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Abstract  

Three-dimensional cell cultures have been proposed to address the limitations in two-

dimensional cell cultures (i.e. lack of relevant architectural features) and very few have 

developed 3D cell culture methods for peripheral nerve studies. Therefore, the present study 

reports on the development of a 3D in vitro peripheral nerve model using aligned electrospun 

polycaprolactone fibre scaffolds manufactured under tightly controlled and reproducible 

conditions with uniform diameters of 1 µm, 5 µm and 8 µm. Fibres were characterized by 

SEM for diameter, density and alignment properties and formed in to scaffolds for 3D in vitro 

culture. Three different approaches were adopted using: i) neuronal or primary Schwann cell 

cultures alone; ii) neuronal and primary Schwann cells in co-culture and iii) isolated dorsal 

root ganglion cultures, containing both neuronal and Schwann cells, with 

immunohistochemical and 3D confocal microscopy analysis. Neurite guidance was evident 

on all fibres diameters with the longest neurites detected on 8 µm fibres when cultured alone. 

However, co-culture with primary Schwann cells was found to enable neurite formation on 

all scaffolds. Dorsal root ganglion explants when grown on scaffolds showed both organised 

aligned neurite guidance and notably the co-localization of Schwann cells with neurites. 

Neurite lengths of up to 2.50 mm were routinely observed using 1 µm diameter fibres after 10 

days and all cultures demonstrated a migrating Schwann cell „front‟ of up to 2.70 mm (1 µm 

diameter fibres). Thus, a direct relationship was found between fibre diameter, neurite 

outgrowth and Schwann cell behaviour. Myelin formation was also studied in 

neuronal/Schwann cell co-cultures either as neuronal cells plus primary Schwann cells or as 

DRG explants, although no myelin expression was detected. This work therefore supports the 

use of aligned electrospun PCL microfibres for the development of 3D peripheral nerve 

models in vitro, with future value in a number of areas including developmental biology, 

disease studies and the design of devices and scaffolds for peripheral nerve repair. 
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1. Introduction  

For several years, numerous studies ranging from drug development through to 

developmental biology have relied on two-dimensional culture methods of eukaryotic cells 

on flat substrates made from glass or polystyrene. Although the method can provide useful 

cell or tissue physiological information, monolayer cell culture is an oversimplified model 

which fails to accurately represent the microenvironment of the native tissue, in term of 

mechanical and biochemical cues, cell-cell and cell-matrix communication and architectural 

elements. Obviously, the lack of relevance architectural features is the major disadvantage 

which may lead to differing biological responses than in the original tissue since normal cell 

behaviour such as receptor expression, cellular proliferation and migration and apoptosis 

require spatial cues from the surrounding environment. Many 2D cell culture studies also fail 

to address the interactions between different cell types which are present in the native tissue, 

hence unable to accurately replicate normal cellular function in vitro. To address these 

limitations, a number of studies have attempted to develop methods for three-dimensional 

culture models, focusing on the spatial cellular organisation.  

Very few studies have described the methods for the development of in vitro 3D 

models for peripheral nerve tissue. Nonetheless, these models may have significant 

importance in neuropathy, therapeutic studies, developmental neurobiology or nerve 

regeneration. Presently, methods for peripheral nerve studies are limited to two-dimensional 

cell/tissue cultures and animal models. The 2D culture models commonly involve the use of 

cell isolates or tissue explants from peripheral nerve tissue. For examples, dorsal root ganglia, 

in dissociated or explant forms, are used to obtain sensory neurons. Motor neurons are 

isolated from spinal cord and Schwann cells from sciatic nerve [1-3]. The use of cell lines 

such as NG108-15, PC12 and SH-SY5Y are also commonplace as models representing 

neuronal and Schwann cells in in vitro studies [4-6]. Peripheral neuropathy and therapeutic 
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studies are usually confined to the use of genetically engineered animal models to simulate 

disease conditions [7]. There also has been an increase in the use of animal models for nerve 

regeneration studies and the development of devices for peripheral nerve repair.  

The development of 3D culture models for peripheral nerve may also have importance 

in the improvement of nerve guidance conduits for peripheral nerve reconstruction following 

injury. Nerve guidance conduits (NGCs) have been researched extensively for repairing gap 

injuries with particular consideration on axons and Schwann cell growth as well as functional 

recovery, but are not commonplace in current clinical practice. Six commercially available 

devices exist presently, where all are comprised of a simple hollow tube in to which proximal 

and distal stumps are inserted (reviewed in [8]). Functional recovery, irrespective of whether 

NGCs are made from a synthetic or natural materials is comparable to autografting for small 

nerve gaps [9, 10], but typically restricted to a regeneration distance of 20-25 mm [8]. The 

inclusion of internal structures such as microchannels [11] or aligned fibres [12] for 

improving axonal regrowth (and Schwann cell migration) has been reported by a number of 

groups [13, 14], in combination with the delivery of support cells e.g. Schwann cells [15] or 

stem cells [6, 16, 17]. It is envisaged that scaffold designs for in vitro peripheral nerve 

models may be implemented in clinical use, in which the scaffolds can be used as 

intraluminal structures for the improvement of nerve conduit designs.  

The designs of scaffolds for such models must not only promote axon and Schwann 

cell growth, but must also provide relevant tissue organization and support neuronal-glial 

interactions. Therefore, this study describes the development of aligned three-dimensional 

culture model for peripheral nerve tissue using aligned electrospun polycaprolactone 

microfibres as scaffolds.  
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2. Literature review  

2.1 Peripheral nervous system  

The nervous system is essentially a communication system in the body which relays 

signals in response to the external and internal stimuli in the form of electrical impulse 

through an extensive network of nerve cells. The system is responsible to regulate and 

coordinate the body and organs functions. Anatomically, the nervous system is divided into 

two parts:  

1. The central nervous system, which consists of the brain and the spinal cord and  

2. The peripheral nervous system, which consists of the nerves and clusters of nerve cell 

bodies called ganglia that are located outside of the central nervous system. 

Principally, nerve tissue consists of two types of cells, neurons and supporting cells or 

glial cells. The neurons are cells that conduct impulses within the nervous system and glial 

cells are non-conducting cells which are in intimate proximity of neurons and support the 

functions of neurons. In the PNS, glial cells consist of Schwann cells and satellite cells and 

conversely, glial cells in the CNS are more diverse which include oligodendrocytes, 

astrocytes, microglia and ependymal cells.  

2.1.1. Cellular composition in the peripheral nervous system  

Structural characteristic of a neuron include the cell body, axon and dendrites. The 

cell body is the main part of a neuron that contains the nucleus and the organelles. The cell 

body is also characterized by the presence of Nissl bodies which are basically collections of 

rough endoplasmic reticulum and free ribosomes. A neuron commonly extends one long 

process from the cell body called an axon which transmits electrical impulse away from the 

cell body to other neurons or an effector cells or organs. Some neurons also have branches of 
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shorter processes called dendrites which receive signals from other neurons and relay the 

electrical impulse to the cell body.  

There are two types of neurons that make up the nerve tissue in the PNS, namely 

motor neuron and sensory neuron. Motor neurons are classified as multipolar neuron and they 

are characterized with multiple dendrite branches on one end which act as the receptor part of 

the neuron and a single axon on the other end which acts as the conducting part of the neuron. 

Motor neurons transmit efferent signals from the CNS to effector cells or organs such as 

skeletal muscles, smooth muscles and glands. On the other hand, sensory neurons are 

unipolar with two axonal branches which emanate from the cell body; one axon connects to 

the periphery and one to the CNS. Both branches are conducting. Sensory neurons convey 

sensory afferent inputs from cells and organs like skin, tendons and joints. The cell bodies of 

motor neurons are located in the ventral horn of the gray matter of the spinal cord and extend 

their axons out through a ventral root. The cell bodies of sensory neurons cluster in a 

structure called the dorsal root ganglion which is found near the spinal cord. As axons from 

both sensory and motor neurons leave the spinal cord, their paths merge in a single spinal 

nerve and proceed to their destination.  

Besides neurons, the PNS also constitutes two types of glial cells, namely Schwann 

cells and satellite cells. The satellite cells are the main glial cells found in the DRG. They are 

located intimately around the neuron cell bodies, with approximately a 20 nm gap between 

the satellite cells and neuron plasma membrance, and form a sheath of single layer cells [18]. 

A single sensory neuron is commonly ensheathed with several satellite cells and these 

neuron-satellite cells clusters are separated by a layer of connective tissue [19]. The 

functional role of the satellite cells is not yet fully understood. However, the presence of 

neurotransmitter transporters such glutamate and gamma aminobutyric acid (GABA) in the 

cells suggests that they have a role in regulating the microenvironment in the extracellular 
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space of dorsal root ganglia [20, 21]. Although the satellite cells ensheath around the neuron 

cell bodies, the sheath does not serve as a barrier layer since proteins and macrophages can 

penetrate through the layer [22-24]. Additionally, the satellite cells may also have a role in 

injury response, inflammation reactions and neuropathic pain [25-27].  

Schwann cells are the most extensively studied glial cells in the PNS due to the fact 

that they are abundant throughout the PNS, primarily within the nerve trunk. They are closely 

apposed to axons and aligned along the length of axons. Schwann cells exist as myelinating 

and non-myelinating Schwann cells, although both arise from a common cell lineage. 

Myelinating Schwann cells envelop around axons to form a lipid-rich membrane called the 

myelin sheath which insulates axons for proper propagation of the action potential. Each 

myelinating Schwann cell only envelops one axon. On the other hand, non-myelinating 

Schwann cells do not make the myelin sheath but axons are still enclosed by the Schwann 

cell cytoplasm. A single non-myelinating Schwann cell can envelop more than one axon to 

form a Remak bundle. In general, the myelin sheath is present around axons with a diameter 

of more than ~1 µm and this may be due to the fact that the initiation of myelination is 

dependent on the axonal diameter through complex axon-Schwann cell interactions [28, 29].  

Depending on circumstances, Schwann cells play a multitude of functions in the nerve tissue. 

Besides their role to provide the myelin sheath, Schwann cells are also involved in nerve 

development, regeneration and inflammatory reactions [30-33].  

2.1.2. The organization of peripheral nerve tissue 

Classic images showing the organization of peripheral nerve tissue are commonly 

depicted in transverse section which distinctly illustrate that peripheral nerve tissue is 

organized in cable structure as shown in Figure 1A. Individual axons (myelinated and 

unmyelinated) and their accompanying Schwann cells are enveloped in a layer of connective 

tissue called the endoneurium to form an endoneurial tube and a group of endoneurial tubes 
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are bundled in another layer of connective tissue, called the perineurium to form a fascicle. 

The perineurium is characterized by up to 15 layers of perineurial cells, interspersed with 

connective tissue and they are organized circumferentially around individual fascicles [34]. 

These layers act as a diffusion barrier in controlling the microenvironment within the 

endoneurial tube [35] as well as contributing mechanical support together with the perineurial 

connective tissue, hence making the perineurium the primary load-bearing structure for the 

peripheral nerve [36]. The outermost layer of the peripheral nerve, called the epineurium, 

consists of a layer of connective tissue which bundles the fascicles to form a single peripheral 

nerve. In a multifascicular nerve, the epineurium may be divided into the interfascicular 

epineurium which separates the fascicles and epifascicular epineurium which forms a sheath 

surrounding the peripheral nerve.  

 

Figure 1: (A) Transverse organization of a peripheral nerve with ten fascicles which contains 

the epineurial epineurium (EP), the epifascicular epineurium (ep), perineurium (pe) and 

endoneurium (arrow). (B) Longitudinal arrangement of a peripheral nerve can be in cable 

form (1) or plexiform (2). (Modified from JD Stewart [37]) 
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Unlike the transverse organization, the longitudinal organization of the peripheral 

nerve can be in two forms; 1) cable form or 2) plexiform (Figure 1B). The cable form of the 

peripheral nerve exhibits discrete fascicles without axons interchanging between individual 

fascicles. The plexiform of the peripheral nerve is characterized by the presence of the axons 

interchanging and the axonal path re-routeing to and from separate fascicles [37]. Proximally, 

the fascicles of the peripheral nerve are arranged in a plexiform but the nerve is organized in 

a cable form towards the distal portion [38]. This means that a partial lesion or partial 

stimulation on a nerve proximally may affect a group of muscles whereas distally, the 

affected muscles may be more limited and specific [39-41].   

2.1.3. The myelin sheath  

The conduction of electrical impulses takes place in axons through the propagation of 

an action potential which is triggered by the depolarization of the axonal electrical membrane 

potential. Axonal membranes depolarize due to the elevation of intracellular positively 

charged sodium ions. The depolarization activates the voltage-gated sodium channels, 

inducing the influx of more sodium ions and this triggers the depolarization of the adjacent 

membrane. The process continues along axons, hence propagating the action potential. In 

myelinated axons, the depolarization jumps from one node of Ranvier to the next one because 

the myelin sheath prevents the continuous sequential depolarization, hence the term saltatory 

conduction. This conduction mechanism allows for rapid action potential propagation while 

conserving space and energy [42], thus making the myelin sheath one of the important 

features in the nervous system. A compromise in the integrity of the myelin sheath is known 

to cause a number of devastating neuropathies such as the Guillain-Barre syndrome, Charcot-

Marie-Tooth disease and multiple sclerosis.  
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Figure 2: (A) Ultrastructure of myelin sheath in transverse section. White arrow indicates the 

major dense line and black arrow indicates the intraperiod line. (B) Longitudinal organization 

of myelin sheath. (Modified from R.H. Quarles et al.. and B Garbay et al.. [43, 44]) 

In the PNS, Schwann cells form the myelin sheath by extending their plasma 

membrane around axons multiple times to create a lamellae structure surrounding the axonal 

surface. The sheath is composed of highly compacted layers of membrane with a series of 

alternating layers of the apposed cytoplasmic surfaces (form the major dense line) and the 

apposed extracellular surfaces (form the intraperiod line) of Schwann cell membranes (Figure 

2A). The region within the cytoplasm that is void of compaction creates Schmidt-Lantermann 

clefts which continue spirally through the sheath (Figure 2B). The sheath contains a high 

proportion of lipid (70-80% of the dry mass) which is essential in providing the electrically 

insulating property. The protein components account for 20-30% of the dry mass which 

comprise of glycoproteins (myelin protein zero (P0), peripheral myelin protein 22 (PMP 22), 

periaxin and myelin-associated glycoprotein (MAG)), basic proteins (myelin basic protein 

(MBP) and protein P2) and diverse types of proteins (2‟,3‟- cyclic nucleotide 3‟-

phosphodiesterase, proteolipid proteins (PLP/DM20)). 
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Myelin protein zero (P0) is the most abundant protein which represents 50-70% of the 

total proteins in the myelin sheath [45-47]. P0 is a 28 kDa integral membrane protein with 

219 amino acid residues and it has a glycans-containing extracellular domain (residues 1-

124), a hydrophobic transmembrane domain (residues 125-150) and a cytoplasmic domain 

(residues 151-219). The extracellular domain of P0 protein interacts with other P0 proteins on 

the apposing membrane through homophilic interaction to form tetramers which hold the 

apposing membrane together to form the intraperiod line [48, 49]. The second largest protein 

component in the myelin sheath is the myelin basic proteins (MBP) which accounts for 

approximately 25% of the dry mass. The MBP are peripheral membrane proteins that can 

exist in the PNS as 21.5, 18.5, 17, and 14 kDa proteins [44]. The proteins interact with the 

cytoplasmic domain of P0 protein to form the major dense line, hence providing the 

compaction of the myelin structure [50, 51]. The relative abundance of P0 and MBP reflects 

their significant role in the formation and maintenance of the myelin structure. Collectively, 

other myelin proteins make up less than 20% of the total protein contain in the myelin sheath 

(reviewed in B. Garby et al.. 2000 [44]).  

2.1.4. Injury responses and regeneration in peripheral nerve  

It has long been recognized that the peripheral nerve has a better regenerating 

capability than the central nerve and this is mainly attributed to the permissive environment 

within the peripheral nerve system rather than the intrinsic factors of the neurons [52, 53]. 

The processes that take place in the peripheral nerve in response to injury are complex, 

involving both neurons, Schwann cells as well as other non-neuronal cells through intricate 

interactions of trophic factors and the extracellular matrix. The injury response comprises of 

the degeneration of axonal and myelin components, the remodelling of the 

microenvironment, and axon regeneration and maturation.  
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Axotomy triggers a degenerative process, termed as Wallerian degeneration. The 

process is initiated by the influx of intracellular calcium ion (Ca
2+

), which activates calpains, 

a type of proteases essential for the degradation of microtubules and neurofilaments [54, 55]. 

Consequently, the axonal membrane and cytoskeleton collapse and disintegrate and these 

events can take place within 48 hours after injury [56]. Due to the lost of the axonal contact 

following the axonal fragmentation, Schwann cells start to disintegrate the myelin sheath into 

small fragments. Debris produced by the degrading axon and myelin are initially removed by 

Schwann cells by phagocytosis but later, macrophages take over the role once macrophage 

invasion at the injury site is at a peak [57, 58]. The removal of the debris especially the 

myelin debris is crucial for the subsequent axonal regeneration because myelin is very 

inhibitory to regeneration [59, 60]. Myelin-associated glycoprotein (MAG), a component of 

myelin proteins, has been identified as a possible regeneration inhibitor [61].   

Axotomy triggers a series of morphological and molecular changes which take place 

both in the proximal and the distal portion of injured nerve. Proximal to the injury site, 

changes can be observed as far as at the cell body of neurons. The cell body undergoes a 

process called chromatolysis which is characterized by the cell body swelling, the loss of 

Nissl bodies, nucleolar enlargement and the displacement of the nucleus to the periphery. The 

pattern of gene expression also changes indicating the transition of cellular mode from 

“transmitting” to “regenerating”. For instance, neurofilaments subunits and neuropeptides are 

downregulated while regeneration-associated genes (RAGs), tubulin and actin proteins are 

upregulated [62]. Downregulation of neurofilament proteins is correlated to an increase in the 

axoplasm fluidity which facilitates axonal transport [63]. The pattern of neuropeptide 

expression also changes following axotomy; calcitonin gene-related peptide (CGRP) is 

upregulated while choline acetyltransferase (CAT) is downregulated in axotomized 

motoneurons [64].  
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Proximal stumps of transected neurons swell forming axonal endbulbs due to the 

accumulation of axoplasmic material and molecules [65]. New axon sprouts arise from the 

original axons at the first node of Ranvier from injury site. An axon can give rise to several 

axon sprouts which in theory could maximize the chance for reconnection with the target 

[66]. However, only sprouts that receive sufficient stimulation from the target organs remain 

viable. Axon growth is driven by the growth cones, dynamic specialized structures at the ends 

of regenerating axons, through cytoskeletal structure remodelling which results in axon 

elongation. Initially, The formation of growth cone occurs using locally available materials in 

the axons and is independent from the cell body [67]. The growth cones also actively sense 

and respond to specific molecular cues in the ECM through protein receptors causing the 

growth cones to advance, pause, turn and retract, which in turn guide axon growth. One of the 

receptor types are the integrins and they bind to a number of the extracellular matrix (ECM) 

proteins such as laminins and fibronectin (reviewed in [68]). The upregulation of a number of 

integrins following injury in peripheral nerve suggests an important role during the 

regeneration process [69, 70].  

In the distal nerve stump, the degeneration proceeds anterogradely from the injury 

site, leaving vacant yet intact endoneurial tubes for Schwann cells proliferation in preparation 

to receive the regenerating axons. Within 2 or 3 days after injury, Schwann cells start 

proliferating vigorously and occupying along the vacant endoneurial tubes to form the bands 

of Büngner which guide the regenerating axons to their target [71].  The stimulation of 

Schwann cell proliferation during injury response has been linked to the mitogens released by 

the invading macrophages [72, 73] as well as the degraded axolemma fragments [74]. A 

second stage of Schwann cell proliferation takes place when regenerating axons reach the 

distal stumps, leading to an increment of Schwann cell number by more than threefold [75].  
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Neurotrophic factors and the extracellular matrix facilitate and regulate the 

microenvironment within the PNS during nerve regeneration. The neurotrophin family 

constitutes of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), 

neurotrophin-3 (NT-3) and neurotrophin 4/5 (NT-4/5). These proteins bind to two types of 

transmembrane receptor, tyrosine kinase (trk) receptors family and the p75 receptor through 

receptor dimerization, and lead to the stimulation of several intracellular signalling pathways. 

Neurotrophin binding may occur through the interaction of trk and p75 receptors which 

enhance binding affinity and specificity or directly with trk or p75 receptors independently 

(reviewed in [76]). Each neurotrophin has specificity to different trk receptors in which NGF 

binds specifically to trk A receptor, BDNF and NT-4/5 to trk B and NT-3 to trk C, however, 

all neurotrophins bind to p75 receptor. The neurotrophins are released by the target organs, 

internalized at the nerve terminals following binding to the receptors and delivered to the cell 

bodies by retrograde axonal transport (reviewed in [77]). Following axotomy, the target 

organs and Schwann cells, especially within the distal nerve stumps markedly upregulate the 

production of all the neurotrophins except NT-3 [78]. The neurotrophins play an important 

role as a survival signal for axotomized neurons. NGF promotes the survival of sensory 

neurons [79, 80] while BDNF, NT-3 and NT-4/5, have been shown to promote the survival of 

motorneurons [81]. Besides that, the neurotrophins are also involved in promoting nerve 

regeneration. For instance, NGF has been shown to promote Schwann cell migration [82], 

axon-Schwann cell adhesion [83, 84] and axonal branching [85]. Furthermore, the 

neurotrophins also play essential roles in regulating the myelination process (reviewed in 

[86]).  

Another aspect that contributes to a permissive microenvironment for nerve 

regeneration, besides soluble factors release, is the extracellular matrix (ECM) which is 

formed as an interstitial matrix or basement membrane. The ECM is composed of a complex 
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network of glycoproteins and proteoglycans including laminin, fibronectin, collagen, and 

heparan sulphate. The matrix provides structural supports as well as biochemical cues to cells 

through direct interactions with the ECM proteins or by sequestering soluble cues within the 

matrix [87]. Laminins and fibronectins have been shown to have stimulatory effects on 

axonal outgrowth [88, 89] and Schwann cell proliferation and migration [90]. Furthermore, 

following injury, the expression of lamimin and fibronectin within peripheral nerves are 

rapidly upregulated, creating a permissive environment for nerve regeneration [91, 92]. 

Axons also are dependent on the ECM for guiding their growth to correct pathways through 

cues provided by collagen and immobilized netrin [87, 93]. Schwann cells also require the 

presence of laminins to undergo myelination [94].  

2.1.5. Myelination in the peripheral nerve  

Physical contact between axons and Schwann cells is a pre-requisite for the formation 

of the myelin sheath by Schwann cells since axonal signals for myelination are mediated by 

membrane-bound proteins, neuregulin 1 type III (NRG1-III) and nectin-like protein-1 (Necl-

1). NRG1-III is a key regulator for PNS myelination which control the initiation and extent of 

myelination by binding to Schwann cell membrane-bound Erb B receptors, resulting to the 

activation of PI3K (phosphatidylinositol 3-kinase)/PIP3 [phosphatidylinositol (3,4,5)-

trisphosphate]/AKT (v-Akt murine thymoma viral oncogene homolog) signaling pathway 

[95]. Schwann cells require a threshold level of expression of NRG1-III from axons to 

differentiate into myelinating cells [95]. This regulatory mechanism may explain why 

Schwann cells associated with a large diameter axon form the myelin sheath and vice versa. 

Moreover, the thickness of the myelin sheath is also influenced by the amount of axonal 

NRG1-III [96].  

Cell adhesion molecules, such as the nectin-like family (Necl) of proteins also play an 

important role in PNS myelination especially for axon-Schwann cell binding and mediating 
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the cytoskeleton rearrangements during Schwann cell envelopment. Axon-Schwann cell 

attachment by the Necl proteins occurs through the interactions of Necl-1, expressed in the 

axonal membrane and Necl-4, expressed in the Schwann cell membrane [97, 98]. 

Nonetheless, the role of Nec1 as the binding partner for Necl-4 may not be as exclusive as 

reported in a previous in vivo study and the effect could be potentially compensated by other 

proteins in the Necl family [99]. The stimulatory effect of Necl-4 binding on myelination is 

modulated by submembranous cytoskeletal proteins, called spectrins by stabilizing the 

membrane proteins at the axon-Schwann cell junction and reorganizing the actin cytoskeleton 

[100]. Although the interaction between Necl-4 and the spectrins remain unclear, it has been 

proposed that protein 4.1G, a cytoskeletal adapter protein, may link the two proteins[100] 

since both spectrins and Necl proteins can form complexes with protein 4.1G [101, 102].  

Schwann cell polarization takes place during the initial event of myelination, 

preceding axonal envelopment by Schwann cells and the process involves asymmetrical 

distribution of molecular components as well as morphological polarization. Myelinating 

Schwann cells are not only polarized in a radial direction from the ECM to the axons but also 

in a longitudinal direction, which is responsible for the organization of different domains in 

the myelin sheath i.e. the nodes of Ranvier and the internodes. The regulatory mechanisms of 

the polarization of myelinating Schwann cells are not completely understood, though the 

spatial cues from the axons and the ECM through specific receptors may play important parts 

in the process [103, 104].  Intracellularly, polarity proteins have been shown to localize 

distinctly in myelinating cells. For instance, Par3 is asymmetrically concentrated at the axon-

Schwann cell junction upon axonal signals [105]. Other proteins associated with cell polarity 

such as Dlg1 and Pals1 are also distributed preferentially at specific regions in the Schwann 

cell membrane during myelination [106, 107]. Besides that, membrane bound proteins are 

also polarized during myelination. For instance, myelin-associated glycoprotein (MAG) is 
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localized at axon-Schwann cell interface and the noncompacted, spiralling myelin membrane 

[108], while TAG-1 and gliomedin at the region near the future location of the node of 

Ranvier  [109, 110]. Laminin receptor integrin α6-β4 is also found to distinctly localize at the 

abaxonal surface of myelinating Schwann cells [103].  

 

Figure 3: Mechanism for myelin sheath formation. The inner mesaxon spirals around the 

surface of the axon to form the lamellae structure of the myelin sheath. (from B Garbay et 

al..[44]) 

During axonal envelopment, the Schwann cell membrane extends laterally around the 

axon forming two membrane lips called the mesaxons. One of the mesaxons progresses 

internally on the surface of the axon and continues spiralling multiple times, followed with 

the compaction of the spiralling membranes to form the lamellae structure of the myelin 

sheath (Figure 3) [28, 111]. The advancement of the internal mesaxon is mediated by the 

formation of temporary adhesions between the axon and Schwann cell membranes [112]. The 

assembly of the myelin sheath involves sorting and transport of lipids and proteins to the 

membrane which can occur in two ways. Firstly, myelin lipids and proteins may be sorted 

and transported through association with lipid microdomains, termed lipid-rafts which take 

place early in the secretory pathway in the Golgi apparatus [113-115]. Secondly, the mRNA 

of myelin proteins may be transported to the myelin membrane and then, translated in 

response to local stimuli. Although, it is important to note that the latter mechanism has only 

been described for the transport of MBP in the CNS [116].  
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2.2. Nerve guidance conduits for peripheral nerve repair 

2.2.1. Peripheral nerve injury and its current clinical treatments  

Peripheral nerve injuries are commonly caused by acute trauma as a result of road 

traffic or industrial accidents. Trauma patients suffer from peripheral nerve injuries may 

acquire life-long disability, which may greatly affect the quality of life [117]. The recovery of 

peripheral nerve injury depends on the extent of injury. Sunderland‟s classification system 

categorizes peripheral nerve injury into five classes according to the degree of severity [38]. 

A first degree injury is described when nerve continuity is retained with transient functional 

loss. Injuries with the interruption of the axons and the myelin sheath but with intact 

surrounding connective tissue are classified as second degree injuries. A third degree nerve 

injury involves the disruption of the axons with partial injury to the endoneurium. In a fourth 

degree injury, all parts of the nerve are disrupted except the epineurium while in a fifth 

degree injury, the nerve is completed severed.  

Two most established microsurgical methods for repairing peripheral nerve include 

end-to-end coaptation and autologous nerve graft transplantation. End-to-end coaptation, 

however, is limited for repairing nerve injuries with gaps smaller than 5 mm to avoid 

introducing tension across an injury site, which can be adverse to nerve regeneration. For gap 

injuries greater than 5 mm, autologous nerve graft transplantation is considered as the “gold 

standard”, with superior results in nerve regeneration [118]. In the method, donor nerves are 

obtained from functionally less important nerves such as sural nerves, superficial cutaneous 

nerves or lateral and medial antebrachii cutaneous nerves [119]. Autograft transplantation, 

however, is associated with several key limitations including donor site morbidity and loss of 

function, donor material scarcity, potential painful neuroma formation and the requirement of 

two surgeries for harvesting graft tissue and repairing damaged nerve [120].  
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Alternatively, nerve allograft transplantation is possible to repair nerve injuries with 

comparable results to autografts [121]. Nerve allografts can be obtained from cadaveric or 

donor nerve tissues. However, the need for systemic immunosuppressants and rejection risk 

make the technique less favourable. Other microsurgical techniques that have been proposed 

for repairing peripheral nerve injuries include nerve transfer and end-to-side coaptation [122]. 

Nerve transfers involve using nerves with redundant functions to reconnect to a damaged 

nerve with more crucial functions however, this can lead to loss of functions at donor sites. 

End-to-side coaptation is done by suturing the injured distal stump to the side of an injured 

donor nerve. The technique is used when the proximal stump of an injured nerve is 

unavailable or inaccessible. The technique requires donor nerve axotomy which lead to 

collateral axonal sprouting from the donor nerve into the recipient stump. However, both 

techniques have not been used widely in clinical settings. 

2.2.2. Nerve guidance conduits (NGC) 

The use of tubular conduits for repairing peripheral nerve injury as an alternative for 

nerve autograft is not a novel idea and its history dates from the 1800‟s in which researchers 

experimented with naturally available materials such as bone tube for peripheral nerve repair 

[123]. Although current nerve guidance conduits are generated by modern fabrication 

techniques rather than using naturally-available tissue, the principle design remains the same 

over the years i.e. a tube with hollow lumen. Presently, there are several NGCs which are 

approved for clinical use and both naturally-derived and synthetic conduits are commercially 

available [120].  

Synthetic NGCs include Neurotube
®
 and Neurolac

®
 which are made from poly-

glycolic acid (PGA) and poly-DL-lactide-co-ɛ-caprolactone (PDLLA/CL), respectively. 

Naturally-derived NGCs include NeuraGen and NeuraMatrix/Neuroflex which are type I 

collagen-based conduits.  Clinical trials revealed that both Neurotube
®
 and Neurolac

®
 



27 

 

produced good outcomes in nerve defects up to 20 mm [10, 124], however, Neurotube
®
 

degrades faster than Neurolac
®
 (3 months versus 16 months) [120]. Similarly, type I collagen 

NeuroGen
®
 has been reported in clinical trials to give good results in nerve defects up to 20 

mm and it degrades after 48 months [125]. No clinical studies have yet been conducted on 

NeuroMatrix/Neuroflex™ since receiving approval in 2001 [120]. Other types of 

commercially available nerve guides that are approved by Food and Drug Administration 

(FDA) include non-resorbable nerve guide (Salubridge / Salutunnel™) and decellularized 

nerve (Avance
®
). No report on clinical trials for Salubridge / Salutunnel™ has been 

published since the devices were approved for clinical use [120].  

NGCs provide mechanical support for reconnecting the injured nerve stumps whilst 

guiding axonal extension to the distal nerve stump. By enclosing the injury sites, fibrous 

tissue ingrowth is minimized, hence reducing neuroma and scar formation. Moreover, plasma 

exudates containing neurotrophic factors and extracellular matrix precursor molecules 

(fibrinogen and factor XIII), released by both nerve stumps, are retained within the lumen of 

NGCs [126, 127]. The containment of the exudates leads to the formation of a fibrin matrix 

inside the lumen of NGCs which develops within the 1 week of NGC implantation [126]. 

These transient fibrin fibres facilitate the migration of the cellular components (mainly 

Schwann cells) into the nerve gap area from both nerve stumps, allowing Schwann cells to 

proliferate and form bands of Büngner [128]. The bands provide a platform onto which 

axonal extension can progress to the distal nerve stump.  

Whilst commercial nerve guides were shown as promising alternatives to autografts, 

the regenerative capacity is limited to nerve injuries with 20-25 mm gaps [8]. The nerve 

guide design challenge now is to facilitate regeneration for larger gap nerve injuries. The 

failure of hollow nerve guide to provide sufficient regeneration across larger gap may be 

attributed to the inadequacy of the fibrin matrix formation and insufficient neurotrophic 
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factors and Schwann cells invasion [128]. In facing this challenge, researchers have focused 

on new materials, surface coatings, internal scaffolds and the inclusion of growth factors and 

support cells to improve nerve guide designs.  

2.2.3. Current ideas on the design of nerve guidance conduits 

Materials  

The ideal material characteristics for a NGC include biocompatibility, 

biodegradability, mechanical relevance and permissive properties for nerve regeneration. 

Numerous biomaterials have been studied ranging from naturally-derived materials to 

synthetic materials. Cell binding domains in natural materials can be advantageous in 

promoting neuronal and glial attachment and migration [129] but they may pose a minor risk 

of disease transmission and can be relatively costly [130]. Synthetic materials offer more 

flexibility in physical and chemical properties, allowing controllability over mechanical and 

degradation characteristics and the introduction of microstructure. Though, these materials 

are often less biocompatible than natural materials. 

1. Naturally–derived materials 

Acellular nerve allograft is advantageous due to the relevance of microstructure 

provided by the extracellular matrix retained after a decellularization procedure. Avance
®
 is 

the only commercial acellular nerve allograft available in the market at present. A clinical 

trial conducted on 7 patients to treat nerve gaps of 0.5 – 3 cm in sensory nerves using 

Avance
®
 indicated that positive functional recovery was achieved after 9 months [131]. Of 

note was that no evidence of infection or rejection was observed in the study. As mentioned 

earlier, there are several collagen-based devices that are currently available in commercial 

market and NeuroGen
®
 is the most extensively studied nerve guidance conduit in clinical 

settings, showing great potential in supporting nerve regeneration. Taras et al.. observed a 
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low level of rejection and scarring after repairing peripheral nerves using NeuroGen
®
 [132]. 

A clinical study utilizing NeuroGen
® 

on 14 patients with an average of 12.7 mm gap injury in 

digital nerves showed very good results after 12 months with 5 patients achieving good 

sensitivity, 1 patient poor and 2 patients with no sensitivity [133]. Of note was that one 

patient presented with persisting mild hyperesthesia and three patients with temporary foreign 

body sensation.  

Other natural materials that have been proposed for nerve guidance conduits include 

fibrin, silk fibroin and chitosan. To date, most of the devices are still experimental at pre-

clinical stages although experimental data suggest that the use of the mentioned materials in 

nerve guides is promising. For instance, conduits made from fibrin have been shown to 

support axonal regeneration, myelination and muscular recovery across 10 mm nerve gap in 

rats [134]. A recent study carried out by Park et al. using electrospun silk fibroin conduits for 

10 mm sciatic nerve defect in rats revealed that motor function recovery was comparable to 

autograft when evaluated by the ankle stance angle (ASA) test [135]. A study by Ghazvani et 

al. also suggests that the extent of inflammatory reaction elicited by silk fibroin was 

equivalent to collagen conduits [136]. Other studies, using chitosan conduits with 

polyglycolic acid (PGA) filaments or bone marrow stromal-derived Schwann cells, produced 

positive outcomes, with some degree of functional and physical recovery [137, 138].  

2. Synthetic materials  

There are two types of synthetic nerve guidance conduits that are currently being 

studied or are available commercially; non-resorbable and resorbable devices. Salubridge
®
 / 

SaluTunnel
®
 are the sole non-resorbable nerve guidance conduits which have received 

approval by the FDA. The devices are composed of hydrophilic polyvinyl alcohol hydrogel 

which has a similar water-content property to human tissue [120]. The performance of the 

devices remains unknown since there are no publications reporting on pre-clinical and 
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clinical studies for the devices. Other hydrogel conduits include poly(2-hydroxyethyl 

methacrylate-co-methyl methacrylate) (PHEMA-MMA) conduits which have been reported 

to produce comparable outcomes to autograft in a 10 mm rat sciatic nerve defect [139]. A 

long term in vivo study showed that almost 30% of implanted PHEMA-MMA conduits 

collapsed and some showed signs of chronic inflammation and calcification [140]. A 

comparative study between plain, corrugated and coil-reinforced conduits of PHEMA-MMA 

and autografts revealed that coil-reinforced conduits produced equivalent results as autograft 

as indicated by the analyses of the nerve action potential and muscle action velocity and the 

axon density measurement on a 10 mm rat sciatic model after 16 weeks [141].  

Resorbable synthetic nerve guidance conduits are mainly composed of polyesters such 

as polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), poly-ɛ-caprolactone (PCL) 

and  poly(DL-lactide-co-caprolactone). Most of the materials have been approved by the 

FDA for various biomedical applications. A clinical study involving 98 patients compared the 

use of PGA conduits (Neurotube
®
) versus autografts or direct coaptation to reconstruct digital 

nerves [10]. Sensory recovery for nerve reconstruction with PGA conduits were scored as 

being 44% excellent, 30% good and 26% poor, compared with 43% excellent, 43% good and 

14% poor for the coaptation/autografts. Evaluation of motor functional recovery by PGA 

conduits conducted by Rosson et al.. reported some degree of success in recovering motor as 

well as sensory functions [142]. The study was carried out on 6 patients having received 

Neurotube
®
 to repair short gap nerve injuries and evaluated functional recovery by a 

retrospective chart review over a 7-year period.  

Other polyesters that have gained considerable attention include polycaprolactone 

(PCL) and polyhydroxybutyrate (PHB) and both possess attractive qualities as biomaterials 

for regenerative medicine [143, 144]. PCL conduits in combination with nerve growth factor 

(NGF) and tirofiban supported nerve regeneration across a 10 mm gap in rat sciatic nerve as 
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well as promoting re-innervation of gastrocnemius muscle after 8 weeks [145]. Of note was 

the superior performance of NGF/tirofiban conjugated PCL conduits compared to NGF only 

and plain PCL conduits [145]. PHB has been used as a wrap-around nerve implant in a 

clinical study involving 12 patients with a complete median and/or ulnar nerve injury at the 

wrist/forearm level, with advantageous results in comparison to epineural end-to-end suturing 

after 18 months [146]. However, it is important to note that only non-gap nerve injuries were 

involved in the study. The efficacy of PHB conduits for repairing long-gap nerve injuries 

have been assessed previously in a rabbit model by Young et al. [147]. The study reported 

that greater regenerating fibre area was observed across a 4 cm nerve defect when treated 

with PHB conduits than with autografts.  

Another approach in materials for NGCs is to use co-polymers which give greater 

control over biodegradability, chemical and physical properties. For instance, conduits made 

from copolymer poly D,L lactide-co-ɛ-caprolactone such as Neurolac
®
, an FDA-approved 

device, have been subjected to numerous pre-clinical studies with varying degree of success 

[120]. In a randomized clinical trial, the efficacy of Neurolac
®
 was compared with autografts, 

with sensory recovery being comparable [124]. Although more complications were observed 

in patients with Neurolac
®
, the cause was reported to be unrelated to the device. Due to the 

potential of electrical stimulation in promoting nerve regeneration [148, 149], electrically 

conductive materials have been proposed for nerve guide applications [150]. Co-

polymerization of polypyrrole (PPy), an electrically conductive polymer, with 

polycaprolactone–fumarate (PCLF) enhances the mechanical properties, providing structural 

integrity for construction of NGC [151]. Neurite outgrowth was enhanced when PC12 

neuronal cells were cultured on a conducting PCLF–PPy film while being exposed to 10 µA 

constant current [151]. In an earlier study, implantation of a conduit of poly(D, l-lactide-co-

epsilon-caprolactone) (PDLLA/ CL) doped with PPy in an 8 mm rat sciatic nerve defect 
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supported nerve regeneration after 2 months, with myelinated and unmyelinated axons and 

Schwann cells were observed across the conduits [152]. 

Intraluminal fillers 

 One of the current strategies to improve NGC design is the inclusion of intraluminal 

scaffolds to improve physical and chemical guidance for nerve regeneration. Both synthetic 

polymer and proteins scaffolds have been used in numerous in vitro and in vivo studies for 

nerve repair applications. Aligned electrospun nano- and microfibres have gained 

considerable attention as potential intraluminal scaffolds, with studies reporting the ability of 

aligned fibres to support and guide neurite outgrowth and Schwann cell migration as well as 

to promote myelin expression in Schwann cells. Improvement in nerve regeneration was 

observed when a 17 mm rat tibial nerve defect was repaired with a polysulfone conduit filled 

with aligned poly(acrylonitrile-co-methylacrylate) (PAN-MA) fibres in comparison to 

random fibres, with significant improvement in functional recovery [14]. In a recent study, 

implantation of a conduit with aligned electrospun PCL nanofibres was conducted to bridge a 

10 mm tibial nerve defect in rat and was compared with random fibres-filled and hollow 

conduits [153]. Retrograde nerve conduction was enhanced and motor function was 

significantly improved with aligned fibres versus random fibres after 6 weeks. Further 

enhancement in functional recovery was also observed when using a laminin-PCL blend of 

aligned fibres, with improved axonal regrowth, nerve conduction and sensory function 

recovery in comparison to PCL aligned fibres.  

Besides aligned fibres, gels and sponges have also been proposed as intraluminal 

fillers in NGCs. Toba et al. carried out a comparative study of collagen sponge and collagen 

fibres as intraluminal scaffolds for bridging an 80 mm gap in canine peroneal nerve and 

collagen sponge was reported to produce greater results in morphometrical and 

electrophysiological assessments than collagen fibres [154]. Similar findings were also 
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observed when a collagen gel filler was used with a PLGA-coated collagen conduit in a 15 

mm gap in rabbit peroneal nerve [155].  Several other protein gels and sponges, including 

fibrin, agarose, keratin, laminin and fibronectin, have been studied as prospective internal 

scaffolds for peripheral nerve repair, with promising outcomes [156-159]. Interestingly, 

protein gels can also be used to deliver bioactive molecules such as laminin and control their 

distribution [157] as well as deliver glial or stem cells into a conduit [15] to improve nerve 

regeneration. Nevertheless, in an earlier study, Valentini et al. reported a contradicting 

finding in which a collagen and laminin gel filler impeded nerve regeneration across a 

semipermeable conduit in a rat sciatic model [160].  

Incorporation of support cells and bioactive molecules into nerve guidance conduits  

The inclusion of Schwann cells in the lumen of a nerve conduit is a very attractive 

approach to facilitate nerve regeneration due to their essential roles during peripheral nerve 

repair such as neurotrophic factors release and topographical guidance for axon regrowth [71, 

161]. Several studies have attempted to incorporate Schwann cells in nerve conduits using 

various delivery methods, including injection, suspension within an intraluminal gel and 

intraluminal scaffolds, with encouraging results [162-164]. The clinical translation of 

autologous Schwann cells may be obstructed by several setbacks, for instance, limited tissue 

availability, long culture times and donor site morbidity, leading researchers to explore the 

potential of adult stem cells [16, 165-167]. Differentiated mouse mesenchymal stem cells 

(MSC) have been shown to release BDNF and NGF and improve motor functions recovery 

with increased number of myelinated axons when implanted in a mouse sciatic nerve defect 

with collagen tubes [168]. There has also been a growing scientific interest in the use of 

adipose-derive stem cells (ASC), a type of MSCs, in regenerative medicine since they require 

a minimally invasive harvesting procedure and they are abundant in fat tissue [169]. 

Implantation of an allogeneic decellularized artery seeded with differentiated ASCs and 
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Schwann cells produced equivalent outcomes to autograft but not undifferentiated ASCs 

[170]. Similarly, a 10 mm rat sciatic nerve repair using a fibrin conduit seeded with 

differentiated ASCs improved axon myelination, average fiber diameter of the regenerated 

nerves and reduced muscle atrophy which was similar to autografts [17]. Importantly, 

transplantation of undifferentiated ASCs may lead to the formation of adipocytes at the injury 

sites [171], although there is a study reporting on the positive regenerative effects of 

undifferentiated ASCs when they were used with a PHB conduit in a rat sciatic model [172].  

The role of neurotrophic factors is well-known during nerve regeneration, leading 

several studies attempted to incorporate neurotrophic factors in to nerve guidance conduits to 

enhance nerve regeneration. Earlier studies have acknowledged the advantage of using NGF-

loaded conduits in promoting nerve regeneration, with improved myelination and nerve 

conduction [173-176]. The delivery system for neurotrophic factors, which offers a controlled 

release mechanism, was found to be important to enhance nerve regeneration [177]. A 

number of neurotrophic factors delivery systems have been proposed for nerve conduit 

applications with varying success and they include neurotrophic factors suspension, enclosing 

factors within a protein matrix, nerve conduit wall or microspheres and osmotic minipumps 

or injection devices [178]. Moreover, a recent study by Madduri et al. highlighted the 

importance of synergistic actions of multiple neurotrophic factors in nerve conduits for 

enhancing nerve regeneration [179]. This is due to the presence of different subpopulations of 

neurons in nerves which have sensitivity towards different neurotrophic factors [180]. In the 

study, low initial release of glial-derived neurotrophic factor (GDNF) and NGF from a cross-

linked collagen conduit was found to significantly enhance axon outgrowth and Schwann cell 

migration across a 10 mm rat sciatic defect after 2 weeks in comparison to GDNF alone. 

Similarly, a combination of GDNF and brain-derived neurotrophic factor (BDNF) is reported 

to be more effective in increasing axon regeneration in chronically axotomized motor neurons 
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in vivo than either neurotrophic factors alone [181]. Whilst the use of growth factors in NGCs 

is highly beneficial, the high production cost for commercial use may become an issue.  

To improve nerve regeneration, NGCs can also be coated with bioactive molecules 

and ECM proteins are commonly used as coating materials due to their advantages in 

promoting neurite outgrowth and Schwann cell proliferation [182, 183]. Laminin, fibronectin 

and collagen (ECM proteins) have been used previously as coatings for nerve conduits. Tong 

et al. revealed that laminin and fibronectin coatings give advantageous results in nerve 

regeneration over uncoated controls across a 10 mm rat sciatic defect after 30 days [184]. In 

another study, histological and electrophysiological improvements were detected when an 80 

mm canine peroneal defect was treated with a PGA-collagen tube filled with laminin-coated 

collagen fibres. Plasma surface modification technique has gained a considerable attention in 

biomaterials development and it can introduce defined chemical functionality, whilst 

retaining the material bulk properties.  Human SH-SY5Y neuroblastoma cells were found to 

adhere better on plasma coated acrylic acid and allylamine surfaces versus 

polyethylenetherephtalate, with acrylic acid surfaces improved cell differentiation [185]. 

Open air plasma treatment has been employed to graft chitosan and fibroblast growth factor 1 

(FGF1) onto PLA nerve conduits which enhanced nerve regeneration across a 10 mm rat 

sciatic defect in comparison to control conduits [186]. The plasma treatment introduced a 

negative charge on PLA surface, allowing the immobilization of positively-charged chitosan 

onto the surface through electrostatic interaction. Subsequently, negatively-charged FGF1 

was grafted to PLA surface through electrostatic interaction with the immobilized chitosan. 
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2.3. Three dimensional cell culture  

For the past decades, numerous in vitro studies ranging from cell/tissue biology to 

drug development have relied on two-dimensional cell culture systems, which normally 

involve growing a cellular monolayer on a flat glass or polystyrene substrate. Although 2D 

culture is useful, it does inaccurately represent the complex environment found in native 

tissue, which may lead to many different cellular responses or behaviours than that of the 

native environment. 3D culture models may address these issues and with the advent of 

sophisticated cell culture, micro-fabrication and tissue engineering techniques, more studies 

are focussing on the development of 3D culture systems for various tissues of interest, with 

particular consideration on the spatial organisation of the cell [187, 188]. The general aim is 

to create a 3D culture system with a microenvironment that supports cellular growth and 

mimics the native tissue as accurately as possible. Scaffolds are commonly used to introduce 

3D structures, although there are several published methods that report on 3D tissue models 

without using scaffolds, such as organotypic explants culture and cellular spheroids. 

Introducing a 3D environment to an in vitro culture model will add a certain level of 

complexity, thus one should take into consideration a number of key design parameters in 

developing scaffolds to support a 3D culture. These include the dimension and morphology 

of the scaffold, the mechanical properties of the scaffold and the biochemical properties of 

the scaffold. The architecture of the scaffold must be relevant and specific to the tissue of 

study. For example, the use of organised parallel fibres is more applicable to peripheral nerve 

tissue due to the longitudinal arrangement of Schwann cells and axons in the native tissue. On 

the other hand, random fibrous networks are more relevant for skin reconstruction [189], 

whilst interconnected porous scaffolds are suitable for bone tissue [190]. The size and 

interconnectivity of pores within the scaffold must be taken into account, since these features 

may influence cellular infiltration and growth into the scaffold [191-193].  
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Design criteria must also consider the macro-, micro- and nano-scale features of the 

scaffold. Macroscale feature such as scaffold thickness can be a limiting factor for conducting 

effective analysis through 3D imaging methods due to restricted light penetration and highly 

scattered 3D samples [187]. Suitable imaging methods include confocal fluorescence 

microscopy, multiphoton microscopy, optical coherence tomography and optical projection 

tomography. Microtopographies have been shown to influence cellular adhesion and 

morphology, migratory behaviour and stem cell differentiation [194]. Therefore, 

microstructural features are a design criteria in reproducing tissue architecture. Nonetheless, 

it is also argued that nanoscale features of a scaffold have more impact on cellular behaviour 

than microscale features because the physical interaction between the cells and the substrate. 

Cell intergrin receptors interact with adhesive ligands when inter-ligand distances on 

extracellular matrix proteins in the range of tens to hundreds of nanometres [195, 196].  It has 

also been shown that nanoscale features can influence cellular behaviours including 

morphology, organisation, cytokine production and differentiation [197-199].  

One must also consider the mechanical properties of a scaffold, which have 

importance in achieving structural stability for supporting cellular growth and for 

withstanding experimental procedures for establishing 3D cell culture. More importantly, 

cells are known to be responsive to mechanical stimuli, particularly osteoblasts which play a 

key role in bone remodelling. The exertion of mechanical forces on human bone-derived stem 

cells and human adipose-derived stem cells has resulted with the enhancement of osteogenic 

differentiation [200]. Moreover, material stiffness can modulate the differentiation of stem 

cells even without stimulation from external forces [201]. Soft tissue like peripheral nerve has 

high elasticity properties with a Young‟s modulus of approximately 0.45 MPa [36]. 

Therefore, materials with high elasticity properties may be advantageous in mimicking the 

mechanical properties of peripheral nerve tissue. In comparison to other synthetic 



38 

 

biodegradable polymers, polycaprolactone (PCL) has better elasticity properties with a 

Young‟s modulus of approximately 280 MPa [202], while polylactic acid (PLA) and 

polyglycolic acid (PGA) have Young‟s modulus of approximately 4.8 GPa and 12.8 GPa, 

respectively [203]. However, PCL is still considerably stiff compared to peripheral nerve 

tissue, although the mechanical properties of PCL could be sufficient for the use in in vitro 

3D models. Other synthetic materials with softer mechanical properties include polyglycol 

sebacate (Young‟s modulus = 0.28 MPa) and hydrogels [204, 205].  

Besides that, the biochemical properties of a scaffold are essential for supporting the 

adhesion and growth of cells. The biochemical properties can be dictated by the types of 

materials used for 3D scaffolds. Natural materials such as collagen contain adhesive ligands, 

allowing direct interaction between the scaffold and cells through ligand-receptor binding 

[206]. In contrast, interactions between cells and synthetic scaffolds occur through the 

intermediation of an adsorbed protein layer, which depends on the surface chemical 

properties of a material [207]. Therefore, optimisation of the surface chemistry of scaffolds 

by surface functionalization with extracellular matrix protein components or surface plasma 

deposition of acrylic acid can facilitate cell adhesion and growth [208, 209].  

2.3.1. Methods for 3D cell culture  

Presently, there are several published methods for generating 3D culture models, 

which includes the use of living whole animals or embryos, organotypic explants cultures, 

cell spheroids, microcarrier cultures and tissue-engineered models [187]. 3D culture models 

from animals/embryos and organotypic explants are necessitated when the studies require 

tissue-specific information. Examples of living whole animals/embryos include drosophila 

melanogaster (fruitfly) and the use of zebrafish and mouse embryos.  In vitro cultures of non-

mammalian models, such as fruitfly and zebrafish offer considerable experimental flexibility 

with respect to environmental conditions, in contrast, maintaining mouse embryos cultures 
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demands tight control on culture conditions, including pH, temperature and oxygenation 

[187]. 3D culture models can also be established through in vitro culture of organotypic 

tissue slices, on a supporting structure such as a semiporous membrane or 3D collagen gel 

[210]. This method can preserve the morphological organisation of the tissue and cellular 

maturation as seen in vivo, however, there are some differences between in vivo tissue and in 

vitro organotypic tissue slices, which may have functional importance [211]. 3D studies using 

organotypic tissue explants are commonplace in the area of brain and neural physiology [211] 

and has also been employed previously for liver and lung tissue [212, 213].  

Three-dimensional models can be in the form of cellular spheroids by exploiting the 

natural tendency of many cell types to aggregate. Cellular spheroids can be generated from 

single cultures or co-cultures by hanging drop or rotating culture techniques [214, 215], 

consequently, no scaffold is required. Cellular spheroids are suitable for studies that require 

high-throughput screening and modelling for dynamic processes, like tumour growth [187, 

216]. Hence, spheroids have importance in the study of cancer and therapeutic studies. There 

are also 3D culture models that are established by tissue-engineering techniques using 

artificial scaffolds. The scaffolds can be fabricated by various methods such as 

electrospinning, particulate-leaching and computer-based techniques [188]. The 

characteristics of the matrix architectures depend on the fabrication techniques, for instance, 

electrospinning and particulate leaching form fibrous matrices and sponge-like structures, 

respectively, while computer-based techniques such as solid-free form allow the generation 

of matrices with ordered architectures [217]. Natural, synthetic and a combination of both 

materials have been used for this purpose for 3D reconstruction of various tissue types.  

2.3.2. Three-dimensional culture models for peripheral nerve studies  

Very few studies have been conducted on developing an in vitro three-dimensional 

peripheral nerve tissue model. Nonetheless, to date, most 3D culture studies for peripheral 
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nerve have focused on tissue engineering approaches in which 3D scaffolds were used to 

support single cultures or co-cultures of neurons and Schwann cells. The use of protein-based 

scaffolds is commonplace for in vitro 3D peripheral nerve studies, in particular collagen gel. 

Other scaffolds include fibrin gel, fibrinogen hydrogel, matrigel and collagen sponge. 

Collagen gel has been shown to support axon ingrowth from both sensory and motor neurons 

and Schwann cell proliferation [218, 219]. Gingras et al.. has also demonstrated Schwann cell 

myelination after 4 week co-cultures of motor neurons, Schwann cells and fibroblasts in 

collagen sponges [1].  

Although the use of gel/sponge scaffolds has shown promising outcomes, the 

architectures do not accurately represent the longitudinally orientated microstructures of 

peripheral nerve tissue. Collagen scaffolds with parallel orientated microstructures have been 

used to mimic the native microstructure, with results showing directed growth of axons and 

Schwann cells in longitudinal orientation [220-222]. Uniaxially aligned scaffolds can also be 

generated using collagen gel through a self-organizing mechanism due to Schwann cell 

contraction, resulting in aligned Schwann cell organisation [223].  Another strategy is by 

exploiting aligned micro and nanofibrous scaffolds, with electrospun scaffolds being the most 

extensively studied. A number of studies have described the use of electospun 

micro/nanofibres scaffolds, made from natural and synthetic polymers for in vitro peripheral 

nerve studies, commonly for nerve regeneration studies [224]. The ability of aligned fibrous 

scaffolds to support the uniaxially directed growth of axon and Schwann cells is very 

promising [2, 225], however very few studies describe the ability of such scaffolds to 

promote in vitro myelination in order to generate matured in vitro peripheral nerve tissue 

models [226], which may have importance in demyelinating disease studies, drug 

development and strategies for peripheral nerve repair. 
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2.4. Electrospinning  

Electrospinning is a fibre fabrication technique by subjecting an electrical field on a 

fluidic material to form very fine fibres. The technique was first described over 100 years ago 

in pioneering work conducted by earlier researchers such as Cooley, Morton and Norton and 

Formhals [227]. However, in the past 20 years, electrospinning has gained significant 

attention in various research areas due to its ability to fabricate micro- and nanosized fibres 

while offering great versatility in the materials used, processing conditions, fibre morphology 

and organization [228]. Moreover, the electrospinning setup is simple, cost-effective and 

scalable. The fundamental setup for electrospinning consists of a syringe pump which 

controls the flow of a fluidic material from a syringe through a needle. A high voltage 

generator introduces an electrical field to the fluid through an electrode connected to the 

needle and this creates a fibre jet which travels airborne to an electrically grounded collector 

(see Figure 5). Electrospinning has been extensively studied for various applications 

including tissue engineering, drug delivery technologies, analytical chemistry, semi-

conductors, biosensors and energy conversion and storage devices (e.g. solar cells and 

battery) [228-232].  

Electrospinning works by employing the concept of electrohydrodynamics, which 

describes the motion of a fluid within an electrical field. When a fluid is exposed to an 

electrical field, charges within the fluid move to the surface, creating tangential stresses at the 

surface [233]. The stresses counter-act the surface tension, deforming the spheroidal 

meniscus into a conical projection called a Taylor cone and eventually, as the tangential 

stresses increase, a fluid jet ejects from the tip of the cone [234]. The charges within the jet 

propel the jet towards the grounded collector, thereby completing the electrical circuit. The 

charged jet travels midair in a linear trajectory before undergoing an erratic motion of 

whipping phase, or bending instability. The jet undergoes a thinning process as it travels 
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towards the collector due to the evaporation of the solvent, resulting with an increase in 

charge density within the jet [235]. Consequently, repulsive forces are generated to drive the 

whipping motion of electrospun jet during bending instability [236].   It is believed that this 

phase is important in the formation of small fibres due to a “stretching” effect during bending 

instability, which further reduces the diameter of the jet [237]. By using a high speed motion 

camera, Shin et al. showed that the jet was continuous and travelled in a “whipping” motion 

during the instability phase. Finally, the jet solidifies and is deposited on the collector. 

2.4.1. Electrospinning: a versatile technique for fibres fabrication  

Materials  

Electrospinning has been conducted on various materials ranging from organic to 

inorganic materials. In tissue engineering and biomedical applications, polymers are widely 

used for electrospinning to fabricate tissue engineered scaffolds and drug delivery devices 

[238-240], such as polycaprolactone (PCL), polyglycolic acid (PGA) and polypyrrole (PPy). 

Naturally derived materials such as collagen, elastin, chitosan and silk fibroin have also been 

explored in the formation of fibres by electrospinning [241]. Electrospinning of polymeric 

materials can be conducted in polymer solution, which is derived from polymer dissolution in 

solvents, or polymer melt, where heat is required to melt the polymers, although the former 

has been studied more extensively than the latter. A wide range of solvents can be used to 

dissolve polymers to fabricate electrospun fibres [242] which may offer flexibility and 

controllability on the features of electrospun fibres [243, 244]. Fibre formation by 

electrospinning can also be done for polymer blends for instance, collagen/PCL and 

PLA/PCL blends [245] [246]. Besides that, inorganic materials such as ceramics and metal 

oxides have been used for electrospinning for semiconductor and electronics applications. 

There is an increasing interest in fabrication of ceramic nanofibres by electrospinning for 

various applications including for electronics and sensor devices and catalyst supports [247]. 
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Recently, Lang et al. described the fabrication of titanium oxide nanofibres for potential solar 

cell applications. [248].  

Controllability on fibre morphology and properties  

One of the exciting features of electrospinning is that it offers a considerable control 

on the morphology and properties of fibres produced by manipulating the processing 

conditions, like flow rate, applied voltage and electrospinning distance and environments, and 

material properties, such as solution concentration, viscosity and solvent. Numerous studies 

report the use of controlled electrospinning systems for manipulating the structure of fibres 

i.e. diameter and porosity [2, 243, 249-256]. Wang et al. have shown that by manipulating the 

solvent system, fabrication of electrospun PLLA fibres with varying fibre diameters can be 

achieved [2]. Similarly, by manipulating a combination of the polymer concentration, applied 

voltage, electrospinning distance, flow rate and needle size, Christopherson et al. was able to 

electrospin polyethersulfone (PES) scaffold with different fibre diameters ranging from 283 

to 1452 nm for studying neural stem cell differentiation and proliferation [252].  

Interestingly, fibre diameter is correlated with the porosity and pore size of 

electrospun fibres, with smaller fibre scaffolds possessing smaller pore sizes [255, 257]. 

Therefore, by controlling the diameter of electrospun fibres, one can simultaneously modify 

the porosity and pore size. Nonetheless, independent control of fibre diameter and pore size 

can be achieved on electrospun fibre scaffolds through post-electrospinning modifications. 

Lowery et al.. attempted to create electrospun fibre scaffolds with similar fibre diameters but 

different pore sizes for studying human dermal fibroblast cell growth [256]. Fibre fabrication 

was done by electrospinning PCL/PEO fibres, which were later immersed in water to remove 

PEO, hence altering the pore size.  

Moreover, material and electrospinning conditions can affect the physical properties 

of electrospun polymer fibres as well. For instance, polymer solution concentration, applied 
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voltage and electrospinning distance have been shown to influence polymer crystallinity 

[258, 259], which in turn, can influence mechanical properties and degradation behaviour of 

polymer fibres [259-261]. Several studies have demonstrated that lower concentrations of 

polymer solution contribute to a higher crystallinity as a result of enhanced mobility for 

molecular orientation in low viscosity solutions [258, 259, 262]. The relationship between 

polymer crystallinity and fibre diameter was described previously in a study by Wong et al., 

in which smaller fibres exhibited higher crystallinity and aligned molecular orientation with 

enhanced tensile strength and stiffness [262]. In the study, tailored fibre diameters were 

achieved by manipulating the solution concentration and the solvents used. Mechanical 

properties were shown to be improved when electrospinning was conducted in a partial 

vacuum of ~0.4 atm in comparison to in 1 atm [263].  

One can also tailor the morphological features of electrospun fibres by careful 

manipulation of the processing conditions.  Previously, Deitzel et al.. have demonstrated the 

influence of the applied voltage on the formation of beaded fibres, with increased voltage 

resulting with beaded fibres [253]. An increase in solution concentration can also lead to the 

formation of electrospun fibres with a larger diameter [250, 253]. Flat ribbon-like fibres can 

also be generated by electrospinning, instead of cylindrical fibres. Rodriguez et al. reported 

the formation of ribbon fibres when electrospinning cellulose acetate in acetone and the 

mixture of acetone/isopropanol in contrast to the acetone/ dimethylacetamide that generated 

cylindrical fibres [264].  

Controllability on fibre organization and electrospun scaffold formation 

Creating fibre scaffolds with ordered structures is another advantage of 

electrospinning. A rotating collector is commonly used to control the alignment of 

electrospun fibre scaffolds by altering the rotational speed [265-267]. High rotational speed 

has been attributed to the production of aligned fibres, while a low speed collector produces 
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randomly orientated fibres. Matthews et al.. investigated the effect of the speed of rotating 

collector on the extent of collagen fibres alignment [265]. By increasing the speed to 4500 

rpm, alignment of collagen fibres was observed to be significantly enhanced than when 

electrospinning at a speed less than 500 rpm. The use of a stationary collector is also 

commonplace for electrospinning randomly orientated fibres [250, 253, 268].   

Electrospun fibres can be fabricated into three dimensional structures such as nerve 

guidance conduits or artificial vascular grafts [225, 269]. Yao et al.. constructed nerve 

guidance conduits by electrospinning aligned PCL fibres onto a stainless steel wire that was 

attached perpendicularly to a rotating collector [225]. The use of a small diameter rod as a 

rotating collector has also been shown to be effective in the construction of a tubular structure 

[269]. Electrospinning also allows the construction of a tube with a layered fibrous 

composite. For instance, Yao et al. successfully fabricated a PCL nerve conduit composed of 

aligned fibres in the internal layer and random fibres in the external layer. A layered tube 

composite with different materials can be established by sequential electrospinning as 

reported by Vaz et al.., in which PCL was electrospun first, followed with PLA on a rotating 

mandrel collector [270].  Recently, Leung et al.. demonstrated the fabrication of three 

dimensional electrospun scaffolds, made from composites of poly(lactide-co-glycolide acid) 

(PLGA) and hydroxyapatite (HA), for bone tissue engineering [271]. In the study, 40 layers 

of PLGA/HA random fibres scaffolds were stacked and sintered using a pressurized gas at 

400 psi for 180 seconds for the optimal formation of three dimensional PLGA/HA scaffolds.  

Previously, there have been a number of studies reporting on the fabrication of 

electrospun scaffolds with controlled geometric patterns. Several methods have been 

proposed to introduce geometric features in the scaffolds, for instance, using a pre-patterned 

conductive collector and photolithography techniques [272-275]. Besides that, it has been 

shown previously that the formation of a complex structure, e.g. honeycomb, can be achieved 
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by a self assembly mechanism [276, 277]. In a recent study, Lee et al. introduced an 

improved technique which allows the formation of patterned electrospun scaffolds by direct-

write electrospinning deposition [278]. In the study, they developed a mechanism for 

focusing the electrospun jet and introduced a scanning functionality, allowing the controlled 

formation of various geometric patterns such as lines, points, lattices, alphabetic characters 

and lattice-patterned mats with various mesh sizes.  

2.5. Polycaprolactone as a biomaterial 

Polycaprolactone (PCL) is an aliphatic polyester produced from the polymerization of 

monomer ɛ-caprolactone, a cyclic ester. This hydrophobic polymer has a typical melting 

point of 60
º
C and glass transition temperature of - 60

º
C, and forms a semi-cyrstalline 

molecular structure with a degree of crystallinity ranging from 45% to 67% [279]. PCL is a 

biodegradable and biocompatible polymer, and can be produced inexpensively, thus making 

it an attractive material for tissue engineering and drug delivery systems [143, 279, 280]. The 

properties of PCL can be controlled by blending PCL with other polyesters or natural 

polymers. For instance, mechanical properties of PCL can be altered by blending with starch 

or PLLA [202, 281]. A functionalized PCL, such as poly(hydroxymethylglycolide-co-ε-

caprolactone), has been developed previously and has been shown to exhibit an increased 

degradation rate and improved hydrophilicity, thus promoting cell adhesion, proliferation and 

differentiation, with a higher degradation rate [282, 283]. It also can be fabricated into 

various forms including nano/microfibres by electrospinning [227], three-dimensional (3D) 

porous scaffolds by 3D printing [283] and porous microspheres by combined 

emulsion/solvent evaporation and particle leaching methods [284].  
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2.5.1. The synthesis of polycaprolactone (PCL) 

Polycaprolactone is derived from the polymerization of monomer ɛ-caprolactone 

(Figure 4). The monomer can be produced through an oxidation process by microorganisms 

or using peracetic acid. The oxidation of cyclohexanol into adipic acid by microorganisms 

results in the formation of ɛ-caprolactone as an intermediary product [285]. The synthesis of 

ɛ-caprolactone also happens when cyclohexanone is oxidized by peracetic acid [286].  

 

Figure 4: Polymerization of ɛ-caprolactone which can be conducted by polycondensation and 

ring-opening polymerization techniques 

For the synthesis of PCL, the polymerisation can take place through the condensation 

of 6-hydroxycaproic (6-hydroxyhexanoic) acid and the ring opening polymerisation of ɛ-

caprolactone. PCL polymerisation by condensation of 6-hydroxycaproic (6-hydroxyhexanoic) 

acid is conducted under vacuum condition to remove the water produced during the reaction, 

thus inducing the formation of the polymer. There are also a few studies that describe the use 

of enzyme from microorganisms, like lipase, to synthesize PCL by polycondensation method 

[287]. However, polycondensation method usually results with a polymer with a lower 

molecular weight, whilst ring-opening polymerization can produce PCL with a higher 

molecular weight [286]. The synthesis of PCL via ring-opening polymerization route 

involves the use of catalysts and a wide range of catalytic systems, including metal-based, 
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enzymatic and organic systems, have been described previously for the polymerization of ɛ-

caprolactone [286]. The catalysts include lithium diisopropylamide, magnesium aryloxide, 

triethylaluminium and stannous (ɪɪ) ethylhexanoate.  

2.5.2. The biodegradation of PCL 

The biodegradation of PCL occurs relatively slowly and the rate of degradation ranges 

from several months to several years, depending on the molecular weight and crystallinity of 

the polymer and the conditions of degradation. The degradation of PCL produces various 

acidic, low molecular weight products such as succinic acid, butyric acid, valeric acid and 

hexanoic acid [288]. Investigation into the mechanism of in vivo PCL degradation suggests 

that the process is attributed to random hydrolytic chain scission of the ester linkages, 

potentially due to the OH· radical formation [289]. The hydrolytic degradation of PCL is 

autocatalysed by carboxylic acids generated during hydrolysis [290] and takes place in two 

stages, beginning with a drop in the molecular weight while retaining the mass and shape, 

then follows with the fragmentation of the polymer and mass loss when the molecular weight 

reaches 5000 [291]. Hydrolytic degradation is highly dependent on polymer crystallinity and 

hydrophilicity, with lower crystallinity and higher hydrophilicity accelerating the polymer 

degradation rate due to increased water penetration [292, 293].  

Biodegradation of PCL can also occur by an enzymatic mechanism. Enzymatic 

degradation takes place by surface erosion, with a preferential attack of the amorphous 

regions prior to crystalline regions. Lipase is the best characterized enzyme for PCL 

biodegradation. Lipase produced by microorganisms such as Rhizopus delemer, Rhizopus 

arrhizus and Pseudomonas have been shown to be effective at degrading PCL [294-296], 

while porcine pancreatic lipase and Candida cylindracea lipase have no effect [297, 298]. 

Enzymatic degradation takes effect faster than hydrolytic degradation. PCL microparticles 

exhibit pores and channels on the surface after 9 weeks of in vitro degradation with lipase, 
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while, without the presence of lipase, no significant change is observed [299]. Similarly, PCL 

networks were shown to degrade faster through enzymatic degradation than hydrolysis, with 

an 18% mass loss measured within 14 weeks with lipase, while it took 60 weeks to reach a 

similar mass loss in the absence of lipase [300]. 

2.5.3. Biocompatibility  

Numerous in vitro studies have shown that PCL as a culture substrate can support cell 

adhesion, growth and differentiation [225, 226, 256, 301-303]. Furthermore, PCL has been 

approved by the FDA for clinical applications. For instance, a nerve guidance conduit, made 

from poly D,L lactide-co-ɛ-carprolactone (Neurolac®), has received FDA approval and 

tested in a number of pre-clinical and clinical settings, with various degrees of success [120]. 

A recent comparative study between poly(hydroxymethylglycolide-co-ε-caprolactone 

(PHMGCL), a fast-degrading material, and PCL revealed that PCL porous scaffolds elicited a 

relatively minimal inflammatory response than PHMGCL scaffolds, with lower inflammatory 

cell infiltration and fibrosis formation after a 3 month subcutaneous implantation [283]. It has 

also been shown that degraded PCL can be safely absorbed and excreted by the body as 

reported by Sun et al.., in which, a radioactively-labelled PCL was implanted subcutaneously 

in rats for a 2 year degradation study [304]. They found no accumulation of the degraded 

material in the organs or tissues, however the material was detected in blood, urine and 

feaces.  
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3. Aims of the study 

Three-dimensional culture models have been proposed to address the limitation of the 

traditional methods of monolayer cell culture i.e. a lack of relevant architectural features. 

However, very few studies have described methods for three-dimensional cell culture for 

peripheral nerve studies which may be advantageous for peripheral neuropathies and 

therapeutic studies as well as strategies for peripheral nerve repair. Therefore, the present 

study was to develop an in vitro three-dimensional model for peripheral nerve using aligned 

polycaprolactone microfibres as a scaffold. The specific aims of the study were:  

 To fabricate aligned PCL microfibres with different fibre diameters by manipulating the 

electrospinning parameters and then, to conduct physical characterization of aligned PCL 

microfibres by scanning electon microscopy analysis.  

 To culture NG108-15 neuronal cells on aligned PCL microfibres with different fibre 

diameters and to investigate the effect of fibre diameter on the extent of NG108-15 

neuronal cell differentiation and cell viability. 

 To culture primary Schwann cells on aligned PCL microfibres with different fibre 

diameters and to investigate the effect of fibre diameter on primary Schwann cell 

morphology and viability.  

 To investigate the feasibility of NG108-15 neuronal/Schwann cell co-cultures on aligned 

PCL microfibres with different fibre diameters and to analyse neurite growth in such 

models. 

 To investigate the feasibility of neuronal/Schwann cell co-cultures derived from dorsal 

root ganglion (DRG) on aligned PCL microfibres with different fibre diameters and to 

analyse neurite growth and Schwann cell migration in such models. 

 To investigate if Schwann cell myelination arises in neuronal/Schwann cells co-culture on 

aligned PCL microfibres as a differentiation marker of glial cells. 
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4. Materials and methods  

4.1. Fabrication of aligned polycaprolactone microfibres by electrospinning 

4.1.1. Electrospinning  

Electrospinning was undertaken using a single syringe pump (WPI-Europe), a high-

voltage power supply (Genvolt UK) and a rotating cylindrical collector attached to a motor 

(IKA Works). A plastic syringe (Becton Dickinson) and a blunt needle (20G) were used to 

generate fibres. The needle was connected to the power supply and insulated with electrical 

tape to improve the electrospinning efficiency [305].  Fibres were collected on a sheet of 

aluminium foil which was wrapped around a rotating drum collector, which was electrically 

grounded. The collector rotated at a speed of 2200 rpm under all electrospinning conditions. 

Figure 5 illustrates the electrospinning setup used.  

 

Figure 5: Electrospinning setup used for fabrication of aligned PCL microfibres. (A) Syringe 

pump. (B) Blunt needle connected to an electrode. (C) Focusing ring. (D) Electrically 

grounded cylindrical collector. (E) Electric motor. (F) Voltage generator.  

 



52 

 

4.1.2. Optimization of polycaprolactone molecular weight and solution concentration for 

electrospinning aligned microfibres 

To determine the feasible polycaprolactone molecular weights and solution 

concentrations for electrospinning aligned fibres, three different polycaprolactone molecular 

weights (Mn 10,000 g/mol (Mw 14,000 g/mol), Mn 40,000 g/mol (Mw 60,000 g/mol) and Mn 

80,000 g/mol (Mw 144,000 g/mol)) were dissolved in dichloromethane (Fisher Scientific UK) 

in various concentrations and electrospining was carried out with various processing 

conditions on an investigative basis. The concentrations and processing conditions used for 

these experiments are summarized in Table 2. For these preliminary studies, PCL fibres were 

qualitatively examined using phase-contrast microscopy. Electrospun fibres were cut into ~1 

cm × ~2 cm and then, using transparent tape, were removed from the aluminium foil onto 

which the fibres were spun. Then, electrospun fibres, together with the transparent tape, were 

mounted on a microscope slide for imaging.  

4.1.3. Fabrication of aligned polycaprolactone microfibres with different diameter by 

electrospinning 

Three electrospinning conditions were used to fabricate fibres of three different 

diameters from polycaprolatone (PCL; Sigma-Aldrich) of Mn 80,000 g/mol. For the 

fabrication of large (8µm) and intermediate (5µm) sized fibres, the polymer was dissolved in 

dichloromethane (Fisher Scientific UK) at 20 wt% and 10 wt% concentration, respectively. 

Both PCL solutions were electrospun at a distance of 20 cm from the collector for 4 minutes. 

For large fibres, the syringe pump flow rate was set to 6 ml/hour and the applied voltage was 

18 kV. For intermediate fibres, the flow rate was 4 ml/hr (15 kV). For small fibre (1 µm) 

fabrication, PCL was dissolved in a mixture of chloroform (Fisher Scientific UK) and 

dicholoromethane (Fisher Scientific UK) (50:50 v/v) to make a 10 wt% PCL solution. The 

flow rate was 0.3 ml/hour and the applied voltage was 14 kV. The distance between the 
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needle and the collector was 20 cm and spinning was conducted for 10 minutes. A 27G blunt 

needle was used for small fibre fabrication. A summary of the processing conditions used to 

electrospin is shown in table 1.  

4.1.4. Physical characterization of aligned PCL microfibres with different diameters by 

scanning electron microscopy (SEM) 

Three fibre groups of 1 µm, 5 m and 8 µm were electrospun independently and three 

separate sample batches were studied by SEM for each fibre group. Three parameters were 

analyzed: i) fibre diameter; ii) fibre alignment and iii) fibre density. All samples were sputter-

coated with a 20 nm thick gold film before SEM to improve the conduction of the sample. 

SEM was conducted using a FEI Sirion field emission gun scanning electron microscope and 

parameters were analyzed using National Institutes of Health (NIH) Image J software. An 

average of 46 fibres per fibre group was measured for diameter and 38 fibres per fibre group 

were measured for alignment. The same images were analyzed for density, which was 

measured by quantifying the number of fibres across a fixed sample width of 117 µm.  A 

reference line was drawn perpendicular to a central fibre and the number of fibres along the 

reference line was counted and density calculated by dividing the number of fibres by the 

length of the line. Fibre alignment was determined by measuring the angular variance 

between fibres. To achieve this, a reference line was drawn parallel to an assigned central 

fibre and the angular difference (in degrees) across the sample measured for each fibre. Data 

was collected in to groups of 2
о
. Thus, measurements between 0

о
 and +/- 2

о
 were collected in 

to one group, between +/- 2
o
 to +/- 4

o
 in to a second group, with data collected up to +/-12º. 

Scaffold depth (z-depth) as determined by confocal microscopy was found to range from 90 

µm to 130 µm for all scaffolds.  
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4.2. Preparation of aligned PCL microfibres and control flat surfaces for cell 

and tissue culture   

4.2.1. Preparation of aligned PCL microfibres for neuronal cell, primary Schwann cell and 

dorsal root ganglion (DRG) culture 

PCL fibres were physically maintained in position using a medical grade 316 stainless 

steel ring (inner diameter = 13 mm, outer diameter = 24 mm). To position scaffolds, a 10 

wt% PCL solution in dichloromethane was spread evenly to the bottom surface of the ring 

which was immediately placed onto the fibres and left to dry.  Scaffolds were cut into square 

(24 mm × 24 mm) around the external surface of the ring enabling samples to fit into a 6-well 

tissue culture plate. Scaffolds were removed from the aluminium foil onto which the fibres 

were electrospun before being glued on the tissue culture plate using the 10 wt% PCL 

solution and were left to dry. Samples were sterilized with 70% ethanol for 3 hours and 

washed three times with phosphate-buffered saline (PBS) with a final wash left in PBS 

overnight to ensure complete removal of potential contaminants. Samples were washed again 

three times with PBS before cell culture experiments.   

4.2.2. Preparation of PCL thin films for neuronal and primary Schwann cell culture 

 Cover glasses and PCL films were used as control flat surfaces. PCL films were 

fabricated by spin coating.  A 10 wt% PCL solution in dichloromethane was used to make 

PCL thin films by spin coating. Approximately 0.2 ml of PCL solution was placed on a 19 

mm diameter circular cover glass, which was secured on the rotating part of a spin coater. 

The solution was spun until the solvent was fully evaporated. PCL films were fixed on the 

surface of a well plate by gluing the edge of films using the same solution. Both cover glasses 

and PCL films were sterilised with 70% (v/v) ethanol for 30 minutes, followed by three PBS 
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washes with samples left in PBS overnight, as above. Samples were washed again three times 

with PBS before cell culture.  

4.3. Neuronal cell culture on aligned PCL microfibres 

4.3.1. NG108-15 neuronal cell culture 

NG108-15 neuronal cells are a cell line generated by the hybrid of mouse 

neuroblastoma and rat glioma cells through a Sendai virus-induced fusion method. NG108-15 

neuronal cells were obtained from the European Collection of Cell Cultures (ECACC) and 

grown in Dulbecco's Modified Eagle Medium (DMEM) (Biosera) containing 10% foetal calf 

serum, 1% glutamine, 1% penicillin / streptomycin, and 0.5% amphotericin B in a humidified 

atmosphere with 5% CO2 at 37
o
 C. Cells were used for experiments after they became 80% - 

90% confluent and experimentation conducted between passage numbers 10 and 20 (P10-

P20).   

4.3.2. Investigation on the effect of serum on neuronal cell differentiation and proliferation 

study by the Cell-IQ
TM

 live imaging and analysis system. 

The Cell-IQ
TM

 system is an automated live imaging and analysis system which 

integrates incubator, microscopy and image analysis in one system. To study the effect of 

serum on neuronal cell differentiation and proliferation, NG108-15 neuronal cells were 

seeded at a density of 3 × 10
4
 cells per well in either serum-free or serum-containing 

Dulbecco‟s modified Eagles medium (10% foetal calf serum). In both conditions, cells were 

maintained in 5 ml of medium containing 1% glutamine, 1% penicillin / streptomycin and 

0.5% amphotericin B in 6 well-tissue culture plate. Cells were maintained in a humidified 

atmosphere with 5% CO2 at 37°C for 4 days. After seeding, cells were incubated overnight 

before starting imaging to allow cells to adhere on the surface. Live imaging and image 

analysis were conducted by the Cell-IQ
TM

 system. Three random areas on the culture plate 
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were selected per well and set on the Cell-IQ
TM

 system for automatic imaging every 40 

minutes for a 4 day culture period. Neuronal cell differentiation was studied by measuring 

total neurite length per field-of-view (Figure 6A) while the proliferation of neuronal cells was 

analysed by quantifying the total area occupied by the cells (Figure 6B). Both quantitative 

analyses was conducted on the Cell-IQ
TM

 system.   

 

Figure 6: (A) Neurite tracing (blue) on the Cell-IQ
TM

 software for neurite measurement. (B) 

Area occupied by NG108-15 neuronal cells (purple) detected by the Cell-IQ
TM 

software for 

cell proliferation analysis. Scale bar = 140 µm. 

4.3.3. NG108-15 neuronal cell culture on aligned PCL microfibres and control flat surfaces 

NG108-15 neuronal cells were trypsinized and 3 × 10
4
 cells seeded directly on to PCL 

fibre samples contained within 6-well plates in 5 ml of serum-free Dulbecco's modified 

Eagles medium (DMEM) containing 1% glutamine, 1% penicillin / streptomycin and 0.5% 

amphotericin B. Cultures were maintained for 4 days, with half of the medium removed and 

replaced with fresh medium on day 2. Same culture conditions were conducted on control flat 

surfaces (cover glasses, PCL films and tissue culture polystyrene) in 6-well plates.  

As reported in section 3.2.1, it was found that serum-free medium promoted NG108-

15 neuronal cell differentiation i.e. neurite growth while serum-containing medium 

stimulated cell proliferation but not differentiation. Therefore, in this experiment, serum-free 
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medium was used for studying neuronal cell differentiation on aligned PCL microfibres and 

control flat surfaces.  

4.3.4. F-actin labelling with phalloidin-tetramethylrhodamine B isothiocyanate (phalloidin-

TRITC) for visualization of neuronal cells by confocal microscopy 

Samples containing cultures of NG108-15 neuronal cells were carefully washed once 

with PBS and fixed with 10% (v/v) formalin (diluted in PBS) for 30 minutes at room 

temperature. After washing once with PBS, cells were permeabilized with 1% (v/v) Triton-X-

100 (diluted in PBS) for 1 minute at 4 °C, followed by washing with PBS (×3). Cells were 

incubated with phallodin-TRITC (1:1000 dilution in PBS) (Sigma-Aldrich) for 30 minutes at 

room temperature before washing with PBS (×3). Finally, cells were covered in PBS for 

imaging by confocal microscopy. Cells were imaged using an upright Zeiss LSM 510 

confocal microscope using a helium-neon laser (543 nm) for tetramethylrhodamine B 

isothiocyanate (TRITC) excitation (λex = 540-545 nm / λem = 570-573 nm). Samples were 

processed for 3D imaging by „z-stacking‟ using an average of 40 slices per sample/image 

with z-depths ranging from 90 to 130 µm. Representative z-stack images were displayed as 

single plane images.  

4.3.5. Immunolabelling of neuronal cells for a neuronal cell specific marker, β III-tubulin for 

visualization by confocal microscopy  

Samples containing cultures of NG108-15 neuronal cells were washed three times 

with PBS and fixed with 4% (v/v) paraformaldehyde for 20 minutes, permeabilized with 

0.1% Triton X-100 for 20 minutes followed by washing with PBS (×3). Unreactive binding 

sites were blocked with 3% bovine serum albumin (BSA) and cells incubated overnight with 

a mouse anti-β III-tubulin antibody (neuronal cell marker for NG108-15 neuronal cell 

culture) (1:2000) (Promega, UK) diluted in 1% BSA at 4 ºC. Cells were then washed three 
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times with PBS before being incubated with Texas Red-conjugated anti-mouse IgG antibody 

(1:100 dilution in 1% BSA) (Vector Labs, USA) for 90 minutes. After washing once with 

PBS, 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma Aldrich) (300 nM) was 

added to stain for nuclei and cells immersed for 15 minutes at room temperature, washed 

again three times with PBS before imaging.  An upright Zeiss LSM 510 confocal microscope 

using a helium-neon laser (543 nm) for Texas Red excitation (λex = 589nm / λem = 615 nm). 

Nuclei were visualized by two photon excitation using a Ti:sapphire laser (800 nm) for DAPI 

(λex= 358 nm / λem = 461 nm). Samples were processed for 3D imaging by „z-stacking‟ using 

an average of 50 slices per sample/image with z-depths ranging from 90 to 130 µm. 

Representative z-stack images were displayed as single plane images and combined to show 

3D composite images as presented in Figure 18.      

4.3.6. Live/dead measurement of neuronal cells 

Culture medium was removed from cell samples and incubated in fresh serum-free 

medium containing 0.001% (v/v) Syto-9
TM

 (Invitrogen) and 0.0015% (v/v) propidium iodide 

(Invitrogen) at 37
o
C / 5% CO2 for 15 minutes. After replacing with fresh medium, cells were 

imaged using an upright Zeiss LSM 510 confocal microscope with an argon ion laser (488 

nm) for Syto-9 (λex = 494 nm / λem = 515 nm) and a helium-neon laser (543 nm) for 

propidium iodide (λex = 536 nm / λem = 617 nm). Three fields of view were imaged with the 

acquisition of 80 to 200 cells per experiment enabling data to be expressed as a percentage of 

live versus dead cells ± SEM. Quantification of live and dead cells was undertaken using the 

3D Objects Counter software on NIH Image J (threshold = 40 to 90) and analysis conducted 

on z-stack images across a z-depth range of 90 to 130 µm. 
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4.3.7.  Neurite outgrowth assessment 

Fields-of-view selected at random by confocal microscopy were analysed using 

neurite tracer software (NIH Image J). Three parameters were examined to assess 

differentiation: i) the maximum neurite length ; ii) the number of neurites per neuron and iii) 

the percentage of neurite-bearing neurons. The length of each neurite was taken from the tip 

of the neurite to the cell body. An average of 80 neurites were measured for each condition 

for maximum neurite length and the number of neurites per neuron, with three independent 

sample measurements made (n=3). The percentage of neurite-bearing neurons comprised the 

total number of neurons per field-of-view (numerator) divided by the total number of cells 

identified as positively stained nuclei (denominator), using 3D Objects Counter software 

(threshold = 100 to 190, NIH Image J) and analysis conducted on z-stack images across a z-

depth range of 90 to 130 µm. 

4.3.8. Quantification of the total number of NG108-15 neuronal cell per unit surface area on 

aligned PCL microfibres  

The total number of NG108-15 neuronal cell per unit surface area on aligned PCL 

microfibres and flat surfaces was assessed after 4 days in culture by quantifying the total 

number of cells labelled with Syto-9
TM

 and propidium iodide
 
over an area of 1.42 mm

2
 (1.19 

mm × 1.19 mm). The total surface area of aligned PCL microfibres was calculated using the 

following formulation:  

Total surface area  =2π×  
fibre diameter in mm

2
  ×fibre length × number of fibre 

                                        

                                       = 2π×  
fibre diameter in mm

2
 ×1.19 mm ×fibre density×1.19 mm 
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The total number of NG108-15 neuronal cell per unit surface area comprised the total 

number of cells quantified per an area of 1.42 mm
2
 divided by the total surface area. Three 

randomly selected fields-of-view per sample obtained by confocal microscopy were analysed 

using the 3D Objects Counter software on NIH Image J (threshold = 40 to 90) 

4.4. Primary Schwann cells cultured on aligned PCL microfibres 

4.4.1. Isolation and culture of primary Schwann cells  

Primary Schwann cells were isolated from the sciatic nerve of adult male Wistar rats 

(age 10-12 weeks old) which were sacrificed by a Schedule I method in accordance to the 

Animals (Scientific Procedures) Act 1986. This study employed a novel technique for 

Schwann cell isolation from adult rat nerve with average Schwann cell purities of 97% which 

was developed by Kaewkhaw and Haycock [306]. This method is based on a selective culture 

medium that stimulates Schwann cell growth (due to the mitogens such as forskolin, N2 

supplement and bovine pituitary extract) but simultaneously inhibits fibroblast overgrowth 

(due to an inhibitory substance, D-valine). The method exploits the preferential capacity of 

Schwann cells to metabolize D-valine since Schwann cells express a higher level of a D-

amino acid oxidase than fibroblasts. 

  Briefly, the sciatic nerve was removed by bilateral dissection and immersed in 

chilled DMEM containing 1% penicillin/streptomycin. Epineurium free fascicles were 

dissociated, cut into smaller fragments and digested with 0.05% collagenase at 37
o
C for 60 

minutes. The resultant cell suspension was filtered using a 40 µm cell strainer (BD Falcon) 

and centrifuged at 400 g for 6 minutes, supernatant removed and cell pellet washed with 10 

ml of DMEM containing 10% FCS. The pellet was re-suspended in 1 ml of Schwann cell 

medium (DMEM D-valine (PAA), 2 mM glutamine, 10% FCS, 1% N2 supplement (Gibco 

BRL, UK), 20 µg/ml bovine pituitary extract, 5 µM forskolin, 1% penicillin/streptomycin and 
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0.25% amphotericin B).  500 µl of cell suspension was added into 2 ml Schwann cell medium 

in a Petri dish pre-coated with 1 µg/cm
2
 laminin and 0.01 mg/cm

2
 poly-l-lysine (Sigma 

Aldrich). Cells were incubated at 37
o
C / 5% CO2. 1 ml of fresh Schwann cell medium was 

added on day 7. The medium was replenished on day 11 and subsequently changed every 2 

days until confluent. Cells were used for experimentation between passage number 3 and 10 

(P3-P10). 

4.4.2. Primary Schwann cell culture on aligned PCL microfibres and control flat surfaces 

Cells were trypsinized and 5 × 10
5
 cells seeded directly on to PCL fibre samples 

contained within 6-well plates in 4 ml of DMEM D-valine (PAA) containing 2 mM 

glutamine, 10% FCS, 1% N2 supplement (Gibco BRL, UK), 20 µg/ml bovine pituitary 

extract, 5 µM forskolin, 1% penicillin/streptomycin and 0.25% amphotericin B. Cultures 

were maintained for 8 days, with half of the medium removed and replaced with fresh 

medium every 2 days. Same culture conditions were conducted on control flat surfaces (cover 

glasses, PCL films and tissue culture polystyrene) in 6-well plates. 

4.4.3. Immunolabelling for S100β Schwann cell marker by confocal microscopy  

Samples containing cultures of primary rat Schwann cells were washed three times 

with PBS and fixed with 4% (v/v) paraformaldehyde for 20 minutes, permeabilized with 

0.1% Triton X-100 for 20 minutes followed by washing with PBS (×3). Unreactive binding 

sites were blocked with 3% bovine serum albumin (BSA) and cells incubated overnight with 

a polyclonal rabbit anti-S100β (Schwann cell marker for Schwann cell cultures, co-cultures 

or DRG samples) (1:250) (Dako, Denmark) diluted in 1% BSA at 4 ºC. Cells were then 

washed three times with PBS before being incubated with FITC-conjugated secondary anti-

rabbit IgG antibody (1:100 dilution in 1% BSA) (Vector Labs, USA) for 90 minutes. After 

washing once with PBS, 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma 
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Aldrich) (300 nM) was added to stain for nuclei and cells immersed for 15 minutes at room 

temperature, washed again three times with PBS before imaging. Schwann cells were imaged 

using an upright Zeiss LSM 510 confocal microscope using an argon ion laser (488 nm) for 

FITC excitation (λex= 495 nm / λem = 521 nm).  Nuclei were visualized by two photon 

excitation using a Ti:sapphire laser (716 nm) for DAPI (λex= 358 nm / λem = 461 nm).  

Samples were processed for 3D imaging by „z-stacking‟ using an average of 50 slices per 

sample/image with z-depths ranging from 90 to 130 µm. Representative z-stack images were 

displayed as single plane images and combined to show 3D composite images as presented in 

Figure 26.    

4.4.4.  Live/dead measurement of primary Schwann cells for cell viability assessment 

Culture medium was removed from cell samples and incubated in fresh Schwann cell 

medium containing 0.001% Syto-9
TM

 (Invitrogen) and 0.0015% propidium iodide 

(Invitrogen) at 37
o
C / 5% CO2 for 15 minutes. Then, cells were carefully washed with PBS 

three times before adding fresh warm Schwann cell medium. Cells were imaged using an 

upright Zeiss LSM 510 confocal microscope with an argon ion laser for Syto-9 (λex = 494 nm 

/ λem = 515 nm) and a helium-neon laser for propidium iodide (λex = 536 nm / λem = 617 nm). 

Three fields of view were imaged with the acquisition of an average of 500 cells per 

experiment enabling data to be expressed as a percentage of live versus dead cells ± SEM. 

Quantification of live and dead cells was undertaken using the 3D Objects Counter software 

on NIH Image J (threshold = 40 to 90) and analysis conducted on z-stack images across a z-

depth range of 90 to 130 µm. 
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4.4.5.  Assessment of primary Schwann cell morphology  

The bipolar morphology of primary Schwann cells was assessed by quantifying the 

tip-to-tip length of the cells. Randomly selected fields-of-view obtained by confocal 

microscopy were analysed using the ruler tool in NIH Image J. An average of 100 cells per 

condition was examined and the mean cell length was established from three independent 

experiments and analysis conducted on z-stack images across a z-depth range of 90 to 130 

µm. 

4.4.6. Quantification of the total number of primary Schwann cell per unit surface area on 

aligned PCL microfibres  

The total number of primary Schwann cell per unit surface area on aligned PCL 

microfibres and flat surfaces was assessed after 4 days in culture by quantifying the total 

number of cells labelled with Syto-9
TM

 and propidium iodide
 
over an area of 1.42 mm

2
 (1.19 

mm × 1.19 mm). The total surface area of aligned PCL microfibres was calculated using the 

following formulation:  

Total surface area  =2π×  
fibre diameter in mm

2
  ×fibre length × number of fibre 

                                        

                                       = 2π×  
fibre diameter in mm

2
 ×1.19 mm ×fibre density×1.19 mm 

The total number of NG108-15 neuronal cell per unit surface area comprised the total 

number of cells quantified per an area of 1.42 mm
2
 divided by the total surface area. Three 

randomly selected fields-of-view per sample obtained by confocal microscopy were analysed 

using the 3D Objects Counter software on NIH Image J (threshold = 40 to 90).  
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4.5. Co-culture of neuronal cells and Schwann cells on aligned PCL 

microfibres  

2.5.1. Co-culture of NG108-15 neuronal cells and Schwann cells on aligned PCL microfibres 

Schwann cells were initially seeded directly on to PCL fibre samples at a density of 5 

× 10
5
 cells per well and cultured for 8 days in Schwann cell medium. On day 8, Schwann cell 

medium was removed and 5 ml of co-culture medium was added to the cells. NG108-15 

neuronal cells were seeded at a density of 7 × 10
3
 cells per well to establish a neuronal / glial 

cell co-culture. The co-culture medium was made up of a mixture of DMEM (Biosera) and 

Ham‟s F12 medium (Biosera) at a 1:1 ratio (v/v) and was supplemented with 1 % L-

glutamine, 1% penicillin/streptomycin, and 1% N2 supplement. Co-cultures were maintained 

for 4 days at 37
o
C, 5% CO2. Half of the medium was replaced with fresh medium on day two.  

4.5.2. Dorsal root ganglion (DRG) explant cultures  

Rat dorsal root ganglions (DRG) were used to establish a co-culture of primary 

neuronal cells and Schwann cells. DRGs contain both primary sensory neuronal cells and 

primary Schwann cells when explanted. In this study, DRGs were isolated from adult male 

Wistar rats. Experiments were carried out in accordance with the institutional guidelines for 

animal care and in accordance to the Animals (Scientific Procedures) Act 1986 (Schedule I 

killing).  Immediately after decapitation the vertebral column was removed, Muscles were 

removed and the vertebral column was sectioned into 1-2 cm lengths before a sagittal cut 

exposing the spinal cord. Then, the spinal cord was removed from the spinal canal until the 

DRG located lateral to the spinal cord was visible. DRGs were removed from the cervical, 

thoracic, and lumbar region with fine forceps and pooled into ice cold PBS. Nerve roots were 

trimmed from DRGs before explanting on PCL fibres and culture surfaces.  
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4.5.3. Dorsal root ganglion (DRG) explants cultured on aligned PCL microfibres with 

different diameters. 

DRGs isolated from adult male Wistar rats (age between 5-12 weeks) were used for 

this experiment. PCL fibres were washed three times with PBS and then equilibrated for 30 

minutes in culture medium (Dulbecco‟s modified Eagles medium containing 4 mM 

glutamine, 25 mM glucose, 100 U/ml penicillin, 100 mg/ml streptomycin and 10% foetal calf 

serum). Three DRGs were placed onto individual PCL fibre samples using forceps spaced 

approximately 1 - 2 mm apart and incubated for 10 days in a humidified atmosphere with 5% 

CO2 at 37ºC. The culture medium was replenished every 2 days. Neurite outgrowth from 

DRGs on PCL fibres was determined for each fibre diameter (1 µm, 5 µm and 8 µm) and 

experiments repeated three times (with 3 independent experiments for identical conditions). 

4.5.4.  Immunolabelling for S100β and βIII-tubulin for visualization of Schwann cells and 

neuronal cells in co-culture by confocal microscopy 

Co-cultures of NG108-15 neuronal and Schwann cells were double-labelled for both a 

neuronal cell marker, βIII-tubulin and a Schwann cell marker, S100β to distinguish the 

respective cell types in co-culture. Samples containing co-cultures of neuronal and Schwann 

cells were washed three times with PBS and fixed with 4% (v/v) paraformaldehyde for 20 

minutes, permeabilized with 0.1% Triton X-100 for 20 minutes followed by washing with 

PBS (×3). Unreactive binding sites were blocked with 3% bovine serum albumin (BSA) and 

cells incubated overnight with a polyclonal rabbit anti-S100β antibody (1:250) (Dako, 

Denmark) and a mouse anti-β III-tubulin antibody (1:2000) (Promega, UK) diluted in 1% 

BSA at 4ºC. Cells were then washed three times with PBS before being incubated with FITC-

conjugated secondary anti-rabbit IgG and Texas Red-conjugated anti-mouse IgG antibody 

(1:100 dilution in 1% BSA) (Vector Labs, USA) for 90 minutes. Co-cultures were washed 

three times with PBS before imaging.  
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Co-cultures were imaged using an upright Zeiss LSM 510 confocal microscope using 

an argon ion laser (488 nm) for FITC excitation (λex= 495 nm / λem = 521 nm) to visualize 

Schwann cells and a helium-neon laser (543 nm) for Texas Red excitation (λex = 589nm / λem 

= 615 nm) to visualize NG108-15 neuronal cells. Samples were processed for 3D imaging by 

„z-stacking‟ using an average of 50 slices per sample/image with z-depths ranging from 90 to 

130 µm. Representative z-stack images were displayed as single plane images and combined 

to show 3D composite images as presented in Figure 18.   

4.5.5. Neurite outgrowth assessment in NG108-15 neuronal- Schwann cell co-culture 

In the NG108-15 neuronal-Schwann cell co-culture study, neurite growth was 

assessed by measuring the maxium neurite length (the longest neurite measured in a cell). 

Fields-of-view selected at random by confocal microscopy were analysed using neurite tracer 

software (NIH Image J). The length of each neurite was taken from the tip of the neurite to 

the point where the neurite meets the cell body. An average of 48 neurites were measured for 

each condition with three independent sample measurements made (n=3). The analysis was 

conducted on z-stack images across a z-depth range of 90 to 130 µm. Neurite measurement 

from single cultures of NG108-15 neuronal cells on PCL fibres was used as control, obtained 

from earlier NG108-15 neuronal cell culture study (see 2.3.). 
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4.5.6. Axon outgrowth and Schwann cell migration assessment in neuronal-Schwann cell co-

cultures derived from DRGs explants.  

In this study, axon outgrowth was assessed by measuring the distance between the 

DRG body and the end of the longest axon observed. Schwann cell migration was analysed 

by measuring the distance from the DRG body to the furthest Schwann cells observed from 

the DRG body after 10 days in culture. Sequential-tiled images of axons and Schwann cells 

recorded by confocal microscopy were merged using Adobe Photoshop CS3. Measurements 

were conducted using the ruler tool in NIH Image J. Six measurements of neurite length and 

Schwann cell migration distance were conducted for each condition with three independent 

sample measurements made (n=3).   

4.6. Myelination studies in neuronal-Schwann cell co-culture on aligned PCL 

microfibres  

4.6.1. Dorsal root ganglion (DRG) culture on aligned PCL microfibres and laminin-coated 

tissue culture plate for myelination study  

DRG extraction was carried out as described in section 2.5.2. DRGs extracted from 

adult male Wistar rats (age between 5-12 weeks) were used for experimentation.  Sterile PCL 

fibres, contained in 6 well-plates, were washed three times with PBS and then equilibrated for 

30 minutes in 500 µl of culture medium. Two DRGs were placed onto individual PCL fibre 

samples (fibre diameter, 1 µm) using forceps spaced approximately 1-2 mm apart and then, 

an additional 300 µl of culture medium was added to make a total of 800 µl culture medium. 

Tissue culture plates (6 well-plates) were pre-coated with 1 µg/cm
2
 laminin and used as 

control culture surfaces.  DRGs were maintained in either standard DMEM or DMEM with 

D-valine (PAA) containing 5 µM forskolin for medium optimization for myelination. Both 

medium were supplemented with 10% foetal calf serum, 2 mM glutamine, 1% N2 
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supplement (Gibco BRL, UK) 1% penicillin/streptomycin, 0.25% amphotericin B and 50 

ng/ml nerve growth factor-β (NGF-β) (Sigma-Aldrich). DRGs were incubated for 7 days in a 

humidified atmosphere with 5% CO2 at 37°C to allow axon and Schwann cell outgrowth. 

After 7 days, ascorbic acid (Sigma-Aldrich) was added in culture medium to induce 

myelination (final concentration, 50µg/ml). Ascorbic acid treatment was continued for 14 

days before analysing myelin expression. 

4.6.2. Dorsal root ganglion (DRG) dissociation and culture 

Rat DRGs were extracted from the vertebral column as described earlier (see 2.5.2). 

Nerve roots were trimmed and subsequently DRGs were incubated in 1.25% (w/v) 

collagenase type IV (dissolved in DMEM) for 1 hour at 37°C. Then, DRGs were washed 

gently with fresh DMEM once, followed with incubation with 2.5% (w/v) trypsin (dissolved 

in DMEM) for 30 minutes at 37°c. Foetal calf serum was added to deactivate trypsin and 

DRGs were then washed with fresh DMEM (×3). DRGs were then mechanically dissociated 

by trituration with a glass pipette in DMEM. The resultant cell suspension was filtered 

through a 70 µm cell strainer, centrifuged at 300 g for 5 minutes and subsequently, the pellet 

was resuspended in 500 µl fresh DMEM. Cell suspension was transferred into a universal 

tube by flowing the suspension onto the side of the tube which was pre-coated with 15% 

(w/v) bovine serum albumin (BSA) (Sigma-Aldrich), followed with centrifugation at 500 g 

for 10 minutes. After aspirating the supernatant, cells were resuspended in DMEM containing 

1% penicillin/streptomycin and 0.25% amphotericin B.  
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4.6.3. Co-culture of primary neuronal cells and Schwann cells established from dissociated 

dorsal root ganglion (DRG) for myelination study 

Primary Schwann cells were seeded at a density of 7 x 10
4 

cells per well in 24 well-

plate pre-coated with 1 µg/cm
2
 laminin (Sigma Aldrich) and 0.01 mg/cm

2
 poly-l-lysine 

(Sigma Aldrich). Cells were maintained in Schwann cell medium (see 2.4.1.) in a humidified 

atmosphere with 5% CO2 at 37°C for 3 days. Then, primary neuronal/Schwann cell co-

cultures were established by seeding primary neurons generated from dissociated DRGs on 

the pre-cultured Schwann cells. Co-cultures were maintained for 3 days in medium as listed 

below before starting ascorbic acid treatment for inducing myelination: 

 Standard DMEM containing 10 % foetal calf serum, 2 mM glutamine, 1% N2 

supplement (Gibco BRL, UK) 1% penicillin/streptomycin, 0.25% amphotericin B and 

50 ng/ml nerve growth factor-β (NGF-β) (Sigma-Aldrich) 

 Serum free standard DMEM containing 2 mM glutamine, 1% N2 supplement (Gibco 

BRL, UK) 1% penicillin/streptomycin, 0.25% amphotericin B and 50 ng/ml nerve 

growth factor-β (NGF-β) (Sigma-Aldrich) 

 DMEM D-valine (PAA laboratories) containing 10 % foetal calf serum, 5 µM 

forskolin, 2 mM glutamine, 1% N2 supplement (Gibco BRL, UK) 1% 

penicillin/streptomycin, 0.25% amphotericin B and 50 ng/ml nerve growth factor-β 

(NGF-β) (Sigma-Aldrich) 

 Serum free DMEM D-valine (PAA laboratories) containing 5 µM forskolin, 2 mM 

glutamine, 1% N2 supplement (Gibco BRL, UK) 1% penicillin/streptomycin, 0.25% 

amphotericin B and 50 ng/ml nerve growth factor-β (NGF-β) (Sigma-Aldrich) 

Co-cultures were treated with 50 µg/ml L-ascorbic acid (Sigma-Aldrich) for 14 days, with the 

medium changed every 2 days before analysing for myelin expression. 
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4.6.4. Co-culture of primary neuronal cells and Schwann cells established from dissociated 

dorsal root ganglion (DRG) on aligned PCL microfibres for myelination study 

Primary Schwann cells were initially seeded directly on to PCL fibre samples 

(diameter = ~1 µm) at a density of 5 × 10
5
 cells per well and cultured in Schwann cell 

medium Cells in a humidified atmosphere with 5% CO2 at 37°C for 8 days. Then, primary 

neuronal/Schwann cell co-cultures were established by seeding primary neurons generated 

from dissociated DRGs on the pre-cultured Schwann cells. Co-cultures were maintained for 3 

days in serum free DMEM D-valine (PAA laboratories) containing 5 µM forskolin, 2 mM 

glutamine, 1% N2 supplement (Gibco BRL, UK) 1% penicillin/streptomycin, 0.25% 

amphotericin B and 50 ng/ml nerve growth factor-β (NGF-β) (Sigma-Aldrich) before starting 

ascorbic acid treatment for inducing myelination. Co-cultures were treated with 50 µg/ml L-

ascorbic acid (Sigma-Aldrich) for 14 days, with the medium changed every 2 days before 

analysing for myelin expression by transmission electron microscopy. 

4.6.5. Immunolabelling for myelin basic protein and myelin protein zero for the detection of 

myelin expression in dorsal root ganglion (DRG) explants culture and dissociated DRG 

culture  

Samples containing cultures of whole DRGs or dissociated DRGs were washed three 

times with PBS and fixed with 4% (v/v) paraformaldehyde for 20 minutes, permeabilized 

with 0.1% Triton X-100 for 20 minutes followed by washing with PBS (×3). Unreactive 

binding sites were blocked with 3% bovine serum albumin (BSA) and cells incubated 

overnight with a mouse monoclonal anti-myelin basic protein (MBP) antibody (1:250) (Dako, 

Denmark) and a rabbit polyclonal anti-myelin protein zero (P0) antibody (1:250) (Abcam) 

diluted in 1% BSA at 4 ºC. Cells were then washed three times with PBS before being 

incubated with Texas Red-conjugated secondary anti-mouse IgG antibody and FITC-

conjugated secondary anti-rabbit IgG antibody  (1:100 dilution in 1% BSA) (Vector Labs, 
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USA) for 90 minutes. After washing once with PBS, 4′,6-diamidino-2-phenylindole 

dihydrochloride (DAPI) (Sigma Aldrich) (300 nM) was added to stain for nuclei and cells 

immersed for 15 minutes at room temperature, washed again three times with PBS before 

imaging.  Samples were imaged using an epifluorescence microscope (Axon ImageXpress, 

Molecular Devices, USA) for Texas red excitation (λex = 589nm / λem = 615 nm) and FITC 

excitation (λex= 495 nm / λem = 521 nm) to detect MBP and P0 expressions, respectively. 

4.6.6. Assessment of myelin expression by Sudan Black B staining  

Sudan Black B was used to detect myelination in cell cultures by staining lipids in the 

myelin sheath. For Sudan Black B staining, sensory neuronal cells derived from dissociated 

DRGs were co-cultured with primary Schwann cells, which was pre-cultured on a cover slip 

(diameter = 13 mm). Co-cultures were washed with PBS three times and then, fixed with 

3.7% (v/v) paraformaldehyde (in PBS) overnight. After washing with PBS once, co-cultures 

were post-fixed with 0.1% (v/v) osmium tetroxide (in PBS) for 1 hour at room temperature. 

Co-cultures were washed three times, dehydrated through a graded series of ethanol (20%, 

50% and 70%) for 5 minutes in each concentration. Co-cultures were then stained with 0.5% 

(w/v) Sudan Black B (Sigma-Aldrich)  in 70% ethanol for 1 hour at room temperature before 

being rehydrated through a graded series of ethanol (70% for 1 minute, 50% for 5 minutes 

and 25% for 5 minutes). Co-cultures were washed with PBS twice and mounted in glycerol 

gelatine on a microscope slide before imaging by a Leica light microscope. To make glycerol 

gelatine mounting medium, 2.5g of gelatine was dissolved in 25ml of distilled water with 

gentle heat until fully dissolved. Then, 25 ml of glycerol was mixed in gelatine solution.  
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4.6.7. Examination of the myelin sheath in rat sciatic nerves by transmission electron 

microscopy 

Rat sciatic nerves were cut into small pieces (approximately 1 mm length) and fixed 

with 3% (v/v) glutaraldehyde (Sigma-Aldrich) in PBS overnight at 4°C. Samples were then 

washed with PBS twice with 10 minutes intervals. Samples were post-fixed with 1% (v/v) 

osmium tetroxide (Sigma-Aldrich) in PBS for 2 hours at room temperature, washed with 

distilled water for 10 minutes, and dehydrated through a graded series of ethanol as follows:  

1. 75% ethanol for 15 minutes, 

2. 95% ethanol for 15 minutes, 

3. 100% ethanol for 15 minutes, twice, 

4. 100% ethanol dried over anhydrous copper sulphate for 15 minutes, twice. 

Samples were left in propylene oxide for 15 minutes, twice and then, infiltrated with a 

mixture of propylene oxide (Sigma-Aldrich) and Araldite resin (1:1 v/v) overnight at room 

temperature. Samples were further infiltrated with full strength Araldite resin for 6 hours at 

room temperature before being embedded in fresh Araldite resin for 72 hours at 60°C. 

Araldite resin (Agar Scientific) was made by mixing 10 ml of Araldite CY212 resin, 10 ml of 

Dodecenyl Succinic Anhydride (DDSA) hardener and 20 drops of Benzyl Di-Methyl Amine 

(BDMA) accelerator.  

Samples were cut transversely into ultrathin sections (thickness = 90 nm) by a 

Reichert Ultracut E ultramicrotome. Sections were stained with 3% aqueous uranyl acetate 

(Sigma-Aldrich)  for 30 minutes, followed by staining with Reynold‟s lead citrate (Sigma-

Aldrich)  before imaging by a FEI Tecnai transmission electron microscope at an accelerating 

voltage of 80 kV. 

 

http://www.abbreviations.com/term/31449
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4.6.8. Examination of myelination in neuronal-Schwann cell co-cultures on aligned PCL 

microfibers by transmission electron microscopy (TEM) 

Neuronal-Schwann cell co-cultures were established as described in section 4.6.4. Co-

culture of primary neuronal cells and Schwann cells established from dissociated dorsal root 

ganglion (DRG) on aligned PCL microfibres for myelination studyNeuronal-Schwann cell 

co-cultures were maintained on aligned PCL microfibers (diameter = 1 µm) in serum free 

standard DMEM containing 2 mM glutamine, 1% N2 supplement (Gibco BRL, UK) 1% 

penicillin/streptomycin, 0.25% amphotericin B and 50 ng/ml nerve growth factor-β (NGF-β) 

(Sigma-Aldrich). This medium was used because possible myelin expression was detected in 

this medium as revealed by Sudan Black B staining. Co-cultures were treated with 50 µg/ml 

L-ascorbic acid (Sigma-Aldrich) for 14 days.  

 Co-cultures were fixed with 3% (v/v) glutaraldehyde (Sigma-Aldrich) in PBS 

overnight at 4°C. Samples were then washed with PBS twice with 10 minutes intervals. 

Samples were post-fixed with 1% (v/v) osmium tetroxide (Sigma-Aldrich) in PBS for 2 hours 

at room temperature, washed with distilled water for 10 minutes, and dehydrated through a 

graded series of ethanol as follows:  

1. 75% ethanol for 15 minutes, 

2. 95% ethanol for 15 minutes, 

3. 100% ethanol for 15 minutes, twice, 

4. 100% ethanol dried over anhydrous copper sulphate for 15 minutes, twice. 

Samples were infiltrated with a mixture of ethanol and Spurr resin (1:1 v/v) overnight 

at room temperature and further infiltrated with full strength Spurr resin for 6 hours at room 

temperature. Aligned PCL microfibres, with neuronal-Schwann cell co-cultures were bundled 

before being embedded in fresh Spurr resin for 72 hours at 60°C. Spurr resin (Agar 

Scientific) was made by mixing 5 g of ERL 4206 epoxy resin, 3 g Diglycidyl ether of 
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polypropylene glycol (DER 736) epoxy resin flexibilizer, 12 g of Nonenyl succinic anhydride 

(NSA) and 0.2 g of dimethylaminoethanol (DMAE) (S-1) accelerator.  

Samples were cut transversely into ultrathin sections (thickness = 90 nm) by a 

Reichert Ultracut E ultramicrotome. Sections were stained with 3% aqueous uranyl acetate 

(Sigma-Aldrich)  for 30 minutes, followed by staining with Reynold‟s lead citrate (Sigma-

Aldrich)  before imaging by a FEI Tecnai transmission electron microscope at an accelerating 

voltage of 80 kV. 

4.7. Statistical Analysis 

Statistical analysis was performed by using GraphPad Instat (GraphPad Software, 

USA). One way analysis of variance, incorporating a multiple comparison Tukey - Kramer‟s 

post test (if p < 0.05), was conducted to analyze the difference between data. Data was 

reported as mean ± SEM except for fibre diameter measurement which was reported as mean 

± SD. 
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5. Results  

5.1. Fabrication of aligned polycaprolactone (PCL) microfibres by 

electrospinning  

5.1.1. Optimization of polycaprolactone (PCL) molecular weight and solution concentration 

for electrospinning aligned microfibres  

In this preliminary study, PCL with molecular weights of Mn 10,000 g/mol, Mn 40,000 

g/mol and Mn 80,000 g/mol were electrospun using a range of solution concentrations to 

determine the optimal molecular weight and solution concentration for fabrication of aligned 

PCL microfibres. Processing conditions such as applied voltage, flow rate and needle-to-

collector distance were varied, observing the ejection of a polymer jet from the needle 

(Figure 7). The resultant fibres were qualitatively analysed initially by phase contrast 

microscopy for fibre formation and fibre alignment. Processing conditions used for 

electrospinning, together with the observations are summarised in Table 1. 

For PCL Mn 10,000 g/mol, there was no ejection of a polymer jet observed when 

electrospinning was conducted on a PCL solution with a concentration below 40% (w/w). 

Instead, a spray of PCL solution was observed. Jet formation was observed with an increment 

of the concentration to 50% but no fibres were successfully collected. A further increment in 

solution concentration was unable to be conducted because PCL cannot fully dissolved in 

dicholoromethane, hence electrospinning was not conducted for higher solution 

concentrations. Similarly, for PCL Mn 40,000 g/mol ejection of a polymer jet was unable to 

be achieved when electrospinning was conducted on PCL solutions with a concentration 

lower than 18% (w/w). A polymer jet was observed with up to a concentration to 30% (w/w), 

however, a mesh-like polymer sheet was collected and no evidence of aligned fibres was 

observed (Figure 8A). Electrospinning of a 40% (w/w) PCL solution resulted in the formation 
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of aligned fibres, but evidence of fusion between individual fibres was observed (Figure 8B). 

A further increase of the concentration was found to be impractical due to the high polymer-

to-solvent ratio, resulting in difficulty to achieve complete PCL dissolution.  

The study continued with the use of a higher molecular weight polymer, PCL Mn 

80,000 g/mol, and four polymer concentrations were tested for electrospinning. These were 

8% (w/w), 10% (w/w), 20% (w/w) and 25% (w/w). All concentrations were observed to 

generate a polymer jet during electrospinning and fibres were successfully collected. All PCL 

solution concentrations were able to generate aligned PCL fibres (Figure 8D, E, F) except a 

PCL solution of an 8% (w/w) concentration, which produced randomly oriented fibres 

(Figure 8C).  

 

Figure 7: Ejection of a polymer jet (arrow) from needle tip due to electrostatic charge applied 

on PCL solution. The formation of a polymer jet was observed when electrospinning PCL Mn 

40,000 g/mol with 30% (w/w) concentration and higher. Electrospinning PCL Mn 80,000 

g/mol with a range of concentrations between 8% (w/w) and 25% (w/w). (N) Needle. (I) 

insulating tape. 
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PCL Mn 

(g/mol) 

PCL 

Concentration 

(w/w %) 

Voltage 

(kV) 

Flow 

rate 

(ml/hr) 

Distance

* (cm) 
Observations 

~ 10,000 

< 30 - - - 

No jet formation was 

observed at all voltages, flow 

rates and distances. 

40 - - - 

No jet formation was 

observed all voltages, flow 

rates and distances. 

50 8 4 7.5 

Jet formation was observed at 

all voltages, flow rates and 

distances.  

~ 40,000 

< 18 - - - 

No jet formation was 

observed all voltages, flow 

rates and distances. 

30 12-15 4 10 

Jet formation was observed 

but no aligned fibres were 

generated (Figure 8A) 

40 12 2-10 10 

Aligned fibres were generated 

with possible fusion between 

the fibres (Figure 8B) 

~ 80,000 

8 9-11 1 8-15 
Randomly oriented fibres 

were generated (Figure 8C)  

10 12 2-10 10-20 
Aligned fibres were generated  

(Figure 8D) 

20 12 2-12 10-20 
Aligned fibres were generated 

(Figure 8E) 

25 19-20 10-12 10 
Aligned fibres were generated 

(Figure 8F) 

 

Table 1: A summary of electrospinning parameters used to determine the optimal molecular 

weight and concentration for aligned PCL fibre fabrication. Applied voltage, flow rate and 

needle-to-collector distances were determined based on a trial and error basis for the 

formation of polymer jet. (*needle-to-collector distance) 
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Figure 8: Phase contrast light micrographs of electrospun PCL fibres with a molecular weight 

of Mn 40,000 g/mol (A,B) and Mn 80,000 g/mol(C,D,E,F). A mesh-like polymer sheet was 

generated when electrospinning PCL Mn 40,000 g/mol at 30% (w/w) concentration (A). 

Aligned PCL fibres were collected when electrospinning PCL Mn 60,000 g/mol at 40% (w/w) 

concentration (B) and fusion between individual fibres were observed (arrow). 

Electrospinning of PCL Mn 80,000 g/mol at 8% (w/w) concentration produced randomly 

orientated fibres (C). Electrospinning of PCL Mn 80,000 g/mol at 10% (w/w) (D), 20% (w/w) 

(E) and 25% (w/w) (F) concentration resulted with the formation of aligned fibres. Scale bar 

= 50 µm.  
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5.1.2. Fabrication of aligned PCL microfibres with different fibre diameters  

Three scaffolds of aligned PCL microfibers with different diameters were fabricated 

by electrospinning using three different processing conditions. Based on previous results, 

electrospinning was conducted using PCL Mn 80,000 g/mol with solution concentrations 10% 

(w/w) and 20% (w/w). Processing conditions used for electrospinning aligned PCL with 

different diameters was summarized in Table 2. Fibre structure was observed and quantified 

using a field emission scanning electron microscope with three features analysed using NIH 

Image J software for physical characterization: i) fibre alignment; ii) fibre density and iii) 

fibre diameter. Figure 9 (A, B and C) shows that SEM images of fibres were produced with a 

variation in fibre diameter. Analysis of samples from each condition showed the average 

diameter of the smallest fibre group was 1.02 ± 0.05 µm.  For the intermediate fibre group the 

diameter was 5.08 ± 0.13 µm and for the large fibre group the diameter was 8.07 ± 0.07 µm 

(Figure 10). Statistical analysis showed that the difference in fibre diameter between each of 

the groups was highly significant (1.02 ± 0.05 µm versus 5.08 ± 0.13 µm, P <0.001; 1.02 ± 

0.05 µm versus 8.07 ± 0.07 µm, P < 0.001 and 5.08 ± 0.13 µm versus 8.07 ± 0.07 µm, P 

<0.001), indicating that the processing conditions used produced a highly consistent fibre size 

diameter for each group with a relatively small degree of variance.  

The extent of PCL fibre alignment was assessed by measuring the angular difference 

between a centrally identified fibre (assigned as 0˚) relative to neighbouring fibres in the 

sample. The data is presented in histogram form for each fibre group shown in Figure 11. All 

three groups displayed a high number of fibres in the 0˚ to 2° group. The number of fibres 

dropped sharply as the angle of variance increased above 2°, indicating that the majority of 

fibres ran parallel to each other (as can be seen in Figure 9). Quantitative analysis revealed 

that more than 85% of fibres (from an average total of 38 fibres per fibre group) were 

contained within a 4º angle for all three of the fibre diameter groups. Importantly, no fibres 
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were detected outside of a 14˚ angle, confirming that aligned fibres could be manufactured 

consistently with very few „stray‟ fibres detected.  

A fibre density measurement was also conducted using the electron micrograph 

images.  As observed in Figure 12, the fibres in the small diameter group (1.02 ± 0.05 µm) 

were more closely packed together and the density was found to be higher by 80 % (0.326 ± 

0.021 fibres / µm) compared to fibres in the intermediate diameter group (5.08 ± 0.13 µm; 

(0.169 ± 0.015 fibres / µm)) and 117 % higher compared to the large fibre group (8.07 ± 0.07 

µm; (0.150 ± 0.021 fibres / µm)). Consequently a high significance in fibre density was found 

between the small and intermediate diameter fibre groups (P <0.001), and the small and large 

diameter fibre groups (P <0.001), but no significant difference was found between the 

intermediate and large diameter fibre groups.    
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Parameters Small Intermediate Large 

Diameter 

(mean ± SD ) (µm) 

1.02 ± 0.05 5.08 ± 0.13 8.07 ± 0.07 

Material Polycaprolactone 

Mn 80,000 g/mol 

Polycaprolactone 

Mn 80,000 g/mol 

Polycaprolactone 

Mn 80,000 g/mol 

Solvent Chloroform + 

dichloromethane 

(1:1) 

Dichloromethane Dichloromethane 

Concentration 

(wt%) 

10 10 20 

Flow rate 

(ml/hr) 

0.3 4 6 

Voltage 

(kV) 

14 15 18 

Needle-to-collector 

distance 

(cm) 

20 20 20 

Needle size 

(G) 

27 20 20 

Electrospinning 

duration (min) 

10 4 4 

Collector speed 

(RPM) 

~ 2000 ~ 2000 ~ 2000 

Table 2: Summary of electrospinning conditions used to fabricate different uniform aligned 

fibre diameters of poly-ε-caprolactone varying from 1 to 8µm. 
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Figure 9: Characterization of electrospun PCL fibres for fibre alignment, density and 

diameter by SEM image analysis. (A), (B) and (C) show SEM images of PCL fibres of small, 

intermediate and large diameters, respectively. Scale bar = 10 µm.  
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Figure 10: Fibre diameter measurement on aligned PCL fibres. The mean diameters for the 

three fibre groups were measured at 1.02 ± 0.05 µm, 5.08 ± 0.13 µm and 8.06 ± 0.05 µm. An 

average of 45 fibres was analyzed for each fibre size and the mean of the diameter is 

presented (mean ± SD, n = 3 independently fabricated samples, *** P < 0.001 in comparison 

to 1 µm fibres, ### P < 0.001 in comparison to 5 µm fibres). 
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Figure 11: Angular difference measurements for fibre alignment analysis on 1 µm, 5 µm and 

8 µm PCL fibres. The angular difference between individual fibres and a reference line was 

measured to examine fibre alignment. A centrally located fibre was chosen as the reference 

line in every measurement. 38 fibres for each fibre size was analyzed and the mean frequency 

were presented as mean ± SEM. (n = 3 independently fabricated samples). 
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Figure 12: Mean fibre density measurement for 1 µm, 5 µm and 8 µm aligned PCL fibres. 

Small fibres (1 µm) were more densely packed than intermediate (5 µm) and large fibres (8 

µm) (n = 3 independently fabricated samples, * P < 0.05 in comparison to 1 µm fibre). 
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5.2. NG108-15 neuronal cell culture on aligned PCL microfibres  

5.2.1. The effect of serum on NG108-15 neuronal cell differentiation and proliferation 

To determine the optimal culture medium conditions for promoting neuronal cell 

differentiation, the effect of serum containing medium on neurite growth as well as neuronal 

cell proliferation was studied.  

Figure 13 and Figure 14 show representative live images of NG108-15 neuronal cells 

grown in serum free medium ( 

Figure 13) and in 10% foetal calf serum (FCS) containing medium (Figure 14) 

obtained by a Cell-IQ live imaging system. The images are presented at an interval of 8 hours 

over 4 day culture period. Qualitative observations revealed that neuronal cells in both 

conditions were actively mobile but with no obvious pattern. In the first 30 hours, in both 

conditions, neuronal cells were observed to contain neurites, however, this was infrequent. It 

was also observed that NG108-15 neuronal cells were constantly extending and retracting 

neurites in that period. Nonetheless, after 48 hours in culture, neurite extension was becoming 

more predominant in serum free medium with an increased number of neurites together with 

longer neurites observed. In 10% FCS containing medium, the number of cells started 

increasing within the first 24 hours. Neuronal cells were observed to contain neurites 

throughout the 96 hour culture period, but they were relatively shorter than in serum free 

medium.  

The effect of serum on neuronal cell differentiation were quantitatively analysed for 

neurite growth which was assessed by measuring the total neurite length per field-of-view 

(Figure 15). The measurement was carried out over an area of 2.66 mm
2
. After a 90 hour 

culture period, the average total neurite length per field-of-view measured in serum free 

medium was 8792.09 ± 1554.68 µm, which was 98.16% longer than in 10% FCS medium 
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(4436.68 ± 835.59 µm). The overall rate of neurite growth in serum free medium (90.15 ± 

17.79 µm/hour) was faster by 98.13% in comparison to in 10% FCS medium (45.5 ± 9.78 

µm/hour). Interestingly, in the first 30 hours of culture, the rate of neurite growth in serum 

free medium was measured at 43.76 ± 2.95 µm/hour, however, after more than 30 hours 

culture, the rate increased by 159% with a rate of 113.34 ± 25.22 µm/hour.  Similarly, neurite 

growth rate also increased from 26.31 ± 3.79 µm per hour to 55.1 ± 13.24 µm per hour after 

more than 30 hour culture in 10% FCS medium.  

The effect of serum on NG108-15 neuronal cell proliferation was then studied. 

NG108-15 neuronal cells cultured in either serum free medium or 10% FCS containing 

medium were assessed for the percentage of area occupied by neuronal cells through live 

imaging analysis (Figure 16). The measurement was conducted over an area of 2.66 mm
2
. Of 

note was a clear difference in the proliferative behaviour of NG108-15 neuronal cells in the 

presence of serum. After a 90 hour culture period, neuronal cells in 10% FCS medium 

covered 42.23 ± 6.52% of measured area while, in serum free medium, only 12.63 ± 5.73% 

of the measured area was occupied by neuronal cells, which was lower by 70.09% than in 

serum containing medium. Over a period of 90 hours, the proliferation rate of neuronal cells 

in serum containing medium was measured at 0.412 ± 0.072 % per hour, markedly higher 

than in the absence of serum (0.063 ± 0.046 % per hour). The results indicated that serum had 

an opposite effect with respect of NG108-15 neuronal cell differentiation and proliferation. 

While serum promoted neuronal cell proliferation, it was also found to be inhibitory for 

neuronal cell differentiation i.e. neurite growth. This provided a useful basis for studying 

neurite growth in the subsequent studies.   
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Figure 13: Live imaging by Cell-IQ automated live imaging system of NG108-15 neuronal cells in serum free medium over a 90 hour culture 

period. Images were shown at approximately 8 hour intervals from A to L. Significant neurite outgrowth was observed while cell proliferation 

was low over the period. Scale bar = 140 µm 
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Figure 14: Live imaging by Cell-IQ automated live imaging system of NG108-15 neuronal cells in 10% FCS containing medium over a 90 hour 

culture period. Images were shown at approximately 8 hour intervals from A to L. Increased neuronal cell proliferation was observed with less 

pronounced neurite outgrowth over the period. Scale bar = 140 µm 
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Figure 15: Neurite growth analysis for studying the effect of serum on NG108-15 neuronal 

cell differentiation. The measurement of the total neurite length per field-of-view was 

conducted over an area of 2.66 mm
2
 over a 90 hour culture period. In the absence of serum, 

neurite growth was markedly higher than in serum containing medium. Data was presented in 

mean derived from triplicate samples. 
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Figure 16:  Cell proliferation analysis for studying the effect of serum on NG108-15 neuronal 

cell proliferation. The percentage of area occupied by neuronal cells was measured over an 

area of 2.66 mm
2 

over a 90 hour culture period. In the presence of serum, NG108-15 neuronal 

cells were found to be highly proliferative in comparison in serum free medium. Data was 

presented in mean derived from triplicate samples.  
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5.2.2. Determination of the optimal culture duration for NG108-15 neuronal cell culture on 

aligned polycaprolactone (PCL) microfibres  

For optimization of the method for culturing NG108-15 neuronal cells on aligned 

PCL microfibres, the culture duration was studied. Neuronal cells were seeded on PCL fibres 

at a density of 3 x 10
4
 per scaffold and the cultures were observed for cell confluency and 

neurite formation after 48 hours and 96 hours in static culture on PCL fibres. Figure 17 shows 

NG108-15 neuronal cells, fluorescently labelled for actin-filaments, on aligned PCL 

microfibres after 48 hours and 96 hours culture. Qualitative observations revealed that more 

neurites were formed after a 96 hour culture period whereas after 48 hours, neurite formation 

was infrequent and shorter neurites were generated by neuronal cells in comparison to 96 

hours. In both conditions, neurites were observed to adhere in an uniaxial direction which 

was parallel with the scaffold. Neuronal cell confluency was slightly higher after 96 hours 

than after 48 hours in culture, moreover, over-confluency was not observed after 96 hours 

which permitted quantitative analysis on neurite growth e.g. neurite length measurement.  
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Figure 17: Confocal micrographs of NG108-15 neuronal cells on aligned PCL microfibres 

after 48 hours and 96 hours in static culture. Neuronal cells were labelled for actin-filaments 

by phalloidin–tetramethylrhodamine B isothiocyanate (TRITC). An increase in neurite 

formation was observed after 96 hours in culture. Scale bar = 50 µm. 

5.2.3. NG108-15 neuronal cells culture on aligned PCL microfibres with different fibre 

diameters  

The ability of aligned PCL microfibres to support neuronal cell growth was studied by 

culturing NG108-15 neuronal cells on 1 µm, 5 µm and 8 µm PCL fibres for 4 days. Figure 18 

shows representative confocal micrograph images of NG108-15 neuronal cells stained for β 

III- tubulin after culture on small diameter (~ 1 µm; Figure 18A), intermediate diameter (~ 5 

µm; Figure 18B) and large diameter fibres (~ 8 µm; Figure 18C) for four days. Figure 18 (A, 

B and C) are images derived from the compression of z-stacked confocal images into single 

plane images. Figure 18 (D, E and F) show three dimensional projections of z-stacked images 

taken of neuronal cells on 1 µm, 5 µm, and 8 µm PCL fibres, respectively (where the z-depth 

was between 90 µm and 130 µm). Figure 18 (G, H and I) show micrographs of neuronal cells 
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on flat control reference substrates comprising of a spun coated PCL film (Figure 18G), 

tissue culture polystyrene (TCPS; Figure 18H) and glass (Figure 18I). Figure 18 (A, B and C) 

shows that the direction of neurite outgrowth from the cell body on 1 µm, 5 µm, and 8 µm 

PCL fibres corresponded to the direction of fibre alignment, where the arrows in the images 

indicate the direction of fibre alignment. However, as expected on flat surface substrates, 

neurite outgrowth from each adherent cell was observed to grow in a random direction 

(Figure 18G, H, I). The results support the finding that PCL microfibres, irrespective of the 

diameter studied, supported the initial adherence and thereafter the direction of neurite 

outgrowth on 3D microfiber scaffolds under static culture and that PCL is a therefore a 

permissive substrate for neuronal cell adhesion and growth.   
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Figure 18: Confocal microscopy images of NG108-15 neuronal cells immunocytochemically-

labelled for beta-III tubulin after 4 days culture in serum free medium on aligned PCL fibres 

of 1 µm (A), 5 µm (B) and 8 µm (C) diameter and on flat substrates (control) comprising of 

PCL film (G), glass (H) and TCPS (I). Neurite outgrowth was guided to the orientation of 

aligned PCL fibres (arrows) for all fibre diameters. Neurite growth was randomly orientated 

on all flat substrates. 3D composite images of neuronal cells on fibres are shown in D (1 µm), 

E (5 µm) and F (8 µm). Scale bar = 50 µm. 
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5.2.4. The effect of fibre diameter on the extent of NG108-15 neuronal cell differentiation  

The relationship between microfiber diameter and markers for neuronal cell 

differentiation; i) maximum neurite length, ii) the number of neurites per neuron and iii) the 

percentage of neurite bearing neurons was then studied. The measurements were carried out 

over a z-depth between 90 µm and 130 µm. Figure 19 shows that after four days in static 

culture on PCL fibre scaffolds the maximum neurite length increased with an increase in fibre 

diameter. The longest neurites observed were measured on the large fibre diameter group (~ 8 

µm) and had a mean length of 142.36 ± 9.68 µm. The intermediate fibre diameter group (~ 5 

µm) was found to support neurite lengths of 94 ± 5.16 µm. In contrast, the small fibre 

diameter group (~ 1 µm) supported a mean neurite outgrowth length of just 61.83 ± 6.89 µm. 

Thus, the longest neurites were found to grow on the widest (~ 8 µm) fibres studied and were 

51% longer than on the intermediate diameter fibres (~ 5 µm; P <0.05) and 130% longer than 

on the small diameter fibres (P <0.001). The mean maximum neurite length observed to grow 

on 5 µm diameter fibres was comparable to the length of neurites detected when neuronal 

cells were cultured on a flat reference surface comprising of spin-coated PCL (108.45 ± 14.56 

µm), glass (96.51 ± 3.65 µm) or TCPS (84.32 ± 7.48 µm) with no significant differences 

detected here. Significant differences were detected between the mean neurite length on 1 µm 

fibres versus PCL film (P <0.05) and 8 µm fibres versus glass (P <0.05) and TCPS (P <0.01).  

Measurements of the number of neurites per neuronal cell arising after four days 

cultured on PCL fibres revealed no significant differences between the three fibre diameter 

sample groups (Figure 20). The number of neurites per neuronal cell was on average lower 

when grown on PCL fibres of all diameters (in comparison with the flat reference surfaces (1 

µm diameter = 1.16 ± 0.12; 5 µm diameter = 1.15 ± 0.02 and 8 µm diameter = 1.18 ± 0.02 
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neurites per neuronal cell)), as the number of neurites detected on flat surfaces measured 1.54 

± 0.26 for PCL film, 1.77 ± 0.26 for TCPS and 1.52 ± 0.12 for glass. Despite that, no 

significance differences were detected between the substrates. 

Measurements conducted on the percentage of neurite bearing neuronal cells revealed 

that 5 µm fibres supported the highest number of neuronal cells expressing neurites (40.99 ± 

3.13 %) as a population, with the large fibre group supporting 31.03 ± 7.06 % and the small 

fibre group supporting 20.88 ± 0.57 % (Figure 21). The difference between all fibre groups 

was found not to be significant. As a reference, flat substrate surfaces as PCL film supported 

54.8 ± 10.61 %, TCPS 58.83 ± 12.56 % and glass 62.77 ± 9.11 % of neurite bearing neuronal 

cells. The percentage of neurite bearing neurons on glass was significantly higher than on 1 

µm fibres (P < 0.05). 
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Figure 19: Maximum neurite length measurements for neurite growth analysis on aligned 

PCL fibres of different diameters (1 m, 5 m and 8 µm) and on flat substrates of PCL film, 

glass and TCPS. Maximum neurite length was obtained by measuring the longest neurite per 

neuronal cell. An average of 34 neurites for each diameter were analyzed (mean ± SEM, n = 

3 independent experiments * P < 0.05, ** P < 0.05, *** P < 0.001 in comparison to 8 µm 

fibres, # P < 0.05 in comparison to 1 µm fibres). Maximum neurite lengths increased with 

fibre diameter (* P < 0.05, ** P < 0.05, *** P < 0.001 in comparison to 8 µm fibres, # P < 

0.05 in comparison to 1 µm fibres).  
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Figure 20: Measurement of number of neurites per neuron for neurite growth analysis on 

aligned PCL fibres of different diameters (1 m, 5 m and 8 µm) and on flat substrates of 

PCL film, glass and TCPS. Number of neurites per neuronal cell was measured. An average 

of 34 neuronal cells for each diameter was analyzed. Number of neurites per neuronal cell 

was reduced on PCL fibres in comparison to flat substrates (PCL film, glass, TCPS) but no 

significant difference was detected.  
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Figure 21: Percentage of neurite bearing neurons measurement for neurite growth analysis on 

aligned PCL fibres of different diameters (1 m, 5 m and 8 µm) and on flat substrates of 

PCL film, glass and TCPS. An average of 150 neuronal cells for each diameter were analyzed 

(mean ± SEM, n = 3 independent experiments). Percentage of neurite bearing neurons was 

reduced on PCL fibres in comparison to flat substrates (PCL film, glass, TCPS) (* P < 0.05 in 

comparison to glass).  
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5.2.5. NG108-15 neuronal cell viability on aligned PCL microfibres with different fibre 

diameters  

The effect of fibre diameter on NG108-15 neuronal cell viability was then studied. 

Figure 22 shows representative confocal micrograph images of NG108-15 neuronal cells 

stained with Syto-9
TM

 (live cell marker) and propidium iodide (dead cell marker) after 4 day 

culture on aligned PCL microfibres (1 µm (Figure 22A), 5 µm (Figure 22B) and 8 µm 

(Figure 22C)) and on flat control reference substrates comprising spun coated PCL film 

(Figure 22D), tissue culture polystyrene (TCPS; Figure 22H) and glass (Figure 22I). Figure 

22 (A, B and C) shows images derived from the compression of z-stacked confocal images 

into single plane images. Neuronal cells cultured on the three microfiber scaffold groups were 

assessed for the percentage of live versus dead cells after four days in culture (Figure 23).  Of 

note was a clear relationship between PCL fibre diameter and the percentage of live cells.  

81.82 ± 1.61% live cells were observed when grown on large diameter (8 µm) fibres, while 

83.35 ± 2.69% live cells were identified on intermediate diameter (5 µm) fibres.  The live 

neuronal cell population decreased markedly to 64.63 ± 6.07% when grown on the small 

diameter fibre group.  In contrast, the percentage of live neuronal cells when cultured on flat 

control surface materials were 81.76 ± 4.48% for PCL film, 87.25 ± 2.50% for TCPS and 

87.70 ± 2.53% for glass. No significant differences were observed between the percentage of 

live neuronal cells between 8 µm and 5 µm fibre diameter samples or with the flat reference 

surfaces.  However, a highly significant difference was observed between the percentage of 

live cells when grown on 1 µm fibres with all other sample groups (p <0.05 in comparison to 

5 µm fibres, 8 µm fibres and PCL film, p < 0.01 in comparison to TCPS and glass).    
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Figure 22: Confocal microscopy images of NG108-15 neuronal cells for live/dead analysis 

after 4 days culture in serum free medium on aligned PCL fibres of 1 µm (A), 5 µm (B) and 8 

µm (C) diameter versus flat substrates (control) comprising of PCL film (D), tissue culture 

polystyrene (TCPS; E) and glass (F). Neuronal cell nuclei were labelled with Syto-9
TM

 (live 

cell marker) and propidium iodide (dead cell marker) which are shown in green and red, 

respectively. Scale bar = 100 µm.   
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Figure 23: Live/dead analysis of neuronal cells on aligned PCL fibres of all diameters and flat 

substrates. The percentage of live neuronal cells on 1 µm fibres was decreased in comparison 

to larger PCL fibre diameters as well as on flat (control) substrates. The average total number 

of cells measured was presented on top of the bar. (Mean ± SEM, n = 3 independent 

experiments * P < 0.05, ** P < 0.01 in comparison to 1 µm fibres).  
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5.2.6. Quantification of the total number of NG108-15 neuronal cell per unit surface area on 

aligned PCL microfibres with different fibre diameters  

The relationship between NG108-15 neuronal cell number and surface area was 

assessed by quantifying the total number of Syto-9
TM

 and propidium iodide positively-

labelled cells in an area of 1.42 mm
2
 after 4 days in static culture (Figure 24). The surface 

area of 1 µm, 5 µm and 8 µm fibres were measured at 1.48 mm
2
, 3.82 mm

2
 and 5.39 mm

2
, 

respectively while the surface area of PCL film, TCPS and glass were measured at 1.42 mm
2
. 

The small fibre group (1 µm) was found to support the highest number of neuronal cell with 

the mean total cell number per unit surface area of 213.05 ± 5.47 in comparison to the 

intermediate (5 µm; 45.80 ± 10.12) and large (8 µm; 48.66 ± 12.28) fibre groups. However, 

number of neuronal cell on 1 µm fibres was comparable to on PCL film which has the mean 

total cell number per unit surface area of 188.33 ± 14.73. Interestingly, flat substrates (TCPS 

and glass) were found to support higher number of neuronal cell than PCL fibres and PCL 

film with the total neuronal cell per unit surface area on TCPS and glass were measured at 

309.73 ± 51.78 and 355.26 ± 37.18, respectively. Statistically, the total neuronal cell number 

per unit surface area on glass and TCPS was significantly higher than on PCL fibres with 5 

µm and 8 µm diameters. There was significant difference when the total neuronal cell 

number per unit surface area on glass was compared to on 1 µm fibres and PCL film. 
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Figure 24: Quantification of the total NG108-15 neuronal cell number per unit surface area 

on aligned PCL fibres of all diameters and flat substrates. The quantification was conducted 

on an area of 1.42 mm
2
 from 3 random areas on samples. The total neuronal cell number was 

higher on 1 µm PCL fibres in comparison to 5 µm and 8 µm fibres. The total neuronal cell 

number per area decreased on PCL fibres and PCL film in comparison to on flat substrates 

(TCPS and glass). (Mean ± SEM, n = 3 independent experiments * P < 0.05, in comparison 

to 1 µm fibres, + P < 0.05 in comparison to PCL film).  
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5.3. Primary Schwann cell culture on aligned PCL microfibres 

5.3.1. Determination of the optimal culture duration for primary Schwann cells on aligned 

polycaprolactone (PCL) microfibres  

To optimize the method for culturing rat primary Schwann cells on aligned PCL 

microfibres, the culture duration was studied. Schwann cells were seeded onto PCL fibres 

with 1 µm, 5 µm and 8 µm fibre diameters at a density of 5 x 10
5
 cells per scaffold. Cultures 

were observed for confluency after 4 days and 8 days in static culture on PCL fibres. Figure 

25 shows primary Schwann cells, immunocytochemically-labelled for S100 (a Schwann cell 

marker), on PCL fibres after 4 days and 8 days in culture. Qualitative observations indicated 

that Schwann cell confluency on all fibres was markedly higher after being cultured for 8 

days compared to 4 days. At day 4, there was evidence indicating that Schwann cells aligned 

parallel to the orientation of PCL fibres. Schwann cell alignment was also observed after 8 

days.  

5.3.2. Primary Schwann cell culture on aligned PCL microfibres with different fibre 

diameters 

Schwann cell growth on aligned PCL microfibres was studied by growing rat primary 

Schwann cells on 1 µm, 5 µm and 8 µm PCL fibres for 8 days. Primary Schwann cells were 

stained for S100β after culture on 1 µm (Figure 26A), 5 µm (Figure 26B) and 8 µm fibres 

(Figure 26C) for 8 days. Figure 26A, Figure 26B and Figure 26C show images derived from 

the compression of z-stacked confocal images into single plane images. Primary Schwann 

cells were also cultured on spin-coated PCL film (Figure 26G), TCPS (Figure 26H) and glass 

(Figure 26I) as control reference surfaces. Figure 26A, Figure 26B and Figure 26C show that 



107 

 

cells on all fibre groups were organized parallel to the alignment of fibres (indicated by 

arrows) while on flat reference surfaces, they were randomly organized as shown in Figure 

26G, Figure 26H and Figure 26I. Qualitative observation revealed that primary Schwann cells 

were scarcely distributed on spin-coated PCL film compared to glass and TCPS. 

Interestingly, a large population of Schwann cells was detected on PCL fibres of all fibre 

diameter groups in comparison to PCL film and especially on 1 µm fibres, as compared to 5 

µm and 8 µm fibres. Data suggests that smaller diameter PCL fibres supported better 

Schwann cell adhesion and growth. 3D confocal (z-stacked) images illustrated that primary 

Schwann cells were able to adhere and grow well on all PCL fibre scaffolds (Figure 26D, 

Figure 26E, Figure 26F) (z-depth = 90 to 130 µm).  

 

 



108 

 

 

Figure 25: Confocal images of primary Schwann cells on aligned PCL microfibres after 4 

days and 8 days in static culture. Schwann cells were immunolabelled for S100β (a Schwann 

cell marker). Higher confluency of Schwann cells was achieved after 8 days culture. Scale 

bar = 50 µm. 
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Figure 26: Confocal microscopy images of primary Schwann cells immunocytochemically-

labelled for S100 after 8 days culture on aligned PCL fibres of 1 µm (A), 5 µm (B) and 8 

µm (C) diameter and on flat (control) substrates comprising of PCL film (G), glass (H) and 

TCPS (I). Schwann cells were organized according to the orientation of aligned PCL fibres 

(arrows) for all fibre diameters. Schwann cells were randomly organized on all flat substrates. 

3D composite images of Schwann cells on fibres are shown in D (1 µm), E (5 µm) and F (8 

µm). Scale bar = 50 µm. 
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5.3.3. The effect of fibre diameter on the phenotype of primary Schwann cells 

In order to investigate the physical effect of fibre diameter on the phenotype of 

primary Schwann cells, the cell length was measured as a marker of morphology (Figure 27). 

The longest cells observed were measured on the narrowest fibres (1 µm; 116.53 ± 7.85 µm) 

whereas cells were significantly shorter on 5 µm fibres by 31% (80.27 ± 5.45 µm, p < 0.01) 

and 52% shorter (56.35 ± 5.01 µm, p < 0.001) on 8 µm fibres (in comparison to 1 µm fibres). 

Importantly, the difference in Schwann cell length between 5 and 8 µm fibre was significant 

(P <0.05). On the flat control surfaces, the longest Schwann cell length observed was on 

TCPS (104.23 ± 3.37 µm) which was comparable to 1 µm fibres (no significance). The 

shortest cell length was observed on PCL film (60.71 ± 0.79 µm) which was comparable to 8 

µm fibres (no significance). The mean cell length on glass was 90.32 ± 3.37 µm. Results 

therefore support a positive relationship between fibre diameter and primary Schwann cell 

morphology, which interestingly was in contrast to data on neuronal cell phenotype.  

 



111 

 

 

Figure 27: Tip-to-tip Schwann cell length measurement on fibres and flat (control) substrates 

for morphological assessment. Cell length decreased with an increase in the fibre diameter. 

An average of 100 Schwann cells per condition was examined and results presented as mean 

± SEM (n = 3 independent experiments, * P < 0.05, ** P < 0.01, *** P < 0.001 in comparison 

to 8 µm fibres, ##P < 0.01, ### P < 0.001 in comparison to PCL film, + P < 0.05, ++ P < 0.01 

in comparison to 5 µm fibres). 
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5.3.4. Primary Schwann cell viability on aligned PCL microfibres with different diameters 

The relationship between fibre diameter and primary Schwann cell viability was then 

studied. Figure 28 shows representative confocal micrograph images of primary Schwann 

cells stained with Syto-9
TM

, a live cell marker and propidium iodide, a dead cell marker after 

8 day culture on aligned PCL microfibres (1 µm (Figure 28A), 5 µm (Figure 22B) and 8 µm 

(Figure 28C)) and on flat control reference substrates comprising spin-coated PCL film 

(Figure 28D), tissue culture polystyrene (TCPS; Figure 28H) and glass (Figure 28I). Figure 

28 (A, B and C) shows images derived from the compression of z-stacked confocal images 

into single plane images. Quantification of live and dead cells was carried out to assess 

Schwann cell viability on the PCL fibres and flat reference surfaces (Figure 29). More than 

99% of the cell population on all substrates was observed to comprise live cells. The 

percentage of live cells on 1 µm fibres was 99.84 ± 0.03%, 99.88 ± 0.01% on 5 µm fibres and 

99.91 ± 0.09% on 8 µm fibres. On flat reference surfaces, the percentage was 99.30 ± 0.22% 

on PCL film, 99.88 ± 0.03% on TCPS and 99.96 ± 0.04% on glass. A small significant 

difference was found on 5 µm, 8 µm fibres, TCPS and glass in comparison to 1 µm fibres. 

Quantification of Schwann cell length and live/dead assay were conducted throughout the 

depths of the scaffolds (between 90 to 130 µm). 
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Figure 28: Confocal microscopy images of primary Schwann cells for live/dead analysis after 

8 days culture on aligned PCL fibres of 1 µm (A), 5 µm (B) and 8 µm (C) diameter and on 

flat substrates (control) comprising of PCL film (D), glass (E) and TCPS (F). Schwann cell 

nuclei were labelled with Syto-9
TM

 (live cell marker) and propidium iodide (dead cell 

marker) which are shown in green and red, respectively. Scale bar = 100 µm.   
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Figure 29: Live/dead analysis of primary Schwann cells on aligned PCL fibres of all 

diameters and the flat (control) substrates. More than 99% of the cell population measured 

was live cells on all PCL fibres and all flat (control) substrates. The average total number of 

cells measured was presented on top of the bar. An average of 500 Schwann cells per 

condition was examined and results presented as mean ± SEM (n = 3 independent 

experiments * P < 0.05 in comparison to PCL film).  
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5.3.5. Quantification of the total number of primary Schwann cell per unit surface area on 

aligned PCL microfibres with different fibre diameters 

Primary Schwann cell adhesion on aligned PCL microfibres was then studied by 

quantifying the total number of Syto-9
TM

 and propidium iodide positively-labelled cells in an 

area of 1.42 mm
2
 after 8 day in static culture (Figure 30). The surface area of 1 µm, 5 µm and 

8 µm fibres were measured at 1.48 mm
2
, 3.82 mm

2
 and 5.39 mm

2
, respectively while the 

surface area of PCL film, TCPS and glass were measured at 1.42 mm
2
.  Of note was a distinct 

effect of fibre diameter on the number of primary Schwann cell in which the number of 

Schwann cell on PCL fibres was observed to increase with a decrease in fibre diameter. The 

highest number of Schwann cells was measured on 1 µm fibres at 515.97 ± 34.21. The cell 

number decreased by 77% on 5 µm fibres (116.36 ± 12.48, P < 0.001) and further decreased 

by 89% on 8 µm fibres (55.00 ± 1.06, P < 0.001). Interestingly, the number of primary 

Schwann cell on 1 µm fibres was significantly higher than on PCL film by 211% (P < 0.01). 

On flat substrates, PCL film supported significantly lower Schwann cell number (165.63 ± 

46.34) than TCPS (529.71 ± 29.50, P < 0.01) and glass (594.76 ± 88.56, P < 0.001). No 

significant difference was detected between TCPS and glass. Importantly, number of 

Schwann cell on 1 µm fibres was found to be comparable to on TCPS and glass with no 

significance detected.  
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Figure 30: Quantification of the total primary Schwann cell number per unit surface area on 

aligned PCL fibres of all diameters and flat substrates. The quantification was conducted on 

an area of 1.42 mm
2
 from 3 random areas on samples.  On PCL fibres, Schwann cell number 

increased with a decrease in the fibre diameter. (Mean ± SEM, n = 3 independent 

experiments ** P < 0.01, *** P < 0.001 in comparison to 1 µm fibres, # P < 0.05, ++ P < 

0.01, +++ P < 0.001 in comparison to PCL film). 
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5.4. Co-culture of neuronal and Schwann cells on aligned polycaprolactone 

(PCL) microfibres  

5.4.1. Determination of the optimal seeding number for NG108-15 neuronal cells for 

establishing neuronal-Schwann cell co-cultures on aligned polycaprolactone (PCL) 

microfibres 

To determine the optimal NG108-15 neuronal cell seeding number for establishing 

neuronal-Schwann cell co-cultures, neuronal cells were seeded at a density of 1000 or 7000 

cells per scaffold directly on 1 µm, 5 µm and 8 µm PCL fibres  pre-cultured with primary 

Schwann cells. The scaffolds were pre-cultured with primary Schwann cells at a density of 

500,000 cells per scaffold for 8 days before establishing the co-cultures.  After 4 days, co-

cultures were qualitatively observed for neuronal cell confluency on PCL fibres to ensure a 

balance between neuronal over confluence, versus observing a representative number of cells 

for quantitative analysis. Figure 31 shows βIII-tubulin immunoreactive neuronal cells co-

cultured with S100β immunoreactive Schwann cells on PCL fibres. After 4 days, neuronal 

cells confluency was observed to be similar between co-cultures seeded with 1000 or 7000 

neuronal cells. In both conditions, high neuronal cell confluency was detected on all fibres. 

Nonetheless, neurite formation was noticeable under both conditions on all fibre samples 

tasted. 
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Figure 31: Confocal microscopy images of NG108-15 neuronal cells (red) and primary 

Schwann cells (green) co-cultured on aligned PCL microfibres with 1 µm, 5 µm and 8 µm 

fibres diameters. To establish co-cultures, neuronal cells were seeded at a density of 1000 or 

7000 cells per scaffold on PCL fibres which was pre-cultured with primary Schwann cells at 

a density of 500,000 cells per scaffold for 8 days. Neuronal and Schwann cells were 

immunolabelled for βIII-tubulin and S100β, respectively. A high confluency of neuronal cells 

was observed under both conditions for all fibres. Scale bar = 50 µm. 
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5.4.2. NG108-15 neuronal cell/primary Schwann cell co-cultures on aligned PCL microfibres 

with different fibre diameters 

Figure 32 shows confocal micrograph images of NG108-15 neuronal cells (red) on 1 

µm (Figure 32G), 5 µm (Figure 32H) and 8 µm PCL fibres (Figure 32I) in co-culture with 

primary Schwann cells (green). Figure 32 A-I are images derived from the compression of z-

stacked confocal images into single plane images. Primary Schwann cells were observed to 

organize according to the direction of PCL fibre alignment (indicated by arrows) (Figure 

32D, Figure 32E, Figure 32F) and a similar observation was detected for the direction of 

neuronal cell neurite growth (Figure 32A, Figure 32B, Figure 32C). Qualitative observation 

of single plane images (Figure 32G, Figure 32H, Figure 32I) and 3D composite images 

(Figure 32J, Figure 32K, Figure 32L) indicated that NG108-15 neuronal cells and primary 

Schwann cells were able to co-exist on all fibre groups. Neurite growth on 1 µm, 5 µm and 8 

µm fibres in co-culture with primary Schwann cells was measured and analysis was 

conducted through a z-depth of 90 µm to 130 µm (Figure 33). The mean maximum neurite 

length on 1 µm fibres was 120.13 ± 6.08 µm, which was comparable to the mean length on 5 

µm fibres (139.43 ± 6.81 µm) and 8 µm fibres (134.11 ± 9.42 µm) with no significant 

difference detected between the groups. Interestingly, NG108-15 neuronal cells on 1 µm 

fibres produced significantly longer neurites in the presence of Schwann cells (120.13 ± 6.08 

µm) versus the absence of Schwann cells (61.83 ± 8.81 µm) (P <0.01). Similarly, an 

increased neurite length was also detected on 5 µm fibres (139.43 ± 6.81 µm in the presence 

of Schwann cells versus 94.00 ± 5.16 µm in the absence of Schwann cells (P <0.05)). No 

significant difference in neurite length was detected between neuronal cells grown alone on 8 

µm fibres versus neuronal cells plus Schwann cells.  
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Figure 32: Confocal microscopy images of NG108-15 neuronal cells (beta-III tubulin - red) 

and primary Schwann cell (S100 - green) co-cultured on aligned PCL fibres of 1 m (A, D, 

G, J), 5 m (B, E, H, K) and 8 µm (C, F, I, L) diameter after 4-days co-culture. Primary 

Schwann cells were cultured on fibres for 8 days prior to neuronal cells being introduced for 

a further 4 days. Images are shown as separate channels - neuronal cells alone (A, B, C), 

primary Schwann cells alone (D, E, F) and neuronal / primary Schwann cell co-cultures (G, 

H, I).  Corresponding 3D composite images are presented with x-y-z dimension of 450 µm 

(x) × 500 µm (y) × ~100 µm (z) (J, K, L). Neurite growth and Schwann cell organization was 

guided in the direction of fibre alignment for all fibre diameters. Scale bar = 50 µm. 
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Figure 33: Maximum neurite length measurements of NG108-15 neuronal cells in co-culture 

with primary Schwann cells on aligned PCL fibres of 1 m, 5 m and 8 µm. An average of 

40 neuronal cells for each fibre diameter was examined (n = 3 independent experiments, **P 

< 0.01, * P < 0.05 versus neuronal cells alone). 
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5.4.3. Neuronal-Schwann cell co-cultures derived from dorsal root ganglion (DRG) explants 

on aligned PCL microfibres with different fibre diameters
1
. 

To establish primary neuronal/Schwann cell co-cultures on three-dimensional PCL 

fibres, adult rat DRGs were cultured on 1 µm, 5 µm and 8 µm aligned PCL fibres for 10 

days. PCL fibres were examined immunohistochemically to determine axon outgrowth and 

Schwann cell migration. The parallel alignment of fibres was observed to enable the 

development of axons and the migration of Schwann cells from the DRG body. ß-III tubulin 

immunoreactive axons readily followed the fibre structures in a highly oriented longitudinal 

manner (Figure 35A-L). Interestingly, axons on the fibres were always accompanied by and 

never grew beyond S100ß labelled Schwann cells (Figure 35). Indeed, a leading edge of 

Schwann cells was observed to migrate along the fibres, followed closely by the axons. ß-III 

tubulin immunoreactive axons were quantified in respect to axon length.  

Overall, micrograph analysis of different PCL fibre conditions revealed longitudinally 

oriented outgrowth of single axons. 1 µm diameter fibres supported an average axon 

outgrowth from the DRG cell body of 2.5 mm, 5 µm fibres supported an average axon 

outgrowth of 2.2 mm, and 8 µm fibres supported an average axon outgrowth of 1.6 mm after 

10 days from the DRG body (Figure 34). Thus, smaller fibre diameters were able to support 

longer neurite outgrowth. The migration of Schwann cells on aligned PCL fibres was 

assessed by measuring the migration of S100β immunoreactive Schwann cells. Typically, 

Schwann cells exhibited a characteristic spindle-like morphology with bipolar processes on 

the fibres. 3D scaffolds with 1 µm fibre diameter supported an average Schwann cell 

                                                 

1
 This work was conducted in collaboration with Dr Kiran Pawar (Kroto Research Institute, University of 

Sheffield) 
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migration of 2.7 mm, 5 µm fibre diameter scaffolds supported an average Schwann cell 

migration of 2.4 mm, and 8 µm fibre diameter scaffolds supported an average Schwann cell 

migration of 1.9 mm from the DRG body (Figure 34).  

Intercellular contact between axonal and Schwann cell membrane is of important for 

the initiation and regulation of Schwann cell myelination [95, 97, 307]. Confocal microscopy 

revealed that the overlapping regions of βIII-tubulin-immunoreactive axons (red) and S100β-

immunoreactive Schwann cells (green) arising yellow regions were observed on aligned PCL 

microfibres (Figure 35D, H, L). These yellow regions indicate the co-localization of axons 

and Schwann cells, suggesting that physical contacts between axons and Schwann cells were 

established after 10 days in culture on PCL fibres. Importantly, the occurrence was observed 

across all fibre diameters. Thus, results showed that aligned PCL microfibres supported the 

formation of physical contacts between axons and Schwann cell, which may potentially 

facilitate myelin formation.  

 



124 

 

 

Figure 34: Quantification of average neurite length and Schwann cell migration on 1 µm, 5 

µm and 8 µm PCL microfibres from DRG culture. No significant difference was detected in 

neurite length and Schwann cell migration between fibre groups (although the distance of 

which Schwann cells migrated after 10 day culture was further than neurite extension on all 

fibres).
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Figure 35: Confocal microscopy images of isolated DRGs grown on 1 m (A-D), 5m (E-H) and 8m (I-L) aligned PCL fibres for 10 days. 

Fibre direction is from left to right in all micrographs (A-L).  (A, E, I) S100 expressing Schwann cells (green); (B, F, J) -III tubulin expressing 

neurites (red) and (C, G, K) overlaid images showing co-localisation of -III tubulin expressing neurites and S100 expressing Schwann cells. 

(D, H, L) shows high magnification selected regions of interest identifying close physical association of Schwann cells and neurites (yellow). 

Arrows for (A, E, I) indicate the furthest identified position of migratory Schwann cells.  Arrows for (B, F, J) indicate the furthest position of 

neurite extension.  Asterisks (*) mark the position on the left of each micrograph of where ganglion bodies were placed for culture. Scale bar = 

100 m.  Quantification of neurite length and Schwann cell migration on each of the fibre scaffolds.   
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5.5. Study of Schwann cell myelination on aligned polycaprolactone (PCL) 

microfibres  

5.5.1. Myelination of neuronal – Schwann cell co-cultures derived from dorsal root ganglion 

(DRG) explants.  

In this study, DRGs were explanted onto either laminin-coated tissue culture 

polystyrene plate (TCPS) or aligned PCL microfibres to establish neuronal-Schwann cell co-

cultures for myelination study. Co-cultures were maintained under two culture medium 

compositions; 1) DMEM with D-valine containing forskolin and 2) standard DMEM to 

determine optimal culture medium for myelination. D-valine containing DMEM together 

with forskolin has been shown to selectively inhibit fibroblast growth [306]. In both 

conditions, co-cultures were treated with ascorbic acid to induce Schwann cell myelination 

for 14 days [308]. Co-cultures were analysed for myelin expression through immunodetection 

of myelin protein zero (P0) and myelin basic protein (MBP). On laminin-coated TCPS, 

results revealed that negative myelin expression was detected in both culture media as shown 

in Figure 36A and Figure 36B. Similarly, on aligned fibres, expression of P0 and MBP also 

was not detected in both conditions (Figure 37A, Figure 37B).  

Co-cultures were then immunolabelled for neuronal (βIII-tubulin) and Schwann cell 

(S100β) specific markers to examine the physical interactions between axons and Schwann 

cells which is known to be of important in myelination process [309]. Figure 36 (C, D) show 

the presence of yellow regions, arising from the overlapping of βIII-tubulin-immunoreactive 

axons (red) and S100β-immunoreactive Schwann cells (green). These indicate that co-

localization of axons and Schwann cells was observed in DRG co-cultures on laminin-coated 
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TCPS, following a 2 week treatment with ascorbic acid, thus confirming intercellular contact 

between axons and Schwann cells.  The yellow regions were also observed when DRG co-

cultures were grown on aligned PCL microfibres (1 µm fibre diameter), indicating the co-

localization of axons and Schwann cells on PCL fibres (Figure 37 (C, D). 3D high 

magnification images illustrate that axons (red) grew directly on Schwann cells in both 

media, confirming physical contacts between axons and Schwann cells on PCL fibres (Figure 

37E, F). Importantly, standard DMEM and DMEM D-valine (plus forskolin) were both found 

to support axonal-Schwann cell intercellular contacts in DRG co-cultures, with observable 

co-localization of axons and Schwann cells on both laminin-coated TCPS and PCL fibres. 

Results also showed the presence of non-S100β/ βIII-tubulin immunoreactive cells in DRG 

co-cultures in both DMEM D-valine (plus forskolin) and standard DMEM (Figure 36C, 

Figure 36D), suggesting the presence of fibroblasts in co-cultures.  
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Figure 36: Neuronal – Schwann cell co-cultures derived from DRG explants on laminin-

coated TCPS after a 2 week treatment with ascorbic acid. Co-cultures were maintained in 

either DMEM D-valine containing forskolin (FSK) or standard DMEM. (A, B) Co-cultures 

were immunolabelled for myelin protein zero and myelin basic protein for detection of 

myelin expression. No positive myelin expression was detected under either condition (A, B). 

Co-cultures were immunolabelled for βIII-tubulin (neuronal cell marker) and S100β 

(Schwann cell marker). Physical contact between axons and Schwann cells were observed in 

both media (arrows) as indicated by the yellow regions of axon-Schwann cell co-localization 

(C, D). Fibroblasts (non-S100β/ βIII-tubulin immunoreactive cells) were also detected in co-

cultures. DAPI stained nuclei are presented in blue. Scale bar = 100 µm. 
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Figure 37: Neuronal – Schwann cell co-cultures derived from DRG explants on aligned PCL 

microfibres (fibre diameter = 1 µm) after a 2 week treatment with ascorbic acid. Co-cultures 

were maintained in either DMEM D-valine containing forskolin (FSK) or standard DMEM. 

Co-cultures were immunolabelled for myelin protein zero (green) and myelin basic protein 

(red) for detection of myelin expression (scale bar = 100 µm) (A, B). No positive myelin 

expression was detected under either condition. Co-cultures were immunolabelled for βIII-

tubulin (green; neuronal cell marker) and S100β (red; Schwann cell marker). Physical 

contacts between axons and Schwann cells were observed in both media as indicated by the 

yellow regions of axon-Schwann cell co-localization (C, D). Co-cultures were presented in 

3D composite images showing direct contact between axons and Schwann cells (E, F) (scale 

bar = 5 µm). DAPI stained nuclei are presented in blue.  
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5.5.2. Myelination of neuronal – Schwann cell co-cultures derived from dissociated dorsal 

root ganglion (DRG). 

In this study, neuronal – Schwann cell co-cultures were established by growing 

neuronal cells from dissociated DRGs with pre-cultured primary Schwann cells on laminin – 

coated tissue culture polystyrene plate (TCPS). Co-cultures were maintained under four 

culture medium compositions; 1) DMEM D-valine (plus forskolin) containing 10% foetal 

calf serum (FCS), 2) serum free DMEM D-valine (plus forskolin), 3) standard DMEM 

containing 10% FCS and 4) serum free standard DMEM to determine optimal culture 

medium for myelination. In all conditions, co-cultures were treated with ascorbic acid to 

induce Schwann cell myelination for 14 days [308]. Figure 38 shows co-cultures of βIII-

tubulin-immunoreactive neuronal cells (red) and S100β – immunoreactive Schwann cells 

(green) in different culture media. Neuronal/primary Schwann cell adhesion and growth were 

evident in 10% FCS DMEM D-valine (plus forskolin) and serum free standard DMEM 

(Figure 38A, D), with a wide-spread distribution of neuronal and Schwann cells was 

observed, whereas in serum free DMEM D-valine (plus forskolin) and 10% FCS standard 

DMEM, primary Schwann cells were scarce and no neuronal cells were observed (Figure 

38B, C). Of note was that the population of neuronal/Schwann cells and axon outgrowth in 

10% FCS DMEM D-valine were more extensive than in serum free standard DMEM. Most 

Schwann cells were found to concentrate at the vicinity of neuronal cells and their axons in 

serum free standard DMEM. Presence of fibroblasts was also observed in standard DMEM 

(with or without serum) as indicated by non - βIII-tubulin/S100β immunoreactive cells 

(yellow arrows) in Figure 38 (C, D)  but none was observed in DMEM D-valine (with or 

without serum).  
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Co-cultures in 10% FCS DMEM D-valine and serum free standard DMEM were then 

analysed for myelin expression through immunodetection of myelin protein zero (P0) and 

myelin basic protein (MBP). Figure 39(A, C)  show negative expression of myelin protein 

zero (P0) and myelin basic protein (MBP) in both 10% FCS DMEM D-valine (A) and serum 

free standard DMEM (B), indicating that there was no myelin formation in the co-cultures. 

The importance of intercellular contacts between axons and Schwann cells in myelination has 

been discussed in previous section (3.5.1). Therefore, co-cultures in both medium were 

examined for the co-localization of axons and Schwann cells. Axons (red) were found to 

coincide with Schwann cells in both medium, resulting in the formation of yellow regions 

(arrows) shown in figure (A, B). This co-localization indicated that Schwann cells were able 

to establish contact with axons in co-culture derived from dissociated DRG, following a 2 

week treatment with ascorbic acid. 

Myelin formation in neuronal - Schwann cell co-cultures were further studied by 

detecting lipid content of the myelin sheath using Sudan Black B staining technique. In this 

study, co-cultures were established by growing neuronal cells from dissociated DRGs with 

pre-cultured primary Schwann cells on glass. To investigate the optimal culture medium for 

myelination, co-cultures were maintained in two culture medium compositions; 1) DMEM D-

valine (plus forskolin) containing 10% foetal calf serum (FCS) and 2) serum free standard 

DMEM. In both conditions, co-cultures were treated with ascorbic acid to induce Schwann 

cell myelination for 14 days [308]. A clear difference was observed with respect of lipid 

staining between DMEM D-valine (with 10% foetal calf serum) and serum free standard 

DMEM. In serum free standard medium, dark lipid staining was observed in co-cultures 

which was concentrated at the neuronal cell body and axons (Figure 39D). This may indicate 

that there was possible myelin formation when neuronal-Schwann cell co-cultures were 
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grown in serum free standard DMEM. On the other hand, no concentrated lipid staining was 

detected co-cultures grown in 10% FCS DMEM D-valine, indicating the absence of myelin 

formation in co-cultures (Figure 39C).  

 

Figure 38: Neuronal – Schwann cell co-cultures derived from dissociated DRG on laminin-

coated after a 2 week treatment with ascorbic acid. Co-cultures were maintained in DMEM 

D-valine plus forskolin (FSK) (10% FCS (A) and serum free (C)) or standard DMEM (10% 

FCS (B) and serum free (D)). Co-cultures were immunolabelled for βIII-tubulin (green; 

neuronal cell marker) and S100β (red; Schwann cell marker). Physical contacts between 

axons and Schwann cells were observed in 10% FCS DMEM D-valine (A) and serum free 

standard DMEM (D) as indicated by the yellow regions of axon-Schwann cell co-localization 

(arrows). Fibroblasts were observed in serum free standard DMEM with or without serum 

(yellow arrows in B, D). (Scale bar = 100 µm). 
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Figure 39: Myelin expression in neuronal – Schwann cell co-cultures derived from 

dissociated DRG on laminin-coated after a 2 week treatment with ascorbic acid. Co-cultures 

were maintained in either 10% FCS DMEM D-valine containing forskolin (FSK) or serum 

free standard DMEM. Co-cultures were immunolabelled for myelin protein zero (green) and 

myelin basic protein (red) for detection of myelin expression (A, C), with no positive myelin 

expression was detected under either condition. However, Sudan Black B staining revealed 

possible myelin expression at the neuronal cell body (CB) and axons (white arrows) in co-

cultures grown in serum free standard DMEM (D). No positive staining for myelin 

expression was detected in 10% FCS DMEM D-valine containing forskolin (FSK) (B). 

Yellow arrows indicate Sudan Black B residues left in the samples. (Scale bar = 100 µm).  
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5.5.3. Myelination of neuronal – Schwann cell co-cultures derived from dissociated dorsal 

root ganglion (DRG) on aligned PCL microfibres. 

Based on previous results in section 5.5.2. Myelination of neuronal – Schwann cell 

co-cultures derived from dissociated dorsal root ganglion (DRG)., neuronal-Schwann cell co-

cultures were grown on aligned PCL microfibres (diameter = ~1 µm) in serum free standard 

DMEM for examining myelin formation by transmission electron microscopy. Rat sciatic 

nerve sections were used as a reference sample for examining the myelin sheath 

ultrastructure. Figure 40 (A, C) show the lamellar structure of the myelin sheath, which 

covers the outer surface of axons in sciatic nerve tissue. The higher magnification micrograph 

in Figure 40C shows that the myelin sheath consists of alternating layers of the major dense 

line (Schwann cell membrane layer) and the intraperiod line (Schwann cell cytoplasmic 

layer). Electron micrographs of neuronal-Schwann cell co-cultures revealed that the lamellar 

structure of the myelin sheath was not detected in the co-cultures (Figure 40B, D). The 

fibrous feature of the scaffolds in the samples was observed to be infrequent throughout the 

samples and was only found at the vicinity of cells. This observation could occur because 

PCL fibres melted during embedding process at 60ºC (which is the melting point for PCL). It 

is important to note that the study was only conducted once due to the time constraint of the 

project. Therefore, the culture method and sample processing method for TEM analysis 

require further refinements.  
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Figure 40: Transmission electron micrographs of transverse section of rat sciatic nerve (A, C) 

and neuronal-Schwann cell co-cultures on aligned PCL microfibres (diameter = ~1 µm) (B, 

D). Rat sciatic nerve sections were used as reference for illustrating the myelin sheath 

ultrastructure which shows the alternating layers of the major dense lines (white arrow) and 

the intraperiod lines (black arrow). No observation of the myelin sheath was detected in 

neuronal-Schwann cell co-cultures on the scaffolds (B, D). (My) the myelin sheath. (Ax) 

axons. (M) Schwann cell mitochondrion (F) fibres. Arrow in B indicates the imperfections 

generated during sectioning the samples. Scale bar in A = 2 µm, scale bar in C = 200 nm, 

scale bar in B, D = 5 µm.  
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6. Discussion  

The study reports on the development of an in vitro three-dimensional peripheral 

nerve model using aligned microfibre scaffold for supporting and organizing neuronal and 

Schwann cells either individually or together as neuronal-glial co-cultures. The study also 

attempted to develop a matured 3D peripheral nerve culture model by demonstrating in vitro 

myelination on such scaffolds, following long term co-cultures of neuronal/Schwann cells 

either from isolated dorsal root ganglion or dissociated cells. Polycaprolactone was used for 

producing a range of aligned fibre diameters by electrospinning and we examined the 

relationship between fibre diameter and the response of neuronal cells, Schwann cells and 

neuronal-Schwann co-cultures to determine the optimal physical parameters for cellular 

organisation relevant to peripheral nerve biology.  

Three dimensional cell culture models can provide cellular microenvironments that 

closely resemble the native environment, which can be beneficial for biological research in 

areas such as trauma, disease or drug studies (reviewed in [310]). Such models are seeing a 

rapid rate of development, driven by the need for conducting studies in environments which 

are arguably more relevant to those which utilise cells when grown two dimensions and 

typically using a single cell type in isolation. Additional motivation includes consideration of 

the 3Rs (Replacement, Refinement and Reduction) in regards to animal usage and scientific 

experimentation. Significant advances have been made recently in a number of 3D in vitro 

models (e.g. skin [311]) which are used routinely for experimentation [312], however even 

for these models the lack of a vasculature or immune system is a future challenge. In contrast, 

few 3D in vitro models have been developed for peripheral nerve, but potential value and 

demand exists for such models in areas including developmental biology (at the neuronal-
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glial interface), establishing models of disease (e.g. peripheral neuropathies such as Charcot-

Marie-Tooth disease or Guillaine-Barré syndrome) and the design of scaffolds for the 

development of devices to assist repair following injury and trauma. A small number of 

investigators have described co-culture models for peripheral nerve using naturally-derived 

materials such as collagen and fibrin [218, 313] and the application of electrospun fibres for 

in vitro culture [2, 314], but few have studied in detail the physical relationship between the 

scaffold, neural differentiation and neuronal/glial organisation in relation to peripheral nerve 

structure. Moreover, previous studies on electrospun fibres  have predominantly focussed on 

developing scaffolds for nerve repair applications [26,32,33] and typically use a single cell 

type [27,32,33]. 

6.1 Fabrication of aligned microfibres scaffold by electrospinning for in vitro 

3D peripheral nerve model 

The importance of the alignment of fibrous scaffolds for supporting directed growth 

of neuronal and Schwann cells, has been discussed many times in both in vitro and in vivo 

studies [153, 315, 316]. Besides that, the organized cellular growth generated by a 3D culture 

model may provide a practical advantage in which it enables convenience and effective 

analytical processes.  To develop an aligned 3D culture model for peripheral nerve, the study 

describes electrospinning methods for fabricating aligned microfibres scaffolds from 

polycaprolactone by employing a high speed rotating collector.  The use of rotating collector 

with high rotational speeds (usually more than 1000 rpm) to generate aligned electrospun 

fibres is commonplace [2, 225, 305]. The study also emphasizes on the optimal polymer 

molecular weight and the polymer solution for successful generation of aligned fibre 

scaffolds, which in this case, it was found that the best conditions were PCL with molecular 
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weight of Mn 80,000 g/mol in solution concentration ranging from 10% to 20%. Polymer 

molecular weight and solution concentration are correlated to the rheological properties of 

polymer solution which in turn, has influence on the jet formation and stability during 

electrospinning as well as the resulting fibre formed [317].  

Both micro- and nano-size electrospun fibres have been studied for their efficacy as 

scaffolds for peripheral nerve studies. Wang et al. revealed that electrospun nanofibres with 

diameter smaller than 0.8 µm become inhibitory to the guidance and growth of axon 

extension from embryonic chick dorsal root ganglia [2] while similar observations were 

reported when fibre diameter larger than 30 µm [318]. Together, these studies indicate that 

there is a limited range of fibre diameter of which it becomes supportive for neurite extension 

and Schwann cells growth This prompts the study to explore the potential of electrospun 

microfibres at subcellular size in supporting neurite outgrowth and Schwann cell growth. The 

study reports the fabrication of aligned electrospun microfibres with fibre diameter ranging 

from 1 to 8 µm through careful manipulation of the electrospinning parameters. Of note was 

the set of parameters used in the study enabled the generation of highly aligned fibres with 

tightly controlled and reproducible fibre diameters. Manipulation of the parameters such as 

applied voltage, solution concentration, flow rate and needle gauge is a commonly used 

electrospinning method for controlling fibre diameter [256, 268, 305].  
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6.2 The effect of fibre diameter of aligned PCL microfibre scaffolds on 

neurite outgrowth 

It is evident that fibre diameter can influence cell function and behaviour including 

cellular morphology, proliferation and migration [14, 251, 252, 268, 319]. However, debate 

continues on whether nanofibres versus microfibers can provide the best outcome for 

peripheral nerve studies (though certainly not restricted to peripheral nerve), with 

investigators suggesting that nanofibres are optimal because of the close physical 

resemblance to the extracellular matrix structure [226, 314]. However, reports also include 

findings that 200 nm fibres are inhibitory to neurite outgrowth and Schwann cell migration 

[2], and conversely that neurite growth and Schwann cell migration are inhibited on 

microfibres with diameters greater than 30 µm [318]. Furthermore, in an in vitro study using 

PC12 neuronal cells in isolation, no significant differences in neurite outgrowth on PCL 

fibres scaffolds with diameters ranging from 0.8 µm and to 8.8 µm were observed [225]. A 

recent study reports the advantage of micro-size piezoelectric fibres (~3 µm) in supporting 

neurite outgrowth over nanofibres (~750 nm), with enhanced neurite elongation and 

directionality of neurite growth on microfibres [316].  

The study therefore investigated the relationship between PCL microfibre diameters 

and neuronal cell growth in detail, using three different cell cultures approaches i.e. single 

neuronal cell culture, neuronal/Schwann co-culture and DRG explants culture. Results 

revealed that aligned PCL microfibres were able to both support neuronal cell growth and 

direct the organized growth of neurite extension, irrespective of fibre diameters. These 

observations were consistent across different culture models used in the study. However, 

aligned PCL microfibres were found to reduce neurite sprouting of NG108-15 neuronal cells 
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in single culture experiments. The overall number of NG108-15 neuronal cell on PCL 

substrates, both fibres and films was also found to be poor in comparison to TCPS and glass.  

 In single culture of NG108-15 neuronal cells, the results showed a direct correlation 

between fibre diameter and the length of neurite outgrowth, with neuronal cell neurite 

extension increased with increasing fibre diameter but different observations were produced 

when in co-cultures. Reduced neurite elongation on smaller PCL fibres (1 µm) may be 

attributed to low cell viability which was found to be lower than larger fibres. On the 

contrary, smaller PCL microfibres promoted longer neurite extension in the presence of 

Schwann cells in DRG scaffold cultures, although the difference was not statistically 

significant. Of note was the ability of all scaffolds to support considerably long neurite 

extension, which grew in average between 1.75 mm and 2.50 mm after 10-day culture. In 

comparison to the typically quoted value for the rate of axonal outgrowth (1 mm/day) [320], 

the rate of axonal outgrowth in DRG scaffold cultures was measured at a rate of 

approximately 0.2 mm/day over a 10 day period which was lower. Nonetheless, as an in vitro 

3D culture model, the scaffolds supported sufficient axonal outgrowth and Schwann cell 

migration within a reasonable timeframe, enabling quantitative and qualitative analysis to be 

conducted on such model. Of note was that there was no significant difference in the extent 

of neuronal cell neurite extension across different fibre diameters in neuronal/Schwann cell 

co-culture.  

The relationship between fibre diameter and neuronal and glial cells in co-culture 

revealed that Schwann cells could significantly enhance neuronal cell neurite extension. This 

effect was observed on the smaller diameter fibres, with 100% and 52% increases in neurite 

length for 1 µm and 5 µm scaffolds, respectively. This was most likely due to the excretion of 
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a combination of neurotrophic factors (e.g. NGF and BDNF) and the production of 

extracellular matrix proteins by the Schwann cells [167, 321] which influenced neurite 

outgrowth through a paracrine pathway. No significant difference in neurite length was 

observed on 8 µm fibres, as the longest neurites were observed for both neuronal cells alone 

and under co-culture conditions. The ability of Schwann cells to enhance neurite length has 

been reported previously in vivo [322, 323] which is consistent with the present study. 

6.3 The effect of fibre diameter of aligned PCL microfibres on Schwann cells 

phenotype  

The relationship between fibre diameter and Schwann cell behaviour, in term of 

cellular growth, morphology and migration behaviours was also studied in detail. Schwann 

cell culture alone demonstrated the ability of aligned PCL microfibres to support Schwann 

cell growth with high cell viability without the need of surface modification to enhance cell 

adhesion. Schwann cells were found to form unidirectional organization on the scaffolds, 

resembling Schwann cells organization in bands of Büngner which form during regeneration 

process in peripheral nerve tissue [324] and consequently, provide guidance for regenerating 

axons [325]. Unidirectional alignment of Schwann cells was shown to up-regulate the 

expression of myelin-specific gene and the secretion of neurotrophic factors [226, 326]. Of 

note was that the consistent observations with respect of Schwann cell viability and 

alignment across different fibre diameters, thus indicating the potential use of the scaffolds 

for nerve repair applications. 

In the study, it was found that fibre diameter influenced Schwann cell morphology 

with smaller PCL fibre (1 µm) promoted more elongated bipolar morphology. Interestingly, 

elongation of Schwann cell morphology has importance during the early stage of myelination 
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in vivo [309, 327], which correlates with present observations on the smaller fibre diameter 

scaffolds and of relevance to both mature nerve models and neural repair approaches. Of note 

was the influence of fibre diameter on Schwann cell number, with higher number of Schwann 

cell observed on smaller fibre. Previously, it has been shown that aligned nanofibres (fibre 

diameter ~800 nm) enhanced fibronectin adsorption in comparison to smooth film which in 

turn, was implicated for the enhancement of Schwann migration and neurite outgrowth [328]. 

Therefore, it is speculated that the differential Schwann cell adhesion observed on aligned 

PCL microfibres may be attributed to the extent of protein adsorption on different fibre 

diameters.  

Aligned PCL microfibres were also found to support and direct Schwann cell 

migration in DRG scaffolds cultures. Schwann cell migration was also found to be affected 

by fibre diameter with a slight enhancement in the migration of Schwann cells with 

decreasing fibre diameter, although the difference was not statistically significant. Of 

particular note was the distance of which Schwann cells travel on all scaffolds, which after 10 

days in culture averaged between 1.9 mm and 2.7 mm from the DRG body. It was also 

observed that Schwann cells formed a „leading‟ migratory edge ahead of the neurites, which 

followed closely behind. Therefore, it is hypothesised that a permissive environment for 

neurite formation was being formed during this process by the leading Schwann cells, as 

either a prerequisite or an enabling condition for organising neurite development thereafter. 
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6.4 Neuronal-Schwann cell interactions on aligned PCL microfibres with 

different fibre diameters  

It has previously been described that myelination is mediated through the binding of 

neurite membrane proteins, such as neuregulin 1 type III (NRG1-III) and nectin-like protein 1 

(Necl-1) to their receptors on the Schwann cell membrane [95, 98]. The interactions between 

NRG1-III and Erb B receptors initiate myelination as well as regulate the extent of 

myelination in peripheral nerve [95, 307]. Interactions of cell adhesion molecules between 

neurite and Schwann cells is also important [97, 98], for instance the binding of Necl-1 and 

Schwann-bound Necl-4 facilitates the stabilization of intermembrane junction and the 

reorganization of actin cytoskeleton during myelination [100]. Therefore, physical contact 

between neurites and Schwann cells is a pre-requisite for the development of the myelin 

sheath in peripheral nerve. In this regard, neurites and Schwann cells were observed to be in 

regular physical contact in DRG scaffold cultures as evident by the co-localization of S100β 

labelled cells and β-III tubulin labelled neurites. These observations indicated that aligned 

PCL microfibres may potentially support the subsequent myelination process which is of 

importance to the development of a mature peripheral nerve model. On the contrary, neurite-

Schwann cell contact was observed less frequently in NG108-15 neuronal and primary 

Schwann cell co-cultures, hence making this culture approach less favourable for creating in 

vitro nerve model with myelinated neurite. Of note was the abundance of NG108-15 neuronal 

cells in the co-cultures, indicating increased proliferation potentially due to growth factors 

release by primary Schwann cells [78].  
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6.5 The development of myelin sheath on aligned PCL microfibres  

The ability of aligned PCL microfibres to support in vitro myelination was then 

studied in attempt to demonstrate a mature peripheral nerve model. To establish in vitro 

myelination, DRG scaffolds cultures were treated with ascorbic acid to induce myelination in 

long-term cultures (2 weeks). Ascorbic acid treatment is commonplace for establishing in 

vitro Schwann cell myelination since ascorbic acid is associated with the regulation of basal 

lamina assembly, which in turn enabling Schwann cell myelin formation [329]. Moreover, 

extended culture duration (more than 1 week) is required for complete myelin formation in 

cultures [308, 330]. Other medium components used in this study include nerve growth factor 

(NGF) and progesterone (one of the components in N2 supplement) which have been shown 

previously to stimulate myelin expression [44, 86, 331]. Following two week culture with 

ascorbic acid treatment, myelin expression was not found in DRG scaffold cultures as 

revealed by immunocytochemistry analysis of MBP and P0 proteins, even though neurite and 

Schwann cells were observed to establish physical contact between each other. Similar 

observations were found in DRG cultures on poly-l-lysine/laminin coated polystyrene flat 

surface. Similarly, negative expression of MBP and P0 proteins was observed when 

neuronal/Schwann cell co-cultures were established from dissociated DRG, although there 

were intercellular contacts established between axons and Schwann cells. TEM analysis 

showed that no formation of the myelin sheath in neuronal-Schwann cell co-cultures on 

aligned PCL fibres, although a positive result was revealed by Sudan Black B staining. 

One concern regarding the immunocytochemistry analysis for detecting MBP and P0 

proteins in this study was that a positive control was unable to be demonstrated. This was 

because method for generating in vitro myelination in neuronal-Schwann cell co-cultures was 



145 

 

not fully established to be used as a positive control. Therefore, there is a possibility that the 

antibodies used in the study were not working, instead of negative myelin expression. With 

regards to TEM analysis for detecting myelin formation, further works are required to refine 

the method for processing neuronal-Schwann cell co-cultures on aligned PCL fibres for TEM 

analysis.  

Besides the analytical methods, cell culture methods were also needed to be optimized 

in order to produce in vitro myelination. Therefore, it is speculated that longer culture 

duration is required to induce myelination by ascorbic acid treatment in neuronal-Schwann 

cell co-cultures. A study by Sango et al. reports positive myelin expression in co-culture of 

PC12 neuronal cells and immortalized Fischer rat Schwann cells 1  (IFRS1) after 28 day 

culture with ascorbic acid treatment [332]. However, there are several studies reporting in 

vitro myelination after 14 days in co-culture derived from embryonic tissues [308, 330]. The 

use of neuronal/Schwann cell co-cultures derived from embryonic animals is commonplace 

in in vitro myelination study, with successful reproduction of myelin formation in culture [95, 

308, 330]. In this study, neuronal/Schwann cell co-cultures derived from adult rat were 

however unable to regenerate myelin formation in vitro. This could potentially be attributed 

to the intrinsic factors (or lack of the intrinsic factors) in adult rat neuronal cells that restrict 

the development of myelin in cultures. Of note was the presence of non-neuronal or non-glial 

cells in DRG scaffolds cultures and dissociated DRG co-cultures which may have some 

effects on Schwann cell myelination in such culture models.  
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7. Future work  

Future challenges now are to create a 3D in vitro peripheral nerve model with mature 

and relevant ultrastructure. Further work is required to optimize methods for inducing and 

promoting the formation of the myelin sheath on aligned PCL microfibres. Firstly, it is 

proposed that the duration of culture with ascorbic acid treatment can be prolonged to allow 

myelination to occur in neuronal-Schwann cell co-cultures on the scaffolds. Secondly, the use 

of cells isolated from embryonic animals such as mouse or rat would be relevant for 

generating in vitro myelination since they have been shown previously to produce myelin in 

culture. Besides that, western blotting can be useful as analytical technique for detecting 

myelin expression in cultures as an alternative or in addition to immunocytochemical and 

transmission electron microscopy analysis.  

It is envisaged that this concept may see a useful role as 3D in vitro models for 

peripheral neuropathies and therapeutic studies. By combining the scaffolds and 

neuronal/glial cells isolate from genetically-modified animals, it is possible to generate 3D 

culture models with disease conditions which are of interest for understanding the underlying 

mechanisms of peripheral nerve diseases such as Charcot-Marie-Tooth disease or Guillaine-

Barré syndrome. In vitro 3D disease models can be used as alternative culture models for 

developing therapeutic strategies which is in accordance to the 3Rs (Replacement, 

Refinement and Reduction) principles for animal use in scientific experiments. With respect 

of nerve repair application, aligned PCL microfibres can be incorporated with a nerve 

guidance conduit and implanted in an in vivo model for nerve regeneration studies.  
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8. Conclusions  

In summary, the present study showed that: 

1. Aligned PCL microfibres with diameters ranging between 1 µm and 8 µm were 

successfully manufactured by controlling the electrospinning parameters. 

2. NG108-15 neuronal cell growth and neurite extension were supported by aligned PCL 

microfibres, with uniaxial organization of neurite outgrowth for all fibre diameters. 

However, number of cells reduced on PCL fibres in comparison to flat substrates (TCPS 

and glass). 

3. Fibre diameter was found to correlate with neurite outgrowth and neuronal cell viability. 

In single NG108-15 neuronal cell culture, 8 µm fibres promoted better neurite outgrowth 

than 1 µm and 5 µm fibres while cell viability reduced on 1 µm in comparison to larger 

fibres.  

4. Aligned PCL microfibres promoted Schwann cells alignment with high cell viability for 

all fibre diameters. However, the influence of fibre diameter was pronounced on 

Schwann cell morphology and adhesion, with 1 µm promoted superior Schwann cell 

elongation and adhesion than larger fibres.  

5. Aligned PCL microfibres supported co-cultures of neuronal and primary Schwann cells 

and the presence of Schwann cells in co-cultures was shown to enhance neurite 

outgrowth on aligned PCL microfibres with 1 µm and 5 µm fibre diameter but not on 8 

µm fibre diameter.  
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6. In neuronal/Schwann cell co-cultures derived from DRGs, aligned PCL microfibres were 

able to support and guide neurite outgrowth and Schwann cell migration. A trend was 

observed indicating the enhancement of neurite outgrowth and Schwann cell migration 

with decreasing fibre diameter, however the difference was not significant. 

7. Co-localization of Schwann cells with neurites was observed in DRG scaffold cultures of 

all fibre diameters but not in NG108-15 neuronal and primary Schwann cell co-cultures. 

Co-localization may indicate intercellular contact between Schwann cells and neurite 

which is an important characteristic leading to Schwann cell myelination. 

8. No myelin formation was observed in neuronal/Schwann cell co-cultures derived from 

DRG explants on both flat substrate and PCL fibres. Similarly, no myelin formation was 

observed in neuronal/Schwann cell co-cultures derived from dissociated DRGs. 

In conclusion, this work supports the use of aligned electrospun PCL microfibres to 

generate uniaxially organized neuronal-glial co-culture for the more detailed development of 

3D in vitro peripheral nerve models.  
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