
I

Unsupervised morpheme segmentation in a non-parametric

Bayesian framework

by

SANTA B. BASNET

Presented to the Department of Computer Science of The University of York in Partial

Fulfillment of the Requirements for the Degree of

MSc by Research

University of York
Department of Computer Science

Deramore Lane, York, YO10 5GH, UK

February, 2011

II

III

Abstract

Learning morphemes from any plain text is an emerging research area in the natural

language processing. Knowledge about the process of word formation is helpful in

devising automatic segmentation of words into their constituent morphemes. This thesis

applies unsupervised morpheme induction method, based on the statistical behavior of

words, to induce morphemes for word segmentation. The morpheme cache for the

purpose is based on the Dirichlet Process (DP) and stores frequency information of the

induced morphemes and their occurrences in a Zipfian distribution.

This thesis uses a number of empirical, morpheme-level grammar models to classify the

induced morphemes under the labels prefix, stem and suffix. These grammar models

capture the different structural relationships among the morphemes. Furthermore, the

morphemic categorization reduces the problems of over segmentation. The output of the

strategy demonstrates a significant improvement on the baseline system.

Finally, the thesis measures the performance of the unsupervised morphology learning

system for Nepali.

IV

V

Contents

1Introduction……………………....………………………….……..…... 1

 1.1 Morphology and Morpheme segmentation……………………....………… 1
 1.2 Introduction to morphology learning .. 3
 1.3 Issues in morphology learning .. 5
 1.4 Unsupervised morphology .. 7

1.5 Goals and approach .. 7
 1.6 Outline .. 9

2 Background ……………………………………………….…..…….... 11

 2.1 Concatenation phenomena in morphology ……………………….........…. 11

 2.1.1 Letter successor varieties/Conditional entropy between letters11

 2.1.2 Minimum Description Length (MDL) approach 15

 2.1.3 Paradigm based approach ………………………….…........…… 16

 2.2 Addressing word-internal variation in morphology …….....................…... 18

 2.3 Non-parametric Bayesian framework in morphology ………….............… 18

3 Mathematical preliminaries for non-parametric Bayesian morpheme

induction…….………………………………………….……....…... 21

 3.1 Introduction to probability ………………………………………….......... 21

3.1.1 Random experiments and Finite spaces ….....................…...…… 21

 3.1.2 Conditional probability and Bayes’ rule ………………..........…. 22

 3.1.3 Random variable and distribution ….......………….……....……. 23

 3.2 The Bayesian method ………………………………………......…….…… 24

 3.2.1 Terminologies in a Bayesian approach ..…………….…..……… 24

 3.2.2 Conjugate priors …………………….................………...……… 26

3.3 Zipf’s Law …………………………………….....………………..………. 27

 3.4 Chinese Restaurant Process (CRP) ...…..........……….……………............ 28

VI

4 Baseline model and its extensions .. 31

4.1 Baseline model ... 31

4.2 Grammar model I ... 34

4.3 Grammar model II .. 35

4.4 Grammar model III .. 36

4.5 Morpheme segmentation .. 38

5 Evaluations ... 41

 5.1 Dataset preparation .. 41

 5.2 Evaluation metric ... 42

 5.3 Results .. 42

 5.4 Significance Tests .. 46

6 Discussions and future works .. 47

7 Conclusions ... 53

Appendix A: Algorithms ... 55

 A.1 Baseline Model .. 55

 A.2 Grammar Model I .. 56

A.3 Grammar Model II ... 58

A.4 Grammar Model III ... 60

Appendix B: Program Flowchart (Baseline model) 61

References ... 63

VII

List of Figures

1.1 Three segments of the word “unsegmented”. 2

2.1 Letter successor varieties recreated from [2]. 12

2.2 Letter predecessor varieties recreated from [2]. 12

3.1 Plot of word frequency in Wikipedia-dump 2006-11-27. 28

3.2 Chinese Restaurant Process (CRP) showing a seating arrangement for five
customers. Each table (circle) can hold infinite number of customers.

29

4.1 Cache representation of morphemes “$”, “chunk”, “ed”, “un”,“segment”. 33

4.2 Model updates mechanism of a word having n segments set. 34

4.3 Probability of word wm+1 in previously learnt k tables (paradigms). 37

6.1 Single split results for English. 49

6.2 Single split results for Nepali. 49

6.3 Multiple splits results for English. 50

6.4 Multiple splits results for Nepali. 51

6.5 Plot of α-value Vs. FMeasure from sample Nepali dataset. 51

VIII

IX

List of Tables

1.1 Examples of free and bound morphemes. 2

1.2 Examples of words having single stem and more than one affix. 3

1.3 Examples of some common English suffix morphemes and their frequency
learned fromMorpho Challenge  2009 dataset.

4

1.4 Examples of some common English prefix morphemes and their frequency
learned from Morpho Challenge  2009 dataset.

5

1.5 Sample text input in frequency-word format and their corresponding output
morphemes.

8

5.1 Evaluation results of the systems on English assuming two segments only. 43

5.2 Evaluation results of the systems on Nepali assuming two segments only. 43

5.3 Evaluation results of the systems on English assuming multiple segments. 44

5.4 Evaluation results of the systems on Nepali assuming multiple segments. 44

5.5 Evaluation results of the systems on Turkish assuming two segments only. 44

5.6 Evaluation results of the systems on Turkish assuming multiple segments. 45

5.7 Evaluation results of the Grammar model II on English with Morpho
Challenge 2009 dataset.

45

5.8 Evaluation results of the best systems on English. 45

X

XI

Acknowledgements

Many people are involved to make this research successful. Especially, my supervisor

Dr. Suresh Manandhar, without him I couldn’t even imagine this research to be done. I

am very thankful to him for his invaluable suggestions, encouragements and guidance to

pave the path of the research.

I am very much indebted to ‘EURECA Project (www.mrtc.mdh.se/eureca) who has

funded me to complete this research degree. I am so grateful to AIG group, Computer

Science Department, University of York, for the academic activities such as seminars

which helped me a lot to carry out this research.

Special thanks to my mate Matthew Naylor, Burcu Can, Shailesh Pandey, and Suraj

Pandey for their significant help and encouragements to complete this work. In addition

to this, I would also like to thank Laxmi Khatiwada and Balram Prasain, from Tribhuban

University, Nepal for the correction of Nepali test dataset which is used for system

evaluation.

Finally, I would like to thank almighty God for giving me sound health, enthusiasm,

knowledge and strengths to achieve this degree.

February, 2011

XII

- 1 -

1 Introduction

This thesis presents a work done on unsupervised learning of morphology. It has

described an automatic morpheme induction from the plain text by making use of

frequency of words. The resulting morphemes are used for segmentation.

1.1 Morphology and Morpheme segmentation

Natural language morphology identifies the internal structure of words. Words contain

smaller units of linguistic information called morphemes which are the meaning bearing

units in a language. For example the word ‘playing’ consist of two units: the morpheme

‘play’ and the morpheme ‘-ing’. When two or more morphemes are combined into a

larger unit such as the word, a structure is formed which contains the morphemes itself

and the relationship between them. The purpose of identifying structure of words is to

establish the relationship between morphemes and the words that encodes them in a

language giving the meaning, the categories it belongs to and its function in a natural

language sentence.

 Morpheme segmentation is the process of breaking words into their constituents i.e.

morphemes. A morpheme segmentation system should be able to tell us the word

“playing” is the continuous form of the stem “play”. These morpheme segments fall in

two broad classes: stems (or roots) and affixes. Stems are the base form of words and

are the main information contributor. Affixes contribute additional information of words

such as gender, tense and number. For example, the word “unsegmented” in English can

be divided into 3 morphemes “un”, “segment” and “ed” where “segment” is the base

form and is a main information contributor. Morpheme “un” acts to negate the meaning

of the stem and “ed” places it in the past tense (or adjectiveless). Here, “un” and “ed”

are known as affixes. Hence, morphological analysis helps to identify the necessary

information such as gender, tense, polarity, number and moods of the word.

- 2 -

Fig. 1.1 Three segments of the word “unsegmented”.

The affix attached before and after the stem is known as the prefix and the suffix

respectively. Some morphemes can appear as complete words. Such morphemes are

called free morphemes. Morphemes appearing in a word combined with stems are called

bound morphemes. The following Table 1.1 shows some examples of free and bound

morphemes.

Table 1.1Examples of free and bound morphemes.

Language Free Morphemes Bound Morphemes

English do, eat, jump etc. -s, -ed, -ing, -ness, un-, etc.

Nepali

नाम(name),खा(eat),

लेख(्write)etc.

-दै/तै(continuous form),-न(present

form), न-(negation), -

अक(nominalise)etc.

There are mainly three morphological processes involved in word formation: inflection,

derivation and compounding. These processes determine the function of morphemes. In

inflection, a stem is combined with a grammatical morpheme to yield a word of the

same syntactic class as the original stem, e.g., formation of the word “playing” from the

verb “play”. Derivation combines a stem with a grammatical morpheme to yield a word

belonging to a different syntactic class, e.g., derivation of the word “player” (noun) from

the word “play” (verb), “computation” from the verb “compute” etc. Compounding is

- 3 -

the process of combining two or more words to form a new word, for example,

childlike, notebooks and football are the compound words. Daughter-in-law and mass-

product are a hyphenated form of compound words. Thus, one way of word variation is

induced by attaching the affixes to the stem. A word can have more than one affix

attached at the same time. Examples of some words with multiple affixes are shown in

Table 1.2.

Table 1.2 Examples of words having single stem and more than one affix.

Language Word with more than one affixes Compound Words

English
skill(stem)+full(suffix)+ness(suffix)

un(prefix)+segment(stem)+ed(suffix)

sportsman, storekeeper

Nepali

न (prefix)+ टुक्र(stem)+ आइ (suffix)+ एको

(suffix) – (un-separated

by)खा(stem)+एको(suffix) – (eaten)

खानुहुने – (be eaten),

देख्नसके – (succeed to see)

1.2 Introduction to morphology learning

Automatic identification of meaning bearing units or morphemes in a natural language

text is an active area of research. Addressing the word variations by analyzing words of

a language as a sequence of morphemes is defined as morphology learning. For

example, the English word “unpredictable” can be analyzed as a sequence of the three

morphemes “un”, “predict” and “able”.

In rule based learning, morphological analysis relies on manually crafting of

linguistically motivated rules for morpheme acquisitions and segmentations. In

automatic acquisition of morphemes, machine learning techniques are successfully

applied for morphology learning. Using machine learning techniques, we can capture

certain phenomenon that are involved in word formation and helps to induce morphemes

of a language. For example, we can capture regularities among the words such as

“chunk”, “chunks”, “chunked” and “chunking”. In these words, we can induce

- 4 -

morphemes “chunk”, “s”, “ed” and “ing” by using pattern regularities. Similarly, we can

use machine learning technique to capture the orthographic changes in a word during

morpheme attachment to the stem. For example, a character “y” changes to “i” in many

English words during suffix (flyflies) attachment.

To develop the model of morpheme induction and segmentation, I consider the process

of adding affixes to the stem as the primary way to induce word variations. In this thesis,

I have presented an unsupervised approach to morpheme induction by utilizing the

cache of morphemes frequency. The frequency of morphemes is derived from the

naturally occurring corpora. It is well established notion that the words behavior in a

corpus follows a power law distribution (Zipf’s law) [18]. I examine the statistical

distribution of morphemes in a natural language text which are presented in Table 1.3

and 1.4. These morphemes conform to the power law distribution.

Table 1.3 Examples of some common English suffix morphemes and their frequency

learnt from Morpho Challenge  2009 dataset using RePortS algorithm [5].

S.N. Suffix Morphemes Frequency

1. s 2140800

2. er 964162

3. es 887832

4. ed 421481

5. ing 289236

6. tion 82304

7. ment 65294

8. est 46935

9. ies 27455

10. ness 14274

- 5 -

Table 1.4 Examples of some of common English prefixes and their frequency learned

from Morpho Challenge  2009 dataset using RePortS algorithm [5].

S.N. Prefix Morphemes Frequency

1. un 61004

2. ex 49477

3. dis 39882

4. inter 22280

5. pre 20934

6. non 13564

7. post 11251

8. dia 8651

9. hyper 485

10. in- 390

In the thesis statistical property (i.e. frequency) of text is gathered to identify the

morphemes of a language and use them to segment words. The algorithm detects the

morphemes and classifies them in three categories. They are labeled as prefix, stem and

suffix based on their position in the word. In segmentation process, it considers a word

to have a single affix, multiple affixes and multiple stems as well. Here, I have

populated stems and affixes of a language during learning stage and listed out them for

segmentation of words.

1.3 Issues in morphology learning

A commonly asked question regarding how to develop a language independent

algorithm that can take a list of words as input and produce a set of morphemes as

output is a challenging problem. To address the above question, we have to model a

system that can able to implement or encode the human knowledge of morphology i.e.

understanding of natural language words to enhance the performance of Natural

Language Processing (NLP) tasks. This is not a trivial task.

- 6 -

 In practice, language acquisition involves the representation of internal structure which

enables us to encode the input words and to generalize it by producing all linguistic

forms. Our understanding is that there is no complete computational model for language

acquisition. In overall task of NLP, different theories are proposed which help to capture

some aspects of language acquisition. Practically, some features of language acquisition

are more difficult such as capturing feature of words which does not occur in training

corpus. So, these issues have to be resolved while breaking a word into its meaningful

units.

In morphology learning, initial focus is on capturing regularities among words. A key

challenge in computing the regularities among words is to handle the exceptions present

in the sparse data such as the word “singed” is not a variation of the word “sing”. The

irregularities present during word formation are a difficult problem and needs to be

addressed during morphology learning. For example, the word “sang” is a variation of

the word “sing”. Another issue is to identify the grammatical features of segmented

morphemes such as tense and number. Generalization may lead to erroneous results for

unseen cases and is an issue for a computational model as well. Analysis of words with

multiple senses is a context dependent task. We also have to consider what kind of

linguistic feature can be encoded in model learning. A language can have unique

features that are not observed in other languages which make it more difficult in

building a general language model.

I have examined the above issues and developed a computational model that learns the

feature of morpheme behavior from a corpus. To model the word structures, this thesis

utilizes the linguistically motivated word grammars to encode morphemes relationship

during word formation. However, this encoding is empirical which explores the

different structures of words. It is capable of understanding the morphological

representation and is supported by statistical occurrences.

- 7 -

1.4 Unsupervised morphology

Knowledge-based morphology systems are based on manually constructed rules. These

rules are crafted especially to address morphological processes of a particular language

by linguistic experts. Building morphological lexicons and rules for all languages is time

consuming and requires considerable amounts of human effort. In most of the

languages, morphological lexicons are unavailable and building them by humans is a

very slow and expensive process. The alternative solution to this problem is to use an

unsupervised approach to learn morphological structure of a language.

The unsupervised morphology system is capable of inducing such a structure without

making use of human annotated data and is also a language independent system. Words

in a natural language can be considered as an open set, i.e. words of a language keeps

changing and the number of words grows as well. It gives a new dimension to learning.

In similar case of language learning by human, the vocabulary in mind also evolves. A

learning system can help to update the domain information periodically. This research

focuses on the same learning strategy based on an updated input corpus. It utilizes

natural language text gathered from different sources such as news papers and

magazines. In this case, the system uses a machine learning approach to induce

knowledge of automatic morphology, rather than making use of widespread linguistics

annotation.

1.5 Goals and approach

Natural language texts are widely available from different sources such as newspapers,

magazines, and blogs. As I discussed earlier, language acquisition from a natural

language text has numerous problems and has become a challenging field in NLP. In

morphology, morpheme induction and their structure in natural language text must be

able to address the process involved in the word formation. The primary goal of this

research is to design an unsupervised morphological analyzer of languages. In addition

to this goal, I have the following specific goals:

- 8 -

a) Automatic induction of morphemes of a language with the formulation of model

through statistical behavior of morphemes and implementation of data-driven

learning system.

b) Induced morphemes are used to segment the input words by exploring different

word structures (word grammars) without using any external annotated data.

c) Explore the unsupervised morphology learning system in Nepali language.

Natural language applications such as Parts of Speech (POS) induction [29 and 30] and

text indexing and retrieval [31] performance can be improved by using unsupervised

morphological analyzer. I believe that this research will become a useful system to

improve NLP applications statistical machine translations, information retrieval etc.

Sample input/output of the system is shown in Table 1.5. This research has focused to

capture the statistical proprieties of the natural language texts, i.e. the frequency to learn

the morphemes of a language by investigating the different morphological structures of

words. After morpheme detection, this algorithm classifies these morphemes in 3

different categories labeled as prefix, stem and suffix. These categories are illustrated

and explained in Chapter 4.

Table 1.5 Sample text input in frequency-word format and their corresponding output

morphemes.

Frequency Word Morphemes

6 jump jump

1 jumper jump + er

3 jumped jump + ed

1 jumping jump + ing

4 jumps jump + s

Furthermore, the categorized morphemes are used to carry out the segmentation of input

texts. During segmentation, I employ a linguistically motivated heuristics which

- 9 -

considers a word can have single affix, multiple affixes and multiple stems. Chapter 4

describes this in detail.

1.6 Outline

This thesis is organized as follows. Chapter 2 reviews some of the previous works on

unsupervised morphology. More specifically, this discusses different techniques that are

applied to capture different morphological phenomena from a plain text corpus. This

chapter also talks about some of the language specific heuristics applied on

unsupervised morphology.

Chapter 3 describes the mathematical preliminaries of morphological modeling based on

a Bayesian inference framework. The process of morpheme induction is based on

morpheme cache which stores the frequency information of previously induced

morphemes and their occurrences. This chapter also describes the detail formulation of

the mathematical model.

Chapter 4 describes four grammar models which I have implemented during the

research. These models are based on the formulation of Bayesian statistics which are

explained in Chapter 3. These grammar models relate the morphemes and words by

different structures i.e. morphological rules. The first model is named as Baseline, has a

single morpheme cache and the rest three are the extensions of the Baseline model. This

section also explains the design and implementation of data structure in the system.

Chapter 5 describes the training and testing process with the tabulation of results. At

first, it starts with a detailed description of the dataset that are prepared for English and

Nepali languages. Next, I describe an evaluation metric which is used to evaluate the

results of this system. The results are tabulated in different aspects of evaluation such as

segmentation with single split, multiple splits, segmentation results of words having

only single stem and single affix.

- 10 -

In Chapter 6, I discuss the results of the system and the sources of error in the results. I

also discuss the key issues of the erroneous result with different cases and examples. I

present a comparative result of all four models. An idea for further extension and

development of the system is also given in the chapter. Finally, Chapter 7 concludes the

thesis.

- 11 -

2 Background

Automatic induction of morphemes aims to capture the phenomena involved during

generation of word variations through morphological processes. There has been a lot of

work in the area of unsupervised morpheme acquisition. Numerous approaches have

been developed to address different morphological processes. These approaches help to

learn morphemes of a language automatically and are used to segment the words of

given language. Some of the current unsupervised approaches of morphology are

discussed as below.

2.1 Concatenation phenomena in morphology

Many words in a corpus are formed by adding affixes to the stems. The following

describes some of the earlier works on identifying the morpheme boundary.

2.1.1 Letter successor varieties / Conditional entropy between letters

Earlier works [1, 2 and 3] have made a use of statistical properties such as successor and

predecessor variety count of words in a corpus to indicate the morpheme boundaries.

Calculation of letter successor varieties of some English words READABLE, ABLE,

READING, READS, APE, RED, BEATABLE, ROPE, FIXABLE, RIPE and READ is

shown in fig. 2.1 and fig. 2.2.

- 12 -

Fig. 2.1 Letter successor varieties recreated from [2].

Fig. 2.2 Letter predecessor varieties recreated from [2].

- 13 -

For a test word “READABLE” and the task to find the possible morpheme boundaries

the following scenario is observed. If we consider “R” to be a prefix, then 3 distinct

characters “E”, “O” and “I” appears immediately after “R”. Hence the successor variety

is 3. This process iterates throughout the word “READABLE”. We can see the 3

branches appear after “READ” with characters “S”, “I” and “A” as shown fig. 2.1 i.e.

successor variety and also 3 branches appear before “ABLE” with characters “D”, “T”,

and “X” i.e. predecessor variety. These successor and predecessor varieties are possible

solution to the morpheme discovery of the word “READABLE”. This is shown in Table

2.1.

Table 2.1 Letter successor varieties recreated from [2].

Successor Varieties Predecessor Varieties

Prefix Successor Varieties Suffix Predecessor

Varieties

R E, O, I (3) E L, P (2)

RE A, D (2) LE B (1)

REA D (1) BLE A (1)

READ A, I, S (3)* ABLE D, T, X (3)*

READA B (1) DABLE A (1)

READAB L (1) ADABLE E (1)

READABL E (1) EADABLE R (1)

READABLE # (1)* READABLE # (1)*

An experimental design has been made by Dang and Chaudri [3] to measure the

combined successor and predecessor frequency (SFPF) of the corpus based on the works

[1 and 2]. This design considers the previous words seen in the corpus and are used to

get the first split before applying SFPF. For example, if a word “abandoned” is

previously seen and the current word “abandonedly” has to be processed, then the

algorithm first splits the word “abandonedly” by the help of word “abandoned” giving

- 14 -

the result “abandoned + ly”. After this, it applies SFPF to the left word “abandoned” for

further segmentation which gives the better results than the earlier works.

In a similar way, the transitional probabilities between the letters and word appearing as

a substring of another word are used together to detect the morpheme boundaries [4]. It

defines two thresholds during selection of affixes from the candidate list. One is reward-

score by 19 and the other is punish-score by -1. The intuition behind these numbers is to

select the morphemes as the final candidate only when they pass following tests 5% of

the times that they appear.

a) String fragment without suffix should be a valid word.

b) The transitional probability between first letter of suffix and last letter of string

fragment should be less than 1.

c) The transitional probability between second last letter and last letter of the string

fragment without suffix approximately equal to 1.

The above criteria are also applicable for learning prefixes. The overall scores calculated

from rewards and punishments of the morphemes are used not only to identify the

candidate morphemes but also to detect the compound morphemes. If a morpheme is

composed of two other morphemes both with higher scores then it is accounted as the

compound of the two and is removed from the induced morpheme list. These strong

hypotheses are unable to capture the morphemes in words whose base forms do not

appear in the corpus and are present in the form of orthographic change. For example,

during the suffixation “es” to the word “duty”, the character “y” changes to “i” giving

the word “duties”. The previously described RePortS algorithm [4] is not capable to

induce the suffix “es” from “duties” since the string fragment “duti” is not present in the

given corpus as a valid word.

Later, the basic RePortS algorithm [4] is extended by employing better morpheme

induction and segmentation strategies [9, 10 and 11]. The equivalence sets of letters is

generated with the help of word pairs having small word edit distance and improved the

results by 2% in precision without losing recall for German language [9]. In [10 and 11],

- 15 -

language specific heuristics are added for composite suffix detection, incorrect suffix

attachments and orthographic changes during model learning. Composite suffixes are

formed by combining multiple suffixes. This algorithm detects the composite suffixes

by measuring the ratio of words in which both suffixes are attached to the words in

which first suffix is attached. Incorrect suffix attachments are identified using the word-

root frequency ratio. This ratio is based on the hypothesis that the inflectional or

derivational forms of a root word occur less frequent than the root itself. To capture

orthographic changes in root, it induces candidate allomorphs1 with the help of edit

distance measure and applies series of filtering techniques to get final root candidate.

These heuristics improve the result of PASCAL challenge2 by about 3% and the

algorithm is also tested on the Bengali language. Finally, these algorithms also posses

the shortcomings of basic RePortS algorithm and become more language specific due to

the implementation of language specific heuristics.

2.1.2 Minimum Description Length (MDL) approach

Some of the well-known approaches in unsupervised learning of morphology are based

on application of the Minimum Description Length (MDL) principle [12]. MDL gives

the best hypothesis for a given set of data as that one which gives the highest

compression of the data. Data is compressed by minimizing the description of model (in

bits) and the description of data (in bits) encoded. So, if we are trying to encode the

given words of a language, then the MDL technique allow us to represent the words

with the smallest set of morpheme segments.

In [5], there are two models implemented to learn the morphemes from the given corpus.

The first model uses MDL principle which learns a set of morphemes that minimizes the

encoding length of the overall corpus. The second model learns a set of morphemes by

utilizing Maximum Likelihood (ML) estimation of the corpus when segmented by the

1 “An allomorph is one of two or more complementary morphs which manifest a morpheme in its different

phonological or morphological environments.”(Source-
http://www.sil.org/linguistics/GlossaryOfLinguisticTerms/WhatIsAnAllomorph.htm)

2http://research.ics.tkk.fi/events/morphochallenge2005/

- 16 -

set. The MDL principle favors minimum numbers of morphemes to encode the corpus

and hence gives the over-segmentation result. Rejection criteria are applied for the rare

morphemes and sequence of one letter morphemes. These criteria are manually

controlled during segmentation to overcome the over-segmentation problem. Further,

the prior distributions of morpheme frequency and morpheme length are used rather

than by encoding to measure the goodness of induced morphemes [6]. This gives a

better acquisition and segmentation result. Words in a corpus are divided into stems and

affixes and lots of heuristics are applied to generate morphological hypotheses [7].

These hypotheses are derived with keeping concern on the morphological structure of

Indo-European languages. The stem forms a group called signature and each signature

shares a set of possible affixes. The affix signature is similar to the concept of paradigm

and is described in section 2.1.3. The algorithm also known as Linguistica uses MDL

techniques for model optimization.

2.1.3 Paradigm based approach

In paradigm based morphology, words are grouped together by some means to form a

paradigm which relates their constituent morphemes. These morphemes can be

categorized in different groups such as stems and suffixes. So, paradigms describe

morphemes relationship onto words. Example of some stem-suffix paradigms of

English captured by the algorithm [13] is shown below:

i) Suffixes: e, ed, es, ing, ion, ions, or

Stems: calibrat,consecrate,decimat,delineat,desecrate,equivocat,postulat,

regurgitat

ii) Suffixes:, d, r, r's, rs, s

Stems: analyze, chain-smoke, collide, customize, energize, enquire,

naturalize, scuffle

The stem-suffix paradigms for a language are induced by grouping all possible single

split stem+suffix pairs of words [13]. These obtained paradigms are filtered out using a

- 17 -

number of heuristic rules. The applied heuristics are aimed to generalize the spurious

paradigms and to minimize the numbers of paradigms. The given words are analyzed by

making all possible single splits from learned stems and suffixes. If one or more stem-

suffix pairs are populated, then those pairs are marked as a possible analysis. Here,

ambiguous analyses are also possible for a single word. If no analysis is found this way,

it returns either known stems or suffixes as analysis for a word. In [14], word paradigms

are learned using the syntactic information i.e., PoS of a word. In each paradigm,

morphemes are induced by splitting each word at all single splits and ranked according

to their Maximum Likelihood (ML) estimates. It uses expected accuracy between

paradigms to merge them and gives the generalized paradigms. These generalized

paradigms recover the missing word forms in the corpus. This generalization also

minimizes the number of learned paradigms. Word segmentation is carried out either by

the paradigm for known words or by the sequence of rules with learned morphemes for

unknown words. The compound words are segmented recursively from rightmost end to

the left. In case of multiple matches, the system selects the longest one.

In [16], word families (clusters) of morphologically similar words are identified by

building a graph where nodes are words and edges are the morphological

transformational rules. These rules transform one word into another by substring

substitutions and are obtained from the topmost 10,000 frequent words in the given

corpus. A rule is selected only when the length of substring matches between words are

greater than the predefined threshold. So, a word family includes such words which are

tied by same transformational rule. The community detection method described by

Newman [15] is used for the identification of word-families. A threshold value in terms

of edge-density, ranges from 0 to 1 is used to control the size of family (cluster). Edge-

density is the ratio of common edges to the product of nodes between the word families.

Varying the density value also helps us to generalize the word families to address the

missing words in the corpus. Input words are segmented with the help of these induced

word families and the learned morphological transformation rules.

- 18 -

2.2 Addressing word-internal variation in morphology

Some of the morphological works focus on orthographic changes during morpheme

attachment to the stem i.e., word formation. The probable morphologically related word

pairs are generated from the corpus by using orthographic similarity and semantic

similarity [8]. The orthographic similarity is the edit distance score and the semantic

similarity is the Mutual Information (MI) measure between the words. This measure

gives a list of generated morphologically similar word pairs. This algorithm selects

orthographically similar pairs of word according to a preset edit distance threshold

value. In case of semantically similar pair, the Mutual Information (MI) measure

between two words is calculated. The MI measure gives how the occurrence of a word

in a corpus is independent of the occurrence of other and vice versa. Larger MI score

implies the words are more dependent on each other. This system selects the common

word pairs from both measures and extracts the longest shared substring to parse the

word into the stem+suffix form. It also identifies the number of word pairs which are

related by a variety of derivational and inflectional processes.

Single character changes in stems (last character only) are captured giving improved

result to the morphological analysis in some languages [10]. The orthographically

similar candidate list of stems i.e., the allomorphic variations and the orthographic rules

are induced from the list of training words of single stem and single suffix only. The list

of stems and rules is obtained by altering the last character of a candidate stem. It retains

the orthographic rules by employing frequency based filter and those filtered rules are

used for final segmentation. Similarly, a single character change between two words is

considered to generate equivalence sets of characters in German [9]. This improves the

recall of German morphology by 2% without loss of precision.

2.3 Non-parametric Bayesian framework in morphology

The previous sections described morphology learning using various ways such as ML

estimate, MDL prior or by using statistical analysis of text along with numerous

- 19 -

heuristics. In [21], a non-parametric Bayesian framework is defined to learn the

Probabilistic Context Free Grammar (PCFG) rules through Adaptor Grammars. Adaptor

Grammars captures syntax of language (parse tree) by using non-parametric prior. The

choice of adaptor specifies the distribution of PCFG rules in non-parametric Bayesian

statistics. In morpheme segmentation, these rules generate the morphemes and the

adaptor learns the morphemes of a language effectively. It uses the adaptor based on

Pitman-Yor process [17] to specify the distributions used in non-parametric Bayesian

statistics such as Dirichlet process [17, 19 and 20]. In [22], the adaptor grammar

framework is used in unsupervised word segmentation for Sesotho. The word types

(lexicon) and tokens are used to model a language [25]. The two-stage framework in

[25] uses morpheme-based lexicon generator and Pitman-Yor adaptor to infer language

morphology from the word types. It also shows the morphological information learned

from types is better than from tokens. Further, this two-stage model framework is also

used for word segmentation by taking account of sequential dependencies between

words.

This research can be observed in similar direction based on the non-parametric Bayesian

framework. However, it has made a use of corpus statistics effectively for morpheme

learning by employing a morpheme cache. It captures the morpheme behavior based on

word’s frequencies and the morpheme cache is used to model the rich-get-richer

behaviors i.e., the observed behavior of morphemes in a language and are shown in table

1.3 and 1.4. Furthermore, it has implemented different word grammar models to explore

the different structural relationship among the morpheme during word formation.

- 20 -

- 21 -

3 Mathematical preliminaries for non-parametric Bayesian

morpheme induction

The main aim of this chapter is to describe mathematical concepts that have been used

to infer morphemes of the given language. Before describing different morphological

models, we explain how the mathematical framework is used by the system to discover

morphemes from a raw text data. To understand the probabilistic implementation of the

model, the reader should possess some basic knowledge on probability theory. This

chapter proceeds with a brief discussion of basic probability theory and concepts that are

central to our approach such as multinomial distributions, Dirichlet processes and

Chinese restaurant processes.

3.1 Introduction to probability

3.1.1 Random Experiments and Finite Spaces

Suppose, we perform a random experiment whose possible outcomes is finite. For

example, rolling a dice has finite outcomes. Assuming that the rolling a dice is a random

event, the chances of getting a single number from 1 to 6 is the same. We can assign the

probability value of 1/6 to each outcome. The set of all possible outcomes is known as

the sample space and is denoted by S. In case of rolling a dice, the sample space is: S =

{1, 2, 3, 4, 5, 6}, where the outcomes are 1, 2, 3, 4, 5 and 6. Any subset E of the sample

space S is an event of the experiment. If E = {1}, then E is the event that 1 appears on

the roll of the dice. If E = {2, 4, 6}, then E would be the event that an even number

appears on the roll. Any set of the outcomes has a probability and is calculated by

summing up the probability of its members of the set. So, the probability of getting an

even number in rolling a dice is 1/2.

If A and B are subsets of outcomes such that A B, then the probability of B is larger

than the probability of A i.e. P(B) > P(A). If A and B are disjoint, then

- 22 -

P(A  B) = P(A) + P(B).

The sum of the probabilities of all outcomes is 1 i.e. P(S) = 1. If A1, A2, …, An are any

finite sequence of n disjoint events of sample space S i.e. AiAj = , i  j, i, j = 1, 2,

…, n then

3.1.2 Conditional probability and Bayes’ rule

When observing an outcome from the random experiment, sometimes we consider

outcome that has some additional information. This is the idea behind the conditional

probability. Suppose, we know that the outcome is in B  S. Given this information

how can we find out the probability of outcome in A S? This is described by the

conditional probability of A given B and written as P(A|B).

Consider the roll of a dice and suppose we know that the number is even. Then, what is

the probability that the number is six? Let A be the event of getting a number from a

dice roll. Since the dice in unbiased, the probability of getting any one number is 1/6.

Let B be the event of getting even number from a dice roll. The possible outcome is

either of 2, 4 or 6. Hence the probability of getting an even number is 3/6. With these

information, we can calculate the conditional probability P(A|B) as,

 (3.1)

  .1
11










 n

i
i

n

i
i APAP 

)(

)(
)|(

BP

BAP
BAP




- 23 -

Since the number can be both even and six if and only if it is the number six, A B = A

and P(A|B) = P(A)/P(B)=1/3. In this case, conditional probability can be interpreted

only when P(B) > 0.

In this example, the event A (getting a number) and the event B (getting a six) are

dependent events. If events A and B are independent then, P(AB) = P(A)P(B). The

conditional probability of A given B under this assumption is reduced to just P(A).

Let us introduce another event Bc, read as the complement of B. B and Bcare mutually

exclusive events and whose union results in S. Therefore we can write

(3.2)

This formula is known as Bayes’ rule. If we make partitions of n disjoint events B1, B2, .

. ., Bn from the sample space S and let A be the another event, then using the Bayes’ rule,

(3.3)

3.1.3 Random variable and distribution

When we perform a random experiment and are interested to know some outcome on

the sample space, these quantities of interest are known as the random variables.

Random variable takes measurable real values. For example, height of the next student

to enter the classroom is a random variable. Formally, if the outcome of random

experiment is , then the value of random variable X() .

A random variable is discrete if it takes values in a countable set {xn, n >=1} . Some

random variables can take continuous values and are called continuous random variable.

.
)()|()()|(

)()|(
)|(

cc BPBAPBPBAP

BPBAP
ABP




.
)()|(

)()|(

)(

)(
)|(

1







n

j
jj

iii
i

BPBAP

BPBAP

AP

ABP
ABP

- 24 -

The value of the random variable is determined by the outcome of the random

experiment so we can assign some probability to possible values of a random variable.

Staying with the discrete case, if X is a discrete random variable associated with values

x0, x1, x2, . . . and the probability of each xi is P(X = xi) = pi then the probability P(xi), i

= 0, 1, 2, . . .,  must satisfy the following conditions.

i) P(xi) 0 for all i, i = 0, 1, 2, . . ., 

ii)

The function P is called the probability mass function (pmf) and the collection {xi, pn,

n1} is known as the probability distribution of the random variable X. The function

F(x) = P(X  x) is called cumulative distribution function (cdf) of the random variable X.

The discrete random variables are studied according to their probability mass function

(pmf). In case of continuous random variable, there is a non-negative function f(x) for all

x  (-, +) associated with a random variable X known as the probability density

function (pdf) which determines the behavior of the random variable.

3.2 The Bayesian method

3.2.1 Terminologies in a Bayesian approach

Statistical inference concerns itself with some unknown parameters that describe

distribution of certain random variable of interest. In a Bayesian analysis of the data, we

can incorporate prior information which helps to strengthen the inference to the partial

known data. From the Bayes’ rule described in equation 3.3:

(3.4)

,
)(

)()|(
)|(

DP

MPMDP
DMP 







0

1)(
i

iXP

- 25 -

and we define the corresponding terminology:

The likelihood part is the probability of observing data D being conditioned on the

model M. The prior distribution P(M) takes any particular value based on the additional

information that might be available to the system. The denominator part, evidence is a

normalization factor and can be taken to be a constant for a given task. So, we can focus

on numerator part only, and infer

 (3.5)

The posterior gives the probability of model based on the new observed data relative to

the prior probability. Maximum Likelihood (ML) estimation tries to find the parameter

that makes the observations most likely i.e. maximizes the value of likelihood, P(D|M).

A ML estimator can be written as:

(3.6)

Unlike ML estimation, Maximum a Posteriori (MAP) utilizes some prior information

through prior distribution, P(M). MAP estimation can be expressed as:

(3.7)

The Bayesian approach extends the MAP estimation by ensuring an exact equality of

posterior probability in equation (3.4). The denominator in equation (3.4), the

probability of evidence, can be expressed as:

.
evidence

priorlikelihood
posterior




priorlikelihoodposterior 

)|(maxarg MDPM
M

ML 

)()|(maxarg)|(maxarg MPMDPDMPM
MM

MAP 


M

dMMPMDPDP)()|()(

- 26 -

This is only valid assuming the model space is integrable.

Now, Eq. (3.4) becomes,

(3.8)

3.2.2 Conjugate priors

In a Bayesian method, the integral of marginal likelihood in equation (3.8) are

intractable or are unknown variables. But we can choose the prior belief as additional

information to strengthen the inference. A well-known approach to facilitate the model

computation is to use a conjugate prior. A conjugate prior P(M) of likelihood P(D|M) is

a distribution that results in a posterior P(M|D) with same characteristics.

If the likelihood function is Binomial, choosing a Beta distribution as prior will give the

same Beta distribution as posterior. The expression of probability density function (pdf)

of Binomial distribution given the r success in n independent trials with same

probability  in each individual event is:

(3.9)

where and is called Binomial coefficient. In case of Beta distribution,

the probability density function (pdf) is:

where(p,q) is Beta function and is defined as




M

dMMPMDP

MPMDP
DMP

)()|(

)()|(
)|(

,)1(),|(rnr

r

n
nrBionmial 








 

)!(!

!

rnr

n

r

n












  ,
0,

10
)1(

,

1
),|(11








 

qpqp
qpBeta qp 






.)1(),(
1

0

11  dqp qp  

- 27 -

This can also be expressed as Gamma function as

Using Beta as prior and Binomial as likelihood then the posterior function becomes:

(3.10)

i.e.,

Hence, the posterior distribution is still Beta with p+r and n-q-r. Choosing an

appropriate prior makes analytic calculations simpler.

3.2 Zipf’s Law

Zipfian is an empirical law that characterizes statistical properties of a natural language.

It states: given a corpus of natural language, the frequency of any word is inversely

proportional (approximately) to the rank in the frequency table. As a consequence, the

topmost frequent word will occur approximately twice as often as the next word, three

times as often as the third most frequent word and so forth. To generalize, ith ranked

word will appear with 1/i times the frequency of the most frequent word. An example

of Zip’s plot of Wikipedia text is shown in fig. 3.1. Such kind of behaviour is not

limited to words. The morphemes of a language also conform to Zipf’s law. Some

common English morphemes (prefixes and suffixes) and their frequencies are listed in

Tables 1.3 & 1.4.

.
)()(

)(
),(

qp

qp
qp






11)1(
)()(

)(
),,,|( 




 rqnrp

rqnrp

nqp
qprnp 

).,Beta(),,,|(rqnrpqprnp 

- 28 -

Fig. 3.1 Plot of word frequency in Wikipedia-dump 2006-11-273. The plot is made in

log-log coordinates. X-axis is rank of a word in the frequency table; Y-axis is the total

number of the word’s occurrences. Most popular words are “the”, “of” and “and”.

3.3 Chinese Restaurant Process (CRP)

The Dirichlet Process (DP) [19 and 20] can be represented in a Chinese Restaurant

Process (CRP). Suppose a restaurant has infinite number of round tables 1, 2, . . .,.

Further assume that infinite number of customers can sit at each table. Customers in the

restaurant can sit in the table with the following distribution.

i) First customer must choose first table to sit.

ii) For nth customer, it chooses the new table with probability (/+n-1) and

chooses the occupied table with probability (c/+n-1) where 0, is called

concentration parameter of the process and c is the number of customers

previously sitting in the table. The equivalent relation for this distribution is

also shown in equations (3.9), (3.10) and (3.15).

3http://en.wikipedia.org/wiki/Zipf%27s_law

- 29 -

For example, suppose five customers C1,…,C5are seated according to the following

arrangement shown in fig. 3.2. Circles are the table and the list above the circles are the

customers. In fig. 3.2, C1,C5 are customers sitting in table T1. 2/+5 is the probability

distribution for next customer i.e. the 6th customer.

Fig.3.2 Chinese Restaurant Process (CRP) showing a seating arrangement for five

customers. Each table (circle) can hold infinite number of customers.

The probability of current sitting arrangement of the five customers in fig. 3.2 is

calculated by:

tC1 is the table where C1 is seated. In fig. 3.2, tC1 is T1. The above seating arrangement

places five customers into three groups T1(C1,C5), T2(C2,C3) and T3(C4). If we

interchange customers of table T1 with other table and vice versa, the probability of

sitting arrangement of customer’s remains constant. This is the exchangeability property

of CRP. In this way, a distribution of infinitely large customers can be defined by the

CRP.

),...,|(),...,|(),|()|()(),...,(41531421312111 CCCCCCCCCCCCCC tttPtttPtttPttPtPttP 

4

1

32

1

1 




















- 30 -

- 31 -

4 Baseline model and its extensions

In this chapter we discuss four models for learning morphemes from a corpus. Latter

three models employ different grammatical structure of words and are the extension of

the first model which is given the name Baseline model. The categorization process of a

morpheme places it into one of three groups: prefix, stem and suffix from a single list of

morphemes induced from the Baseline model. The segmentation task using the induced

morphemes is described in section 4.5. First we describe the Baseline model.

4.1 Baseline model

This model is particularly simple and assumes that the words are independent units of

language. Put differently, the occurrence of a word does not depend on the

occurrence/non-occurrence of any other word in the corpus. This is known as the

independence assumption. Possible morpheme candidates are generated by splitting the

word into all possible single splits. We further make the same independence assumption

to the generated morpheme segments. These morphemes and their weights are stored in

a cache. The weight of a morpheme is derived from the frequency of parent words.

Parent words for a morpheme are words which contains the morpheme at least once in

the corpus.

The morpheme segments in this model are represented as menu items as in a restaurant

(shown in fig. 4.1). The words are analogous to customers and they are allowed to

choose an item from the listed menu or choose a new item. Under this scenario, we first

split a word in all possible single splits. If the segment is available in the cache of menu

list, the model chooses it from the listed menu. If it is not found, it will label the

segment as a new menu item and will add to the menu list. Note that initially there are

no items in the cache of the menu list (i.e. morphemes).

- 32 -

Let m1,...,mk be the morphemes present in the cache. Dirichlet Process (DP) sampler

uses the following relation to define the predictive probability of the next morpheme

mk+1:

If mk+1 cache.

If mk+1 cache then cache :=cache  {

mk+1}. mk+1 ~ G0. (4.1)

Here H is the count of previously processed morphemes, Nk+ 1 is the number of parent

words contained by the morpheme mk+1 in the cache and G0 is the base distribution. The

parent words for a morpheme in a corpus are all words for which the morpheme is a

substring. The concentration parameter > 0 determines the variance in the probability

of morphemes i.e. if we use  = 0, we always use cache. In a corpus, large means

large number of morphemes. This part captures the morphemes frequency behavior in

the corpus which follows the power law distribution. Equation (4.1) can be derived

using conjugacy of Multinomial-Dirichlet distribution [20]. The final probability of

morpheme segment is given by equation (4.2).

(4.2)

For example, all possible single splits of word “chunked” are: c+hunked, ch+unked,

chu+nked, chun+ked, chunk+ed, chunke+d and chunked+$. We can calculate the

probability of each split using equation (4.2). For example, the probability of

“chunk+ed” is:

The value of  is a constant and G0 is uniform for all morpheme segments. Initially,

H=0 and is updated according to the number of words processed during the learning.
















,

,
),,,...,|(

1

011

H

H

N

GmmmP

k

kk






H

NG
GmmmP k

kk 


 
 


 10

011),,,...,|(

),,,...,|(01 GmmedchunkwP k  .00

H

NG

H

NG edchunk














- 33 -

For a word that has n possible single splits, we compute the probability of each split

P1,...,Pn. For the word “chunked” we get 7 possible split probabilities P1,...,P7. We then

normalize the n probabilities thus obtained for all splits and calculate the weighted value

using the relation (4.3).

Weighted Value = Normalized Probability  Frequency of word(4.3)

Where Normalized Probability = for all 1  k  n and Pk is the probability

of kth splits given by the relation (4.2).

Finally, we update the weighted value in the cache for each morpheme segment as a

morpheme weight.

Fig. 4.1 Cache representation of morphemes “$”, “chunk”, “ed”, “un”, “segment”.

In Fig. 4.1, the boxes represent the words and ovals represent the morpheme segments.

These morphemes are the part of the cache. In the oval, a morpheme “ed” is connected

with “segmented” and “chunked”. Hence, the weight for “ed” is derived from the words

“segmented” and “chunked” and stored in the morpheme cache. Similarly, the weights

of other morphemes are derived and added in the cache.




n

j

k

Pj

P

1

- 34 -

4.2 Grammar model I

In the basic model, we allowed all the generated morphemes to be placed in a single

morpheme cache. In this model we extend it by distinguishing prefix, stem and suffix

distribution for a word. This gives three morpheme caches. We assume that a word can

be made up from one of the three ordering of a prefix, stem and suffix in successive

positions. First, a word can have a prefix and a stem. Secondly, a word can have a stem

and a stem. Lastly, a word can have a stem and a suffix. The probability of a word w

with a single split s+t given their respective models is:

(4.4)

In (4.4), Mprefix, Mstem and Msuffix are the respective morpheme models for prefixes, stems

and suffixes. We built the respective three caches for the three morpheme models.

Equation (4.4) can be divided into 3 parts and rewritten as,

where,

During model learning, we update the models Mprefix and Mstem with probability P1.

Similarly we update the respective models with probability P2 and P3.

),,|(suffixstemprefix MMMtswP

).|()|(

)|()|(

)|()|(

suffixstem

stemstem

stemprefix

MtPMsP

MtPMsP

MtPMsP






321),,|(PPPMMMtswP suffixstemprefix 

)|()|(

)|()|(

),|()|(

3

2

1

suffixstem

stemstem

stemprefix

MtPMsPP

and

MtPMsPP

MtPMsPP







- 35 -

P

P1

P2

P3

P11 P12 P1n P31 P32 P3n

P21 P22 P2n

.

. . .

Fig. 4.2 Model updates mechanism of a word having n segments set.

In case of the segmentation of the word “chunked” as “chunk+ed”, associated with

probability P1, “chunk” is taken as a prefix and “ed” is taken as a stem. Similarly with

probability P2, “chunk” is considered as a stem and “ed” is considered as a stem as well.

Finally, with probability P3, “chunk” is considered as a stem and “ed” is considered as a

suffix. In this way, we update the probabilities of n number of single spits in each model

for a word and are also shown in fig. 4.2.

4.3 Grammar model II

Similar to Grammar modelI, this also distinguishes the prefix, stem and suffix

distribution of a word from the single morpheme list generated from the Baseline model.

It also assumes that a word can have a prefix, stem and suffix in successive positions.

Unlike, Grammar model I, it assumes that a word can have a single stem only in this

model. The probability of a word w with a single split s+t given the respective models

is:

(4.5)

),,|(suffixstemprefix MMMtswP

)|()|(

)|()|(

)|(

suffixstem

stemprefix

stem

MtPMsP

MtPMsP

MtP





- 36 -

Similar to Eq. (4.4), in Eq. (4.5) Mprefix, Mstem and Msuffix are the respective morpheme

models for prefixes, stems and suffixes. We also built the respective cache for each

model. Eq. (4.5) can also be divided into 3 parts and rewritten as,

where,

In the model learning phase we update these three models in two stages. First, we update

the model Mstem with probability P1. Similarly we update the respective models with

probability P2 and P3. This update mechanism is analogous to the previous Grammar

modelI described in section 4.2 and we name this update mechanism as stage0.

After the iterations in stage0, we further iterate this learning process by allowing a

morpheme to be placed in one of these three morpheme tables. This is the stage1

process. In this stage, we sample a morpheme from the three tables and select one

according to their probability. We allow the given morpheme to be placed in a selected

morpheme table only. This process helps to categorize the given morpheme into one of

prefix, stem or suffix. The evaluation results for both stage0 and stage1 are shown

in Chapter 5.

4.4 Grammar model III

This model follows from the same independent assumption that a word appears

independent of all others in a corpus. First, these words are clustered in paradigms

which are created according to the Chinese Restaurant Process (CRP). A paradigm

consists of words that are analogous to customers seated in a restaurant table. This

process allows infinite number of words to be placed in a paradigm. The predictive

probability of next word is calculated using the equation (4.1). In this case, it uses count

of words instead of morphemes. When a word is taken as an input, a paradigm is

321),,|(PPPMMMtswP suffixstemprefix 

)|()|(

)|()|(

),|(

3

2

1

suffixstem

stemprefix

stem

MtPMsPP

and

MtPMsPP

MtPP






- 37 -

assigned to it. A paradigm is a word family that contains some words of a corpus and

these words are responsible for learning the morphemes within the paradigm. Put

differently, all the paradigms are treated individually during the morphemes learning

process. In this way, words are clustered into different paradigms. The number of

paradigms learnt is controlled by changing the value of concentration parameter ().

Fig. 4.3 Probability of word wm+1 given the previously learnt k tables (paradigms).

Suppose, the input corpus contains n words w1,…,wn. Initially, w1 is permitted to sit on

the first table (paradigm). Now, the second word w2 can either sit in the previous table

(paradigm) or can select a new table (paradigm) using the relation (4.1). Let there be k

tables (paradigms) learned from the n words and n1, n2, …, nm be the number of words in

k paradigms respectively. Then, P1, P2,…,Pk and Pnew are the probabilities for n+1th

word and is calculated using equation (4.1). This is shown in figure 4.3.

In this way, we induce all the paradigms for a given corpus. After the induction of

paradigms, we used Grammar modelII described in section 4.3 to learn the

morphemes of words individually in all induced paradigms.

- 38 -

4.5 Morpheme segmentation

So far we have learnt all the morphemes from the input corpus. The next task is to

segment the given words using induced morphemes from models presented in section

4.1 to 4.4. We have decided to use two techniques for finding the final segments of a

word. In the first technique, single splits with the highest weighted values are selected.

The weighted values for all splits of a word are calculated using equation (4.3). This is

the Maximum Posteriori (MAP) estimation for final segments of a word given the

models. Initially, the weights of all single splits for a word are set to zero and are

updated in successive iterations by the weighted value. See section 4.1 for the detail

calculations of weighted value for a morpheme. After completion of sufficient iterations,

we choose the segments set having maximum weight for a word. This method will give

us only two segments of a word.

In the second approach, we align the morpheme sequence using dynamic programming,

popularly known as the Viterbi alignment. It is used to find the best morpheme sequence

according to the weighted values measured after the completion of model learning. All

the grammar models described in section 4.1 to 4.4 have used the following criteria to

validate the candidate morphemes during the sequence alignment. Let m1, m2, . . . ,mn be

the morpheme sequence of a word. Then,

a. At least one of the morpheme mi should be in stem category.

b. Stems can be alternate with prefixes and suffixes but mn can’t be a prefix and m1

can’t be a suffix of words.

c. For 1< i k, if mi is a prefix, then mi+1 must be a stem or a prefix.

d. For 1 < i  k, if mi is a suffix, then mi-1 must be a stem or a suffix.

The same test strategies are applied in [10 & 11] to validate the segmentation of a word

among its all possible segmentations. In case of Grammar modelIII described in

section 4.4, we identify the paradigm with the highest count for a given word and select

- 39 -

the paradigm during the word segmentation. We have used the induced morphemes

from the selected paradigm to segment a word and apply the above morpheme

validation criteria under the selected paradigm.

- 40 -

- 41 -

5 Evaluation

This chapter describes and discusses the performance from the evaluation of the models

outlined in Chapter 4. Before presenting the results, a brief description of the dataset and

evaluation metrics is provided. The system for English and Nepali language is evaluated

as described in the following sections. The results have been compared with the Morpho

Challenge [24] results. Finally, result from the segmentation of Turkish words is also

included.

5.1 Dataset preparation

For English, we have used the training and test set provided by the Morpho Challenge.

The Baseline model and Grammar modelI are tested on the 2005 dataset provided by

the Morpho Challenge. In this dataset, the training set contains 167,377 word types from

24,447,034 words and the test set contains 532 distinct words. In case of Grammar

modelII, we used both 2005 and 2009 dataset provided by Morpho Challenge. In 2009

dataset, the training set contains 384,903 distinct words from 62,185,728 words. Test set

contains 466 distinct words.

For Nepali, we have extracted our corpus from daily newspapers as well as the weekly,

half monthly and monthly magazines published during 2009-10. We have pre-processed

it to create a word-frequency list given as the input to our system. This corpus contains

819,506 word types from 44,856,552 words. We have tested our model on basic Nepali

verbs only. The test set is prepared by manual segmentation of 1,500 randomly chosen

distinct words from the training set. We separated out all the verbs as training set from

the corpus. The set contains 34,391 distinct words.

We also have tested this system for the Turkish language. Both the training and test

dataset for Turkish is provided by the Morpho Challenge.

- 42 -

5.2 Evaluation metric

Evaluation scripts are provided by the Morpho Challenge [24] along with the training

and test dataset. We have used the same evaluation metrics described in Morpho

Challenge [24]. The Precision (P), Recall (R) and F-Measure (F) are calculated in terms

of morpheme boundary. These are calculated using the following formula.

(5.1)

(5.2)

(5.3)

Here, H is the count of correct boundary hits, I is the count of boundary markers

incorrectly positioned and D the count of boundary markers not placed. These counts are

based on the comparison with the gold standard. For example, if the word “sprinting” is

segmented as “s+print+ing”, where ‘+’ is the boundary marker, then the first ‘+’ is

counted as an incorrect boundary insertion and the second ‘+’ is counted as the correct

boundary hit (when compared with the correct segmentation “sprint+ing”). Similarly, in

case of “un+segmented”, the first ‘+’ is counted as a correct hit. It also counts the

missing boundary in between “segment” and “ed”.

In this system, we counted all the insertion, deletion and correct boundary hits of the test

words and used equations (5.1), (5.2) and (5.3) to evaluate Precision (P), Recall (R) and

FMeasure (F) respectively.

5.3 Results

We have evaluated performance on both English and Nepali dataset described in section

5.1. The four models described in Chapter 4 are run with these dataset. We have set the

value of  to 100 for our experiments. This is an empirical value helps to use not only

the cache but also the base distribution during learning i.e. allows more morpheme

DH

H
R




DIH

H
F




2

2

IH

H
P




- 43 -

numbers. The minimum length of a word is set to 4 for segmentation. This threshold

controls over-segmentation by limiting the shorter stems of words. In Grammar model

III, we set = 1. This small value helps to limit the minimum number of paradigms. We

have also evaluated our system on Turkish language. The evaluation metric described in

section 5.2 gives the following results.

Table 5.1 Evaluation results of the systems on English assuming two segments only.

Models Precision (P) Recall (R) F-Measure (F) Stage

Baseline 56.84% 46.18% 50.96% NA

Grammar Model– I 58.65% 47.60% 52.55% NA

Grammar Model– II
78.34% 55.02% 64.64% 0
77.52% 53.82% 63.53% 1

Grammar Model– III 83.16% 51.26% 63.42% NA

Table 5.2 Evaluation results of the systems on Nepali assuming two segments only.

Models Precision (P) Recall (R) F-Measure (F) Stage

Baseline 51.25% 37.19% 43.10% NA

Grammar Model– I 53.16% 38.12% 44.40% NA

Grammar Model– II
86.99% 68.21% 76.46% 0

85.29% 66.72% 74.87% 1

Grammar Model– III 82.45% 56.89% 67.33% NA

- 44 -

Table 5.3 Evaluation results of the systems on English assuming multiple segments.

Models Precision (P) Recall (R) F-Measure (F) Stage

Baseline 29.36% 43.69% 35.12% NA

Grammar Model– I 45.81% 22.12% 29.83% NA

Grammar Model– II
54.42% 66.09% 59.69% 0

52.96% 65.96% 58.75% 1

Grammar Model– III 40.00% 49.34% 44.18% NA

Table 5.4 Evaluation results of the systems on Nepali assuming multiple segments.

Models Precision (P) Recall (R) F-Measure (F) Stage

Baseline 42.08% 6.10% 10.66% NA

Grammar Model– I 53.92% 43.58% 48.20% NA

Grammar Model– II
72.85% 56.52% 63.65% 0

72.84% 56.35% 63.54% 1

Grammar Model– III 70.00% 53.03% 60.34% NA

Table 5.5 Evaluation results of the systems on Turkish assuming two segments only.

Models Precision (P) Recall (R) F-Measure (F)

Baseline 61.56% 21.74% 32.13%

Grammar Model– I 58.81% 20.22% 30.90%

Grammar Model– II 74.36% 18.18% 30.30%

Grammar Model– III 71.40% 17.02% 27.48%

- 45 -

Table 5.6 Evaluation results of the systems on Turkish assuming multiple segments.

Models Precision (P) Recall (R) F-Measure (F)

Baseline 74.07% 2.14% 4.16%

Grammar Model– I 37.48% 11.80% 17.94%

Grammar Model– II 60.87% 36.19% 45.39%

Grammar Model– III 59.60% 33.96% 43.27%

Table 5.7 Evaluation results of the Grammar model II on English with Morpho

Challenge 2009 dataset.

Results of words with two splits Results of words with multiple splits

Stage
Precision

(P)
Recall

(R)
F-Measure

(F)
Precision

(P)
Recall

(R)
F-Measure

(F)

56.84% 46.18% 50.96% 29.36% 43.69% 35.12% 0

51.25% 37.19% 43.10% 42.08% 6.10% 10.66% 1

Table 5.8 Evaluation results of the best systems4 on English.

Models Precision (P) Recall (R) F-Measure (F)

Allomorfessor [23] 68.98% 56.82% 62.31%

Morfessor Baseline [5] 74.93% 49.81% 59.84%

4 http://research.ics.aalto.fi/events/morphochallenge2009/eng1.shtml

- 46 -

5.4 Significance Tests

Results presented in Figure 6.3 and 6.4 shows that the Grammar ModelII has the best

overall numbers among all the other models. We carry out a statistical significance test

between the results of the baseline model and the Grammar ModelII. The null

hypothesis in our test states that the two approaches are not different. The randomisation

tests involves shuffling of the precision and recall scores and reassigning them to one of

the two approaches. The assumption is that if the difference in performance is

significant, random shuffling will only very infrequently result in a larger performance

difference. The relative frequency of this event occurring can be interpreted as the

significance level of the difference. We use the sigf package [32] developed by

Sebastian Pado for randomised significance tests.

We perform the shuffling 100,000 times and thus obtain the p-value (2-tailed) of

9.9999e-6 for both precision and recall. These values shows the baseline mode and the

Grammar ModelII are significantly different from each other and therefore reject the

null hypothesis.

- 47 -

6 Discussion and future work

In earlier chapters, we have analyzed our morpheme learning and segmentation

algorithm for different cases of words formation. The result shown in section 5.3

establishes that the algorithm is capable of segmenting words of a corpus in an

unsupervised way. However the performance is not as good as the state of the art for

English [27]. The best system in Morpho Challenge achieved 62.31% in terms of

FMeasure [23] and is also shown in Table 5.8.

One possible explanation of this comes from the Zipfian nature of the words in a corpus.

Highly frequent words have greater influences and thereby degrade the quality of

segments. The result shown by the grammar model is improved in the MAP estimation

where the weights of frequently appeared morphemes are distributed among prefixes,

stems and suffixes lists.

In the cache model i.e. CRP, the α parameter lies form 0 to infinity. The response of this

model is less sensitive to the changes in the α-value. We test this intuition by varying α

from 1 through 7 with a step increment in a sample dataset of size 32,692 Nepali word

types. The resulting FMeasure from Grammar ModelII is stable and is shown in

Figure 6.5. From equation (4.1) we can see that there is always some probability mass

missing to choose the new table i.e. when not using cache. This is so because there is

always some chance associated to select the new cache for the (n+1)th morpheme. In the

case when α is 0, the cache (morpheme cache) is used. When α is very large, for

example 10000000, the base distribution is always chosen. In our experiments new

morphemes are more likely to be from the data i.e. from the learned morpheme stored in

the cache.

For Nepali, there is no benchmark to compare unsupervised approach to morphological

segmentation. In our experiment, the Grammar ModelI shows some improvement

over the Baseline model. This is not the same case in English where we can see the

degradation in performance (see Table 5.2 and 5.4). This is due to the nature of our test

- 48 -

set for Nepali where we have chosen only verbs with a single stem and multiple

suffixes.

The result from Grammar model II shown in Table 5.1, 5.2, 5.3 and 5.6 are much

better than the previous Baseline and Grammar Model I. In the single split case (Table

5.1 and 5.2), the stems are more accurately identified compared with the previous

models. For example, words खोतिलएको and खोतली, खोÏनै and खोÏदैनौ are correctly

segmented with stems खोतल, खोज respectively. However, the compound suffixes that

are attached to the above stems are not identified at all. Some of the words are also over

segmented. For example, the words भगाएकी = भ+गाएकी andिचिनएकी = िचिनए+की are

incorrectly segmented. This is due to the influence of highly frequent morphemes. This

problem is inherited from the Baseline model.

In the next stage, the input corpus is segmented with multiple splits as shown in Table

5.3. As compared with the result of Grammar modelI, it improves on precision but

suffers on recall due to incorrect segmentations. Words such as “humaneness =

human+en+es+s”, “humanize = human+is+e”, “humanlike = human+lik+e” and

“clothlike = cloth+lik+e” are over segmented. Words such as “fire-fighter = fire-

fight+er”, “firebush = firebush” and “abductions = abduction+s” are under segmented.

To summarize, multiple splits mostly produces over segmentation of words. In 2009

Morpho challenge dataset, many hyphenated words are incorrectly segmented and this is

another shortcoming of our model. The results are shown in Table 5.7.

We have also tested our system on words having single stem and single affix. The result

is shown in Table 5.7. Some incorrectly segmented words are crise=cris+e,

viruses=viru+ses, bodies=bod+ies, sprinting=s+printing, hogging=hog+ging,

sharing=s+haring and ceremonies=ceremony+ies. Many words are incorrectly

segmented due to changes in spelling during word formation. This model does not have

- 49 -

a mechanism to capture the character changes during the morpheme segmentation

process.

Fig. 6.1 Single split results for English.

Our models utilize word frequencies alone to capture the context which results in an

inefficient performance. For example, our Grammar model I leaves out many words

unsegmented (i.e. segmented with null suffix). In case of Grammar model II, most of

the words with single stem are over segmented. This model favors over segmentation

with no under segmentation with single stem words.

Fig. 6.2 Single split results for Nepali

0

20

40

60

80

100

P
e
rc
e
n
ta
ge

Single split results for Nepali

Precision(%)

Recall(%)

F‐Measure(%)

- 50 -

Furthermore, the over segmentation errors in best sequence alignment occurs due to the

influence of most frequent morphemes. We extended the Grammar model II by

employing the Hierarchical Dirichlet Process (HDP) [26] to overcome the influence of

heavily weighted morphemes. This model is termed as Grammar modelIII.

In Grammar modelIII, we got improvement on precision but suffered on recall for

English. The result is shown in fig. 6.1. Detail results of Grammar modelIII assuming

two segments only, multiple segments are shown in Table 5.1, 5.2, 5.3 and 5.4.

For the Nepali corpus, we found the best result is given by the Grammar modelII and

is shown in fig. 6.2 and 6.4. We also tested our system for Turkish and the results are

shown in table 5.5 and 5.6. Our systems are motivated by prefix, stem and suffix

grammar. Languages like Turkish which is agglutinative in structure, the results are poor

due to under segmentation of many words.

Overall, Grammar model II gives the best result in English and Nepali among the four

models. We found that the influences of heavily weighted morphemes are inherited in

HDP implementation too.

Fig. 6.3 Multiple splits results for English

- 51 -

Fig. 6.4 Multiple splits results for Nepali

Many words in English and Nepali are incorrectly segmented due to character changes

during morpheme attachment. This is an very general model that uses only the

frequency of words for the morpheme learning process and falls short of the state of the

art. As mentioned before, we got much erroneous segmentation for hyphenated words.

One possible extension is to develop a grammar model of words that could include the

hyphenated words as well. Another future work can be to capture the character changes

in words during morpheme attachment [8 and 10].

Fig. 6.5 Plot of α-value Vs. FMeasure from sample Nepali dataset.

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8

F‐
M
e
as
u
re

α‐Value

- 52 -

- 53 -

7 Conclusion

In this thesis, I have described the task of morphological analysis by making use of the

statistical properties of words in a corpus and different morpheme grammar structures.

This research work has shown that the morpheme behavior follows the power law and

this characteristic can be captured to segment the words into their constituent’s

morphemes. However, the same behavior can lead to erroneous segmentation too. This

is described by discussion section in Chapter 6. In addition of our four grammar models,

this research has presented the first result on unsupervised morphological segmentation

for Nepali language. We have also presented a performance result of the system for

Turkish language.

- 54 -

- 55 -

Appendix A: Algorithms

a. Baseline Model

1: InputWordsWord_Frequency

2: Morphemes 

3: n SizeOfInputWords

4: for i = 1 to ndo

5: WordInputWords[i]

6: SegSetGet_All_Single_Splits (Word)

7: m SizeOfSegmentsSet

8: for j = 1 to m do

9: ModelProb[j]Probability(SegSet[j])

10: end for

11: Normalize (ModelProbability)

12: MaxProbFind_Max(ModelProbability)

13: Update(MaxProb)

14: FreqFrequency(Word)

15: for j=1 to Freqdo

16: Segment Sample(SegSet)

17: Update_Corpus(Segment)

18: Morphemes Morphemes Segment

19: end for

20: end for

21: for i = 1 to ndo

22: WInputWords[i]

23: Segments Find_MaxProb_Segments(W)

24: print Segments

25: end for

- 56 -

b. Grammar Model I

1: InputWordsWord_Frequency

2: Prefix , Stem , Suffix 

3: n SizeOfInputWords

4: for i = 1 to ndo

5: WordInputWords[i]

6: Set Get_All_Single_Splits (Word)

7: m SizeOfSegmentsSet

8: for j = 1 to m do

9: P1 = PfxProb(Set[j][0])*StmProb(Set[j][1])

10: P2 = StmProb(Set[j][0])*StmProb(Set[j][1])

11: P3 = StmProb(Set[j][0])*SfxProb(Set[j][1])

12: ModelProb[j] P1 + P2 + P3

10: end for

11: Normalize (ModelProbability)

12: MaxProbFind_Max(ModelProbability)

13: Update(MaxProb)

14: FreqFrequency(Word)

15: for j=1 to Freqdo

16: Segment Sample(SegSet)

17: PfxSample_Prefix(Segment)

18: StmSample_Stem(Segment)

19: SfxSample_Suffix(Segment)

20: Update_Corpus(Pfx, Stm, Sfx)

21: PrefixPrefixPfx

22: StemStemStm

23: SuffixSuffixSfx

24: end for

25: end for

26: for i = 1 to ndo

27: WInputWords[i]

28: Segments MaxProb_Segment(W,Prefix,Stem,Suffix)

- 57 -

29: print Segments

30: end for

- 58 -

c. Grammar Model II

1: InputWordsWord_Frequency

2: Prefix , Stem , Suffix 

3: n SizeOfInputWords

4: for i = 1 to ndo

5: WordInputWords[i]

6: Set Get_All_Single_Splits (Word)

7: m SizeOfSegmentsSet

8: for j = 1 to m do

9: if Set[j] = Word+$ then

10: P2 = StmProb(Word)

11: else

12: P1= PfxProb(Set[j][0])*StmProb(Set[j][1])

13: P3 = StmProb(Set[j][0])*SfxProb(Set[j][1])

14: end if

15: ModelProb[j] P1 + P2 + P3

16: end for

17: Normalize (ModelProbability)

18: MaxProbFind_Max(ModelProbability)

19: Update(MaxProb)

20: FreqFrequency(Word)

21: for j=1 to Freqdo

22: Segment Sample(SegSet)

23: if Segment = Word + $ then

24: StmSample_Stem(Segment)

25: else

26: PfxSample_Prefix(Segment)

27: StmSample_Stem(Segment)

28: SfxSample_Suffix(Segment)

29: end if

30: Update_Corpus(Pfx, Stm, Sfx)

31: PrefixPrefixPfx

- 59 -

32: StemStemStm

33: SuffixSuffixSfx

34: end for

35: end for

36: for i = 1 to ndo

37: WInputWords[i]

38: Segments MaxProb_Segment(W,Prefix,Stem,Suffix)

39: print Segments

40: end for

- 60 -

d. Grammar Model III

1: InputWordsWord_Frequency

2: Paradigms 

3: n SizeOfInputWords

4: for i = 1 to ndo

5: WordInputWords[i]

6: ParadigmGet_Paradigm(Word)

7: Paradigms Paradigms Paradigm

8: end for

9: CntCount(Paradigm)

10: for i = 1 to Cntdo

11: Paradigm  Paradigms[i]

12: Model(Pfx,Stm,Sfx)[i]GrammarModel-II(Paradigm)

13: end for

14: for i = 1 to ndo

15: WInputWords[i]

16: Segments Find_MaxProb_Segments(W, Paradigms)

17: print Segments

18: end for

- 61 -

Appendix B: Program Flowchart (Baseline Model)

START

Read INPUT Words

Mi = Current Morph
FMi = Morph Frequency
PMi = PMi * (FMi + Alpah*BProbability)/(Alpha + History)

Iteration = 0, MaxIteration
Alpha, Bprobability, Factor

WordTypes = 0, MaxWordTypes
History = 0

Wi = Current Word
Fi = Word Frequency
Sw = Get_Two_Parts_Segments(Wi)
SiIterator = 0, MaxSiIterator
MaxSwi = 0, MaxSwiIndex = -1, PSw

Swi = Current Segment
MiIterator = 0, MaxMiIterator, PMi = 1

Is MiIterator > MaxMiIterator ?

MaxSwi = PMi
MaxSwiIndex = SiIterator

MiIterator = MiIterator + 1

Is PMi >= MaxSwi ?

No

Yes

No

Yes

SiIterator = SiIterator + 1
Store PMi in PSi

No

Is SiIterator > MaxSiIterator ?
No

Store MaxSwi at PSw

Input Format :
w1 f1
w2 f2
.
.
.
wn fn

Is PSw has more than one value ?

Randomly select one
segment from Sw

Select MaxSwiIndex segment from Sw
and Store it.

No

Yes

No

Normalize PSi
UIterator = 0
MaxUIterator = Factor * Fi

Select Swi with probability of
Normalized PSi and Store it.

SiIterator = SiIterator + 1

Is Uiterator > MaxUIterator ?

SiIterator = SiIterator + 1

Yes

Yes

Check If Wi is in Corpus ?

Update Wi and its segments
in Corpus and Tables
Update History

Remove Wi from Corpus and
segments from Tables.

No

Yes

Is WordTypes > MaxWordTypes ?

WordTypes = WordTypes + 1

Yes

Print OUTPUT

END

Output Format :
w1 = m11 + m12 + ... + m1k

w2 = m21 + m22 + ... + m2k.
.
.
wn = mn1 + mn2 + ... + mnk

- 62 -

- 63 -

References

1. Harris, Z. S.: From Phoneme to Morpheme. In: Language, 31(2):190-222 (1955)

2. Hafer, M. A., Weiss, S. F.: Word segmentation by letter successor varieties, In:

Information Storage & Retrieval, 10:371-385 (1974)

3. Dang, M. T., Chaudri, S.: Simple unsupervised morphology analysis algorithm

(SUMAA). In proceedings of the PASCAL Challenges Workshop on Unsupervised

Segmentation of Words into Morphemes, Venice, Italy (2006)

4. Keshava, S., Pitler, E.: A simpler, intuitive approach to morpheme induction. In

PASCAL Challenge Workshop on Unsupervised Segmentation of Words into

Morphemes. (2006)

5. Creutz, M., Lagus, K.: Unsupervised discovery of morphemes. In proceedings of

the ACL-02 workshop on Morphological and phonological learning - Volume 6

pages 21-30. (2002)

6. Creutz, M., Lagus, K.: Unsupervised Segmentation of Words Using Prior

Distributions of Morph Length and Frequency. In proceeding of the 41st meeting of

ACL-03, pages 280-287. (2003)

7. Goldsmith, J.: Unsupervised Learning of the Morphology of a Natural Language.

Computational Linguistics, 27:2, pages 153-198. (2001)

8. Baroni, M., Matiasek, J., Trost, H.: Unsupervised discovery of morphologically

related words based on orthographic and semantic similarity. In proceedings of the

ACL workshop on Morphological and phonological learning Volume 6, pages 48 –

57. (2002)

9. Demberg, V.: A Language-Independent Unsupervised Model for Morphological

Segmentation. In proceedings of the 45th Annual Meeting of the ACL, pages 920-

927. (2007)

10. Dasgupta, S., Ng, V.: High-Performance, Language-Independent Morphological

Segmentation. In proceedings of NAACL HLT 2007, pages 155-163. (2007)

11. Dasgupta, S., Ng, V.: Unsupervised word segmentation for Bangla. In proceedings

of ICON, pages 15- 24. (2007)

- 64 -

12. Rissanen, J.: Stochastic Complexity in Statistical Inquiry. Word Scientific

Publishing Co, Singapore. (1989)

13. Zeman, D.: Unsupervised Acquiring of Morphological Paradigms from Tokenized

Text. In CLEF 2007. LNCS, vol. 5152, pp. 892–899. Springer, Heidelberg. (2007)

14. Can, B., Manandhar, S.: Unsupervised Learning of Morphology by Using Syntactic

Categories. In Working Notes for the Cross Language Evaluation Forum (CLEF)

Workshop, Corfu, Greece. (2009)

15. Newman, M.: Fast algorithm for detecting community structure in networks.

Physical Review. E 69, 0066133. (2004)

16. Bernhard, D.: MorphoNet: Exploring the Use of Community Structure for

Unsupervised Morpheme Analysis. Working Notes for the CLEF 2009 Workshop

Corfu, Greece. (2009)

17. Wallach, H.M., Jensen, S.T, Dicker, L., Heller, K.A.: An Alternative Prior Process

for Nonparametric Bayesian Clustering, Appearing in Proceeding of the 13th

International Conference on AI and Statistics(AISTATS), Chia Laguna Resort,

Sardinia, Italy. (2010)

18. Zipf, G.K.: Selected Studies of the Principle of Relative Frequency in

Language.Cambridge, MA.: Harvard University Press. (1932)

19. Ishwaran, H., James, L.F.: Generalized weighted Chinese restaurant process for

species sampling mixture models. StatisticaSinica, 13:1211-1235. (2003)

20. Zhang, X.: A Very Gentle Note on the Construction of Dirichlet Process. The

Australian National University, Canberra. (2008)

21. Johnson, M., Griffiths, T.L., Goldwater, S.: Adaptor Grammars: A Framework for

Specifying Compositional Nonparametric Bayesian Models. In Advances in neural

information processing systems. (Vol. 19). (2007)

22. Johnson, M.: Unsupervised word segmentation for Sesotho using Adaptor.

Grammars, Proceedings of the Tenth Meeting of the ACL Special Interest Group on

Computational Morphology and Phonology, pages 20-27. (2008)

23. Virpioja, S., Kohonen, O.: Unsupervised Morpheme Discovery with Allomorfessor.

In Cross Language Evaluation Forum (CLEF). (2009)

- 65 -

24. Unsupervised segmentation of words into morphemes - Challenge 2005,

http://www.cis.hut.fi/morphochallenge2005/evaluation.shtml

25. Goldwater, S.: Nonparametric Bayesian models of lexical acquisition. Ph.D. thesis,

Brown University. (2006)

26. Johnson, M., Blunsom, P., Cohn, T., Goldwater, S.: A note on the implementation

of Hierarchical Dirichlet Process. Proceedings of the ACL-IJCNLP Conference

Short Papers, pages 337-340, Suntec, Singapore. (2009)

27. Unsupervised segmentation of words into morphemes - Challenge 2009, http://

www.cis.hut.fi/morphochallenge2009/eng1.shtml

28. Blackwell D., MacQueen J.B.: Ferguson Distribution VIA Pólya Urn Schemes. The

Annals of Statistics. Vol. 1, No. 2, 353355. (1973)

29. Tseng H., Jurafsky D., Manning C.: Morphological features help pos tagging of

unknown words across language varieties. In the Foruth SINGHAN Workshop on

Chinese Lanugage Processing. (2005).

30. Shrivastava M., Bhattacharyya P.: Hindi POS Tagger Using Naïve Stemming:

Harnessing Morphological Information Without Extensive Linguistic Knowledge.

6th Internal Conference on Natural Language Processing, India. (2008).

31. Schulz S., Honeck M., Hahn U.: Biomedical Text Retrieval in Languages with a

Complex Morphology. In Proceedings of the ACL Workshop on Natural Language

Processing in the Biomedical Domain, pages 6168. (2002).

32. Pado S.: User's guide to sigf : Significance testing by approximate randomisation.

2006.

