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Abstract 

Learning morphemes from any plain text is an emerging research area in the natural 

language processing. Knowledge about the process of word formation is helpful in 

devising automatic segmentation of words into their constituent morphemes. This thesis 

applies unsupervised morpheme induction method, based on the statistical behavior of 

words, to induce morphemes for word segmentation. The morpheme cache for the 

purpose is based on the Dirichlet Process (DP) and stores frequency information of the 

induced morphemes and their occurrences in a Zipfian distribution. 

This thesis uses a number of empirical, morpheme-level grammar models to classify the 

induced morphemes under the labels prefix, stem and suffix. These grammar models 

capture the different structural relationships among the morphemes. Furthermore, the 

morphemic categorization reduces the problems of over segmentation. The output of the 

strategy demonstrates a significant improvement on the baseline system. 

Finally, the thesis measures the performance of the unsupervised morphology learning 

system for Nepali.  
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1 Introduction 

This thesis presents a work done on unsupervised learning of morphology. It has 

described an automatic morpheme induction from the plain text by making use of 

frequency of words. The resulting morphemes are used for segmentation. 

1.1 Morphology and Morpheme segmentation 

Natural language morphology identifies the internal structure of words. Words contain 

smaller units of linguistic information called morphemes which are the meaning bearing 

units in a language. For example the word ‘playing’ consist of two units: the morpheme 

‘play’ and the morpheme ‘-ing’. When two or more morphemes are combined into a 

larger unit such as the word, a structure is formed which contains the morphemes itself 

and the relationship between them. The purpose of identifying structure of words is to 

establish the relationship between morphemes and the words that encodes them in a 

language giving the meaning, the categories it belongs to and its function in a natural 

language sentence.  

 Morpheme segmentation is the process of breaking words into their constituents i.e. 

morphemes. A morpheme segmentation system should be able to tell us the word 

“playing” is the continuous form of the stem “play”. These morpheme segments fall in 

two broad classes: stems (or roots) and affixes. Stems are the base form of words and 

are the main information contributor. Affixes contribute additional information of words 

such as gender, tense and number. For example, the word “unsegmented” in English can 

be divided into 3 morphemes “un”, “segment” and “ed” where “segment” is the base 

form and is a main information contributor. Morpheme “un” acts to negate the meaning 

of the stem and “ed” places it in the past tense (or adjectiveless). Here, “un” and “ed” 

are known as affixes. Hence, morphological analysis helps to identify the necessary 

information such as gender, tense, polarity, number and moods of the word.  
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Fig. 1.1 Three segments of the word “unsegmented”. 

The affix attached before and after the stem is known as the prefix and the suffix 

respectively. Some morphemes can appear as complete words. Such morphemes are 

called free morphemes. Morphemes appearing in a word combined with stems are called 

bound morphemes. The following Table 1.1 shows some examples of free and bound 

morphemes.  

Table 1.1Examples of free and bound morphemes.  

Language Free Morphemes Bound Morphemes 

English do, eat, jump etc. -s, -ed, -ing, -ness, un-, etc. 

Nepali 

नाम(name),खा(eat), 

लेख(्write)etc. 

-दै/तै(continuous form),-न(present 

form), न-(negation), -

अक(nominalise)etc.  

 

There are mainly three morphological processes involved in word formation: inflection, 

derivation and compounding. These processes determine the function of morphemes. In 

inflection, a stem is combined with a grammatical morpheme to yield a word of the 

same syntactic class as the original stem, e.g., formation of the word “playing” from the 

verb “play”. Derivation combines a stem with a grammatical morpheme to yield a word 

belonging to a different syntactic class, e.g., derivation of the word “player” (noun) from 

the word “play” (verb), “computation” from the verb “compute” etc. Compounding is 
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the process of combining two or more words to form a new word, for example, 

childlike, notebooks and football are the compound words. Daughter-in-law and mass-

product are a hyphenated form of compound words. Thus, one way of word variation is 

induced by attaching the affixes to the stem. A word can have more than one affix 

attached at the same time. Examples of some words with multiple affixes are shown in 

Table 1.2. 

Table 1.2 Examples of words having single stem and more than one affix. 

Language Word with more than one affixes Compound Words 

English 
skill(stem)+full(suffix)+ness(suffix) 

un(prefix)+segment(stem)+ed(suffix) 

sportsman, storekeeper 

Nepali 

न (prefix)+ टुक्र(stem)+ आइ (suffix)+ एको 

(suffix) – (un-separated 

by)खा(stem)+एको(suffix) – (eaten) 

खानुहुने – (be eaten), 

देख्नसके – (succeed to see) 

1.2 Introduction to morphology learning 

Automatic identification of meaning bearing units or morphemes in a natural language 

text is an active area of research. Addressing the word variations by analyzing words of 

a language as a sequence of morphemes is defined as morphology learning. For 

example, the English word “unpredictable” can be analyzed as a sequence of the three 

morphemes “un”, “predict” and “able”.  

In rule based learning, morphological analysis relies on manually crafting of 

linguistically motivated rules for morpheme acquisitions and segmentations. In 

automatic acquisition of morphemes, machine learning techniques are successfully 

applied for morphology learning. Using machine learning techniques, we can capture 

certain phenomenon that are involved in word formation and helps to induce morphemes 

of a language. For example, we can capture regularities among the words such as 

“chunk”, “chunks”, “chunked” and “chunking”. In these words, we can induce 
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morphemes “chunk”, “s”, “ed” and “ing” by using pattern regularities. Similarly, we can 

use machine learning technique to capture the orthographic changes in a word during 

morpheme attachment to the stem. For example, a character “y” changes to “i” in many 

English words during suffix (flyflies) attachment.  

To develop the model of morpheme induction and segmentation, I consider the process 

of adding affixes to the stem as the primary way to induce word variations. In this thesis, 

I have presented an unsupervised approach to morpheme induction by utilizing the 

cache of morphemes frequency. The frequency of morphemes is derived from the 

naturally occurring corpora. It is well established notion that the words behavior in a 

corpus follows a power law distribution (Zipf’s law) [18]. I examine the statistical 

distribution of morphemes in a natural language text which are presented in Table 1.3 

and 1.4. These morphemes conform to the power law distribution. 

Table 1.3 Examples of some common English suffix morphemes and their frequency 

learnt from Morpho Challenge  2009 dataset using RePortS algorithm [5]. 

S.N. Suffix Morphemes Frequency 

1. s 2140800 

2. er 964162 

3. es 887832 

4. ed 421481 

5. ing 289236 

6. tion 82304 

7. ment 65294 

8. est 46935 

9. ies 27455 

10. ness 14274 
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Table 1.4 Examples of some of common English prefixes and their frequency learned 

from Morpho Challenge  2009 dataset using RePortS algorithm [5]. 

S.N. Prefix Morphemes Frequency 

1. un 61004 

2. ex 49477 

3. dis 39882 

4. inter 22280 

5. pre 20934 

6. non 13564 

7. post 11251 

8. dia 8651 

9. hyper 485 

10. in- 390 

 

In the thesis statistical property (i.e. frequency) of text is gathered to identify the 

morphemes of a language and use them to segment words. The algorithm detects the 

morphemes and classifies them in three categories. They are labeled as prefix, stem and 

suffix based on their position in the word. In segmentation process, it considers a word 

to have a single affix, multiple affixes and multiple stems as well. Here, I have 

populated stems and affixes of a language during learning stage and listed out them for 

segmentation of words. 

1.3 Issues in morphology learning 

A commonly asked question regarding how to develop a language independent 

algorithm that can take a list of words as input and produce a set of morphemes as 

output is a challenging problem. To address the above question, we have to model a 

system that can able to implement or encode the human knowledge of morphology i.e. 

understanding of natural language words to enhance the performance of Natural 

Language Processing (NLP) tasks. This is not a trivial task. 
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 In practice, language acquisition involves the representation of internal structure which 

enables us to encode the input words and to generalize it by producing all linguistic 

forms. Our understanding is that there is no complete computational model for language 

acquisition. In overall task of NLP, different theories are proposed which help to capture 

some aspects of language acquisition. Practically, some features of language acquisition 

are more difficult such as capturing feature of words which does not occur in training 

corpus. So, these issues have to be resolved while breaking a word into its meaningful 

units.  

In morphology learning, initial focus is on capturing regularities among words. A key 

challenge in computing the regularities among words is to handle the exceptions present 

in the sparse data such as the word “singed” is not a variation of the word “sing”. The 

irregularities present during word formation are a difficult problem and needs to be 

addressed during morphology learning. For example, the word “sang” is a variation of 

the word “sing”. Another issue is to identify the grammatical features of segmented 

morphemes such as tense and number. Generalization may lead to erroneous results for 

unseen cases and is an issue for a computational model as well. Analysis of words with 

multiple senses is a context dependent task. We also have to consider what kind of 

linguistic feature can be encoded in model learning. A language can have unique 

features that are not observed in other languages which make it more difficult in 

building a general language model.  

I have examined the above issues and developed a computational model that learns the 

feature of morpheme behavior from a corpus. To model the word structures, this thesis 

utilizes the linguistically motivated word grammars to encode morphemes relationship 

during word formation. However, this encoding is empirical which explores the 

different structures of words. It is capable of understanding the morphological 

representation and is supported by statistical occurrences.  
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1.4 Unsupervised morphology 

Knowledge-based morphology systems are based on manually constructed rules. These 

rules are crafted especially to address morphological processes of a particular language 

by linguistic experts. Building morphological lexicons and rules for all languages is time 

consuming and requires considerable amounts of human effort. In most of the 

languages, morphological lexicons are unavailable and building them by humans is a 

very slow and expensive process. The alternative solution to this problem is to use an 

unsupervised approach to learn morphological structure of a language.  

The unsupervised morphology system is capable of inducing such a structure without 

making use of human annotated data and is also a language independent system. Words 

in a natural language can be considered as an open set, i.e. words of a language keeps 

changing and the number of words grows as well. It gives a new dimension to learning. 

In similar case of language learning by human, the vocabulary in mind also evolves. A 

learning system can help to update the domain information periodically. This research 

focuses on the same learning strategy based on an updated input corpus. It utilizes 

natural language text gathered from different sources such as news papers and 

magazines. In this case, the system uses a machine learning approach to induce 

knowledge of automatic morphology, rather than making use of widespread linguistics 

annotation.  

1.5 Goals and approach 

Natural language texts are widely available from different sources such as newspapers, 

magazines, and blogs.  As I discussed earlier, language acquisition from a natural 

language text has numerous problems and has become a challenging field in NLP. In 

morphology, morpheme induction and their structure in natural language text must be 

able to address the process involved in the word formation. The primary goal of this 

research is to design an unsupervised morphological analyzer of languages. In addition 

to this goal, I have the following specific goals: 
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a) Automatic induction of morphemes of a language with the formulation of model 

through statistical behavior of morphemes and implementation of data-driven 

learning system. 

b) Induced morphemes are used to segment the input words by exploring different 

word structures (word grammars) without using any external annotated data.   

c)  Explore the unsupervised morphology learning system in Nepali language.  

Natural language applications such as Parts of Speech (POS) induction [29 and 30] and 

text indexing and retrieval [31] performance can be improved by using unsupervised 

morphological analyzer. I believe that this research will become a useful system to 

improve NLP applications statistical machine translations, information retrieval etc. 

Sample input/output of the system is shown in Table 1.5. This research has focused to 

capture the statistical proprieties of the natural language texts, i.e. the frequency to learn 

the morphemes of a language by investigating the different morphological structures of 

words. After morpheme detection, this algorithm classifies these morphemes in 3 

different categories labeled as prefix, stem and suffix. These categories are illustrated 

and explained in Chapter 4. 

Table 1.5 Sample text input in frequency-word format and their corresponding output 

morphemes. 

Frequency Word Morphemes 

6 jump jump 

1 jumper jump + er 

3 jumped jump + ed 

1 jumping jump + ing 

4 jumps jump + s 

 

Furthermore, the categorized morphemes are used to carry out the segmentation of input 

texts. During segmentation, I employ a linguistically motivated heuristics which 
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considers a word can have single affix, multiple affixes and multiple stems. Chapter 4 

describes this in detail.  

1.6 Outline 

This thesis is organized as follows. Chapter 2 reviews some of the previous works on 

unsupervised morphology. More specifically, this discusses different techniques that are 

applied to capture different morphological phenomena from a plain text corpus. This 

chapter also talks about some of the language specific heuristics applied on 

unsupervised morphology. 

Chapter 3 describes the mathematical preliminaries of morphological modeling based on 

a Bayesian inference framework. The process of morpheme induction is based on 

morpheme cache which stores the frequency information of previously induced 

morphemes and their occurrences. This chapter also describes the detail formulation of 

the mathematical model.  

Chapter 4 describes four grammar models which I have implemented during the 

research. These models are based on the formulation of Bayesian statistics which are 

explained in Chapter 3. These grammar models relate the morphemes and words by 

different structures i.e. morphological rules. The first model is named as Baseline, has a 

single morpheme cache and the rest three are the extensions of the Baseline model. This 

section also explains the design and implementation of data structure in the system.  

Chapter 5 describes the training and testing process with the tabulation of results. At 

first, it starts with a detailed description of the dataset that are prepared for English and 

Nepali languages. Next, I describe an evaluation metric which is used to evaluate the 

results of this system. The results are tabulated in different aspects of evaluation such as 

segmentation with single split, multiple splits, segmentation results of words having 

only single stem and single affix.   
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In Chapter 6, I discuss the results of the system and the sources of error in the results. I 

also discuss the key issues of the erroneous result with different cases and examples. I 

present a comparative result of all four models. An idea for further extension and 

development of the system is also given in the chapter. Finally, Chapter 7 concludes the 

thesis.  
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2 Background 

Automatic induction of morphemes aims to capture the phenomena involved during 

generation of word variations through morphological processes. There has been a lot of 

work in the area of unsupervised morpheme acquisition. Numerous approaches have 

been developed to address different morphological processes. These approaches help to 

learn morphemes of a language automatically and are used to segment the words of 

given language. Some of the current unsupervised approaches of morphology are 

discussed as below. 

2.1 Concatenation phenomena in morphology 

Many words in a corpus are formed by adding affixes to the stems. The following 

describes some of the earlier works on identifying the morpheme boundary. 

2.1.1 Letter successor varieties / Conditional entropy between letters 

Earlier works [1, 2 and 3] have made a use of statistical properties such as successor and 

predecessor variety count of words in a corpus to indicate the morpheme boundaries. 

Calculation of letter successor varieties of some English words READABLE, ABLE, 

READING, READS, APE, RED, BEATABLE, ROPE, FIXABLE, RIPE and READ is 

shown in fig. 2.1 and fig. 2.2. 
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Fig. 2.1 Letter successor varieties recreated from [2]. 

 

Fig. 2.2 Letter predecessor varieties recreated from [2]. 
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For a test word “READABLE” and the task to find the possible morpheme boundaries 

the following scenario is observed. If we consider “R” to be a prefix, then 3 distinct 

characters “E”, “O” and “I” appears immediately after “R”. Hence the successor variety 

is 3. This process iterates throughout the word “READABLE”. We can see the 3 

branches appear after “READ” with characters “S”, “I” and “A” as shown fig. 2.1 i.e. 

successor variety and also 3 branches appear before “ABLE” with characters “D”, “T”, 

and “X” i.e. predecessor variety. These successor and predecessor varieties are possible 

solution to the morpheme discovery of the word “READABLE”. This is shown in Table 

2.1. 

Table 2.1 Letter successor varieties recreated from [2]. 

Successor Varieties Predecessor Varieties 

Prefix Successor Varieties Suffix Predecessor 

Varieties 

R E, O, I (3) E L, P (2) 

RE A, D (2) LE B (1) 

REA D (1) BLE A (1) 

READ A, I, S (3)* ABLE D, T, X (3)* 

READA B (1) DABLE A (1) 

READAB L (1) ADABLE E (1) 

READABL E (1) EADABLE R (1) 

READABLE # (1)* READABLE # (1)* 

 

An experimental design has been made by Dang and Chaudri [3] to measure the 

combined successor and predecessor frequency (SFPF) of the corpus based on the works 

[1 and 2]. This design considers the previous words seen in the corpus and are used to 

get the first split before applying SFPF. For example, if a word “abandoned” is 

previously seen and the current word “abandonedly” has to be processed, then the 

algorithm first splits the word “abandonedly” by the help of word “abandoned” giving 



- 14 - 
 

the result “abandoned + ly”. After this, it applies SFPF to the left word “abandoned” for 

further segmentation which gives the better results than the earlier works. 

In a similar way, the transitional probabilities between the letters and word appearing as 

a substring of another word are used together to detect the morpheme boundaries [4]. It 

defines two thresholds during selection of affixes from the candidate list. One is reward-

score by 19 and the other is punish-score by -1. The intuition behind these numbers is to 

select the morphemes as the final candidate only when they pass following tests 5% of 

the times that they appear.  

a) String fragment without suffix should be a valid word. 

b) The transitional probability between first letter of suffix and last letter of string 

fragment should be less than 1. 

c) The transitional probability between second last letter and last letter of the string 

fragment without suffix approximately equal to 1. 

The above criteria are also applicable for learning prefixes. The overall scores calculated 

from rewards and punishments of the morphemes are used not only to identify the 

candidate morphemes but also to detect the compound morphemes. If a morpheme is 

composed of two other morphemes both with higher scores then it is accounted as the 

compound of the two and is removed from the induced morpheme list. These strong 

hypotheses are unable to capture the morphemes in words whose base forms do not 

appear in the corpus and are present in the form of orthographic change. For example, 

during the suffixation “es” to the word “duty”, the character “y” changes to “i” giving 

the word “duties”. The previously described RePortS algorithm [4] is not capable to 

induce the suffix “es” from “duties” since the string fragment “duti” is not present in the 

given corpus as a valid word. 

Later, the basic RePortS algorithm [4] is extended by employing better morpheme 

induction and segmentation strategies [9, 10 and 11]. The equivalence sets of letters is 

generated with the help of word pairs having small word edit distance and improved the 

results by 2% in precision without losing recall for German language [9]. In [10 and 11], 
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language specific heuristics are added for composite suffix detection, incorrect suffix 

attachments and orthographic changes during model learning. Composite suffixes are 

formed by combining multiple suffixes. This algorithm detects the composite suffixes 

by measuring the ratio of words in which both suffixes are attached to the words in 

which first suffix is attached. Incorrect suffix attachments are identified using the word-

root frequency ratio. This ratio is based on the hypothesis that the inflectional or 

derivational forms of a root word occur less frequent than the root itself. To capture 

orthographic changes in root, it induces candidate allomorphs1 with the help of edit 

distance measure and applies series of filtering techniques to get final root candidate. 

These heuristics improve the result of PASCAL challenge2 by about 3% and the 

algorithm is also tested on the Bengali language. Finally, these algorithms also posses 

the shortcomings of basic RePortS algorithm and become more language specific due to 

the implementation of language specific heuristics. 

2.1.2 Minimum Description Length (MDL) approach 

Some of the well-known approaches in unsupervised learning of morphology are based 

on application of the Minimum Description Length (MDL) principle [12]. MDL gives 

the best hypothesis for a given set of data as that one which gives the highest 

compression of the data.  Data is compressed by minimizing the description of model (in 

bits) and the description of data (in bits) encoded. So, if we are trying to encode the 

given words of a language, then the MDL technique allow us to represent the words 

with the smallest set of morpheme segments.   

In [5], there are two models implemented to learn the morphemes from the given corpus. 

The first model uses MDL principle which learns a set of morphemes that minimizes the 

encoding length of the overall corpus. The second model learns a set of morphemes by 

utilizing Maximum Likelihood (ML) estimation of the corpus when segmented by the 

                                                 
1 “An allomorph is one of two or more complementary morphs which manifest a morpheme in its different 

phonological or morphological environments.”(Source- 
http://www.sil.org/linguistics/GlossaryOfLinguisticTerms/WhatIsAnAllomorph.htm)  

2http://research.ics.tkk.fi/events/morphochallenge2005/ 
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set. The MDL principle favors minimum numbers of morphemes to encode the corpus 

and hence gives the over-segmentation result. Rejection criteria are applied for the rare 

morphemes and sequence of one letter morphemes. These criteria are manually 

controlled during segmentation to overcome the over-segmentation problem. Further, 

the prior distributions of morpheme frequency and morpheme length are used rather 

than by encoding to measure the goodness of induced morphemes [6]. This gives a 

better acquisition and segmentation result. Words in a corpus are divided into stems and 

affixes and lots of heuristics are applied to generate morphological hypotheses [7]. 

These hypotheses are derived with keeping concern on the morphological structure of 

Indo-European languages. The stem forms a group called signature and each signature 

shares a set of possible affixes. The affix signature is similar to the concept of paradigm 

and is described in section 2.1.3. The algorithm also known as Linguistica uses MDL 

techniques for model optimization.  

2.1.3 Paradigm based approach 

In paradigm based morphology, words are grouped together by some means to form a 

paradigm which relates their constituent morphemes. These morphemes can be 

categorized in different groups such as stems and suffixes. So, paradigms describe 

morphemes relationship onto words.  Example of some stem-suffix paradigms of 

English captured by the algorithm [13] is shown below: 

i) Suffixes: e, ed, es, ing, ion, ions, or 

Stems: calibrat,consecrate,decimat,delineat,desecrate,equivocat,postulat, 

regurgitat 

ii) Suffixes:, d, r, r's, rs, s 

Stems: analyze, chain-smoke, collide, customize, energize, enquire, 

naturalize, scuffle 

The stem-suffix paradigms for a language are induced by grouping all possible single 

split stem+suffix pairs of words [13]. These obtained paradigms are filtered out using a 
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number of heuristic rules. The applied heuristics are aimed to generalize the spurious 

paradigms and to minimize the numbers of paradigms. The given words are analyzed by 

making all possible single splits from learned stems and suffixes. If one or more stem-

suffix pairs are populated, then those pairs are marked as a possible analysis.  Here, 

ambiguous analyses are also possible for a single word. If no analysis is found this way, 

it returns either known stems or suffixes as analysis for a word. In [14], word paradigms 

are learned using the syntactic information i.e., PoS of a word. In each paradigm, 

morphemes are induced by splitting each word at all single splits and ranked according 

to their Maximum Likelihood (ML) estimates. It uses expected accuracy between 

paradigms to merge them and gives the generalized paradigms. These generalized 

paradigms recover the missing word forms in the corpus. This generalization also 

minimizes the number of learned paradigms. Word segmentation is carried out either by 

the paradigm for known words or by the sequence of rules with learned morphemes for 

unknown words. The compound words are segmented recursively from rightmost end to 

the left. In case of multiple matches, the system selects the longest one.  

In [16], word families (clusters) of morphologically similar words are identified by 

building a graph where nodes are words and edges are the morphological 

transformational rules. These rules transform one word into another by substring 

substitutions and are obtained from the topmost 10,000 frequent words in the given 

corpus. A rule is selected only when the length of substring matches between words are 

greater than the predefined threshold. So, a word family includes such words which are 

tied by same transformational rule. The community detection method described by 

Newman [15] is used for the identification of word-families. A threshold value in terms 

of edge-density, ranges from 0 to 1 is used to control the size of family (cluster). Edge-

density is the ratio of common edges to the product of nodes between the word families. 

Varying the density value also helps us to generalize the word families to address the 

missing words in the corpus. Input words are segmented with the help of these induced 

word families and the learned morphological transformation rules.  
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2.2 Addressing word-internal variation in morphology 

Some of the morphological works focus on orthographic changes during morpheme 

attachment to the stem i.e., word formation. The probable morphologically related word 

pairs are generated from the corpus by using orthographic similarity and semantic 

similarity [8]. The orthographic similarity is the edit distance score and the semantic 

similarity is the Mutual Information (MI) measure between the words. This measure 

gives a list of generated morphologically similar word pairs. This algorithm selects 

orthographically similar pairs of word according to a preset edit distance threshold 

value.  In case of semantically similar pair, the Mutual Information (MI) measure 

between two words is calculated. The MI measure gives how the occurrence of a word 

in a corpus is independent of the occurrence of other and vice versa. Larger MI score 

implies the words are more dependent on each other. This system selects the common 

word pairs from both measures and extracts the longest shared substring to parse the 

word into the stem+suffix form. It also identifies the number of word pairs which are 

related by a variety of derivational and inflectional processes.  

Single character changes in stems (last character only) are captured giving improved 

result to the morphological analysis in some languages [10]. The orthographically 

similar candidate list of stems i.e., the allomorphic variations and the orthographic rules 

are induced from the list of training words of single stem and single suffix only. The list 

of stems and rules is obtained by altering the last character of a candidate stem. It retains 

the orthographic rules by employing frequency based filter and those filtered rules are 

used for final segmentation. Similarly, a single character change between two words is 

considered to generate equivalence sets of characters in German [9]. This improves the 

recall of German morphology by 2% without loss of precision.  

2.3 Non-parametric Bayesian framework in morphology 

The previous sections described morphology learning using various ways such as ML 

estimate, MDL prior or by using statistical analysis of text along with numerous 
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heuristics.  In [21], a non-parametric Bayesian framework is defined to learn the 

Probabilistic Context Free Grammar (PCFG) rules through Adaptor Grammars. Adaptor 

Grammars captures syntax of language (parse tree) by using non-parametric prior. The 

choice of adaptor specifies the distribution of PCFG rules in non-parametric Bayesian 

statistics. In morpheme segmentation, these rules generate the morphemes and the 

adaptor learns the morphemes of a language effectively.  It uses the adaptor based on 

Pitman-Yor process [17] to specify the distributions used in non-parametric Bayesian 

statistics such as Dirichlet process [17, 19 and 20].  In [22], the adaptor grammar 

framework is used in unsupervised word segmentation for Sesotho. The word types 

(lexicon) and tokens are used to model a language [25]. The two-stage framework in 

[25] uses morpheme-based lexicon generator and Pitman-Yor adaptor to infer language 

morphology from the word types. It also shows the morphological information learned 

from types is better than from tokens. Further, this two-stage model framework is also 

used for word segmentation by taking account of sequential dependencies between 

words.  

This research can be observed in similar direction based on the non-parametric Bayesian 

framework. However, it has made a use of corpus statistics effectively for morpheme 

learning by employing a morpheme cache. It captures the morpheme behavior based on 

word’s frequencies and the morpheme cache is used to model the rich-get-richer 

behaviors i.e., the observed behavior of morphemes in a language and are shown in table 

1.3 and 1.4. Furthermore, it has implemented different word grammar models to explore 

the different structural relationship among the morpheme during word formation. 
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3 Mathematical preliminaries for non-parametric Bayesian 

morpheme induction 

The main aim of this chapter is to describe mathematical concepts that have been used 

to infer morphemes of the given language.  Before describing different morphological 

models, we explain how the mathematical framework is used by the system to discover 

morphemes from a raw text data. To understand the probabilistic implementation of the 

model, the reader should possess some basic knowledge on probability theory. This 

chapter proceeds with a brief discussion of basic probability theory and concepts that are 

central to our approach such as multinomial distributions, Dirichlet processes and 

Chinese restaurant processes.   

3.1 Introduction to probability 

3.1.1 Random Experiments and Finite Spaces 

Suppose, we perform a random experiment whose possible outcomes is finite. For 

example, rolling a dice has finite outcomes. Assuming that the rolling a dice is a random 

event, the chances of getting a single number from 1 to 6 is the same. We can assign the 

probability value of 1/6 to each outcome.   The set of all possible outcomes is known as 

the sample space and is denoted by S.  In case of rolling a dice, the sample space is: S = 

{1, 2, 3, 4, 5, 6}, where the outcomes are 1, 2, 3, 4, 5 and 6. Any subset E of the sample 

space S is an event of the experiment. If E = {1}, then E is the event that 1 appears on 

the roll of the dice. If E = {2, 4, 6}, then E would be the event that an even number 

appears on the roll. Any set of the outcomes has a probability and is calculated by 

summing up the probability of its members of the set. So, the probability of getting an 

even number in rolling a dice is 1/2. 

If A and B are subsets of outcomes such that A  B, then the probability of B is larger 

than the probability of A i.e. P(B) > P(A). If A and B are disjoint, then  
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P(A  B) = P(A) + P(B). 

The sum of the probabilities of all outcomes is 1 i.e. P(S) = 1. If A1, A2, …, An are any 

finite sequence of n disjoint events of sample space S i.e. AiAj = , i  j, i, j = 1, 2, 

…, n then 

 

 

3.1.2 Conditional probability and Bayes’ rule 

When observing an outcome from the random experiment, sometimes we consider 

outcome that has some additional information. This is the idea behind the conditional 

probability. Suppose, we know that the outcome is in B   S. Given this information 

how can we find out the probability of outcome in A S? This is described by the 

conditional probability of A given B and written as P(A|B). 

Consider the roll of a dice and suppose we know that the number is even. Then, what is 

the probability that the number is six? Let A be the event of getting a number from a 

dice roll. Since the dice in unbiased, the probability of getting any one number is 1/6. 

Let B be the event of getting even number from a dice roll. The possible outcome is 

either of 2, 4 or 6. Hence the probability of getting an even number is 3/6. With these 

information, we can calculate the conditional probability P(A|B) as,  
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Since the number can be both even and six if and only if it is the number six, A B = A 

and P(A|B) = P(A)/P(B)=1/3. In this case, conditional probability can be interpreted 

only when P(B) > 0. 

In this example, the event A (getting a number) and the event B (getting a six) are 

dependent events. If events A and B are independent then, P(AB) = P(A)P(B). The 

conditional probability of A given B under this assumption is reduced to just P(A).  

Let us introduce another event Bc, read as the complement of B.  B and Bcare mutually 

exclusive events and whose union results in S.  Therefore we can write 

 

(3.2) 

This formula is known as Bayes’ rule. If we make partitions of n disjoint events B1, B2, . 

. ., Bn from the sample space S and let A be the another event, then using the Bayes’ rule,  

 

(3.3) 

3.1.3 Random variable and distribution 

When we perform a random experiment and are interested to know some outcome on 

the sample space, these quantities of interest are known as the random variables. 

Random variable takes measurable real values. For example, height of the next student 

to enter the classroom is a random variable. Formally, if the outcome of random 

experiment is , then the value of random variable X() . 

A random variable is discrete if it takes values in a countable set {xn, n >=1} . Some 

random variables can take continuous values and are called continuous random variable. 
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The value of the random variable is determined by the outcome of the random 

experiment so we can assign some probability to possible values of a random variable. 

Staying with the discrete case, if X is a discrete random variable associated with values 

x0, x1, x2, . . . and the probability of each xi is P(X = xi) = pi then the probability P(xi), i 

= 0, 1, 2, . . .,  must satisfy the following conditions. 

i) P(xi) 0 for all i, i = 0, 1, 2, . . .,  

ii)  

The function P is called the probability mass function (pmf) and the collection {xi, pn, 

n1} is known as the probability distribution of the random variable X. The function 

F(x) = P(X  x) is called cumulative distribution function (cdf) of the random variable X. 

The discrete random variables are studied according to their probability mass function 

(pmf). In case of continuous random variable, there is a non-negative function f(x) for all 

x  (-, +) associated with a random variable X  known as the probability density 

function (pdf) which determines the behavior of the random variable. 

3.2 The Bayesian method 

3.2.1 Terminologies in a Bayesian approach 

Statistical inference concerns itself with some unknown parameters that describe 

distribution of certain random variable of interest.  In a Bayesian analysis of the data, we 

can incorporate prior information which helps to strengthen the inference to the partial 

known data. From the Bayes’ rule described in equation 3.3: 
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and we define the corresponding terminology: 

 

 

The likelihood part is the probability of observing data D being conditioned on the 

model M. The prior distribution P(M) takes any particular value based on the additional 

information that might be available to the system. The denominator part, evidence is a 

normalization factor and can be taken to be a constant for a given task. So, we can focus 

on numerator part only, and infer  

      (3.5) 

The posterior gives the probability of model based on the new observed data relative to 

the prior probability. Maximum Likelihood (ML) estimation tries to find the parameter 

that makes the observations most likely i.e. maximizes the value of likelihood, P(D|M). 

A ML estimator can be written as: 

(3.6) 

Unlike ML estimation, Maximum a Posteriori (MAP) utilizes some prior information 

through prior distribution, P(M). MAP estimation can be expressed as: 

(3.7) 

The Bayesian approach extends the MAP estimation by ensuring an exact equality of 

posterior probability in equation (3.4).  The denominator in equation (3.4), the 

probability of evidence, can be expressed as: 
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This is only valid assuming the model space is integrable. 

Now, Eq. (3.4) becomes, 

 

(3.8) 

3.2.2 Conjugate priors 

In a Bayesian method, the integral of marginal likelihood in equation (3.8) are 

intractable or are unknown variables. But we can choose the prior belief as additional 

information to strengthen the inference.  A well-known approach to facilitate the model 

computation is to use a conjugate prior. A conjugate prior P(M) of likelihood P(D|M) is 

a  distribution that results in a posterior P(M|D) with same characteristics. 

If the likelihood function is Binomial, choosing a Beta distribution as prior will give the 

same Beta distribution as posterior. The expression of probability density function (pdf) 

of Binomial distribution given the r success in n independent trials with same 

probability   in each individual event is: 

(3.9) 

where                             and is called  Binomial coefficient.  In case of Beta distribution, 

the probability density function (pdf) is: 
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This can also be expressed as Gamma function as  

 

Using Beta as prior and Binomial as likelihood then the posterior function becomes: 

(3.10) 

i.e., 

Hence, the posterior distribution is still Beta with p+r and n-q-r. Choosing an 

appropriate prior makes analytic calculations simpler. 

3.2 Zipf’s Law 

Zipfian is an empirical law that characterizes statistical properties of a natural language. 

It states: given a corpus of natural language, the frequency of any word is inversely 

proportional (approximately) to the rank in the frequency table.  As a consequence, the 

topmost frequent word will occur approximately twice as often as the next word, three 

times as often as the third most frequent word and so forth. To generalize, ith ranked  

word will appear with 1/i times the frequency of the most frequent word.  An example 

of Zip’s plot of Wikipedia text is shown in fig. 3.1. Such kind of behaviour is not 

limited to words. The morphemes of a language also conform to Zipf’s law. Some 

common English morphemes (prefixes and suffixes) and their frequencies are listed in 

Tables 1.3 & 1.4.  
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Fig. 3.1 Plot of word frequency in Wikipedia-dump 2006-11-273. The plot is made in 

log-log coordinates. X-axis is rank of a word in the frequency table; Y-axis is the total 

number of the word’s occurrences. Most popular words are “the”, “of” and “and”. 

3.3 Chinese Restaurant Process (CRP) 

The Dirichlet Process (DP) [19 and 20] can be represented in a Chinese Restaurant 

Process (CRP). Suppose a restaurant has infinite number of round tables 1, 2, . . .,.  

Further assume that infinite number of customers can sit at each table.  Customers in the 

restaurant can sit in the table with the following distribution. 

i) First customer must choose first table to sit. 

ii) For nth customer, it chooses the new table with probability (/+n-1) and 

chooses the occupied table with probability (c/+n-1) where 0, is called 

concentration parameter of the process and c is the number of customers 

previously sitting in the table. The equivalent relation for this distribution is 

also shown in equations (3.9), (3.10) and (3.15). 

                                                 
3http://en.wikipedia.org/wiki/Zipf%27s_law 
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For example, suppose five customers C1,…,C5are seated according to the following 

arrangement shown in fig. 3.2. Circles are the table and the list above the circles are the 

customers. In fig. 3.2, C1,C5  are customers sitting in table T1.  2/+5 is the probability 

distribution for next customer i.e. the 6th customer. 

 

Fig.3.2 Chinese Restaurant Process (CRP) showing a seating arrangement for five 

customers. Each table (circle) can hold infinite number of customers. 

The probability of current sitting arrangement of the five customers in fig. 3.2 is 

calculated by: 

 

 

tC1 is the table where C1 is seated. In fig. 3.2, tC1 is T1. The above seating arrangement 

places five customers into three groups T1(C1,C5), T2(C2,C3) and T3(C4). If we 

interchange customers of table T1 with other table and vice versa, the probability of 

sitting arrangement of customer’s remains constant. This is the exchangeability property 

of CRP. In this way, a distribution of infinitely large customers can be defined by the 

CRP. 
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4 Baseline model and its extensions 

In this chapter we discuss four models for learning morphemes from a corpus. Latter 

three models employ different grammatical structure of words and are the extension of 

the first model which is given the name Baseline model. The categorization process of a 

morpheme places it into one of three groups: prefix, stem and suffix from a single list of 

morphemes induced from the Baseline model. The segmentation task using the induced 

morphemes is described in section 4.5. First we describe the Baseline model. 

4.1 Baseline model 

This model is particularly simple and assumes that the words are independent units of 

language. Put differently, the occurrence of a word does not depend on the 

occurrence/non-occurrence of any other word in the corpus. This is known as the 

independence assumption. Possible morpheme candidates are generated by splitting the 

word into all possible single splits. We further make the same independence assumption 

to the generated morpheme segments. These morphemes and their weights are stored in 

a cache. The weight of a morpheme is derived from the frequency of parent words. 

Parent words for a morpheme are words which contains the morpheme at least once in 

the corpus. 

The morpheme segments in this model are represented as menu items as in a restaurant 

(shown in fig. 4.1). The words are analogous to customers and they are allowed to 

choose an item from the listed menu or choose a new item. Under this scenario, we first 

split a word in all possible single splits. If the segment is available in the cache of menu 

list, the model chooses it from the listed menu. If it is not found, it will label the 

segment as a new menu item and will add to the menu list. Note that initially there are 

no items in the cache of the menu list (i.e. morphemes). 
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Let m1,...,mk be the morphemes present in the cache. Dirichlet Process (DP) sampler 

uses the following relation to define the predictive probability of the next morpheme 

mk+1: 

If mk+1 cache. 

If mk+1 cache then cache :=cache  { 

mk+1}. mk+1 ~ G0.                             (4.1)            

Here H is the count of previously processed morphemes, Nk+ 1 is the number of parent 

words contained by the morpheme mk+1 in the cache and G0 is the base distribution. The 

parent words for a morpheme in a corpus are all words for which the morpheme is a 

substring. The concentration parameter > 0 determines the variance in the probability 

of morphemes i.e. if we use  = 0, we always use cache. In a corpus, large means 

large number of morphemes. This part captures the morphemes frequency behavior in 

the corpus which follows the power law distribution. Equation (4.1) can be derived 

using conjugacy of Multinomial-Dirichlet distribution [20]. The final probability of 

morpheme segment is given by equation (4.2). 

(4.2) 

 

For example, all possible single splits of word “chunked” are: c+hunked, ch+unked, 

chu+nked, chun+ked, chunk+ed, chunke+d and chunked+$.  We can calculate the 

probability of each split using equation (4.2).  For example, the probability of 

“chunk+ed” is: 

 

The value of  is a constant and G0 is uniform for all morpheme segments. Initially, 

H=0 and is updated according to the number of words processed during the learning.  
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For a word that has n possible single splits, we compute the probability of each split 

P1,...,Pn. For the word “chunked” we get 7 possible split probabilities P1,...,P7. We then 

normalize the n probabilities thus obtained for all splits and calculate the weighted value 

using the relation (4.3). 

Weighted Value = Normalized Probability  Frequency of word(4.3)  

Where Normalized Probability =             for all 1  k  n and  Pk is the probability  

of kth splits given by the relation (4.2). 

Finally, we update the weighted value in the cache for each morpheme segment as a 

morpheme weight.  

 

Fig. 4.1 Cache representation of morphemes “$”, “chunk”, “ed”, “un”, “segment”. 

In Fig. 4.1, the boxes represent the words and ovals represent the morpheme segments. 

These morphemes are the part of the cache.  In the oval, a morpheme “ed” is connected 

with “segmented” and “chunked”. Hence, the weight for “ed” is derived from the words 

“segmented” and “chunked” and stored in the morpheme cache. Similarly, the weights 

of other morphemes are derived and added in the cache. 




n

j

k

Pj

P

1



- 34 - 
 

4.2 Grammar model I 

In the basic model, we allowed all the generated morphemes to be placed in a single 

morpheme cache. In this model we extend it by distinguishing prefix, stem and suffix 

distribution for a word. This gives three morpheme caches. We assume that a word can 

be made up from one of the three ordering of a prefix, stem and suffix in successive 

positions. First, a word can have a prefix and a stem. Secondly, a word can have a stem 

and a stem. Lastly, a word can have a stem and a suffix. The probability of a word w 

with a single split s+t given their respective models is: 

 

(4.4) 

In (4.4), Mprefix, Mstem and Msuffix are the respective morpheme models for prefixes, stems 

and suffixes. We built the respective three caches for the three morpheme models.  

Equation (4.4) can be divided into 3 parts and rewritten as, 

 

where, 

 

 

During model learning, we update the models Mprefix and Mstem with probability P1. 

Similarly we update the respective models with probability P2 and P3. 
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Fig. 4.2 Model updates mechanism of a word having n segments set.  

In case of the segmentation of the word “chunked” as “chunk+ed”, associated with 

probability P1, “chunk” is taken as a prefix and “ed” is taken as a stem. Similarly with 

probability P2, “chunk” is considered as a stem and “ed” is considered as a stem as well. 

Finally, with probability P3, “chunk” is considered as a stem and “ed” is considered as a 

suffix. In this way, we update the probabilities of n number of single spits in each model 

for a word and are also shown in fig. 4.2.  

4.3 Grammar model II 

Similar to Grammar modelI, this also distinguishes the prefix, stem and suffix 

distribution of a word from the single morpheme list generated from the Baseline model. 

It also assumes that a word can have a prefix, stem and suffix in successive positions. 

Unlike, Grammar model I, it assumes that a word can have a single stem only in this 

model. The probability of a word w with a single split s+t given the respective models 

is: 
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Similar to Eq. (4.4), in Eq. (4.5) Mprefix, Mstem and Msuffix are the respective morpheme 

models for prefixes, stems and suffixes. We also built the respective cache for each 

model.  Eq. (4.5) can also be divided into 3 parts and rewritten as, 

 

where, 

 

In the model learning phase we update these three models in two stages. First, we update 

the model Mstem with probability P1. Similarly we update the respective models with 

probability P2 and P3. This update mechanism is analogous to the previous Grammar 

modelI described in section 4.2 and we name this update mechanism as stage0. 

After the iterations in stage0, we further iterate this learning process by allowing a 

morpheme to be placed in one of these three morpheme tables. This is the stage1 

process. In this stage, we sample a morpheme from the three tables and select one 

according to their probability. We allow the given morpheme to be placed in a selected 

morpheme table only. This process helps to categorize the given morpheme into one of 

prefix, stem or suffix. The evaluation results for both stage0 and stage1 are shown 

in Chapter 5. 

4.4 Grammar model III 

This model follows from the same independent assumption that a word appears 

independent of all others in a corpus. First, these words are clustered in paradigms 

which are created according to the Chinese Restaurant Process (CRP). A paradigm 

consists of words that are analogous to customers seated in a restaurant table. This 

process allows infinite number of words to be placed in a paradigm. The predictive 

probability of next word is calculated using the equation (4.1). In this case, it uses count 

of words instead of morphemes. When a word is taken as an input, a paradigm is 
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assigned to it. A paradigm is a word family that contains some words of a corpus and 

these words are responsible for learning the morphemes within the paradigm. Put 

differently, all the paradigms are treated individually during the morphemes learning 

process. In this way, words are clustered into different paradigms. The number of 

paradigms learnt is controlled by changing the value of concentration parameter ().   

 

Fig. 4.3 Probability of word wm+1 given the previously learnt k tables (paradigms). 

Suppose, the input corpus contains n words w1,…,wn. Initially, w1 is permitted to sit on 

the first table (paradigm). Now, the second word w2 can either sit in the previous table 

(paradigm) or can select a new table (paradigm) using the relation (4.1). Let there be k 

tables (paradigms) learned from the n words and n1, n2, …, nm be the number of words in 

k paradigms respectively. Then, P1, P2,…,Pk and Pnew are the probabilities for n+1th 

word and is calculated using equation (4.1). This is shown in figure 4.3.  

In this way, we induce all the paradigms for a given corpus. After the induction of 

paradigms, we used Grammar modelII described in section 4.3 to learn the 

morphemes of words individually in all induced paradigms. 
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4.5 Morpheme segmentation 

So far we have learnt all the morphemes from the input corpus. The next task is to 

segment the given words using induced morphemes from models presented in section 

4.1 to 4.4. We have decided to use two techniques for finding the final segments of a 

word. In the first technique, single splits with the highest weighted values are selected. 

The weighted values for all splits of a word are calculated using equation (4.3). This is 

the Maximum Posteriori (MAP) estimation for final segments of a word given the 

models. Initially, the weights of all single splits for a word are set to zero and are 

updated in successive iterations by the weighted value. See section 4.1 for the detail 

calculations of weighted value for a morpheme. After completion of sufficient iterations, 

we choose the segments set having maximum weight for a word. This method will give 

us only two segments of a word.  

In the second approach, we align the morpheme sequence using dynamic programming, 

popularly known as the Viterbi alignment. It is used to find the best morpheme sequence 

according to the weighted values measured after the completion of model learning. All 

the grammar models described in section 4.1 to 4.4 have used the following criteria to 

validate the candidate morphemes during the sequence alignment. Let m1, m2, . . . ,mn be 

the morpheme sequence of a word. Then,  

a. At least one of the morpheme mi should be in stem category. 

b. Stems can be alternate with prefixes and suffixes but mn can’t be a prefix and m1 

can’t be a suffix of words. 

c. For 1<  i k, if mi is a prefix, then mi+1 must be a stem or a prefix. 

d. For 1 < i  k, if mi is a suffix, then mi-1 must be a stem or a suffix.  

The same test strategies are applied in [10 & 11] to validate the segmentation of a word 

among its all possible segmentations. In case of Grammar modelIII described in 

section 4.4, we identify the paradigm with the highest count for a given word and select 
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the paradigm during the word segmentation. We have used the induced morphemes 

from the selected paradigm to segment a word and apply the above morpheme 

validation criteria under the selected paradigm. 
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5 Evaluation 

This chapter describes and discusses the performance from the evaluation of the models 

outlined in Chapter 4. Before presenting the results, a brief description of the dataset and 

evaluation metrics is provided. The system for English and Nepali language is evaluated 

as described in the following sections. The results have been compared with the Morpho 

Challenge [24] results. Finally, result from the segmentation of Turkish words is also 

included. 

5.1   Dataset preparation  

For English, we have used the training and test set provided by the Morpho Challenge. 

The Baseline model and Grammar modelI are tested on the 2005 dataset provided by 

the Morpho Challenge. In this dataset, the training set contains 167,377 word types from 

24,447,034 words and the test set contains 532 distinct words. In case of Grammar 

modelII, we used both 2005 and 2009 dataset provided by Morpho Challenge. In 2009 

dataset, the training set contains 384,903 distinct words from 62,185,728 words. Test set 

contains 466 distinct words. 

For Nepali, we have extracted our corpus from daily newspapers as well as the weekly, 

half monthly and monthly magazines published during 2009-10. We have pre-processed 

it to create a word-frequency list given as the input to our system. This corpus contains 

819,506 word types from 44,856,552 words. We have tested our model on basic Nepali 

verbs only. The test set is prepared by manual segmentation of 1,500 randomly chosen 

distinct words from the training set. We separated out all the verbs as training set from 

the corpus. The set contains 34,391 distinct words. 

We also have tested this system for the Turkish language. Both the training and test 

dataset for Turkish is provided by the Morpho Challenge.  
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5.2   Evaluation metric 

Evaluation scripts are provided by the Morpho Challenge [24] along with the training 

and test dataset. We have used the same evaluation metrics described in Morpho 

Challenge [24]. The Precision (P), Recall (R) and F-Measure (F) are calculated in terms 

of morpheme boundary. These are calculated using the following formula. 

(5.1) 

(5.2) 

(5.3) 

Here, H is the count of correct boundary hits, I is the count of boundary markers 

incorrectly positioned and D the count of boundary markers not placed. These counts are 

based on the comparison with the gold standard. For example, if the word “sprinting” is 

segmented as “s+print+ing”, where ‘+’ is the boundary marker, then the first ‘+’ is 

counted as an incorrect boundary insertion and the second ‘+’ is counted as the correct 

boundary hit (when compared with the correct segmentation “sprint+ing”). Similarly, in 

case of “un+segmented”, the first ‘+’ is counted as a correct hit. It also counts the 

missing boundary in between “segment” and “ed”. 

In this system, we counted all the insertion, deletion and correct boundary hits of the test 

words and used equations (5.1), (5.2) and (5.3) to evaluate Precision (P), Recall (R) and 

FMeasure (F) respectively.  

5.3   Results 

We have evaluated performance on both English and Nepali dataset described in section 

5.1.  The four models described in Chapter 4 are run with these dataset. We have set the 

value of  to 100 for our experiments. This is an empirical value helps to use not only 

the cache but also the base distribution during learning i.e. allows more morpheme 
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numbers. The minimum length of a word is set to 4 for segmentation. This threshold 

controls over-segmentation by limiting the shorter stems of words. In Grammar model 

III, we set = 1. This small value helps to limit the minimum number of paradigms. We 

have also evaluated our system on Turkish language. The evaluation metric described in 

section 5.2 gives the following results.  

Table 5.1 Evaluation results of the systems on English assuming two segments only. 

Models Precision (P) Recall (R) F-Measure (F) Stage 

Baseline 56.84% 46.18% 50.96% NA 

Grammar Model– I 58.65% 47.60% 52.55% NA 

Grammar Model– II 
78.34% 55.02% 64.64% 0 
77.52% 53.82% 63.53% 1 

Grammar Model– III 83.16% 51.26% 63.42% NA 

 

Table 5.2 Evaluation results of the systems on Nepali assuming two segments only. 

Models Precision (P) Recall (R) F-Measure (F) Stage 

Baseline 51.25% 37.19% 43.10% NA 

Grammar Model– I 53.16% 38.12% 44.40% NA 

Grammar Model– II 
86.99% 68.21% 76.46% 0 

85.29% 66.72% 74.87% 1 

Grammar Model– III 82.45% 56.89% 67.33% NA 
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Table 5.3 Evaluation results of the systems on English assuming multiple segments. 

Models Precision (P) Recall (R) F-Measure (F) Stage 

Baseline 29.36% 43.69% 35.12% NA 

Grammar Model– I 45.81% 22.12% 29.83% NA 

Grammar Model– II 
54.42% 66.09% 59.69% 0 

52.96% 65.96% 58.75% 1 

Grammar Model– III 40.00% 49.34% 44.18% NA 

 

Table 5.4 Evaluation results of the systems on Nepali assuming multiple segments. 

Models Precision (P) Recall (R) F-Measure (F) Stage 

Baseline 42.08% 6.10% 10.66% NA 

Grammar Model– I 53.92% 43.58% 48.20% NA 

Grammar Model– II 
72.85% 56.52% 63.65% 0 

72.84% 56.35% 63.54% 1 

Grammar Model– III 70.00% 53.03% 60.34% NA 

 

Table 5.5 Evaluation results of the systems on Turkish assuming two segments only. 

Models Precision (P) Recall (R) F-Measure (F) 

Baseline 61.56% 21.74% 32.13% 

Grammar Model– I 58.81% 20.22% 30.90% 

Grammar Model– II 74.36% 18.18% 30.30% 

Grammar Model– III 71.40% 17.02% 27.48% 
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Table 5.6 Evaluation results of the systems on Turkish assuming multiple segments. 

Models Precision (P) Recall (R) F-Measure (F) 

Baseline 74.07% 2.14% 4.16% 

Grammar Model– I 37.48% 11.80% 17.94% 

Grammar Model– II 60.87% 36.19% 45.39% 

Grammar Model– III 59.60% 33.96% 43.27% 

 

Table 5.7 Evaluation results of the Grammar model II on English with Morpho 

Challenge 2009 dataset. 

Results of words with two splits Results of words with multiple splits 

Stage 
Precision 

(P) 
Recall 

(R) 
F-Measure 

(F) 
Precision 

(P) 
Recall 

(R) 
F-Measure 

(F) 

56.84% 46.18% 50.96% 29.36% 43.69% 35.12% 0 

51.25% 37.19% 43.10% 42.08% 6.10% 10.66% 1 

 

Table 5.8 Evaluation results of the best systems4 on English. 

Models Precision (P) Recall (R) F-Measure (F) 

Allomorfessor [23] 68.98% 56.82% 62.31% 

Morfessor Baseline [5] 74.93% 49.81% 59.84% 

 

                                                 
4 http://research.ics.aalto.fi/events/morphochallenge2009/eng1.shtml 
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5.4  Significance Tests 

Results presented in Figure 6.3 and 6.4 shows that the Grammar ModelII has the best 

overall numbers among all the other models. We carry out a statistical significance test 

between the results of the baseline model and the Grammar ModelII.  The null 

hypothesis in our test states that the two approaches are not different. The randomisation 

tests involves shuffling of the precision and recall scores and reassigning them to one of 

the two approaches.  The assumption is that if the difference in performance is 

significant, random shuffling will only very infrequently result in a larger performance 

difference. The relative frequency of this event occurring can be interpreted as the 

significance level of the difference. We use the sigf package [32] developed by 

Sebastian Pado for randomised significance tests.  

We perform the shuffling 100,000 times and thus obtain the p-value (2-tailed) of 

9.9999e-6 for both precision and recall. These values shows the baseline mode and the 

Grammar ModelII are significantly different from each other and therefore reject the 

null hypothesis. 
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6 Discussion and future work 

In earlier chapters, we have analyzed our morpheme learning and segmentation 

algorithm for different cases of words formation. The result shown in section 5.3 

establishes that the algorithm is capable of segmenting words of a corpus in an 

unsupervised way. However the performance is not as good as the state of the art for 

English [27]. The best system in Morpho Challenge achieved 62.31% in terms of 

FMeasure [23] and is also shown in Table 5.8. 

One possible explanation of this comes from the Zipfian nature of the words in a corpus. 

Highly frequent words have greater influences and thereby degrade the quality of 

segments. The result shown by the grammar model is improved in the MAP estimation 

where the weights of frequently appeared morphemes are distributed among prefixes, 

stems and suffixes lists.  

In the cache model i.e. CRP, the α parameter lies form 0 to infinity. The response of this 

model is less sensitive to the changes in the α-value. We test this intuition by varying α 

from 1 through 7 with a step increment in a sample dataset of size 32,692 Nepali word 

types. The resulting FMeasure from Grammar ModelII is stable and is shown in 

Figure 6.5. From equation (4.1) we can see that there is always some probability mass 

missing to choose the new table i.e. when not using cache. This is so because there is 

always some chance associated to select the new cache for the (n+1)th morpheme. In the 

case when α is 0, the cache (morpheme cache) is used. When α is very large, for 

example 10000000, the base distribution is always chosen. In our experiments new 

morphemes are more likely to be from the data i.e. from the learned morpheme stored in 

the cache. 

For Nepali, there is no benchmark to compare unsupervised approach to morphological 

segmentation. In our experiment, the Grammar ModelI shows some improvement 

over the Baseline model. This is not the same case in English where we can see the 

degradation in performance (see Table 5.2 and 5.4). This is due to the nature of our test 
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set for Nepali where we have chosen only verbs with a single stem and multiple 

suffixes.  

The result from Grammar model II shown in Table 5.1, 5.2, 5.3 and 5.6 are much 

better than the previous Baseline and Grammar Model I. In the single split case (Table 

5.1 and 5.2), the stems are more accurately identified compared with the previous 

models. For example, words खोतिलएको and खोतली, खोÏनै and खोÏदैनौ  are correctly 

segmented with stems खोतल, खोज respectively. However, the compound suffixes that 

are attached to the above stems are not identified at all. Some of the words are also over 

segmented. For example, the words भगाएकी = भ+गाएकी andिचिनएकी = िचिनए+की are 

incorrectly segmented. This is due to the influence of highly frequent morphemes. This 

problem is inherited from the Baseline model. 

In the next stage, the input corpus is segmented with multiple splits as shown in Table 

5.3. As compared with the result of Grammar modelI, it improves on precision but 

suffers on recall due to incorrect segmentations. Words such as “humaneness = 

human+en+es+s”, “humanize = human+is+e”, “humanlike = human+lik+e” and 

“clothlike = cloth+lik+e” are over segmented. Words such as “fire-fighter = fire-

fight+er”, “firebush = firebush” and “abductions = abduction+s” are under segmented.  

To summarize, multiple splits mostly produces over segmentation of words. In 2009 

Morpho challenge dataset, many hyphenated words are incorrectly segmented and this is 

another shortcoming of our model. The results are shown in Table 5.7.  

We have also tested our system on words having single stem and single affix. The result 

is shown in Table 5.7.  Some incorrectly segmented words are crise=cris+e, 

viruses=viru+ses, bodies=bod+ies, sprinting=s+printing, hogging=hog+ging, 

sharing=s+haring and ceremonies=ceremony+ies. Many words are incorrectly 

segmented due to changes in spelling during word formation. This model does not have 
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a mechanism to capture the character changes during the morpheme segmentation 

process.  

 

Fig. 6.1 Single split results for English. 

Our models utilize word frequencies alone to capture the context which results in an 

inefficient performance. For example, our Grammar model I leaves out many words 

unsegmented (i.e. segmented with null suffix). In case of Grammar model II, most of 

the words with single stem are over segmented. This model favors over segmentation 

with no under segmentation with single stem words.   

 

Fig. 6.2 Single split results for Nepali 
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Furthermore, the over segmentation errors in best sequence alignment occurs due to the 

influence of most frequent morphemes. We extended the Grammar model II by 

employing the Hierarchical Dirichlet Process (HDP) [26] to overcome the influence of 

heavily weighted morphemes. This model is termed as Grammar modelIII. 

In Grammar modelIII, we got improvement on precision but suffered on recall for 

English. The result is shown in fig. 6.1. Detail results of Grammar modelIII assuming 

two segments only, multiple segments are shown in Table 5.1, 5.2, 5.3 and 5.4. 

For the Nepali corpus, we found the best result is given by the Grammar modelII and 

is shown in fig. 6.2 and 6.4.  We also tested our system for Turkish and the results are 

shown in table 5.5 and 5.6. Our systems are motivated by prefix, stem and suffix 

grammar. Languages like Turkish which is agglutinative in structure, the results are poor 

due to under segmentation of many words. 

Overall, Grammar model II gives the best result in English and Nepali among the four 

models. We found that the influences of heavily weighted morphemes are inherited in 

HDP implementation too. 

 

Fig. 6.3 Multiple splits results for English 
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Fig. 6.4 Multiple splits results for Nepali 

Many words in English and Nepali are incorrectly segmented due to character changes 

during morpheme attachment. This is an very general model that uses only the 

frequency of words for the morpheme learning process and falls short of the state of the 

art. As mentioned before, we got much erroneous segmentation for hyphenated words. 

One possible extension is to develop a grammar model of words that could include the 

hyphenated words as well. Another future work can be to capture the character changes 

in words during morpheme attachment [8 and 10].  

 

Fig. 6.5 Plot of α-value Vs. FMeasure from sample Nepali dataset. 
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7 Conclusion  

In this thesis, I have described the task of morphological analysis by making use of the 

statistical properties of words in a corpus and different morpheme grammar structures. 

This research work has shown that the morpheme behavior follows the power law and 

this characteristic can be captured to segment the words into their constituent’s 

morphemes. However, the same behavior can lead to erroneous segmentation too. This 

is described by discussion section in Chapter 6. In addition of our four grammar models, 

this research has presented the first result on unsupervised morphological segmentation 

for Nepali language. We have also presented a performance result of the system for 

Turkish language.  
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Appendix A: Algorithms 

a. Baseline Model 

1: InputWordsWord_Frequency 

2: Morphemes  

3: n SizeOfInputWords 

4: for i = 1 to ndo 

5:  WordInputWords[i] 

6:  SegSetGet_All_Single_Splits (Word) 

7:  m SizeOfSegmentsSet 

8:  for j = 1 to m do 

9:   ModelProb[j]Probability(SegSet[j]) 

10:  end for 

11:  Normalize (ModelProbability) 

12:  MaxProbFind_Max(ModelProbability) 

13:  Update(MaxProb) 

14:  FreqFrequency(Word) 

15:  for j=1 to Freqdo  

16:   Segment Sample(SegSet) 

17:   Update_Corpus(Segment) 

18:   Morphemes Morphemes Segment 

19:  end for 

20: end for 

21: for i = 1 to ndo 

22:  WInputWords[i] 

23:  Segments Find_MaxProb_Segments(W) 

24:  print Segments 

25: end for 
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b. Grammar Model I 

1: InputWordsWord_Frequency 

2: Prefix , Stem , Suffix  

3: n SizeOfInputWords 

4: for i = 1 to ndo 

5:  WordInputWords[i] 

6:  Set Get_All_Single_Splits (Word) 

7:  m SizeOfSegmentsSet 

8:  for j = 1 to m do 

9:   P1 = PfxProb(Set[j][0])*StmProb(Set[j][1]) 

10:   P2 = StmProb(Set[j][0])*StmProb(Set[j][1]) 

11:   P3 = StmProb(Set[j][0])*SfxProb(Set[j][1]) 

12:   ModelProb[j] P1 + P2 + P3 

10:  end for 

11:  Normalize (ModelProbability) 

12:  MaxProbFind_Max(ModelProbability) 

13:  Update(MaxProb) 

14:  FreqFrequency(Word) 

15:  for j=1 to Freqdo  

16:   Segment Sample(SegSet) 

17:   PfxSample_Prefix(Segment) 

18:   StmSample_Stem(Segment) 

19:   SfxSample_Suffix(Segment) 

20:   Update_Corpus(Pfx, Stm, Sfx)   

21:   PrefixPrefixPfx 

22:   StemStemStm 

23:   SuffixSuffixSfx 

24:  end for 

25: end for 

26: for i = 1 to ndo 

27:  WInputWords[i] 

28:  Segments MaxProb_Segment(W,Prefix,Stem,Suffix) 
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29:  print Segments 

30: end for 
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c. Grammar Model II 

1: InputWordsWord_Frequency 

2: Prefix , Stem , Suffix  

3: n SizeOfInputWords 

4: for i = 1 to ndo 

5:  WordInputWords[i] 

6:  Set Get_All_Single_Splits (Word) 

7:  m SizeOfSegmentsSet 

8:  for j = 1 to m do 

9:   if Set[j] = Word+$ then 

10:   P2 = StmProb(Word) 

11:   else  

12:   P1= PfxProb(Set[j][0])*StmProb(Set[j][1])

  

13:   P3 = StmProb(Set[j][0])*SfxProb(Set[j][1]) 

14:   end if 

15:   ModelProb[j] P1 + P2 + P3 

16:  end for 

17:  Normalize (ModelProbability) 

18:  MaxProbFind_Max(ModelProbability) 

19:  Update(MaxProb) 

20:  FreqFrequency(Word) 

21:  for j=1 to Freqdo  

22:   Segment Sample(SegSet) 

23:   if Segment = Word + $ then 

24:    StmSample_Stem(Segment) 

25:  else 

26:    PfxSample_Prefix(Segment) 

27:    StmSample_Stem(Segment) 

28:    SfxSample_Suffix(Segment) 

29:   end if 

30:   Update_Corpus(Pfx, Stm, Sfx)   

31:   PrefixPrefixPfx 
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32:   StemStemStm 

33:   SuffixSuffixSfx 

34:  end for 

35: end for 

36: for i = 1 to ndo 

37:  WInputWords[i] 

38:  Segments MaxProb_Segment(W,Prefix,Stem,Suffix) 

39:  print Segments 

40: end for 
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d. Grammar Model III 

1: InputWordsWord_Frequency 

2:  Paradigms  

3: n SizeOfInputWords 

4: for i = 1 to ndo 

5:  WordInputWords[i] 

6:  ParadigmGet_Paradigm(Word) 

7:  Paradigms Paradigms Paradigm 

8: end for 

9: CntCount(Paradigm) 

10: for i = 1 to Cntdo 

11:  Paradigm  Paradigms[i] 

12:  Model(Pfx,Stm,Sfx)[i]GrammarModel-II(Paradigm) 

13: end for 

14: for i = 1 to ndo 

15:  WInputWords[i] 

16:  Segments Find_MaxProb_Segments(W, Paradigms) 

17:  print Segments 

18: end for 
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Appendix B: Program Flowchart (Baseline Model) 

 
START

Read INPUT Words

Mi = Current Morph
FMi = Morph Frequency
PMi = PMi * (FMi + Alpah*BProbability)/(Alpha + History)

Iteration = 0, MaxIteration
Alpha, Bprobability, Factor

WordTypes = 0, MaxWordTypes
History = 0

Wi = Current Word
Fi = Word Frequency
Sw = Get_Two_Parts_Segments(Wi)
SiIterator = 0, MaxSiIterator
MaxSwi = 0, MaxSwiIndex = -1, PSw

Swi = Current Segment
MiIterator = 0, MaxMiIterator, PMi = 1

Is MiIterator > MaxMiIterator ?

MaxSwi = PMi
MaxSwiIndex = SiIterator

MiIterator = MiIterator + 1

Is PMi >= MaxSwi ?

No

Yes

No

Yes

SiIterator = SiIterator + 1
Store PMi in PSi

No

Is SiIterator > MaxSiIterator ?
No

Store MaxSwi at PSw

Input Format : 
w1 f1
w2 f2
.
.
.
wn fn

Is PSw has more than one value ?

Randomly select one 
segment from Sw

Select MaxSwiIndex segment from Sw 
and Store it.

No

Yes

No

Normalize PSi
UIterator = 0
MaxUIterator = Factor * Fi

Select Swi with probability of 
Normalized PSi and Store it.

SiIterator = SiIterator + 1

Is Uiterator > MaxUIterator ?

SiIterator = SiIterator + 1

Yes

Yes

Check If Wi is in Corpus ?

Update Wi and its segments 
in Corpus and Tables
Update History

Remove Wi from Corpus and 
segments from Tables.

No

Yes

Is WordTypes > MaxWordTypes ?

WordTypes = WordTypes + 1

Yes

Print OUTPUT

END

Output Format : 
w1 = m11 + m12 + ... + m1k

w2 = m21 + m22 + ... + m2k.
.
.
wn = mn1 + mn2 + ... + mnk
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