SISTEMA DE TELEMETRÍA 3D PARA UN MANIPULADOR ROBÓTICO DE CORTE SUPERFICIAL

BRYAN FELIPE GARCIA COLLAZOS Cód. 1801071 JORGE ANIBAL BORRAY RUSSI Cód. 1801050

UNIVERSIDAD MILITAR NUEVA GRANADA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA MECATRÓNICA BOGOTÁ D.C. 2012

SISTEMA DE TELEMETRÍA 3D PARA UN MANIPULADOR ROBÓTICO DE CORTE SUPERFICIAL

BRYAN FELIPE GARCIA COLLAZOS JORGE ANIBAL BORRAY RUSSI

TRABAJO DE GRADO COMO REQUISITO PARA OPTAR AL TÍTULO DE INGENIERO EN MECATRÓNICA

Director:
ROBINSON JIMENEZ MORENO
Ingeniero Electrónico, MSc.

UNIVERSIDAD MILITAR NUEVA GRANADA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA MECATRÓNICA BOGOTÁ D.C. 2012

Nota de aceptación:
Firma del Presidente del Jurado
Firma del Jurado
Firma del Jurado
i iiilia doi dalado

Bogotá, 31 de Octubre 2012

DEDICATORIA

"Ser uno mismo, sin miedo a estar en lo correcto o en lo erróneo, es más admirable que optar por la fácil cobardía de rendirse a la conformidad"

Irving Wallace

A Dios por haberme permitido llegar hasta este punto, por iluminar mi mente y brindarme la fortaleza necesaria para poder lograr mis objetivos.

A mis padres Victor Manuel y Luz Alba, por ser el pilar fundamental de mi vida. Gracias por todo papá y mamá, por su comprensión, por su inmenso amor y sobre todo gracias por haberme dado y enseñado todo, para ser la persona que soy hoy en día. Por brindarme la oportunidad de haber hecho una carrera para mi futuro y jamás dejar de creer en mí, les agradezco inmensamente y todo corazón que estén a mí lado.

A mi abuelita Julia Inés ya que con su inmenso amor y cariño, fue mi apoyo incondicional y una de mis más grandes motivaciones para seguir adelante y sacar mi carrera adelante, gracias abuelita eres la mejor.

A mis primos Fabian, Jefrey y Lizeth, por el apoyo brindado en cada momento de mi vida. Sé que contare con ellos siempre.

Bryan Felipe Garcia Collazos

"Cuando quieres algo, todo el universo conspira para que realices tu deseo" Paulo Coelho

A Dios por brindarme la salud, sabiduría y la fuerza para afrontar los momentos difíciles que se me presentaron a través de la carrera de ingeniería Mecatrónica.

A mis padres Jorge y Nancy, gracias por estar conmigo siempre y apoyarme en todo momento, por la paciencia, dedicación y el gran amor que han tenido conmigo, por confiar siempre en mí, enseñarme a no rendirme ante las adversidades y afrontar los problemas con ética y dignidad, por sus incontables sacrificios y darme lo que ellos nunca tuvieron, infinitas gracias por permitir que me depare un futuro mejor.

A mis hermanos Roger y Alejandro, gracias por estar en mi vida y llenarla de felicidad, aunque a veces parecemos lejanos siempre están en mi corazón

A mi abuelita Blanca, gracias por todo el amor, apoyo y consejos que siempre me ha brindado con cariño, han sido de gran ayuda para mi vida.

A mi tía Mabel por todo el amor, apoyo incondicional y por estar siempre atenta a mis proyectos.

A mi tía Cielito, por estar siempre a mi lado y protegerme desde el Cielo.

A mi novia Andrea por todo el cariño que me brinda, por motivarme siempre y por ser mucho más que mi compañera, mi complemento.

Jorge Anibal Borray Russi

AGRADECIMIENTOS

Los autores expresan sus agradecimientos a:

Robinson Jimenez Moreno, Ingeniero Electrónico MSc., docente del programa de Ingeniería Mecatrónica, director del trabajo de grado, por confiar en nosotros y brindarnos la oportunidad de trabajar en un proyecto innovador y gratificante. Por su colaboración, orientación y consejos para la realización del trabajo de grado.

A los integrantes del grupo de investigación GAV de la Universidad Militar Nueva granada, por la atención, colaboración y seguimiento del proyecto.

A los docentes del departamento de Matemáticas de la Universidad Militar Nueva Granada Anghiella Saavedra y Luis Mesa por la gran disposición hacia nosotros, además del apoyo, orientación y consejos en temas de estadística, los cuales fueron muy útiles para llevar a cabo los objetivos de nuestro proyecto de grado.

A todas aquellas personas que directa o indirectamente aportaron para que el desarrollo de este proyecto fuera posible, se reconoce su empeño y se manifiesta los más sinceros agradecimientos.

CONTENIDO

	Pág.
GLOSARIO DE TÉRMINOS	X
RESUMEN	
INTRODUCCIÓN	
1. PLANTEAMIENTO DEL PROBLEMA: MOTIVACIÓN	1
1.1. OBJETIVO GENERAL	1
1.1.1. Objetivos específicos	1
1.2. METODOLOGÍA DE TRABAJO	2
1.3. ALCANCE	3
2. MARCO TEÓRICO	3
2.1. ANTECEDENTES	3
2.1.1. Local	3
2.1.2. Regional	4
2.1.3. Internacional	
2.2. MARCO REFERENCIAL	5
2.3. MARCO CONCEPTUAL	6
2.3.1. Visión Artificial	6
2.3.2. Elementos de un sistema de visión Artificial	6
2.3.3. Métodos de medición de distancia, a través técnicas	de visión 3D.8
2.4. SERVICIOS Y TECNOLOGÍAS UTILIZADAS	10
2.4.1. Sensor Kinect	10
2.4.2. C# Windows Presentation Foundation (WPF)	11
2.4.3. Kinect for Windows SDK	12
2.4.4. Librería Emgu CV 2.4.0	13
3. INGENIERÍA DEL PROYECTO	14
3.1. ANÁLISIS DEL SISTEMA	
3.1.1. Requerimientos y restricciones	
3.2. DISEÑO DEL SISTEMA	
3.2.1. Algoritmo de Calibración	16

3.	Algoritmo de obtención de datos de color y profundidad	17
3.2	2.3. Exploración 3D del área de trabajo	20
3.2	2.4. Mapa de reconstrucción de la profundidad de la escena	22
3.2	2.5. Algoritmo de identificación de color	26
3.2	2.6. Algoritmo de tracking del efector	28
3.3.	ANÁLISIS ESTADÍSTICO	31
4. PF	RUEBAS Y RESULTADOS EXPERIMENTALES	38
4.1.	UBICACIÓN DEL SENSOR KINECT	38
4.2.	PRUEBAS SISTEMA DE TELEMETRÍA	39
4.	2.1. Análisis de resultados	41
5. M	ANUAL DE USUARIO	41
6. PC	OSIBLES APLICACIONES Y TRABAJOS FUTUROS	47
7. C	ONCLUSIONES	48
BIBLI	OGRAFÍA E INFOGRAFÍA	49

Lista de figuras

	ag
FIGURA: 1 ESQUEMA DE UN SISTEMA DE VISIÓN POR COMPUTADOR	6
FIGURA: 2 PROCESAMIENTO DE IMAGEN PARA UN SISTEMA DE VISIÓN [18]	8
FIGURA: 3 REPRESENTACIÓN DE LA PROYECCIÓN ESTÉREO	9
FIGURA: 4 FUNCIONAMIENTO CÁMARA TOF TOMADO DE HTTP://www.ceautomatica.es	9
FIGURA: 5 COMPONENTES DEL SENSOR KINECT [20]	10
FIGURA: 6 ESQUEMA INTEGRACIÓN DEL SDK DE KINECT FOR WINDOWS	13
FIGURA: 7 REQUERIMIENTOS Y RESTRICCIONES DEL SISTEMA	14
FIGURA: 8 ETAPAS PRINCIPALES DEL PROYECTO	16
FIGURA: 9 REPRESENTACIÓN DE UN PIXEL [4]	17
FIGURA: 10 EJE DE COORDENADAS IMAGEN RGB	18
FIGURA: 11 DISPOSICIÓN DE LOS PIXELES RGB EN EL ARREGLO DE BYTES [4]	
FIGURA: 12 FOTO OBTENIDA CÁMARA RGB KINECT	18
FIGURA: 13 RANGO DE VISIÓN SENSORES DE PROFUNDIDAD 3D [4]	19
FIGURA: 14 CÁLCULO DE LAS DISTANCIAS [4]	20
FIGURA: 15 IMAGEN RGB, IMAGEN PROFUNDIDAD CAPTURADA MEDIANTE MÉTODO	
DEPTH	21
FIGURA: 16 IMAGEN RGB, IMAGEN PROFUNDIDAD CAPTURADA MEDIANTE MÉTODO	
DepthAndPlayerIndex	21
FIGURA: 17 SENSACIÓN DE LA PROFUNDIDAD EN UNA ESCENA	
FIGURA: 18 PERCEPCIÓN DE LA PROFUNDIDAD EN UNA ESCENA DE TRABAJO	22
FIGURA: 19 DIAGRAMA DE FLUJO PROCESO DE OBTENCIÓN DE DATOS DE COLOR Y	
PROFUNDIDAD	25
FIGURA: 20 IDENTIFICACIÓN DE OBJETOS POR COLOR	
FIGURA: 21 DIAGRAMA DE FLUJO PROCESO IDENTIFICACIÓN	27
FIGURA: 22 RECONOCIMIENTO OBJETO DE INTERÉS	
FIGURA: 23 COORDENADAS X, Y, Z Y TRACKING DEL OBJETO DE INTERÉS	
FIGURA: 24 TRACKING DINÁMICO PUNTO INICIAL	29
FIGURA: 25 TRACKING DINÁMICO PUNTO FINAL	
FIGURA: 26 DIAGRAMA DE FLUJO ALGORITMO TRACKING EFECTOR	30
FIGURA: 27 IMAGEN A UNA PROFUNDIDAD 800 MM	31
FIGURA: 28 IMAGEN A UNA PROFUNDIDAD 1300 MM	
FIGURA: 29 IMAGEN A UNA PROFUNDIDAD 1850 MM	
FIGURA: 30 MEDICIÓN CON UNA DISTANCIA MENOR A 800MM	33
FIGURA: 31 GRAFICA CANTIDAD DE PIXELES VS DISTANCIA	34

FIGURA: 33 PRUEBA MEDICIONES DIAGONALES CON EL KINECT	38
FIGURA: 34 ERROR AL TOMAR MEDICIONES DIAGONALES CON EL KINECT	39
FIGURA: 35 SISTEMA CON ILUMINACIÓN PROPIA	39
FIGURA: 36 EFECTORES DE CORTE SUPERFICIAL	40
FIGURA: 37 PRUEBAS SISTEMA DE TELEMETRÍA 3D	40
FIGURA: 38 VENTANA INFORMACIÓN INTERFAZ DE USUARIO	42
FIGURA: 39 VENTANA PRINCIPAL SISTEMA DE TELEMETRÍA 3D CON KINECT	42
FIGURA: 40 OPCIONES CUADROS IMGBOX	43
FIGURA: 41 ZOOM EN CUADROS DE IMAGEN DE LA INTERFAZ DE USUARIO	44
FIGURA: 42 CONTROLES MOTOR	45
FIGURA: 43 VARIACIÓN DE PARÁMETROS DE COLOR	45
FIGURA: 44 VARIACIÓN DE INTENSIDAD DE COLOR EN LA ESCENA	46
FIGURA: 45 MAPAS DE PROFUNDIDAD	46
Lista de tablas	
	Pág
Tabla 1. Especificaciones técnicas del Kinect	11
Tabla 2. Rango de Distancia (mm) Mapa de profundidad de colores	22
Tabla 3. Tabulación de datos estadísticos	29
Tabla 5. Tabulación de datos estadísticos eje X	35
Tabla 6. Tabulación de datos estadísticos eje Y	36

Tabla 7. Tabulación de datos estadísticos eje Z......37

GLOSARIO DE TÉRMINOS

API (Application Programming Interface - Interfaz de programación de aplicaciones): es el conjunto de aplicaciones, procedimientos y rutinas que provee un sistema operativo, una aplicación o una biblioteca, define como invocar desde un programa un servicio que este presta, una API representa un interfaz de comunicación entre componentes software y a menudo forma parte de un SDK.

CÁMARA INTELIGENTE: son una tecnología orientada a los sistemas de visión artificial que combina una cámara de video de alta resolución con el poder computacional de un PC.

CALIBRACIÓN: determinación de los intervalos de escala correctos para cualquier instrumento de medición.

ERROR: desviación entre una medida o cálculo de una variable y su valor verdadero.

INTERFAZ DE USUARIO: es el medio con el cual un usuario u operador puede comunicarse con un sistema, equipo, maquina o computadora, su objetivo principal es informar al usuario y permitirle un fácil acceso y monitoreo de acción que se desea realizar.

LIBRERÍA: es un conjunto de subprogramas utilizados para desarrollar software. Contienen código y datos, que proporcionan servicios a programas independientes, es decir, pasan a formar parte de estos.

SDK (software development kit - Kit de desarrollo de software): es un conjunto de herramientas y programas de desarrollo que permite al programador crear aplicaciones y programas para una plataforma o sistema determinado. La mayoría de SDKs son gratuitos y suelen incluir soporte técnico, tutoriales y códigos de ejemplo.

TELECIRUGÍA: la telecirugía es una técnica que permite a un médico cirujano operar o guiar una ciruja remotamente, mediante sistemas robotizados y sensores video alimentados con los datos correspondientes que pasan desde el quirófano hasta el lugar remoto donde se encuentra el cirujano.

TELEMETRÍA: la telemetría es una tecnología que permite la medición remota de magnitudes físicas y el posterior envío de la información hacia el operador del sistema.

TELEOPERACIÓN: conjunto herramientas tecnológicas que tienen como objetivo la operación o gobierno a distancia de un dispositivo por un ser humano, Por tal motivo teleoperar es la acción que realiza un ser humano al

gobernar u operar un dispositivo desde un lugar remoto; mientras que un sistema teleoperado será aquel que permita teleoperar un dispositivo.

TRACKING: Es una técnica de visión artificial, que consiste en seleccionar una parte de una imagen, realizar el seguimiento y analizar su posición en cada frame de una secuencia.

WRAPPER: es un componente que obtiene su funcionalidad de una librería externa y contiene todas las características de esta, Los wrapper resultan muy útiles para utilizar la funcionalidad de las librerías en lenguajes de programación o sistemas operativos para los cuales no fue diseñada la librería externa.

RESUMEN

A lo largo de este libro de proyecto de grado, se da a conocer el diseño y construcción de un sistema de telemetría 3D y la manera como se integró en el robot manipulador Industrial del grupo investigación de la Universidad Militar Nueva Granada *GAV*. Lo anterior se llevó a cabo en varias fases, principalmente se realizó un estudio sobre visión por computador y medición por visión 3D, manejo y desarrollo de aplicaciones con el sensor Kinect. Posteriormente se examinaron y analizaron las restricciones y requerimientos del sistema propuesto y a partir de esto se realizó el diseño del sistema de telemetría 3D.

Luego se hace una descripción del procedimiento realizado en la construcción de los algoritmos, que conforman el sistema de telemetría 3D y la implementación del software. Esto último utilizando el lenguaje de programación C#, el SDK de Microsoft para Kinect y la librería OpenCV mediante el wrapper para plataformas para .NET EmguCV.

Finalmente se realizó un análisis estadístico, para determinar el rango de medición adecuado del Kinect. Se llevó a cabo la validación de resultados en diversos escenarios, que tienen como característica común una delimitación de una zona de trabajo. En este punto se dan a conocer los inconvenientes y aciertos obtenidos tras la ejecución del proyecto.

INTRODUCCIÓN

El poder captar el relieve y la profundidad de los objetos presentes en una escena tridimensional, utilizando sistemas de visión por computador y mediante el uso de herramientas confiables, es un problema importante para los operarios de robots teleoperados, especialmente en el campo de telecirugía y en las aplicaciones de corte mediante agentes robóticos. El dispositivo para juegos Kinect de Microsoft es una herramienta de gran ayuda para abordar este campo debido a que los sensores que este posee permiten adaptar sistemas de visión artificial en dos y tres dimensiones a gran cantidad de aplicaciones y de este modo poder desempeñar una actividad con un cierto porcentaje de error, además presenta un bajo costo.

En el presente documento, se describe un sistema de telemetría 3D, el cual se encarga de realizar el procedimiento de identificación, tracking y mostrar las coordenadas X, Y, Z del efector final de un manipulador robótico de corte superficial, respecto a un punto de coordenadas fijas de referencia, este sistema realiza las labores de adquisición, procesamiento y caracterización de imágenes tomadas mediante las cámaras del sensor Kinect. Esta información es utilizada para identificar la ubicación del efector final en el área de trabajo, realimentando al teleoperador de la distancia entre ambos.

El documento está organizado de la siguiente forma: En el primer capítulo se describe el problema y motivación para desarrollar el proyecto, los objetivos tanto general como los específicos, la metodología de trabajo seguida para realizar el proyecto y finalmente el alcance del proyecto. En el segundo capítulo se desarrolla el marco teórico, se expone el estado del arte, las teorías y modelos aplicados en el proyecto, se explican los servicios y tecnologías utilizadas para su ejecución y se define el área o campo de trabajo. En el tercer capítulo se describe el análisis del sistema y el desarrollo del proyecto. El cuarto capítulo muestra las pruebas realizadas al sistema y los resultados obtenidos durante las etapas de ejecución del mismo. Finalmente el quinto capítulo es el manual de usuario donde se da a conocer cada una de las funciones de la interfaz de usuario desarrollada.

1. PLANTEAMIENTO DEL PROBLEMA: MOTIVACIÓN

En la actualidad existen diversos procedimientos especializados de corte, que requieren de una gran maniobrabilidad, delicadeza y exactitud en los movimientos, por tal razón se implementan robots teleoperados, los cuales están dotados con cámaras que transmiten una señal de video desde un recinto de operaciones hasta el lugar remoto donde se encuentra el operario, esta señal de video muestra imágenes 2D, esto presenta grandes inconvenientes al operador debido a que este no puede captar con precisión el relieve ni la profundidad de los elementos que aparecen en la imagen, lo cual dificulta y hace poco confiable la medición de distancias entre el efector final y la superficie a cortar.

Por lo expuesto anteriormente se ve la necesidad de profundizar en el tema desarrollando, un sistema de telemetría 3D para ser integrado a un robot teleoperado, con el fin de permitir a los operarios de estos robots mantener los parámetros y niveles de medición en los valores deseados y de esta forma tener una mejor interacción hombre maquina mediante una interfaz.

1.1. OBJETIVO GENERAL

Diseñar e implementar un sistema de telemetría mediante técnicas de visión 3D para un robot manipulador dotado de un efector final que permite sujetar un instrumento de corte, con el fin de tener la sensación de profundidad en superficies no uniformes.

1.1.1. Objetivos específicos

- Identificar los métodos de medición de distancia a través técnicas de visión 3D.
- Implementar un sistema de exploración 3D para un robot manipulador dotado con un efector final.
- Realizar un algoritmo de identificación e implementación de un sistema de tracking para el instrumento de corte ubicado en el efector final del robot manipulador.

- Realizar una interfaz gráfica que muestre las coordenadas X, Y, Z del efector final con respecto a la superficie de trabajo.
- Establecer los rangos de medición respecto a distancias y ángulos de cobertura para realizar una validación de error sujeto a análisis estadísticos en la medición de la distancia efector-objeto que asegure el funcionamiento del prototipo.

1.2. METODOLOGÍA DE TRABAJO

A continuación se describe la metodología que se propuso para el desarrollo del proyecto y cumplimiento de los objetivos propuestos.

Recolección de información

Para poder abordar el proyecto se realizó un estudio teórico y conceptual de los tópicos necesarios e importantes en el proyecto, se establecieron marcos en los campos de visión 3D, visión artificial, Kinect, lenguajes de programación a usar y búsqueda de proyectos similares, esta recolección de información se llevó a cabo en bases de datos como el IEEE, Engineering village y se realizó una búsqueda proyectos similares e información general en internet y libros.

• Selección de herramientas

Posteriormente de haber estudiado los ítems relevantes del proyecto, desde el punto de vista conceptual, se procedió a escoger las herramientas de trabajo que permitiesen abordar de manera adecuada su implementación. Se seleccionó el lenguaje de programación a usar (C Sharp), así como los SDK y librerías (Kinect for Windows SDK, Emgu CV...), en el capítulo 2 sección 2.3 se da a conocer por qué se seleccionaron estas herramientas.

Diseño y desarrollo

Se realizó la integración en c# (wpf) entre el SDK del Kinect y la librería EmguCV (las cuales se explicarán en el capítulo 2 sección 2.4), seguidamente se desarrollaron los algoritmos de calibración del kinect y procesamiento de imágenes que permiten hacer la identificación y tracking al efector final del robot, finalmente se llevó a cabo un análisis estadístico para establecer los rangos de medición del sistema.

• Implementación del sistema, pruebas y análisis de resultados

Para la implementación del sistema de medición sobre el robot manipulador Industrial, se diseñó una estructura de soporte, se caracterizaron las condiciones de iluminación y con la ejecución de los algoritmos desarrollados se realizaron pruebas, análisis de resultados y realimentación, respecto al desempeño final alcanzado.

1.3. ALCANCE

El alcance del proyecto está enfocado al diseño de algoritmos, e implementación de un sistema de telemetría 3D usando un sensor Kinect, este sistema cuenta con algoritmos de visión por computador, donde se halla la posición 3D y se muestran en una interfaz de usuario las coordenadas X, Y, Z del efector final del robot Manipulador Industrial fase 2 del grupo GAV con respecto a un punto de referencia ubicado dentro del área de trabajo, y se establecen los parámetros necesarios para ubicar el sensor, de forma que se asegure un mínimo error en la medición.

2. MARCO TEÓRICO

Este capítulo enmarca los conceptos principales que fueron utilizados para la elaboración del trabajo de grado, además de revisar los servicios y tecnologías empleadas para la elaboración del mismo.

2.1. ANTECEDENTES

El sensor Kinect de Microsoft es una tecnología nueva que ha tenido gran acogida, por tal motivo se han desarrollado a nivel nacional e internacional varios proyectos e investigaciones orientadas a la visión artificial por medio de este dispositivo. A continuación se señalan y describen brevemente las investigaciones y proyectos más relevantes a nivel local, regional e internacional.

2.1.1. Local

En la Universidad Militar Nueva Granada, se han desarrollado proyectos en los que se implementa el sensor Kinect de Microsoft y visión artificial, un ejemplo de esto es el proyecto de iniciación científica (PIC ING-803) "exploración del dispositivo Microsoft Kinect para la interacción en tiempo real", en este proyecto

se exploraron y estudiaron todos los dispositivos contenidos en el Kinect y se desarrollaron pequeñas aplicaciones como captura de movimientos corporales, mapa de profundidad e imágenes reales, actualmente grupos de investigación como DAVINCI y GAV vienen desarrollado aplicaciones para sistemas de visión artificial usando el sensor Kinect para la integración de plataformas móviles.

2.1.2. Regional

A nivel regional se tienen diferentes trabajos de grado y ponencias realizadas en distintas universidades, en la ponencia realizada en la universidad de los llanos "Visión Artificial Usando Kinect y OpenCV" [11] se muestra la implementación del kinect como sensor de visión estéreo donde se realiza el reconocimiento de objetos mediante su color para el control de la navegación del robot móviles. En la universidad de Pamplona Santander se desarrolló el proyecto de grado "Control teleoperado de un robot antropomórfico con kinect" [26], en este proyecto se utiliza el sensor Kinect para controlar un robot antropomórfico de 5 grados de libertad, la interfaz de usuario se realizó en Visual C++ y la librería Open GL

2.1.3. Internacional

Los desarrollos internacionales con el sensor Kinect se han realizado principalmente en Estados Unidos y Europa, donde este dispositivo ha tenido gran acogida por grupos de investigación universitarios debido a las características que este posee, la fácil adquisición y el bajo costo que presenta, "Using the Microsoft Kinect for 3D Map Building and Teleoperation" [9] describe el uso del sensor Kinect para la construcción de mapas tridimensionales y la aplicación en un sistema teleoperado, en donde se aborda el tema, realizando un trabajo previo para estudiar las variables del sistema, posteriormente se desarrollan los algoritmos de mapeo tridimensional y finalmente se aplican para realizar la teleoperación de un robot móvil. En el paper "The Design and Initial Calibration of an Optical Tracking System Using the Microsoft Kinect" [7] se muestra la realización de un sistema de tracking usando el sensor Kinect, el SDK no oficial para Kinect OPENNI y la librería de visión artificial PointCloudsLibrary (PCL), , este sistema es implementado para realizar tracking a imágenes médicas, lo cual requiere que el seguimiento de movimiento sea preciso y fiable, finalmente realizan pruebas y obtienen muy buenos resultados, exponen la viabilidad de realizar este tipo de sistemas con el Kinect y comparan los resultados obtenidos con otros sistemas de trackina realizados mediante costosas, robustas y poco confiables cámaras.

2.2. MARCO REFERENCIAL

La visión artificial o visión por computador es una disciplina muy amplia que incluye diferentes áreas de la ciencia e ingeniería, es una herramienta de gran ayuda para los seres humanos debido a que permite tomar decisiones exactas, objetivas y con una mayor percepción, el tema abordado contiene temas que son muy extensos por tal movido se ha incluido los conceptos que son de mayor relevancia.

El libro de proyecto de grado titulado "Desarrollo de aplicaciones con Microsoft Kinect" [4] presenta una descripción del funcionamiento del sensor Kinect y explica los aspectos más relevantes para el desarrollo de aplicaciones con el SDK de Microsoft Kinect para Windows, expone cuatro aplicaciones básicas para obtener información de cada uno de los dispositivos internos que este posee.

En el paper "3D with Kinect" [8] se realiza un análisis matemático y pruebas experimentales de medición 3D con el sensor Kinect, en este trabajo se propone el modelo geométrico del Kinect, se plantean los modelos matemáticos tentativos de las cámaras del Kinect y se muestra el procedimiento de calibración de las mismas mediante la integración de la librería de visión artificial y procesamiento de imágenes OPENCV.

El artículo "Detecting objects using color and depth segmentation with Kinect sensor" [28], expone el proceso de identificar un objeto de interés localizado en un espacio de trabajo, mediante la combinación de imágenes de color y profundidad, esto se lleva a cabo implementando el Kinect, por medio de la integración de los sensores que este posee. (En la sección 2.4.1 se describen brevemente las características y componentes del Kinect).

El proceso de reconocimiento de objetos 3-D, es necesario en muchas aplicaciones para realizar la identificación y tracking de un elemento de interés en una escena, el libro "Visión por computador, imágenes digitales y aplicaciones" [2], explica y describe en varios capítulos los fundamentos para abordar este tema, además es completo en tópicos como tratamiento y procesamiento de imágenes.

2.3. MARCO CONCEPTUAL

2.3.1. Visión Artificial

La visión por computador o visión artificial es un campo de la inteligencia artificial que ha emergido como una disciplina propia, basada principalmente en las matemáticas y ciencias de la computación, tiene como objetivo proveer del sentido de vista a los robots permitiéndoles así interactuar de manera más eficiente con el entorno de trabajo, pero además también permite a los seres humanos interactuar con entornos 3D mediante la extracción, caracterización e interpretación de Información obtenida de imágenes del mundo real.

La visión por computador nace del afán del ser humano, de realizar dispositivos que suplan sus necesidades e imiten el comportamiento humano, en este caso los sensores que capturan imágenes que posteriormente son procesadas en computadores e imitan el proceso de visión humana que se realiza entre los ojos y el cerebro.

Las principales ventajas que ofrece la visión por computador son:

- Mejor medición de magnitudes físicas.
- Mejor en la realización de tareas rutinarias.
- Mejor realizando tareas de bajo nivel de proceso.

2.3.2. Elementos de un sistema de visión Artificial.

En la figura 1 se muestre un esquema típico de un sistema de visión artificial.

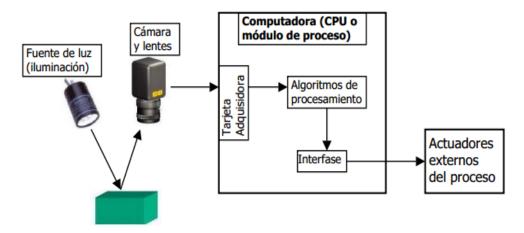


Figura: 1 Esquema de un sistema de visión por computador

Algunos de estos elementos no siempre están presentes en un sistema de visión artificial, por ejemplo se puede evitar el uso de un computador externo si se trabaja con cámaras inteligentes donde el preprocesado y procesado de las imágenes se hace en el interior de la cámara y desde el interior de la cámara se puede interactuar con todo el sistema.

• Sensor para captura de imagen

La función de estos dispositivos es capturar las imágenes proyectadas sobre una superficie sensible a la luz (escena), estos sensores suelen estar configurados en forma matricial de modo que proporcionan una imagen bidimensional [3], mediante esta configuración el sensor cubre un área determinada que está formada por una matriz de pixeles. Para aplicaciones de metrología y telemetría a nivel industrial suelen usarse sensores con configuración lineal dado sus altas resoluciones y la efectividad en los resultados obtenidos. Existen otras configuraciones muy usadas como las cámaras de color y ópticas donde el proceso de obtención de las imágenes es más complejo, pero proporciona una mayor información [19].

Sistema de iluminación

Los sistemas de iluminación son un factor clave en un sistema de visión por computador ya que una iluminación adecuada puede simplificar significativamente el procesado y análisis de las imágenes.

Estos sistemas proporcionan unas condiciones de iluminación uniforme e independiente del entorno [14], permitiendo de este modo obtener imágenes con características constantes y de este modo poder enfocarse en los aspectos de interés de la escena.

Procesamiento de imagen

Es el conjunto de operaciones, algoritmos y transformaciones necesarias para extraer información de las imágenes capturadas y de este modo resolver el problema para el que fue diseñado.

En la figura 2 se presenta la base del procesamiento de imagen para un sistema de visión.

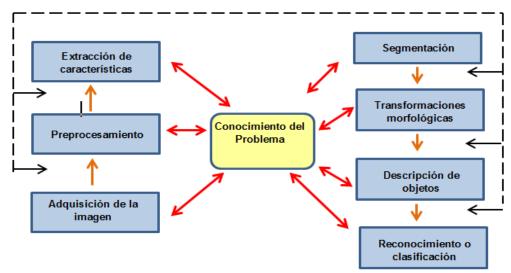


Figura: 2 Procesamiento de Imagen para un sistema de visión [18]

2.3.3. Métodos de medición de distancia, a través técnicas de visión 3D.

Un sistema de visión tridimensional permite obtener la ubicación espacial de un objeto en una escena. Dicha ubicación espacial permite saber a qué distancia se encuentra el objeto y en qué dirección, a continuación se presentan algunas técnicas empleadas para la medición de distancia mediante el uso de visión 3D.

Visión estereoscópica

La visión estereoscópica constituye un procedimiento para la obtención de la forma de los objetos en la escena. En este caso la forma se determina a través de la distancia de los objetos en relación con un sistema de referencia por lo que se trata de un método para la obtención de la tercera dimensión.

En un sistema estereoscópico está caracterizado por un par de cámaras, la medición de distancias se produce por medio de triangulación, midiendo el paralelismo entre dos imágenes obtenidas tomando la imagen del objeto desde dos posiciones diferentes, separados una distancia suficiente, conocida como línea base.

Mediante triangulación se determina la posición de un punto sobre un objeto (punto observado) de interés, el triángulo formado entre el punto observado P y los centros ópticos del sistema de observación XL y XR. La información de profundidad del punto P está codificada en la

diferencia de posición (disparidad) en los dos planos de imagen (ver figura 3).

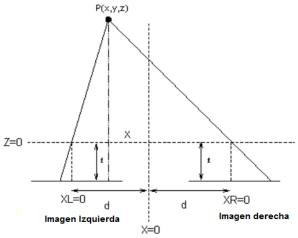


Figura: 3 Representación de la proyección estéreo

En las siguientes ecuaciones se muestran las expresiones para obtener las mencionadas posiciones y finalmente la coordenada Z (distancia del objeto de interés) que se está buscando.

$$XL = \frac{-(d+x)f}{z}$$
 $XR = \frac{(d-x)f}{z}$ $z = \frac{2df}{XR - XL}$

Cámaras de profundidad (TOF camera)

TOF del inglés Time-Of-Flight, son cámaras capaces de obtener información de profundidad basándose en la medición de la fase de una onda infrarroja reflejada en el objeto de interés, el funcionamiento de esta cámara consiste en la emisión, durante un breve período de tiempo, de un pulso de luz que será reflejado por los objetos presentes en la escena.

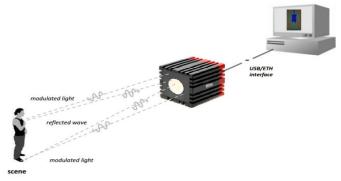


Figura: 4 Funcionamiento cámara TOF tomado de http://www.ceautomatica.es

La distancia se calcula mediante la relación que tiene en el tiempo que necesita la luz para recorrer una distancia, en este caso de ida y vuelta entre cámara y el objeto de interés [10].

$$\mathbf{D} = \frac{c * t_0}{2}$$

Dónde: C es la velocidad de la luz. t₀ anchura del pulso.

2.4. SERVICIOS Y TECNOLOGÍAS UTILIZADAS

En esta sección se dan detalles del software y hardware utilizado en la realización del proyecto, esto con el fin de dejar un precedente a trabajos futuros similares.

2.4.1. Sensor Kinect

El Kinect es un dispositivo desarrollado por Microsoft Research para la videoconsola de juego Xbox 360, y desde junio del 2011, para PC a través de Windows 7 y Windows 8. Este permite a los usuarios controlar e interactuar con la consola sin necesidad de tener contacto físico con un controlador de videojuegos tradicional, mediante una interfaz natural de usuario que reconoce gestos, comandos de voz y objetos e imágenes [12].

Este dispositivo funciona con la combinación de sus sensores (cámara RGB, Cámara de infrarrojos, Proyector de laser infrarrojos), la cámara RGB es capaz de identificar un objeto por medio de sus movimientos y colores mientas que las cámaras de infrarrojos realizan un mapeo de profundidad para determinar la localización y hacer seguimiento al objeto en un plano.

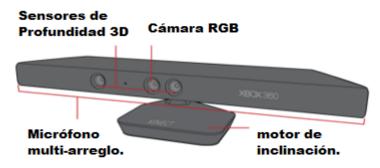


Figura: 5 Componentes del sensor Kinect [20]

Sensores	 Cámara RGB Cámara de Infrarrojos Proyector de laser infrarrojos. Micrófono multi-arreglo. motor de inclinación. 		
Campo de visión	 Campo de visión horizontal: 57 grados. Campo de visión vertical: 43 grados. rango de inclinación física: ± 27 grados. Rango de profundidad del sensor: 0,8 – 3,0 metros 		
Data Streams (Flujo de datos)	 QVGA 320 x 240 a 16 bits de profundidad @ 30fps VGA 640 x 480 32-bit de color @ 30fps Audio de 16-bit @ 16 kHz 		
Sistema de audio	 Chat en vivo y voz dentro del juego Sistema de cancelación de eco que aumenta la entrada de voz Reconocimiento de voz múltiple 		

Tabla 1 Especificaciones técnicas del Kinect

La información mostrada anteriormente en la tabla 1 es necesaria a la hora de desarrollar aplicaciones con el kinect. El campo de visión permite calcular la distancia aproximada de un objeto que esté por delante del sensor Kinect. Los flujos de datos ayudan a encontrar la velocidad de procesamiento de los datos transmitidos por el Kinect para ser procesados en un computador.

2.4.2. C# Windows Presentation Foundation (WPF)

Windows Presentation Foundation es una tecnología Microsoft, presentada como parte de Windows Vista. Permite el desarrollo de interfaces de interacción en Windows [22].

Windows Presentation Foundation es un sistema de presentación de alto nivel incluido en c#, contiene un conjunto de librerías para implementar aplicaciones

interactivas y de gran impacto visual, con facilidades de integración que incluyen animación, video, audio, documentos, navegación o gráficos 3D. WPF se basa en el código administrado, pero usa un lenguaje de marcado de aplicaciones extensibles (XAML), Su sintaxis básica deriva de C/C++ y utiliza el modelo de objetos de la plataforma .NET.

• Integración en el proyecto

Se decidió trabajar en la aplicación de c# Windows Presentation Foundation (WPF) puesto que es una API de programación grafica potente y sencilla de manejar, que permite crear interfaces visualmente impactantes.

Las aplicaciones desarrolladas con el SDK de Kinect en WPF tienen un mejor desempeño en cuanto a velocidad de procesamiento comparado con las aplicaciones desarrolladas en la tradicional aplicación de c# Windows Form.

Por medio de la aplicación de Windows Presentation Foundation se llevó a cabo la concepción del sistema, se realizó la integración del SDK de Kinect y la librería Emgu CV y de este concebir la interfaz gráfica del sistema de telemetría 3D.

2.4.3. Kinect for Windows SDK

Este SDK es un kit de herramientas desarrolladas por Microsoft, está orientado a la investigación y cuenta con una licencia no comercial (términos de uso de la licencia [25]), permite a los usuarios interactuar y explotar al máximo todas las características del Kinect.

Para tener un buen desempeño con las aplicaciones desarrolladas a través de SDK se deben cumplir con unos requisitos mínimos de hardware y software.

Requisitos de Hardware

- PC con procesador de doble núcleo a 1.3-GHz o superior
- 4 GB de RAM
- Sensor Kinect para Xbox 360 con cable especial de alimentación / USB

Requisitos de Software

- Sistema operativo Windows 7 o Windows 8 (32 o 64 bits).
- Microsoft Visual Studio versión 2010 o 2012 (cualquier edición).
- Microsoft .NET Framework 4.

Integración en el proyecto

Por medio de este SDK se obtuvo acceso al flujo de datos de los dispositivos del kinect (cámara RGB, sensores de profundidad 3D, motor de inclinación, micrófonos) y se logró desarrollar la interfaz natural de usuario.

En la figura 6 se muestra la importancia e interacción del SDK de Microsoft Kinect para el desarrollo del proyecto.

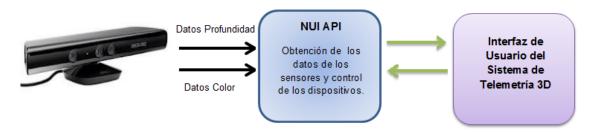


Figura: 6 Esquema integración del SDK de kinect for Windows.

2.4.4. Librería Emgu CV 2.4.0

EmguCV [23] es una plataforma de código abierto que contiene todos los elementos de la librería de procesamiento de imágenes OPENCV utiliza el marco de trabajo .NET de Microsoft por lo tanto es compatible con lenguajes como C#, VC++, VB entre otros a diferencia de la biblioteca OPENCV que no es posible integrarla con C#.

Integración en el proyecto

La librería EmguCV se implementó en el proyecto debido a que ayudo a solucionar ciertos inconvenientes que se presentaban antes de usarla: La resolución de la cámara RGB es diferente a la resolución del sensor de profundidad por lo tanto al realizar la comparación de las imágenes, los procesos realizados para esto generaban un alto consumo de memoria (en el capítulo 3 sección 3.2 se profundiza más en el tema), debido a esto se optó por buscar un método que permitiera reducir el consumo de memoria de manera radical. El implementar el wrapper EmguCV permitió esta disminución de memoria, ya que esta librería proporciona una gran cantidad de funciones de procesamiento de imagen y visión artificial, además permite dibujar de manera sencilla el sistema de seguimiento del efector final en la imagen resultante.

Librería open cv

Open CV (Open Source Computer Vision Library) es una biblioteca libre de visión artificial originalmente desarrollada por Intel en el año de 1999, Contiene más de 500 funciones que abarcan una gran gama de áreas en de procesamiento de imagen y visión de máquina, como reconocimiento de objetos, reconocimiento facial, calibración de cámaras, visión estéreo y visión robótica, posee una licencia para propósitos comerciales y de investigación.

3. INGENIERÍA DEL PROYECTO

Este capítulo presenta los aspectos técnicos, requerimientos y restricciones del proyecto y hace una descripción detallada de cómo se dio solución desde el punto de vista de ingeniería a la problemática abordada.

3.1. ANÁLISIS DEL SISTEMA

La propuesta por parte del grupo de investigación GAV, fué desarrollar un sistema de medición 3D y tracking al efector final del robot manipulador industrial GAV, usando el sensor Kinect de Microsoft. Por ello se realizó un análisis del sistema propuesto, con el fin de evaluar cómo se debía realizar la integración de esta plataforma.

3.1.1. Requerimientos y restricciones

Para obtener un buen rendimiento y óptimos resultados, se identificaron y establecieron los requerimientos y restricciones del sistema a desarrollar.

Figura: 7 Requerimientos y restricciones del sistema

Requerimientos del sistema.

- Trabajar con el sensor Kinect de Microsoft y el robot Manipulador Industrial fase 2 del grupo GAV.
- ➤ El sistema debe ser capaz, de calcular la distancia que exista entre el efector final y la superficie de trabajo, mediante la identificación y tracking, en un plano 3D del efector final de manipulador.
- ➤ El sistema debe ser sencillo, eficiente y claro para poder ser implementado posteriormente en otras aplicaciones similares.
- La interfaz de usuario debe ser amable, entendible, intuitiva y de fácil acceso para el operario.

Restricciones del sistema.

- Delimitar una zona de trabajo, que no supere el rango de operación del sensor Kinect, debido a que la medición de las distancias sería errónea o nula.
- Se debe trabajar en el entorno de Windows y usar un lenguaje de programación en C debido a que se escogió trabajar con el SDK de Kinect para Windows.
- ➤ El efector final del robot manipulador, no será detectado por el sistema de telemetría 3D, cuando se encuentre fuera del rango de visión, cuando se presente obstrucción u oclusión en el campo de visión.

3.2. DISEÑO DEL SISTEMA

Teniendo en cuenta el análisis del sistema, se pueden abordan los aspectos a solucionar, para de esta manera dar cumplimiento a los objetivos propuestos. El entorno gráfico y de programación, se desarrolló en Microsoft Visual Studio 2010, en el lenguaje C# usando la aplicación WPF, se implementó el SDK de Kinect para Windows, el cual permite tener acceso a los componentes del sensor. Se utilizó la plataforma Emgu CV 2.4 por las siguientes razones:

- Contiene un conjunto de utilidades de procesamiento de imágenes, visión artificial, captura de vídeo y visualización de imágenes.
- Es de código abierto, gratuita y utiliza el marco de trabajo .NET, por tal razón se puede implementar en c# a diferencia de la librería madre OPENCV.
- Posee un alto nivel de optimización dedicado a aplicaciones en tiempo real y posee antecedentes positivos en otros proyectos.

El proyecto fue separado en seis grandes partes como lo muestra la figura 8.

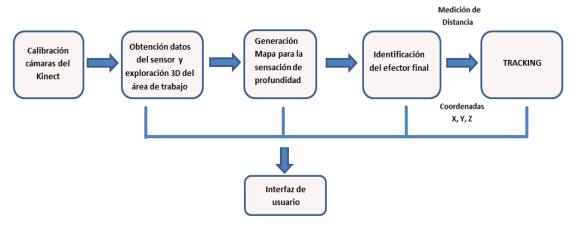


Figura: 8 Etapas principales del proyecto

3.2.1. Algoritmo de Calibración

Al analizar en pantalla la imagen resultante que se obtienen de las cámaras del Kinect, se puede apreciar claramente que la imagen de la cámara RGB y la información de profundidad que brinda el sensor infrarrojo no coinciden, lo cual produce mediciones incorrectas y dicho error se incrementa con la distancia, esto es debido a que las cámaras del Kinect, manejan una resolución de imagen y transmisión de datos diferente (resolución cámara RGB 640 X480 a 32 bit de color ,resolución sensor profundidad 320 x 240 a 16 bit de profundidad).

Para calibrar las cámaras, se realizó la integración de la librería OPENCV mediante el wrapper para plataformas .NET y el SDK de Kinect para Windows. El proceso de calibración se llevó a cabo, mediante la generación de un algoritmo el cual es optimizado en gran parte utilizando la función RESIZE que está inmersa en EmguCV:

Resize("Resolución deseada", Emgu. CV. CvEnum. INTER. CV_INTER_LINEAR))

Esta función aplica una interpolación lineal a la imagen obtenida por la cámara RGB. Dicha imagen es procesada para poder ser trabajada con EmguCV, este procesamiento de imagen, consiste en desarrollar un algoritmo que permita encontrar y seleccionar los datos necesarios para llevar de la estructura "planarimage" con la cual trabaja el SDK del Kinect, a una de las estructuras con la que opera EmguCV, se seleccionó la estructura "Image <Bgr, Byte>" debido a que es la que más se adapta a los datos de la estructura del SDK de Microsoft Kinect.

3.2.2. Algoritmo de obtención de datos de color y profundidad

En este apartado se presenta como se obtuvieron los datos de color y profundidad de las cámaras del Kinect, además se dan a conocer los algoritmos diseñados y como se implementaron.

Datos cámara RGB

Existen dos formatos de imagen a color, con los que trabaja el SDK de Kinect para Windows los cuales son: RGB color y YUV color.

El formato RGB color proporciona mapas de bits a color de 32 bits lineares con formato X8R8G8B8, dentro del espacio de colores RGB [13], por otra parte el formato YUV color proporciona mapas de bits a color de 16 bits con corrección gamma y solo es posible trabajar con una resolución de 640 x 480 a 15 FPS. El formato de color escogido en este proyecto, para realizar la obtención de datos de color fué el RGB color, puesto que se está trabajando con una aplicación que necesita operar mínimo a 15 FPS, ya que esta aplicación debe ser visualizada en tiempo real.

Para la recolección de los datos arrojados por la cámara RGB, primero fue necesario entender el funcionamiento de esta, y conocer la manera en la que procesa los datos.

Cada imagen obtenida con la cámara está compuesta por un conjunto de pixeles, cada pixel de la imagen está compuesto por cuatro componentes que representan los valores rojo, verde, azul y un componente más que se trata del valor de transparencia (alfa) en el caso de las imágenes RGBa, o un valor vacío si es del tipo RGB.

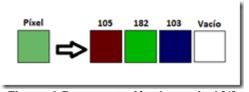


Figura: 9 Representación de un pixel [4]

Cada componente del pixel puede tomar un valor entre 0 y 255, que corresponde a un byte. El sensor kinect codifica las imágenes que obtiene en

un vector de bytes, donde cada byte corresponde a un componente de cada pixel.

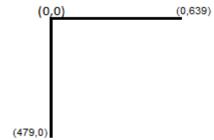


Figura: 10 Eje de coordenadas imagen RGB

La organización de los pixeles es de arriba abajo y de izquierda a derecha, donde los cuatro primeros elementos del vector de bytes codificado por el kinect son los valores rojo, verde, azul y alfa del pixel de arriba a la izquierda, mientras que los cuatro últimos serán del pixel de abajo a la derecha, asumiendo de esta manera que cada pixel tiene cuatro bytes.

Figura: 11 Disposición de los pixeles RGB en el arreglo de bytes [4]

Al conocer la manera en la que el kinect codifica los datos RGB, se diseñó e implemento el algoritmo que se muestra en la figura 17 el cual permite la captura y tratamiento de dichos datos.

En la siguiente imagen se observa la imagen capturada por la cámara RGB del Kinect.

Figura: 12 Foto obtenida cámara RGB Kinect

Datos Sensores de Profundidad

El kinect combina los dos sensores 3D de profundidad que posee, y por medio de estos calcula la distancia en función del tiempo que tarda en reflejarse la luz. El flujo de datos de profundidad arroja un frame en el que cada pixel representa la distancia cartesiana, entre el sensor y el objeto más cercano en la coordenada X, Y del campo de visión del sensor [8], la resolución de imagen del sensor puede variar desde 640 x 480 hasta 80 x 60, pero el SDK de kinect for Windows solo permite trabajar con la resolución 320 x 240. Los sensores de profundidad poseen un rango de operación de distancias entre 800 mm a 3000 mm aproximadamente.

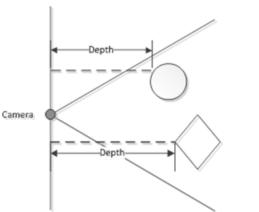


Figura: 13 Rango de visión sensores de profundidad 3D [4]

Los datos de profundidad pueden ser trabajados mediante dos formatos: Depth y DepthandPlayerIndex.

En el modo **Depth** los datos de profundidad se encuentran en los primeros 12 bits de cada pixel, el cálculo de la distancia de un pixel se realiza por medio de la operación lógica OR con los bytes correspondientes al pixel, pero primero se debe realizar un desplazamiento de 8 bits en el segundo byte.

Distancia
$$(0,0)=(int)(Bits[0] \mid Bits[1] << 8);$$

En el modo **DepthandPlayerIndex** los primeros 3 bits alojan la información referente a cada objeto de interés, aunque el modo DepthandPlayerIndex usa 3 bits el SDK solo permite reconocer 2 objetos de interés, para realizar el cálculo de la distancia de un pixel el procedimiento varia un poco, con respecto al modo Depth debido a que los 3 primeros Bits corresponden al índice del jugador y no a la distancia, por lo tanto se debe realizar un desplazamiento en el primer byte para hacer la operación lógica OR, sólo con los datos de distancia y reducir el desplazamiento del segundo byte.

Distancia (0,0) = (int)(Bits[0] >> 3 | Bits[1] << 5);

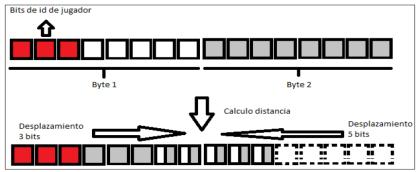


Figura: 14 Cálculo de las distancias [4]

3.2.3. Exploración 3D del área de trabajo

La exploración 3D del área de trabajo se logró a través de la obtención de los datos de profundidad, mencionados en la sección anterior. Utilizando la información de profundidad, se compuso una escena 3D en tiempo real.

Inicialmente para obtener los datos de profundidad, se optó por utilizar el modo Depth ya que no se deseaba hacer el reconocimiento de una personal como tal, solo era necesario obtener el mapa de profundidad para conocer la distancia de los pixeles de la imagen.

Al implementar el método Depth, se tuvo como resultado que la imagen obtenida por la cámara infrarroja del kinect se presentaba en modo espejo, lo cual dificultaba el realizar las mediciones debido a que la imagen RGB y la Imagen de profundidad no correspondían directamente una con la otra, ya que se encontraban en posiciones distintas.

Debido а este inconveniente decidió utilizar el método se DepthAndPlayerIndex, para realizar la exploración 3D de la escena, este método era contemplado como segunda opción ya que arroja ciertos datos aparte del mapa de profundidad que no son necesarios, pero a diferencia del anterior no presentaba el inconveniente de mostrar la imagen reflejada y por el contrario, si correspondían directamente la imagen RGB con la imagen de profundidad. Los datos innecesarios que arroja este método pueden ser despreciables ya que no representan ningún error en la toma de mediciones y de igual manera, es posible obtener el mapa de profundidades para posteriormente ser comparado con la imagen de la cámara RGB y generar una exploración 3D exitosa.

En las figuras 15 y 16 se puede observar el mapa de profundidad obtenido con cada uno de los métodos mencionados anteriormente.

Método Depth:

En la figura 15 se puede observar que el mapa de profundidad en escala de grises, generado por la reconstrucción 3D de la escena, no corresponde directamente a la imagen RGB, debido a que la imagen de profundidad se ve a modo espejo, lo cual dificulta hacer la comparación pixel a pixel con estas dos imágenes.

Figura: 15 Imagen RGB, Imagen profundidad capturada mediante método Depth

Método DepthAndPlayerIndex:

En la figura 16 se observa que el mapa de profundidad en escala de grises, generado por la reconstrucción 3D de la escena, corresponde directamente a la imagen RGB, lo que permite hacer una comparación pixel a pixel y de esta manera encontrar la distancia de los pixeles que se necesiten.

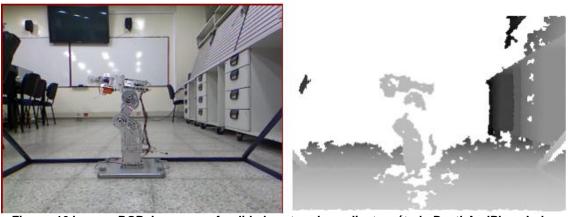


Figura: 16 Imagen RGB, Imagen profundidad capturada mediante método DepthAndPlayerIndex

3.2.4. Mapa de reconstrucción de la profundidad de la escena

Para la estimación de la profundidad de la escena, se utilizan los datos de profundidad obtenidos mediante la exploración 3D. Para dar evidencia de esta, la escena se dividió en regiones no superpuestas de 1cm cada una, cada región es representada mediante un color diferente y de esta manera, poder brindar la sensación de profundidad en superficies no uniformes, como se muestra en la figura 17, en la tabla 2 se muestra la distribución de colores de las regiones delimitadas.

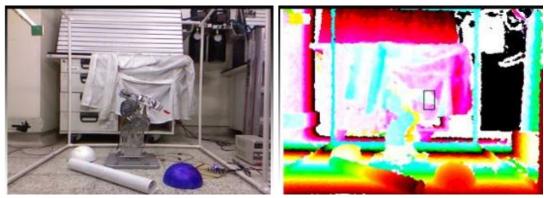


Figura: 17 Sensación de la profundidad en una escena

A partir del análisis de las regiones conformadas mediante color, se puede obtener información sobre la profundidad de la escena en tiempo real, lo cual permite la interpretación y la comprensión de la distribución espacial de la escena.

En la figura 18 se puede observar en detalle, la sensación de profundidad percibida directamente en una persona, donde los objetos cercanos aparecen más grandes en la imagen, por lo que se capturarán en escalas mayores, mientras que objetos más lejanos sólo aparecen en escalas más pequeñas.

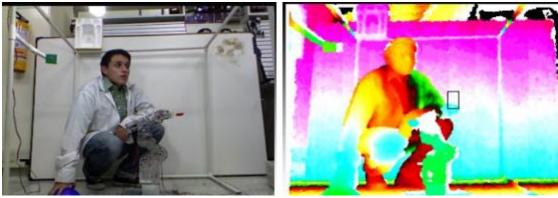


Figura: 18 Percepción de la profundidad en una escena de trabajo

Rango distancia mm	Color	Rango distancia mm	Color
0 - 800		1251 – 1260	
801 – 810		1261 – 1270	
811 – 820		1271 – 1280	
821 – 830		1281 – 1290	
831 – 840		1291 - 1300	
841 – 850		1301 - 1310	
851 – 860		1311 – 1320	
861 – 870		1321 – 1330	
871 – 880		1331 – 1340	
881 – 890		1341 – 1350	
891 - 900		1351 – 1360	
901 – 910		1361 – 1370	
911 – 920		1371 – 1380	
921 – 930		1381 – 1390	
931 – 940		1391 - 1400	
941 – 950		1401 - 1410	
951 – 960		1411 – 1420	
961 – 970		1421 – 1430	
971 – 980		1431 – 1440	
981 – 990		1441 – 1450	
991 - 1000		1451 – 1460	
1001 – 1010		1461 – 1470	
1011 – 1020		1471 – 1480	
1021 – 1030		1481 – 1490	
1031 – 1040		1491 - 1500	
1041 – 1050		1501 - 1510	
1051 – 1060		1511 – 1520	
1061 – 1070		1521 – 1530	
1071 – 1080		1531 – 1540	
1081 – 1091		1541 – 1550	
1100 – 1110		1551 – 1560	
1111 – 1120		1561 – 1570	
1121 – 1130		1571 – 1580	
1131 – 1140		1581 – 1590	
1141 – 1150		1591 - 1600	
1151 – 1160		1601 - 1610	
1161 – 1170		1611 – 1620	
1171 – 1180		1621 – 1630	
1181 – 1190		1631 – 1640	
1191 - 1200		1641 – 1650	
1201 – 1210		1651 – 1660	
1211 - 1220		1661 – 1670	
1221 – 1230		1671 – 1680	
1231 – 1240		1681 – 1690	
1241 – 1250		1691 - 1700	

Tabla 2. Rango de Distancia (mm) Mapa de profundidad de colores

1701 - 1710	Rango distancia	Color	Rango distancia	Color
1711 - 1720 2171 - 2180 1721 - 1730 2181 - 2190 1731 - 1740 2191 - 2200 1741 - 1750 2201 - 2210 1751 - 1760 2211 - 2220 1761 - 1770 2221 - 2230 1771 - 1780 2231 - 2240 1781 - 1790 2241 - 2250 1791 - 1800 2251 - 2260 1801 - 1810 2261 - 2270 1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 1961 - 1970 1971 - 1980 1981 - 1990 1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050	IIIIII	Color	111111	Color
1711 - 1720 2171 - 2180 1721 - 1730 2181 - 2190 1731 - 1740 2191 - 2200 1741 - 1750 2201 - 2210 1751 - 1760 2211 - 2220 1761 - 1770 2221 - 2230 1771 - 1780 2231 - 2240 1781 - 1790 2241 - 2250 1791 - 1800 2251 - 2260 1801 - 1810 2261 - 2270 1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 1961 - 1970 1971 - 1980 1981 - 1990 1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050	1701 – 1710		2161 – 2170	
1721 - 1730				
1731 - 1740 2191 - 2200 1741 - 1750 2201 - 2210 1751 - 1760 2211 - 2220 1761 - 1770 2221 - 2230 1771 - 1780 2231 - 2240 1781 - 1790 2241 - 2250 1791 - 1800 2251 - 2260 1801 - 1810 2261 - 2270 1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 Más de 3000 1991 - 2000 2001 - 2010 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050	1721 – 1730			
1741 - 1750 2201 - 2210 1751 - 1760 2211 - 2220 1761 - 1770 2221 - 2230 1771 - 1780 2231 - 2240 1781 - 1790 2241 - 2250 1791 - 1800 2251 - 2260 1801 - 1810 2261 - 2270 1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1981 - 1990 1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050				
1751 - 1760 2211 - 2220 1761 - 1770 2221 - 2230 1771 - 1780 2231 - 2240 1781 - 1790 2241 - 2250 1791 - 1800 2251 - 2260 1801 - 1810 2261 - 2270 1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 Más de 3000 1971 - 1980 Más de 3000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050				
1771 - 1780 2231 - 2240 1781 - 1790 2241 - 2250 1791 - 1800 2251 - 2260 1801 - 1810 2261 - 2270 1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1951 - 1960 Más de 3000 1951 - 1960 1961 - 1970 1971 - 2010 2001 - 2010 2001 - 2020 2021 - 2030 2031 - 2040 2041 - 2050	1751 – 1760			
1771 - 1780 2231 - 2240 1781 - 1790 2241 - 2250 1791 - 1800 2251 - 2260 1801 - 1810 2261 - 2270 1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1951 - 1960 Más de 3000 1951 - 1960 1961 - 1970 1971 - 2010 2001 - 2010 2001 - 2020 2021 - 2030 2031 - 2040 2041 - 2050	1761 – 1770		2221 – 2230	
1781 – 1790 2241 – 2250 1791 - 1800 2251 – 2260 1801 – 1810 2261 – 2270 1811 - 1820 2271 – 2280 1821 – 1830 2281 – 2290 1831 – 1840 2291 - 2300 1841 – 1850 2301 - 2310 1851 – 1860 2311 – 2320 1861 – 1870 2321 – 2330 1871 – 1880 2331 – 2340 1881 – 1890 2341 – 2350 1891 - 1900 2351 – 2360 1901 - 1910 2361 – 2370 1911 – 1920 2371 – 2380 1921 – 1930 2381 – 2390 1931 – 1940 Más de 3000 1941 – 1950 Más de 3000 1951 – 1960 Más de 3000 1971 – 1980 Más de 3000 2001 – 2010 2011 – 2020 2021 – 2030 2021 – 2030 2031 – 2040 2041 – 2050				
1801 - 1810 2261 - 2270 1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1951 - 1960 Más de 3000 1991 - 2000 2001 - 2010 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050				
1811 - 1820 2271 - 2280 1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 1961 - 1970 1971 - 1980 1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050	1791 - 1800		2251 – 2260	
1821 - 1830 2281 - 2290 1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 1961 - 1970 1991 - 2000 2001 - 2010 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050	1801 – 1810		2261 – 2270	
1831 - 1840 2291 - 2300 1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 1961 - 1970 1971 - 1980 1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050	1811 - 1820		2271 – 2280	
1841 - 1850 2301 - 2310 1851 - 1860 2311 - 2320 1861 - 1870 2321 - 2330 1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 Más de 3000 1981 - 1990 1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050	1821 – 1830		2281 – 2290	
1851 – 1860 2311 – 2320 1861 – 1870 2321 – 2330 1871 – 1880 2331 – 2340 1881 – 1890 2341 – 2350 1891 - 1900 2351 – 2360 1901 - 1910 2361 – 2370 1911 – 1920 2371 – 2380 1921 – 1930 2381 – 2390 1931 – 1940 Más de 3000 1941 – 1950 Más de 3000 1951 – 1960 1961 – 1970 1971 – 1980 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050 2041 – 2050	1831 – 1840		2291 - 2300	
1851 – 1860 2311 – 2320 1861 – 1870 2321 – 2330 1871 – 1880 2331 – 2340 1881 – 1890 2341 – 2350 1891 - 1900 2351 – 2360 1901 - 1910 2361 – 2370 1911 – 1920 2371 – 2380 1921 – 1930 2381 – 2390 1931 – 1940 Más de 3000 1941 – 1950 Más de 3000 1951 – 1960 1961 – 1970 1971 – 1980 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050 2041 – 2050	1841 – 1850		2301 - 2310	
1861 – 1870 2321 – 2330 1871 – 1880 2331 – 2340 1881 – 1890 2341 – 2350 1891 - 1900 2351 – 2360 1901 - 1910 2361 – 2370 1911 – 1920 2371 – 2380 1921 – 1930 2381 – 2390 1931 – 1940 Más de 3000 1941 – 1950 Más de 3000 1951 – 1960 1961 – 1970 1971 – 1980 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050 2041 – 2050			2311 – 2320	
1871 - 1880 2331 - 2340 1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 Más de 3000 1971 - 1980 1981 - 1990 1991 - 2000 2001 - 2010 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050				
1881 - 1890 2341 - 2350 1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 1961 - 1970 1971 - 1980 1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050 2041 - 2050				
1891 - 1900 2351 - 2360 1901 - 1910 2361 - 2370 1911 - 1920 2371 - 2380 1921 - 1930 2381 - 2390 1931 - 1940 Más de 3000 1941 - 1950 Más de 3000 1951 - 1960 1961 - 1970 1971 - 1980 1981 - 1990 1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050				
1901 - 1910				
1911 – 1920 1921 – 1930 1931 – 1940 1941 – 1950 1951 – 1960 1961 – 1970 1971 – 1980 1981 – 1990 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
1921 - 1930				
1931 – 1940 Más de 3000 1941 – 1950 1951 – 1960 1961 – 1970 1971 – 1980 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
1941 – 1950 1951 – 1960 1961 – 1970 1971 – 1980 1981 – 1990 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
1951 – 1960 1961 – 1970 1971 – 1980 1981 – 1990 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
1961 – 1970 1971 – 1980 1981 – 1990 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
1971 – 1980 1981 – 1990 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
1981 – 1990 1991 - 2000 2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
1991 - 2000 2001 - 2010 2011 - 2020 2021 - 2030 2031 - 2040 2041 - 2050	1981 – 1990			
2001 – 2010 2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
2011 – 2020 2021 – 2030 2031 – 2040 2041 – 2050				
2021 – 2030 2031 – 2040 2041 – 2050				
2031 – 2040 2041 – 2050				
2041 – 2050				
2051 – 2060	2051 – 2060			
2061 – 2070	-			
2071 – 2080				
2081 – 2091				
2100 - 2110				
2111 – 2120				
2121 – 2130	-			
2131 – 2140				
2141 – 2150				
2151 – 2160				

Tabla 2. Rango de Distancia (mm) Mapa de profundidad de colores

Al conocer la manera en la que el kinect codifica los datos de profundidad, se diseñó e implemento un algoritmo que permitiera la captura y tratamiento de dichos datos.

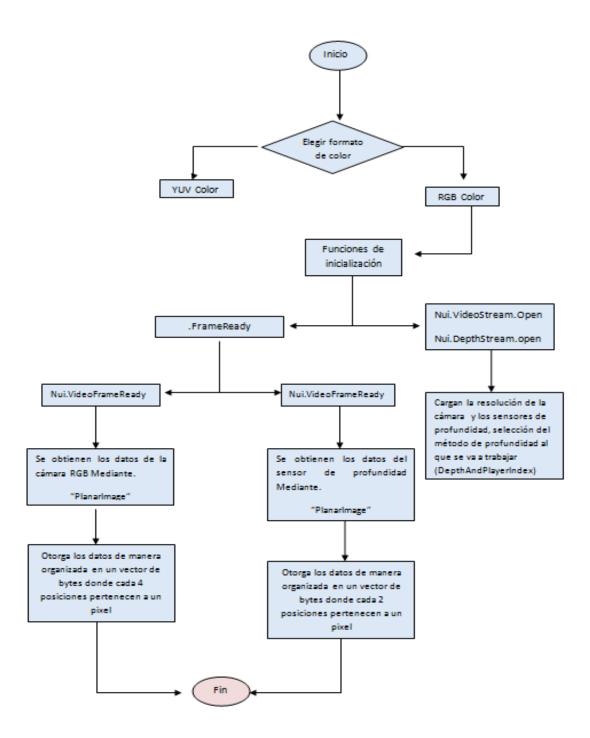


Figura: 19 Diagrama de Flujo proceso de obtención de datos de color y profundidad

3.2.5. Algoritmo de identificación de color

Para la detección del efector final del manipulador se diseñó un algoritmo, el cual es capaz de detectar los colores rojo y verde debido a que el punto de referencia de la zona de trabajo (color verde) y el efector final (color rojo), son de estos colores. Al conocer las componentes roja, verde y azul de la imagen, se realiza una medición estadística, mediante la cual se obtienen dos valores diferenciales óptimos, estos valores permiten realizar la diferenciación de estos colores, por ejemplo para realizar la diferenciación del color rojo, se realiza la resta entre la componente Roja del pixel y la componente azul, la resta entre la componente Roja y verde.

```
Matriz_datos[i][j][RED] - Matriz_datos[i][j][GREEN] = X
Matriz_datos[i][j][RED] - Matriz_datos[i][j][BLUE] = Y
```

Al conocer los pixeles rojos y azules se crea una nueva matriz de datos para generar la nueva imagen, en la cual se evidencia el reconocimiento de estos colores.

En la siguiente imagen se puede evidenciar la identificación de los colores rojo y verde lograda.

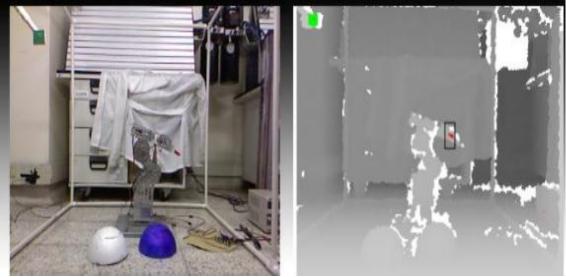


Figura: 20 Identificación de objetos por color

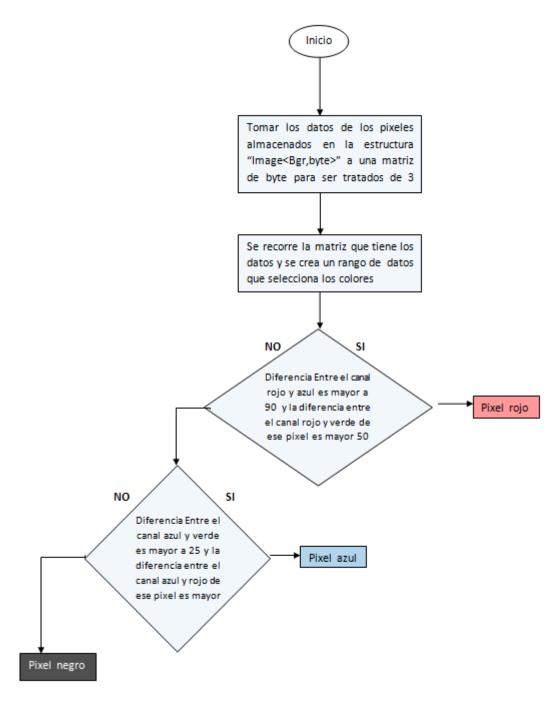


Figura: 21 Diagrama de Flujo proceso Identificación

3.2.6. Algoritmo de tracking del efector.

Una vez identificado el color del efector final, se diseñó un algoritmo que permite hallar el centro geométrico, de la figura que se esté detectando en color rojo y que además cumpla con las características establecidas, las cuales son: una cierta cantidad de pixeles dependiendo de la distancia a la que se encuentre el efector final del Kinect, esta cantidad de pixeles es dada en base al efector final utilizado, en el robot manipulador de GAV. Para lograr esto primero se agrupan los pixeles del mismo color que se encuentren unidos entre ellos, y luego se hallan los puntos máximos y mínimos, tanto en el eje X como en el eje Y, de dicha agrupación que se realizó con anterioridad.

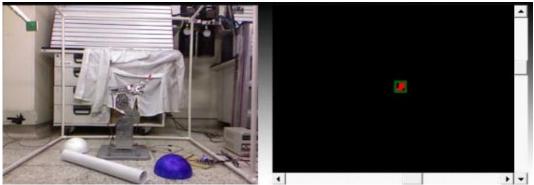


Figura: 22 Reconocimiento objeto de interés

Al hallar la coordenada del centro geométrico de la figura que se está detectando, en este caso el prototipo de efector final de corte superficial, se dá a conocer su ubicación en el eje X, Y y Z con respecto al centro geométrico del sistema de referencia ubicado en el área de trabajo. Alrededor de la figura detectada, se dibuja un cuadro de color verde para mostrar la identificación de esa figura.

Figura: 23 Coordenadas X, Y, Z y tracking del objeto de interés

Para el seguimiento del efector, se generó un algoritmo que permite seguir la ruta por la cual se desplaza el efector final, y generar una gráfica en tiempo real de su desplazamiento, como se puede observar en las figuras 24 y 25, donde se muestra respectivamente el punto inicial del efector final y la trayectoria que realizo, durante una secuencia de seguimiento en el momento en que el operario manipula el brazo. La trayectoria de desplazamiento que evidencia el seguimiento cuadro de imagen por cuadro, se puede evidenciar en dichas imágenes en el recuadro Tracking a la derecha de cada una.

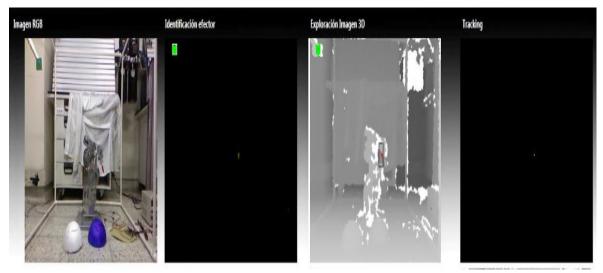


Figura: 24 Tracking dinámico punto inicial

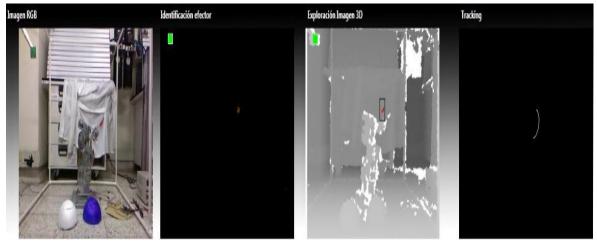


Figura: 25 Tracking dinámico punto final

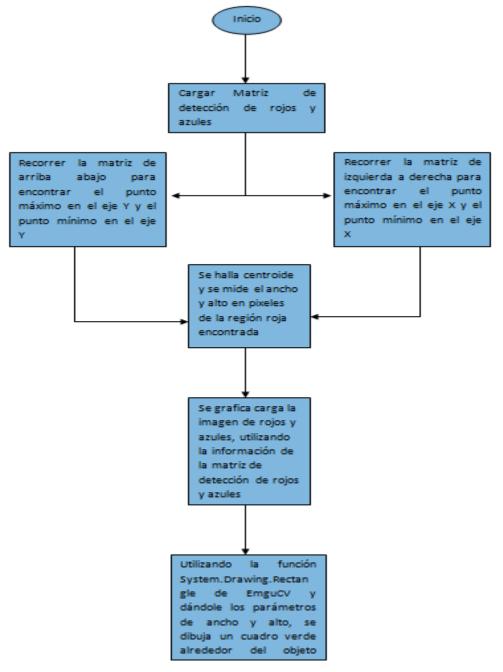


Figura: 26 Diagrama de Flujo algoritmo Tracking Efector

3.3. ANÁLISIS ESTADÍSTICO

Con el fin de garantizar el mínimo de error posible, se realizó un análisis estadístico el cual consiste en parametrizar las distancias de los ejes coordenados X, Y en función de la profundidad arrojada por el sensor kinect.

Para la realización del análisis estadístico se tomó una figura cuadrada constante de 57 mm de ancho y 65 mm de alto de color rojo, a esta figura se le halló el ancho y alto en pixeles a diferentes profundidades. La recolección de datos se llevó a cabo cada 50 mm y se empezó a tomar mediciones a partir de la distancia de 800 mm entre el sensor y el objeto de interés, En las siguientes imágenes se pueden observar algunas de esas pruebas que se realizaron para obtener dichos datos.

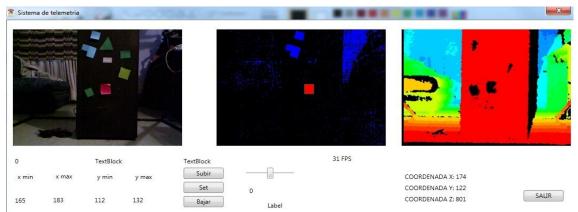


Figura: 27 Imagen a una profundidad 800 mm

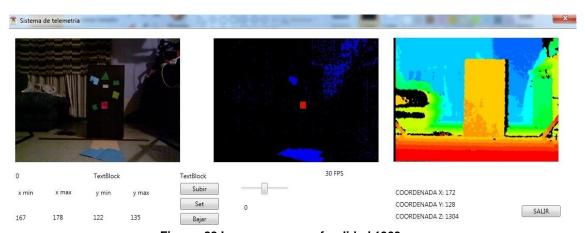


Figura: 28 Imagen a una profundidad 1300 mm



Figura: 29 Imagen a una profundidad 1850 mm

A continuación se presenta la tabulación de los datos obtenidos de las mediciones realizadas con el Kinect:

				Cordenac	da X (Pixeles)		Cordenada	Y (Pixeles)	
# Dato	Distancia Real mm	Profundidad Z mm (Kinect)	% de error	Max	Min	Diferencia X	Max	Min	Diferencia Y
1	800	801	0,125	183	165	18	132	112	20
2	850	851	0,118	167	150	17	131	112	19
3	900	902	0,222	188	172	16	137	119	18
4	950	952	0,211	176	161	15	135	118	17
5	1000	1004	0,400	173	159	14	135	119	16
6	1050	1052	0,190	174	160	14	132	116	16
7	1100	1104	0,364	189	176	13	130	115	15
8	1150	1155	0,435	181	169	12	142	128	14
9	1200	1204	0,333	184	172	12	136	122	14
10	1250	1256	0,480	177	166	11	135	122	13
11	1300	1304	0,308	178	167	11	135	122	13
12	1350	1355	0,370	176	165	11	134	122	12
13	1400	1404	0,286	178	169	9	133	122	11
14	1450	1452	0,138	177	168	9	133	122	11
15	1500	1502	0,133	170	161	9	133	123	10
16	1550	1556	0,387	167	158	9	133	123	10
17	1600	1607	0,438	166	158	8	133	123	10
18	1650	1653	0,182	166	158	8	133	123	10
19	1700	1702	0,118	166	159	7	132	123	9
20	1750	1754	0,229	167	160	7	132	124	8
21	1800	1805	0,278	167	160	7	132	124	8

Tabla 3. Tabulación de datos estadísticos

Mediante este análisis estadístico se obtienen los obtenemos los siguientes parámetros:

Error promedio de 0.273%

Lo que nos asegura que las mediciones realizadas son muy exactas, y en base a ellas se puede obtener una medición confiable

Desviación estándar (s) de 0,118205797.

Debido al rango de operación del sensor Kinect, la recolección de datos se realizó a partir de 800 mm, puesto que las mediciones hechas antes de esta distancia son nulas o erróneas, esto se evidencia en la figura 30, se puede observar en el mapa de profundidad de colores que el kinect no toma esa medición y marca los objetos que se encuentren en el rango de 0 a 795 mm color negro (ver Tabla 2 Rango de Distancia).

Figura: 30 Medición con una distancia menor a 800mm

Sabiendo la medida en pixeles de la figura tomada a varias distancias (ver tabla 3), se obtiene una constante para poder hallar los ejes coordenados en términos de la profundidad, que permite realizar una medición con un error menor o igual al 5%.

La constante hallada es equivalente a 0.00416927, la cual es obtenida al aplicar el método de regresión lineal a la tabla 3 de tabulación de datos estadísticos.

Mediante los datos obtenidos se dio lugar a la gráfica que se muestra en la figura 31 donde se puede ver la precisión de los datos otorgados por el Kinect. La información de un píxel concreto tendrá un porcentaje mayor de error entre más lejos este el objeto de interés del sensor. Se encontró que el Kinect opera correctamente para esta aplicación entre 80 cm y los 3 metros.

cantidad pixeles vs distancia

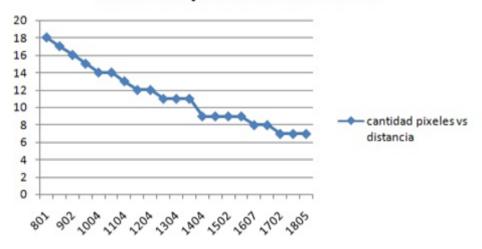


Figura: 31 Grafica cantidad de pixeles vs Distancia

El segundo análisis estadístico realizado consiste en tomar diferentes datos de las coordenadas X, Y, Z arrojadas por el sistema, y validarlas con un elemento de medición manual (Flexómetro), para corroborar que si correspondan a las medidas reales, y encontrar el porcentaje de error que se presenta en la medición de este sistema. En las siguientes imágenes se pueden observar algunas de esas pruebas que se realizaron para obtener dichos datos.

Figura: 32 Validación experimental del sistema

A continuación se presenta la tabulación de los datos obtenidos, con las mediciones realizadas con el sistema y el elemento de medición manual:

Análisis estadístico eje X:

Dato x (Cm)	Dato x real (Cm)	Porcentaje error (%)
77,225	74,5	3,657718121
68,685	70,1	2,018544936
69,3	71,2	2,668539326
36,1	35	3,142857143
30,34	29	4,620689655
80,15	77	4,090909091
77,8	75,6	2,91005291
67,3	69,5	3,165467626
50,45	48,5	4,020618557
35,77	36,5	2
20,22	21	3,714285714
16,45	16	2,8125
19,25	20	3,75
50,67	49,6	2, <mark>1</mark> 57258065
34,67	32,6	6,349693252
23,772	22,5	5,653333333
34,63	32,5	6,553846154
53,57	51	5,039215686
18,26	18	1,444444444
32,48	31,5	3,111111111
30,75	29,5	4,237288136
34,326	32,5	5,618461538
46,756	45	3,902222222
49,35	48,5	1,75257732
24,36	25,5	4,470588235
21,34	22,4	4,732142857
20,17	19,2	5,052083333
47,69	50	4,62
27,68	26,5	4,452830189

Tabla 4. Tabulación de datos estadísticos eje X

A partir del análisis de las muestras obtenidas, se tiene como resultado que la medición arrojada por el sistema en el eje X, presenta un error porcentual por debajo del 7%, y un error porcentual promedio de 3.3852388929%.

Para este análisis también se obtiene una desviación estándar de 1.343169914.

Análisis estadístico eje Y:

6,66666666	30	32
2,89855072	34,5	35,5
2,71186440	29,5	28,7
6,66666666	3	3,2
6,42857142	28	29,8
3,41463414	41	39,6
3,79310344	29	27,9
6,9444444	36	38,5
5,0	12,5	13,2
4,83720930	21,5	22,54
ļ	8	8,4
6,2	3,2	3
6,32911392	31,6	33,6
0,98113207	26,5	26,76
0,8	7,5	7,56
12	1 6	16,64
5,58659217	17,9	18,9
2,53275109	22,9	23,48
1,56666666	30	30,47
6,66666666	30	32
4,12048192	41,5	43,21
4,4444444	22,5	23,5
5,2	25	26,31
6,05479452	36,5	34,29
0,07792207	38,5	38,47
	13	12,35
4,81818181	11	10,47
1,86666666	7,5	7,64
5,5312	64	67,54

Tabla 5. Tabulación de datos estadísticos eje Y

Mediante este análisis, se puede observar que la medición obtenida por el sistema en el eje Y, presenta un error porcentual por debajo del 7%, y un error porcentual promedio de 4.373392252%.

Para este análisis también se obtiene una desviación estándar de 1.979614851.

Análisis estadístico eje Z:

orcentaje error (%)	ato z real (Cm) i	ato 2 (Cili)
3,80952381	31,5	32,7
3,174603175	25,2	26
1,265822785	23,7	24
1,234567901	40,5	40
3,333333333	21	21,7
3,225806452	46,5	48
0,938967136	42,6	43
4,417670683	24,9	26
2,857142857	17,5	18
4,166666667	9,6	10
1,960784314	5,1	5
2,105263158	9,5	9,7
3,703703704	27	28
4,761904762	31,5	33
4,166666667	24	25
4,761904762	21	22
1,886792453	26,5	27
4,615384615	32,5	31
4,166666667	24	23
3,03030303	16,5	17
4	12,5	13
3,896103896	7,7	8
4,347826087	11,5	12
3,448275862	20,3	21
4,395604396	18,2	19
3,333333333	15	14,5
4,166666667	12	11,5
3,333333333	9	8,7
2,857142857	7	7,2

Tabla 7. Tabulación de datos estadísticos eje Z

A partir de este análisis, se puede decir que la medición arrojada por el sistema en el eje Y, presenta un error porcentual por debajo del 5%, y un error porcentual promedio de 3.357302254% yuna desviación estándar de 1.092787054.

4. PRUEBAS Y RESULTADOS EXPERIMENTALES

En este capítulo se describen las pruebas y los escenarios a los que fue expuesto el sistema de telemetría 3D, se muestran los problemas que surgieron a través de la realización de estas pruebas y como se solucionaron. Finalmente se da a conocer los resultados obtenidos.

4.1. UBICACIÓN DEL SENSOR KINECT

Para lograr la correcta ubicación del sensor Kinect y obtener un mejor rendimiento de seguimiento y reconocimiento de objetos además de medición de distancias, inicialmente se diseñó una estructura que permitiera variar la distancia y ángulo de inclinación del kinect con respecto al objeto de interés, como se puede observar en la figura 33.

Figura: 33 Prueba mediciones diagonales con el Kinect

Después de realizar pruebas y analizar los resultados se observó que tomar mediciones diagonalmente con el Kinect no es viable, debido a que de este modo se ve afectado el Angulo de cobertura del Kinect y se tienen mediciones erróneas o nulas como se muestra en el mapa de colores de la figura 34 (convención de mapa de colores ver la tabla 2)

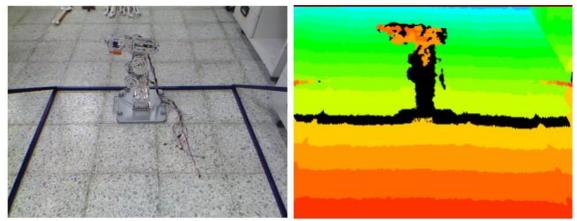


Figura: 34 Error al tomar mediciones diagonales con el Kinect

Con el fin de mejorar los problemas mencionados anteriormente se decide realizar otra estructura (ver figura 35), esta nueva plataforma cuenta con una base para poner el Kinect totalmente horizontal y de este modo evitar las malas mediciones, además posee un sistema de iluminación propia y de este modo cumplir con los principios básicos de un sistema de visión artificial.

Figura: 35 Sistema con iluminación propia

4.2. PRUEBAS SISTEMA DE TELEMETRÍA

Para la implementación del sistema de telemetría 3D en el robot manipulador industrial GAV, se elaboraron dos modelos para simular los efectores finales de corte superficial, estos se realizaron basándonos en modelos en la web. En la figura 36 se puede observar la simulación de las herramientas de corte.

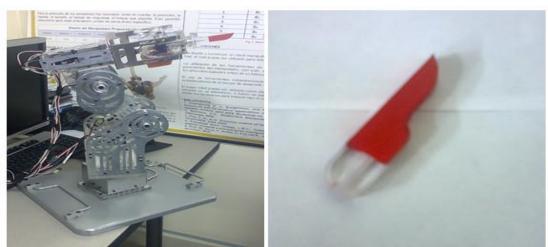


Figura: 36 Efectores de corte superficial

Las pruebas del sistema de telemetría 3D, se realizaron utilizando un computador Hewlett Packard con un procesador AMD Athlon(tm) II X3 235e de 2.7GHz, 4GB de memoria RAM, obteniendo entre 25 y 30 FPS y los siguientes resultados:

Figura: 37 Pruebas Sistema de telemetría 3D

En la figura 37 se puede apreciar el resultado de la interfaz gráfica elaborada en Visual Studio 2010, se presentan cuatro cuadros de video proporcionados por el sensor Kinect, donde se puede observar la implementación de los algoritmos mencionados en el capítulo 3, en el cuadro RGB se tiene la escena de trabajo sin ninguna modificación, en el cuadro identificación del efector, se muestra el punto de referencia, el cual está en color verde y el efector final con las respectivas coordenadas X,Y,Z, con respecto a la coordenada del punto de referencia, seguidamente en el cuadro exploración 3D, se tienen los mapas de profundidades los cuales permiten tener una perspectiva 3D de la escena de trabajo, y de este modo brindar al usuario la sensación de profundidad y relieve que se tiene en la escena, el cuadro de tracking se muestra el seguimiento realizado al efector final.

Para realizar las pruebas del sistema, se realizaran validaciones manuales, ya que el manipulador industrial fase 2, no se encuentra en óptimas condiciones de funcionamiento, lo que dificulta su movilización y demás, por esto se opta por realizar las validaciones del sistema de manera manual

4.2.1. Análisis de resultados

El análisis estadístico aplicado para encontrar las constantes de razón de cambio en el eje X, y el eje Y se ve validado por el análisis estadístico realizado para verificar la eficiencia del sistema de telemetría.

Como se puede evidenciar en el análisis estadístico, realizado para verificar la eficiencia del sistema de telemetría. Se observa que el mayor error presentado se da en la medición de la coordenada Y, ya que esta coordenada tiene una constante de razón de cambio distinta a la del eje X y el eje Z. El eje X posee una constante que depende de la diferencia de pixeles en el eje x, y la profundidad a la que se encuentren los pixeles medidos, el eje z solo depende de los datos de profundidad del efector final y la referencia ubicada en el sistema, por el contrario el eje Y depende no solamente de la diferencia de pixeles que se dé en este eje y la profundidad de estos, sino que además debe tener en cuenta una variable que depende del ángulo de visión del sensor, que dependiendo de la distancia puede variar.

5. MANUAL DE USUARIO

La interfaz de usuario se desarrolló de manera amigable, intuitiva, con facilidad de aprendizaje y uso para los usuarios de la aplicación.

Al ejecutar el programa por primera vez aparece una ventana que cuenta con la información básica de los desarrolladores del proyecto, en la parte inferior

derecha hay un botón para continuar, el cual nos llevara al entorno principal de trabajo (Figura 38).

Figura: 38 Ventana información Interfaz de usuario

El entorno principal de trabajo está constituido por tres cuadros de imagen los cuales muestran la información captada por el kinect (Imagen RGB, Tracking, Mapas de profundidad) y varios cuadros de texto que muestra la información (Controles Motor, Coordenadas X, Y, Z del elemento de interés, dimensiones objeto de interés, selector tipo de mapa de profundidad), (figura 39).

Figura: 39 Ventana principal sistema de telemetría 3D con Kinect

En el cuadro de Imagen RGB se encuentra la información captada por la cámara RGB del sensor, el cuadro tracking presenta la identificación y seguimiento que se realiza al efector final del manipulador, Finalmente el cuadro de Mapas de profundidad que tiene dos opciones Mapa de profundidad escala de grises y Mapa de profundidad de colores permite observar la escena

en 3D para así tener una mejor percepción de profundidad y relieve de la escena.

Pulsando el botón izquierdo del mouse sobre la imagen, se accede a las funciones que ofrece trabajar con los ImgBox de Emgu CV de: File, Filters, Zoom y Property cada una de estas funciones posee una ciertas subfunciones las cuales serán mencionadas a continuación:

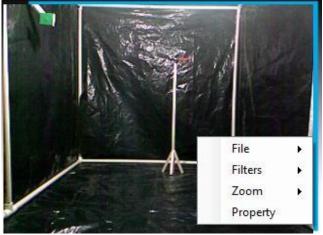


Figura: 40 Opciones cuadros ImgBox

File

- ➤ Load image: Sirve para cargar una imagen en este caso no se utiliza ya que las imágenes son captadas directamente con cámara.
- > Save as: Si el usuario desea tomar un pantallazo de alguna de las imágenes esta opción es la indicada.

Filters

- Conversión: Se utiliza para cambiar el formato de color de la imagen y el tipo de dato que entrega.
- > Transform: Permite girar la imagen, verla a modo espejo entre otros.
- Grandients, Edges: Permite aplicar a la imagen los filtros canny, laplace y sobel.
- Varius: Permite aplicarle Resize a la imagen dando los parámetros respecto a una escala o a un tamaño predefinido.

Zoom

Zoom in: Permite realizar un acercamiento a la imagen.

Zoom out: Permite realizar un alejamiento a la imagen.

> **Un-Zoom:** Permite restablecer la imagen a su tamaño normal.

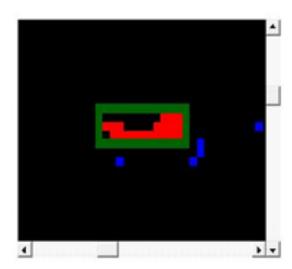


Figura: 41 Zoom en cuadros de imagen de la interfaz de usuario

Property

En la función property, se tiene acceso a todos los datos generales y específicos de la imagen, como lo son el tamaño, tipo de color que maneja, tipo de datos que se manejan, Frames per second (FPS), Intensidad de colores de la respectiva imagen, zoom a la que se encuentra trabajando.

> Show Histogram: Muestra los respectivos histogramas de la imagen, dando así acceso a datos más específicos de la imagen.

En la parte inferior izquierda como se muestra en la figura 40 se encuentran los controles para controlar el motor del kinect, son tres botones los cuales son: Subir, Set, Bajar. Cada uno de estos cumple una función específica:

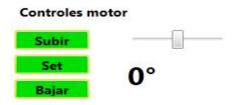


Figura: 42 Controles Motor

- Subir: Controla cuanto se va a elevar el ángulo de visión del sensor Kinect.
- Set: Lleva el motor al ángulo en el que se encuentre el marcador en ese momento.
- Bajar: Controla cuanto se va a bajar el ángulo de visión del sensor Kinect.

El botón set es el más implementado debido a que el motor del sensor Kinect no está diseñado para estar en continuo movimiento, y debe moverse una vez cada cinco segundos máximo, de lo contrario puede ocurrir un error en la compilación del programa, este dispositivo del Kinect es de gran cuidado y tiende a dañarse con facilidad si no se aplica lo mencionando anteriormente.

Intensidad de color

En la parte inferior de los cuadros de video se encuentran, dos sliders que permiten cambiar la intensidad de color verde y rojo, esto se realizó con el fin de permitir variar los parámetros de estos colores, y así poder identificar el punto de referencia y el efector final, dependiendo las condiciones de luminosidad a las que se encuentre expuesta la escena.

Figura: 43 Variación de parámetros de color

En la figura 42 se muestra el cambio que sufre la imagen al variar los niveles de rojo y verde.

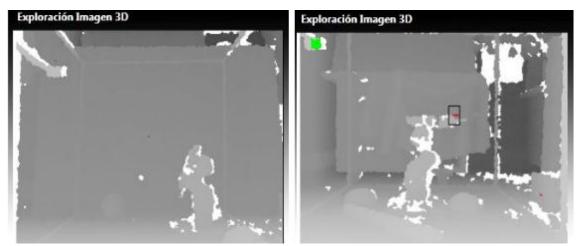


Figura: 44 Variación de intensidad de color en la escena

Selección tipo de mapa de profundidad.

Para cambiar el mapa de profundidad en gris a un mapa de profundidad en colores, donde se pueda diferenciar y apreciar los cambios de profundidad en la imagen de mapa de profundidad, se debe seleccionar el Radio botón "Mapa de profundidad colores", o si se quiere volver al mapa de profundidad en gris, se debe seleccionar el Radio botón "Mapa de profundidad escala de grises", estos selectores se encuentran en la parte inferior derecha.

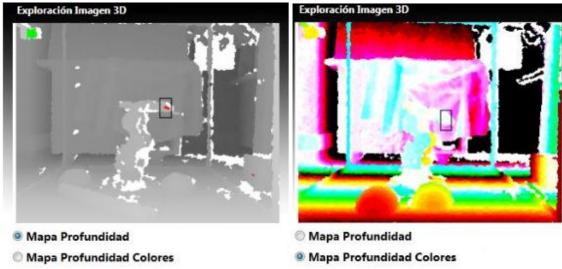


Figura: 45 Mapas de profundidad

6. POSIBLES APLICACIONES Y TRABAJOS FUTUROS

El proyecto fue desarrollado para ser implementado en un futuro en aplicaciones de Telecirugía y procesos de corte industrial que se realicen mediante robots teleoperados, pero también podría funcionar para cualquier sistema que requiera de tracking y telemetría siempre y cuando opere dentro del rango de operación del sensor Kinect.

Se propone probar otros SDK para Kinect no oficiales como OPENNI, OPENKINECT y FREENECT [20] los cuales permiten hacer uso de la cámara RGB y las funciones de profundidad del Kinect. Estos SDK tienen gran acogida al ser totalmente libres y con licencias comerciales, están disponibles para trabajar con los sistemas operativos GNU/Linux, Windows, y Mac OSX

Respecto al algoritmo una posible mejora es hacerlo más robusto, organizar y hacer más compacto el código, además realizar un algoritmo que permita identificar y hacer seguimiento al efector final del manipulador mediante otra técnica que no sea mediante segmentación de color.

Probar el sistema en otro robot manipulador de corte superficial, puesto que el del grupo de investigación GAV, presenta diversos inconvenientes y fallas de tipo mecánico y eléctrico.

Se propone utilizar un sistema multi-Kinect para evitar que el sistema se encuentre fuera del rango de visión, cuando se presente obstrucción u oclusión en el campo de visión.

7. CONCLUSIONES

Se identificaron algunos métodos de medición de distancia a través de técnicas de visión 3D, como sistemas estereoscópicos y sistemas comerciales como el kinect, lo cual sirvió como punto de partida, para que en función al desempeño reportado por la literatura, se escogiese el Kinect por precisión y bajo costo.

Mediante la obtención de los datos de profundidad arrojados por los sensores del Kinect, es posible representar un espacio 3D, de este modo se puede obtener rápidamente en una escena virtual en tiempo real, la distancia a un punto de interés en la escena explorada.

La sensación de profundidad en superficies no uniformes, se logró a partir de una colección de distancias caracterizadas mediante colores en la escena de trabajo. Los colores escogidos para esta aplicación tal vez no corresponden a un patrón específico, sino se ajustaron a conveniencia visual de la aplicación, una selección óptima debe tener en cuenta varias estrategias adicionales de fotografía para enfatizar la sensación de profundidad influyendo sobre el realismo final, sin embargo el patrón de color utilizado permite una aproximación eficiente para abordar este tema.

Se logró desarrollar un algoritmo de segmentación y telemetría 3D, que permite realizar la identificación, tracking y muestra las coordenadas X, Y, Z del efector final de robot manipulador del grupo de investigación GAV, respecto a un punto de coordenadas fijas de referencia. Sin embargo, la eficiencia computacional y la calidad de la imagen siguen siendo los factores críticos para aplicaciones en tiempo real. En este desarrollo, se complementó la acción de medición del Kinect 3D, por medio del uso de técnicas de procesamiento de imagen mediante la implementación de la librería de visión artificial EmguCV, además la utilización de un sistema de iluminación propio en la escena de trabajo, permitió obtener un ambiente semi-controlado que estandariza el procesado y análisis de las imágenes.

El uso de librerías para el procesamiento de imágenes en este proyecto, aportó de manera significativa a mejorar el consumo de memoria, puesto que las aplicaciones desarrolladas antes de la implementación de estas, tenían una velocidad de procesamiento bastante bajas, además estas librerías proveen una gran cantidad de operaciones, que permiten el fácil procesamiento y

manipulación de los datos arrojados por el sensor Kinect, permitiendo de esta manera realizar aplicaciones mucho más acertadas.

Los datos obtenidos en las pruebas experimentales, fueron sometidos a análisis estadísticos, con el fin de determinar el rango de operación del Kinect, asegurando de este modo que el sistema tiene un correcto funcionamiento entre 800mm y 1304mm, con un porcentaje de error de 2%, lo cual representa una distancia de 2 mm, concluyendo que el sistema se desempeña con un porcentaje de erro bajo.

A pesar de realizar un análisis estadístico, para asegurar el mínimo error posible en la medición de distancias, se evidencia que el sistema posee un error porcentual promedio en las distancias de los ejes coordenados X, Y menor al 5%, y en el eje Z se presenta un error porcentual promedio menor al 1%, los cuales pueden ser generados por diversos factores, como lo son las variaciones de luz e inclusive errores sistemáticos observacionales e instrumentales producto de la mala lectura de la distancia experimental. Por lo cual como trabajo futuro abre campo a la validación mediante otra técnica de medición posiblemente electrónica.

El prototipo del sistema de identificación y telemetría 3D tiene un alcance para realizar pruebas y análisis en diferentes entornos, en un área media, capaz de cubrir el rango de acción de un brazo robótico sobre un paciente, pero para el caso de cambio de efector, variaciones fuertes de luminosidad u obstrucciones de la cámara, queda abierto para mejoras y modificaciones hasta alcanzar el grado de madurez suficiente para ser implementado en aplicaciones de telecirugía.

Bibliografía e infografía

- [1] Jinete G. Marco, Jiménez M. Robinson, Prieto Flavio A.; "Sistema de Visión estereoscópica para reconocimiento de objetos en 3D". Ponencia, México. 2012. Evento: 5to Congreso Internacional de Matemáticas Aplicadas-APPLIEDMATH 5.
- [2] Pajares Gonzalo; De la Cruz Jesús, "Visión por computador, Imágenes digitales y aplicaciones". Editorial Alfaomega
- [3] Rodríguez A. Jorge, "Introducción a los sistemas de visión artificial.
- [4] Iralde L. Iñaki; Pina C. Alfredo. Desarrollo de aplicaciones con Microsoft Kinect, Universidad de Pamplona España.
- [5] Palero M. Fernando, Librerías wrapper para el acceso a cámaras kinect y herramientas para el calibrado de las cámaras RGB y profundidad, Universidad Politécnica de Valencia España.
- [6] El-laithy Riyad; Huang Jidong; Yeh Michael, "Study on the Use of Microsoft Kinect for Robotics Applications"
- [7] Philip J. Noonan; Tim F. Cootes; William A. Hallettt; Rainer Hinz," The Design and Initial Calibration of an Optical Tracking System Using the Microsoft Kinect"
- [8] Smisek Jan; Jancosek Michal; Tomas Pajdla, "3D with Kinect"
- [9] Woodall William; Bevly David, "Using the Microsoft Kinect for 3D Map Building and Teleoperation"
- [10] Baumela Luis, "Visión por Computador", Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid
- [11] Diaz Cesar; Romero Cesar, "Visión Artificial Usando Kinect y OpenCV"
- [12] Zúñiga B Marcos; López P. Felipe. Documentación Kinect "Primeros Pasos", Universidad Técnica Federico Santa María
- [13] Calderón C. Francisco. Kinect Uso de cámaras RGB-D en robótica de interiores, Grupo de investigación en sistemas inteligentes, robótica y percepción, Universidad Javeriana de Colombia.
- [14] Domingo Mery, Visión por Computador, Departamento de Ciencia de la Computación, Universidad Católica de Chile.

- [15] Jingjing Fu; Dan Miao ;Weiren Yu; Shiqi Wang; Yan Lu; Shipeng Li, "Kinect-like depth compression with 2d+T prediction", 2012 IEEE International Conference on Multimedia and Expo Workshops.
- [16] Sherlock Machine Vision Software, Manual de prácticas de visión por computador.
- [17] Yuttana Suttasupa; Attawith Sudsang; Nattee Niparnan, "Plane Detection for Kinect Image Sequences", Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics
- [18] Rey O. Alcira, Reconocimiento de Color por computador, Departamento de Ingeniería Multimedia, Universidad Militar Nueva Granada.
- [19] Técnicas de inteligencia artificial, Visión artificia, Visión 3D disponible en: http://rua.ua.es/dspace/bitstream/10045/17323/8/estereo.pdf
- [20] Página oficial de Microsoft Kinect: http://www.xbox.com/es-CO/Xbox360?xr=shellnav
- [21] Descargar, información y actualizaciones del SDK de Kinect for Windows: http://www.microsoft.com/en-us/kinectforwindows/develop/overview.aspx
- [22] Windows Presentation Foundation información y descripción, disponible en: http://msdn.microsoft.com/es-es/library/ms754130.aspx
- [23] Página oficial de EmguCv: http://file.emgu.com/wiki/index.php/Main_Page
- [24] Información sobre Kinect, freenect, OpenKinect, y OpenNI: http://landerpfc.wordpress.com/2011/02/18/kinect-freenect-openkinect-openn/
- [25] Términos legales de la licencia del SDK de Kinect for Windows: http://www.microsoft.com/en-us/kinectforwindows/develop/sdk-eula_sp-sp.aspx
- [26] Vega romero Edward,"Teleoperación de un robot antropomórfico por medio de Kinect" Trabajo de grado, Universidad de pamplona Colombia.
- [27] Kinect en Aplicaciones de Cirugía Asistida por Computador http://www.advertainmen.com/2011/11/kinect-en-la-medicina-educacion-arte.html
- [28] Hernández L. José, Quintanilla O. Ana, Rangel B. Javier, Ibarra M Alberto, Almaza O. Luz; "Detecting objects using color and depth segmentation with Kinect sensor" The 2012 Iberoamerican Conference on Electronics Engineering and Computer Science.