in the most cases (3/5), while in the execution
time it was the best in all cases.

Studying the complete set of results (250 experiments
for each tree) for the εDJQ, we validate the above per-1830

formance behavior.

• The number of disk accesses per query for the
xBR+-tree was the smallest for most experiments
(216/250).

• The xBR+-tree was faster than the R∗-tree in all ex-1835

periments with node sizes 2KB and 4KB, in 49/50
cases with node size of 16KB, while in total it was
faster in 235/250 case.

• The average relative difference of execution time
performance between the R∗-tree and the xBR+-1840

tree is between 66.2% and 68.2%.

6.9. Summary and conclusions of experimental results

The experimental results of tree building are summa-
rized in the following.

• The xBR+-tree needs a little less space (in most1845

cases) and is built in a smaller time than the two
R-trees.

• The xBR+-tree building is faster than the R∗-tree
and the R∗-tree is faster than R+-tree for all datasets
and node sizes.1850

• This difference is increasing as the node size in-
creases and becomes bigger for the large real
datasets.

The fractions of cases where the xBR+-tree is an exe-
cution time and I/O performance winner, for each (sin-1855

gle, or dual dataset) query, is depicted in Table 14. The
second and third columns refer to the aggregate results
for all page sizes, while the fourth and sixth columns re-
fer to results when using a page size of 16KB. The fifth
column refers to the xBR+-tree gain in execution time,1860

(R∗-tree exec. time − xBR+-tree exec. time) / R∗-tree
exec. time, for the page size of 16KB (e.g. a gain value
equal to 66.67% for a query means that the xBR+-tree
needs 1/3 of the execution time of the R∗-tree to answer
this query). By studying these results, we conclude that1865

the xBR+tree is a clear performance winner, in relation
to the R∗-tree (the best among R-trees). More specifi-
cally:
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Figure 12: εDJQ on large real datasets Water×Park: disk read accesses (a) and exec. time (b) vs. node size (ε = 1.25 × 10−5) and disk read
accesses (c) and exec. time (d) vs. ε values (node size=4KB).

Query all node sizes node size=16KB
name Time I/O Time gain I/O
Single-dataset queries:
WQ 360/360 323/360 72/72 64.7% 68/72
DRQ 360/360 292/360 72/72 68.4% 67/72
KNNQ 209/240 67/240 48/48 49.2% 18/48
CKNNQ 240/240 138/240 48/48 60.5% 30/48
Dual-dataset queries:
KCPQ 231/250 224/250 50/50 71.9% 45/50
εDJQ 235/250 216/250 49/50 66.4% 43/50

Table 14: Synopsis of efficiency of xBR+-tree in all queries vs. R∗-
tree

• The xBR+-tree is a big winner in execution time in
all cases and a winner in I/O in all cases except of1870

the I/O of the KNNQ.

• The xBR+-tree is an almost absolute winner when
the page size equals 16KB (for this page size the
xBR+-tree is a relative winner in the I/O of the
KNNQ, too). Note the high percentages of gain1875

for this page size.

Note that the R+-tree was designed specifically for
PLQs and WQs and not for other ones, like DRQs,
KNNQs, KCPQs, εDJQs, etc.

The regular subdivision of space, the additional rep-1880

resentation of the minimum rectangles bounding the ac-
tual data objects (DBRs), the extra termination condi-
tion applicable in certain queries and the storage order
of the entries of internal nodes gave the ability to the
xBR+-tree to be a more efficient structure than R-trees1885

and even than the R∗-tree. More specifically, the build-
ing performance of the xBR+-tree can be credited to the
following:

• Due to the regular subdivision of space, the cal-
culations needed are much fewer and simpler than1890

those of the R∗-tree.

The building time of an xBR+-tree is smaller even than
the one needed for building the respective, very simple,
R+-tree. The very good performance of the xBR+-tree
in queries can be credited to the following:1895

• The regular subdivision of space leads to laying
the (sub)quadrants, created by the data distribu-
tion, in the corners of the embedding (sub)space.
In this way, the distances between them are maxi-
mized and pruning during join query processing is1900

increased.

• Due to the quadrangular shape of the
(sub)quadrants, the dimensions of the con-
tained DBRs are minimized. The minimal
dimensions of DBRs in conjunction with their1905

laying in the corners of the embedding (sub)space
allows the high exploitation of metrics like mindist
(the R+-trees, due to their structure, do not utilize
efficiently such pruning techniques).

• In xBR+-trees, DBRs are expoited as an extra tool1910

of delimiting the subspace containing data objects.

• By examing the entries of an xBR+-tree internal
node in reverse preorder traversal of the Quadtree
that corresponds to this internal node (a subregion
is examined before any enclosing region of this1915

subregion), multiple examinations of overlapping
regions are avoided (at least in point location and
window queries).

• The disjointness between regions and the combi-
nation of the region of each node with the Shape1920

property of this node gives the ability of an extra
termination condition in window and range queries
(this condition cannot be applied in R-trees, due to
their structure).

The conclusions arising from the performance re-1925

sults of the alternative DF/BF algorithms for processing
queries are summarized in the following:

• For PLQs and WQs, N-DF algorithms are the only
applicable, since the criterion for such queries is
boolean (true/false).1930
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Query R+-tree R∗-tree xBR+-tree
Name (%) Alg (%) Alg (%) Alg
Single-dataset queries:
DRQ 69.2 DF 75.3 DF 54.4 DF
KNNQ 64.6 S-DF 81.7 H-DF 99.2 H-DF
CKNNQ 64.6 H-DF 65.8 H-DF 51.7 H-DF
Dual-dataset queries:
KCPQ 90.0 C-DF-2 54.8 H-DF-2 95.6 H-DF
εDJQ 44.8 C-DF-2 99.6 C-DF-2 95.6 H-DF-2

Table 15: The winning DF algorithm (and the respective percentage
of cases) for DRQs, KNNQs, CKNNQs, KCPQs, and εDJQs.

• For the rest of the queries, among DF algorithms,
the winning algorithm and the respective percent-
age of cases is depicted in Table 15. It is obvious
that the H-DF variants are the most efficient ones
in xBR+-trees, in 4/5, and in R∗-trees, in 3/5 of1935

the query types. As noted in Subsection 5.1, this is
due to partial sorting of (pairs of) entries by mindist
when H-DF variants are used.

• BF algorithms perform significantly better on the
R∗-tree, since, due to overlapping between regions1940

of nodes at the same level, the minimization of I/O
that BF algorithms achieve plays an important role.

7. Conclusions and Future Work

In [18], the xBR+-tree was compared to the xBR-tree
for single dataset queries and datasets of medium size1945

and “a detailed relative performance study of the xBR+-
tree against the R∗-tree and/or R+-tree for single dataset
and multi-dataset queries” was mentioned as the main
future work target, since these structures had never been
compared in the literature.1950

In this paper, we accomplished this target based on
single, as well as, on dual dataset queries, utilizing ex-
isting and new algorithms and performing experiments
on medium, as well as, large datasets. More specifi-
cally, in this paper, we presented algorithms for PLQs1955

and WQs used in the above three structures. We also
presented for these structures N-DF, S-DF and BF exist-
ing algorithms and the new H-DF algorithm for DRQs,
KNNQs and CKNNQs. Moreover, we presented the first
algorithms for KCPQs and εDJQs on the xBR+-tree and1960

a new alternative DF algorithm (H-DF-2) for KCPQs
and εDJQs for all the three trees. We also highlighted
the differences between alternative algorithms.

Moreover, by a detailed performance compari-
son (I/O and execution time) of xBR+-trees (non-1965

overlapping trees of the quadtree family), R+-trees
(non-overlapping trees of the R-tree family) and R∗-
trees (industry standard belonging to the R-tree fam-
ily) for tree building, processing single point dataset

queries (PLQs, WQs, DRQs, KNNQs and CKNNQs)1970

and distance-based join queries (KNNQs, εDJQs), us-
ing medium and large spatial (real and synthetic)
datasets, we showed that the xBR+-tree is a clear win-
ner in tree building, a big winner in execution time in all
cases and a winner in I/O in all cases, except for the I/O1975

of the KNNQ (it is an almost absolute winner when the
page size equals 16KB).

The building performance of the xBR+-tree is due to
the regular subdivision of space that leads to much fewer
and simpler calculations. The higher query performance1980

of the xBR+-tree is due to the combination of the regular
subdivision of space, the additional representation of the
minimum rectangles bounding the actual data objects
(DBRs) and the extra termination condition applicable
in certain queries and the storage order of the entries of1985

internal nodes gave
In the future we plan to:

• Compare the three trees for data of dimensionality
larger than 2,

• Create extensions of the xBR+-tree for non-point1990

data objects and algorithms for processing queries
on them and compare to competitive structures,

• Create extensions of the xBR+-tree for parallel and
distributed environments,

• Create algorithms to bulk-load xBR+-trees.1995
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