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Abstract 

Molecularly Imprinted Polymers (MIPs) are potential generic alternatives to 

antibodies in diagnostics and separations. To compete with biomolecules in 

these technological niches, MIPs need to share the characteristics of antibodies 

(solubility, size, specificity and affinity) whilst maintaining the advantages of 

MIPs (low cost, short development time and high stability). For this reason the 

interest in preparing MIPs as nanoparticles (MIP NPs) has increased 

exponentially in the last decade.  

This research was aimed at developing an efficient and flexible method for the 

automatic synthesis of MIP NPs using a solid-phase automated photoreactor. 

Our approach incorporated a column-cartridge with an immobilised template 

docked into a thermostatic computer-controllable UV photoreactor, thereby 

allowing the controlled manufacture of high-affinity MIP NPs with narrow size 

distributions. The polymerisation was performed through UV-irradiation of the 

reactor for the desired reaction time. After polymerisation was completed, the 

column was washed with fresh solvent at a low temperature. At this stage 

unreacted monomers and other low molecular weight materials were eluted 

along with low-affinity polymer NPs, leaving the desired high-affinity MIP NPs 

still bound to the immobilised template phase. These were then collected by 

increasing the column temperature. Batches of MIP NPs with diameters 30-400 

nm and narrow size distributions were prepared for low molecular weight targets 

including melamine (d = 60 nm, KD = 6.3 × 10−8 M), vancomycin (d = 250 nm, 

KD = 3.4 × 10−9 M), and a peptide (d = 350 nm, KD = 4.8 × 10−8 M) in less than 3 

h/batch. For the first time the reuse of molecular templates in the synthesis of 

MIPs (≥ 30 batches of MIP NPs) was demonstrated.  

For the imprinting of high molecular weight targets such as proteins a second 

version of automated chemical reactor was developed which was capable of 

operating in aqueous conditions. It was tested in the preparation of MIP NPs 

against three protein targets, namely pepsin A, trypsin and α-amylase. The 

manufacturing cycle took 4 h during which “synthetic antibodies” with 250-300 
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nm diameter and sub-nanomolar affinity were prepared. All synthesised 

materials exhibited high specificity towards their respective target compound. 

Benefits of the proposed novel approach include: i) uniform binding properties 

of synthesised MIP NPs, resulting from affinity-based separation on column; ii) 

eliminating contamination of the product with template; iii) possibility of reusing 

template; iv) ease of automation and standardisation; v) the final product is 

obtained in a pure form obviating the need for lengthy post-synthesis 

purification steps. We believe the developed MIP NPs might be used in 

diagnostic applications and, in the future, possibly in in vivo applications, such 

as drug delivery, imaging and pharmacological activity.  

Keywords:  

Molecular imprinting, immobilised template, affinity separation, chemical 

reactor, antibody mimics, diagnostics 
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Aims and objectives 

The aim of the project presented and discussed in this thesis is to investigate 

and develop useful tools and strategies to automate the synthesis of MIP NPs 

able to mimic the characteristics of natural antibodies in terms of size, affinity, 

and specificity. These approaches should exploit templates immobilised on a 

convenient solid support (e.g. glass beads), providing a system able to generate 

MIP nanoparticles with strong affinity and specificity and in good yields and 

purity, enabling large-scale production for industrial applications. 

To achieve this aim, the objectives of this 3-year research have been: 

1. Investigation of suitable solid supports for the immobilisation of different 

kinds of templates (i.e. small molecules and peptides/proteins); 

2. Investigation of an experimental setup compatible with the automation of 

the imprinting polymerisation process of NPs; 

3. Research and optimisation of the best experimental conditions to 

synthesise MIP NPs on solid phase and characterisation of the MIP products in 

terms of physical and recognition properties; 

4. Adaptation of MIP nanomaterials for sensing, separation or therapeutic 

purposes; 

5. Dissemination of the results of these studies through presentations at 

international conferences and preparation of patents and papers for submission 

to peer-reviewed journals. 



xi 

List of figures  

Figure 1–1. Number of published papers and filed patents in the area of 
molecularly imprinted polymers for the period 1992-2012 (Whitcombe, 
2012). .......................................................................................................... 6 

Figure 1–2. Schematic representation molecular imprinting. The template and 
the functional monomers may interact by: (A) reversible covalent bonds, (B) 
covalently attached polymerisable binding groups, subsequently activated 
for non-covalent interaction by template cleavage, (C) electrostatic 
interactions, (D) hydrophobic or van der Waals interactions, (E) metal-ion 
mediated interactions. Each one of these is established with 
complementary functional groups or structural elements of the template (a-
e), respectively (adapted from Alexander et al., 2006). ............................... 7 

Figure 1–3. Preparation of MIP films using a surface bound photoinitiator 
(reproduced from Piacham et al., 2005). ................................................... 16 

Figure 1–4. Scheme of a general iniferter polymerisation mechanism. ............ 17 

Figure 1–5. Scheme of the preparation of the catalytic MIP-hybrid electrodes 
imprinted with catechol (adapted from Lakshmi et al., 2009). ................... 18 

Figure 1–6. A: experimental setup used in the "high-throughput" synthesis. B: 
scheme of the synthetic process: 1, loading of the polymerisation mixture 
into an SPE cartridge; 2, homogenisation of the components to create the 
microdroplets; 3, argon flow to remove oxygen; 4, UV polymerisation for 30 
min, with low argon flow to maintain mixing; 5, vacuum applied to remove 
the solvent and traces of monomers (the solvent can be collected and 
distilled to be reused); 6 and 7, washing steps to remove template, 
surfactant and other possible impurities (adapted from Pérez-Moral and 
Mayes, 2006a). ......................................................................................... 22 

Figure 1–7. Scheme of the spiral microflow-reactor developed by Zourob et al. 
(a) and scanning electron microscopy (SEM) images of the beads 
produced using the microreactor in liquid perfluorocarbon (b) and in oil (c) 
and the beads produced using conventional suspension polymerisation in 
liquid perfluorocarbon (d) and in mineral oil (e) (adapted from Zourob et al., 
2006). ........................................................................................................ 25 

Figure 1–8. Release profile of sulfasalazine from MIP and NIP microparticles in 
simulated gastric fluid (pH 1, from 0 to 2 h) and in simulated intestinal fluid 
(pH 6.8, from 2 to 20 h) (adapted from Puoci et al., 2004). ....................... 27 

Figure 1–9. Schematic representation of the distribution of effective binding 
sites in the imprinted bulk materials and MIP NPs after the template 
removal step (adapted from Gao et al., 2007). .......................................... 32 

Figure 1–10. SEM images of MIP NPs imprinted for E2 at 7500× of 
magnification (a) and 30000× of magnification (b). The right hand bar 
corresponds to 1 μm (adapted from Ye et al., 1999). ................................ 35 



xii 

Figure 1–11. Spherical MIP NPs obtained through precipitation polymerisation, 
arranged on a glass layer (adapted from Li et al., 2003). .......................... 37 

Figure 1–12. Effect of temperature (A) and of initiator concentration (B) on the 
diameters of spherical MIP NPs obtained by precipitation polymerisation. 
For the (B) graph, (a) is LR and (b) is AIBN (adapted from Li et al., 2003).
 .................................................................................................................. 38 

Figure 1–13. Particle size distribution of imprinted (a) and non-imprinted (b) 
poly(TRIM-co-MAA) NPs, measured by photon correlation spectroscopy. 
Inserts are SEM images of the same NPs (adapted from Yoshimatsu et al., 
2007, 2010). .............................................................................................. 40 

Figure 1–14. Transmission electron microscopy (TEM) image of MIP NPs 
produced through mini-emulsion polymerisation by Vaihinger et al. (2002).
 .................................................................................................................. 45 

Figure 1–15. TEM image of MIP NPs synthesised by Curcio et al. (2009). ...... 47 

Figure 1–16. TEM images of MIP NPs obtained when the amount (mol) of TyS 
used was: (a) 0%; (b) 2.5%; (c) 15% (adapted from Pérez et al., 2001). .. 51 

Figure 1–17. Scheme of the immobilisation of the DEDTC iniferter and 
subsequent application for grafting the MIP shell onto the core surface 
(adapted from Pérez-Moral and Mayes, 2007). ......................................... 53 

Figure 1–18. A) SEM image of surface-imprinted silica core-shell MIP NPs (the 
insert is a high-magnification image). B) Evolution of density of effective 
recognition sites with shell thickness of MIP NPs (adapted from Gao et al., 
2007). ........................................................................................................ 55 

Figure 1–19. SEM images of surface-imprinted silica core-shell MIP NPs 
obtained through (A) step-by-step polymerisation or (B) directly heating at 
80 °C for 3 h. In (B) self-aggregation of particles can be observed (adapted 
from Yao and Zhou, 2009). ....................................................................... 57 

Figure 1–20. Separation of estrone-imprinted magnetic core-shell silica NPs by 
a magnet (reproduced from Wang et al., 2009). ........................................ 58 

Figure 1–21. TEM image of a core-shell silica-coated magnetic MIP NP 
(reproduced from Lu et al., 2009). ............................................................. 60 

Figure 1–22. Scheme of the chain-growth process. On the right – images of 
polymer growth representing the three last stages on the scheme. (a) TEM 
image of NPs formed by UV irradiation for 170 s, magnification 340000×; 
(b) and (c) SEM images of polymer formed by aggregation of molecular 
clusters achieved during 180 and 250 s of UV irradiation, respectively 
(adapted from Guerreiro et al., 2009). ....................................................... 66 

Figure 1–23. (A) SEM image of a cross-section of the controlled delivery device 
containing the MIP NOMs. (B, C) SEM images of the prepared MIP NOMs 
at 9000-fold magnification (B) and 30000-fold magnification (C). (D) In vitro 



xiii 

dissolution profile of omeprazole enantiomers from MIP- and NIP-loaded 
delivery systems in dissolution medium changed every 2 h with pH 1.2, 6.8 
and 8.0, respectively (mean ± SD, n = 6) (adapted from Suedee et al., 
2010). ........................................................................................................ 73 

Figure 1–24. On the left, SEM image of MIP NPs. On the right, 5-FU release 
profile from MIP (■) and NIP (♦) NPs (adapted from Cirillo et al., 2009). .. 74 

Figure 1–25. Schematic of the partial filling technique (reproduced from Spégel 
and Nilsson, 2002). ................................................................................... 76 

Figure 1–26. Separation of ropivacaine and propranolol enantiomers in CEC by 
the partial filling technique using a plug composed of S-ropivacaine MIP 
and S-propranolol MIP. Detection was performed at 214 (top) and 195 nm 
(bottom) (reproduced from Spégel et al., 2003). ....................................... 77 

Figure 1–27. pH effect on the catalytic rate in TBS (50 mM) (A) and on the 
hydrodynamic particle size of imprinted microgels measured by DLS (B) 
(adapted from Chen et al., 2010). ............................................................. 82 

Figure 1–28. TEM image of MIP catalytic nanogels (stained with OsO4) 
(reproduced from Carboni et al., 2008). .................................................... 84 

Figure 1–29. Schematic representation of the QCM sensor based on artificial 
antibody replicas (reproduced from Schirhagl et al., 2010). ...................... 86 

Figure 1–30. “Immunoprecipitation-like” separation of surface-imprinted MIP 
NPs in the presence of PEG-bis-cholesterol. The addition of the multi-
ligand template resulted in flocculation of MIP NPs (adapted from Pérez et 
al., 2001). .................................................................................................. 91 

Figure 1–31. SEM image of electrospun PET nanofibers containing 37.5% w/w 
of MIP-E2 NPs. The scale bar is 10 μm (adapted from Chronakis et al., 
2006). ........................................................................................................ 95 

Figure 1–32. Scheme of function of MIP NPs in vivo (reproduced from Hoshino 
et al., 2010b). .......................................................................................... 101 

Figure 1–33. Molecular imprinting using immobilised template and subsequent 
dissolution of the support, better known as "hierarchical imprinting" 
(adapted from Yilmaz et al., 2000). ......................................................... 103 

Figure 1–34. Protocol for template imprinting with protein epitopes. A) Glass 
modification and peptide attachment. B) Photopolymerisation and support 
removal. C) Target protein recognition (adapted from Nishino et al., 2006).
 ................................................................................................................ 107 

Figure 3–1. Structures of DMET (a) and melamine (b). .................................. 129 

Figure 3–2. Synthetic protocol for the immobilisation of template on the glass 
beads surface for use in photoreactor. .................................................... 131 



xiv 

Figure 3–3. Reaction scheme of the OPA assay. OPA undergoes a nucleophilic 
attack by the thiol group of ME to form a hemithioacetale, which in turn 
promptly reacts with primary amino groups (such as melamine ones) to 
provide a fluorescent isoindole. ............................................................... 132 

Figure 3–4. Fluorescence emission spectra of ME, OPA and glass beads (bare 
or derivatised, either with melamine or APTMS) in borate buffer 0.1 M pH 
9.5. .......................................................................................................... 133 

Figure 3–5. Polymerisation mixture used for imprinting melamine through UV 
photopolymerisation. ............................................................................... 136 

Figure 3–6. Scheme of the hydrogen bonds between MAA and melamine. ... 137 

Figure 3–7. “Short” glass column (4 mm internal diameter, 70 mm length) 
packed with affinity media (either polymeric resin or 9-13 μm melamine-
derivatised glass beads).......................................................................... 139 

Figure 3–8. Example of comparison between two chromatograms obtained 
without (blue) or with (red) UV irradiation using polymeric resin as affinity 
media. The first 70 min of the elution are performed by keeping the column 
in an ice bath at 0 °C, while for the following 45 min the column is placed in 
a water bath at 60 °C. Mobile phase: ACN; flow rate: 0.25 mL/min; UV 
detection at 220 nm. The areas of the peaks after heating are nearly 
identical. .................................................................................................. 141 

Figure 3–9. Example of comparison between two chromatograms obtained 
without (blue) or with (red) UV irradiation using 9-13 μm melamine-
derivatised glass beads as affinity media. The first 120 min of the elution 
are performed by keeping the column in an ice bath at 0 °C, using ACN as 
mobile phase. The following 73 min of the elution are performed at 25 °C, 
using ACN + HCOOH (10 mM) as mobile phase, while the last 83 min are 
performed using the same solvent but putting the column in a water bath at 
60 °C. Flow rate: 0.5 mL/min; UV detection at 220 nm. The areas of the 
peaks after heating are nearly identical. .................................................. 143 

Figure 3–10. “Long” glass column (4 mm internal diameter, 150 mm length) 
chosen for the experimental setup, packed with 75 μm melamine-
derivatised glass beads as affinity media. The column is assembled 
through tailor-made fitters (green plastic parts) and mounted on a custom-
made aluminium frame. ........................................................................... 144 

Figure 3–11. Example of comparison between two chromatograms obtained 
without (blue) or with (red) UV irradiation using 75 μm derivatised glass 
beads as affinity media. The first 90 min of the elution are performed by 
keeping the column in an ice bath at 0 °C, using ACN as mobile phase. The 
following 45 min of the elution are performed at 25 °C, using ACN + 
HCOOH (10 mM) as mobile phase, while the last 35 min are performed 
using the same solvent but putting the column in a water bath at 60 °C. 
Flow rate: 1 mL/min; UV detection at 220 nm. The areas of the peaks after 
heating (90 min and 135 min) are considerably different; the ratio between 



xv 

the area of the ones with UV irradiation and the ones without are about 4:1 
and 8:1, respectively for the peaks at 90 and 135 min. ........................... 145 

Figure 3–12. “Long” glass column in its aluminium frame connected to the 
HPLC system through PTFE tubes. During the heating phase of the elution 
process, the column is vertically put in the water bath at 60 °C 
(Erlenmeyer's flask, on the right). ............................................................ 146 

Figure 3–13. Dependence of the yield of the product on UV irradiation time (1 
min in graph A and 2 min in graph B), amount of CTA and amount of 
iniferter. The bars at zero correspond to the boundaries of the system 
(scarlet red zone), i.e. experiments in which a monolith was obtained inside 
the column during polymerisation. ........................................................... 148 

Figure 3–14. Visual assessment of the presence of a white monolith inside the 
packed glass column. The inset is a magnified view of the column in 
correspondence of the end of the monolithic layer. ................................. 149 

Figure 3–15. Presence of the white polymeric monolith on the inner wall of the 
glass column after unpacking. ................................................................. 150 

Figure 3–16. Dependence of the yield of the product on monomer concentration 
(% w/v of the monomer-solvent mixture) (UV irradiation time: 2 min; 0.087 g 
iniferter; 0.02 g CTA). At 140.0% monomer concentration the reaction could 
not be performed due to high column pressure. ...................................... 151 

Figure 3–17. DLS size distribution of melamine MIP NPs produced in optimum 
conditions. ............................................................................................... 152 

Figure 3–18. SEM image of the melamine MIP NPs produced in optimum 
conditions. The scale bar is 500 nm. ....................................................... 152 

Figure 3–19. Schematic diagram showing the mode of operation of the 
automated solid-phase MIP NPs photoreactor. Typical operational 
parameters using melamine as the immobilised target are: operation time: 
3 h per cycle; yield of high-affinity fraction: 6.6 ± 0.65 mg per cycle; column 
capacity: 23.5 g derivatised glass beads (solid phase). .......................... 156 

Figure 3–20. Picture of the automated solid-phase MIP NPs photoreactor. ... 157 

Figure 3–21. Control graphic-interface of the HEL's proprietary software WinISO 
for the automatic solid-phase MIP NPs photoreactor. ............................. 157 

Figure 3–22. Schematic representation of the solid-phase synthesis of MIP NPs 
in the automatic photoreactor. A detailed description is reported in the main 
text. ......................................................................................................... 160 

Figure 3–23. Influence of the irradiation time on the yield and size of 
synthesised MIP NPs. Error bars represent SD (n ≥ 7). .......................... 163 

Figure 3–24. Synthetic protocol for the immobilisation of template on the gold 
surface of BIAcore sensor chips for use in SPR analysis of MIP NPs. .... 164 



xvi 

Figure 3–25. Influence of the size of the MIP NPs on their affinity (apparent 
dissociation constant) as determined by SPR. Dry size, measured by 
SEM/TEM, and size in ACN (in square brackets) measured by DLS. Error 
bars represent SD (n ≥ 3). ....................................................................... 166 

Figure 3–26. SEM image (left, scale bar: 500 nm) and TEM image (right, scale 
bar: 50 nm) of the 60 nm diameter MIP NPs. .......................................... 166 

Figure 3–27. SPR sensograms (BIAcore 3000) showing time-dependent binding 
of 60 nm melamine MIP NPs onto BIAcore sensor chips bearing the 
specific (melamine) and non-specific (DA) molecules. The solution of 
melamine MIP NPs at a concentration of 330 nM was sonicated for 30 min 
and used as stock to prepare 5 further 2-fold dilutions (from 1/2 to 1/32). 
Injections were made in order of increasing concentration, using PBS buffer 
0.01 M pH 7.4 as mobile phase. The sensorgrams show specific binding 
and target selectivity. .............................................................................. 167 

Figure 3–28. Structure of the antibiotic vancomycin. ...................................... 170 

Figure 3–29. Monomers used to prepare MIP NPs for vancomycin and for the 
peptide sequence. ................................................................................... 171 

Figure 3–30. SPR sensogram (BIAcore 3000) showing time-dependent binding 
of peptide MIP NPs onto BIAcore sensor chips bearing the template. The 
solution of peptide MIP NPs at a concentration of 1094 nM was sonicated 
for 30 min and used as stock to prepare 5 further 2-fold dilutions (from 1/2 
to 1/32). Injections were made in order of increasing concentration, using 
PBS buffer 0.01 M pH 7.4 as mobile phase. The sensorgram shows affinity 
for the specific target. .............................................................................. 172 

Figure 3–31. SPR sensogram (BIAcore 3000) showing time-dependent binding 
of vancomycin MIP NPs onto BIAcore sensor chips bearing the template. 
The solution of vancomycin MIP NPs at a concentration of 135 nM was 
sonicated for 30 min and used as stock to prepare 5 further 2-fold dilutions 
(from 1/2 to 1/32). Injections were made in order of increasing 
concentration, using PBS buffer 0.01 M pH 7.4 as mobile phase. The 
sensorgram shows affinity for the specific target. .................................... 173 

Figure 3–32. DLS size distribution of peptide MIP NPs (red) and vancomycin 
MIP NPs (blue) in ACN, produced with the automatic solid-phase 
photoreactor. ........................................................................................... 174 

Figure 4–1. Synthetic protocol for the immobilisation of template on the glass 
beads surface for use in chemical reactor. .............................................. 178 

Figure 4–2. Reaction scheme of the BCA Protein Assay. .............................. 179 

Figure 4–3. The automatic reactor setup developed and used for the synthesis 
of protein-imprinted MIP NPs on solid phase. Typical operational 
parameters using proteins as the immobilised targets are: operation time: 4 
h per cycle; yield of high-affinity fraction: 8.2 ± 0.5 mg per cycle with 60 g of 
derivatised glass beads (solid phase). .................................................... 181 



xvii 

Figure 4–4. Control graphic-interface of the HEL's proprietary software WinISO 
for the automatic solid-phase MIP NPs chemical reactor. ....................... 182 

Figure 4–5. Schematic representation of the solid-phase synthesis and 
purification of the high-affinity MIP NPs exploiting the different interaction 
strength at different temperatures. The monomer mixture is injected onto 
the column reactor with the immobilised template and polymerisation is 
initiated by APS and TEMED. The low-affinity MIP NPs, as well as 
unreacted monomers, are washed out at a relatively low temperature. The 
temperature is then increased and high-affinity MIP NPs are eluted from 
the solid phase for collection. .................................................................. 184 

Figure 4–6. Effect of the amount of template-derivatised glass beads on MIP 
NPs yield and size. Yield is expressed as % of mass of NPs produced per 
mass of monomers. The template used was trypsin. Error bars represent 
SD (n ≥ 3). ............................................................................................... 186 

Figure 4–7. Typical sample images of MIP NPs made for proteins: a) SEM 
image of pepsin A MIP NPs (scale bar: 1 µm); b) TEM image of pepsin A 
MIP NPs (scale bar: 500 nm). ................................................................. 189 

Figure 4–8. Synthetic protocol of the last step for the immobilisation of protein 
templates on the gold surface of BIAcore sensor chips for use in SPR 
analysis of MIP NPs. ............................................................................... 190 

Figure 4–9. SPR sensorgrams (BIAcore 3000) showing time-dependent binding 
of increasing concentrations of: (a) trypsin MIP NPs; (b) pepsin A MIP NPs; 
(c) α-amylase MIP NPs onto BIAcore sensor chips bearing each of the 
templates tested. Cross-reactivity has been assessed by injecting MIP NPs 
onto surfaces bearing the proteins which were not used in the imprinting. 
Solutions of trypsin, pepsin A and α-amylase MIP NPs at a concentration of 
0.4 nM were sonicated for 30 min and used as stocks to prepare 6 further 
10-fold dilutions (from 1/10 to 1/107). Injections were made in order of 
increasing concentration, using PBS buffer 0.01 M pH 7.4 as mobile phase. 
The sensorgrams show affinity and selectivity for the specific targets. ... 192 

 



xviii 

List of tables 

Table 1-1. Comparison of properties of bulk MIPs and MIP NPs. .................... 31 

Table 2-1. Polymerisation conditions tested during the feasibility study of the 
automatic synthesis system for the production of MIP NPs..................... 116 

Table 3-1. Elemental analysis of 75 μm bare, APTMS-derivatised and 
melamine-derivatised glass beads. ......................................................... 133 

Table 3-2. Static water contact angle measurements for surface-modified 
BIAcore SPR sensor chips (n = 3)........................................................... 165 

Table 4-1. Hydrodynamic diameter and polydispersity index (PDI) of 
synthesised MIP NPs (n ≥ 5). .................................................................. 188 

Table 5-1. Comparison of the properties of antibodies and MIP NPs. ............ 197 

 

 



xix 

List of equations 

Equation 2-1 ................................................................................................... 119 

 

 

 

 



xx 

List of abbreviations 

Symbols 

°C Celsius degree 

α Separation factor 

c Centi (10-2) 

cm Critical monomer concentration 

cps Counts per second, fluorescence 

d Diameter 

Da Dalton, mass 

eV Electron volt, energy 

g Gravitational acceleration (9.81 m/s2) 

g Gram, mass 

h Hour, time 

k Kilo (103) 

kcat Turnover number (M-1 s-1) 

IF Imprinting factor 

λ Wavelength (nm) 

λem Emission wavelength (nm) 

λex Excitation wavelength (nm) 

L Litre, volume 

KA Association constant (L/mol) 

KD Dissociation constant (mol/L) 

µ Micro (10-6) 

M Molar (mol/L), concentration 

m Milli (10-3) 

m Metre, length 

min Minute, time 

mol Mole, amount 

Mn Number-average molecular weight 

Mw Weight-average molecular weight 

n Nano (10-9) 

NA Avogadro’s number (6.023 × 1023) 

π Pi (3.14) 



xxi 

p Pico (10-12) 

Qmax Maximum number of binding sites (mol/g) 

ρ Density (mg/mL or g/cm3) 

r Radius 

rpm Revolutions per minute 

s Second, time 

V Volt, electric potential 

W Watt, power 

Abbreviations 

2,4-D 2,4-dichlorophenoxyacetic acid 

2-VPy 2-vinylpyridine 

4-VPy 4-vinylpyridine 

5-FU 5-fluorouracil 

AAc Acrylic acid 

AAm Acrylamide 

ABCN 1,1'-azobis-(cyclohexanecarbonitrile) 

ACN Acetonitrile 

ACPA 4,4'-azobis-(4-cyanopentanoic acid) 

AFM Atomic force microscopy 

AIBN 2,2'-azobis-(2-isobutyronitrile) 

AMBN 2,2'-azo(2-methylbutyronitrile) 

APBA 3-aminophenylboronic acid 

APS Ammonium persulphate 

APTMS 3-aminopropyltrimethyloxysilane 

APTES 3-aminopropyltriethoxysilane 

ATRP Atom transfer radical polymerisation 

AQ Antraquinone 

BCA Bicinchonic acid 

BFA L,D-Boc-Phenylalanine anilid 

BIS N,N'-methylenebisacrylamide 

CaCl2 Calcium chloride 

CAFF Caffeine 

CEC Capillary electro-chromatography 



xxii 

CHO Chinese hamster ovary 

CMMC 7-carboxymethoxy-4-methylcoumarin 

CNT(s) Carbon nanotube(s) 

CTA Chain transfer agent 

CV Cyclic voltammetry 

DA Desisopropylatrazine 

DARPin(s) Designed ankyrin repeat protein(s) 

DEDTC Sodium diethyldithiocarbamate trihydrate 

DEHP (2-ethylhexyl)phthalate 

DLS Dynamic light scattering 

DMET 2,4-diamino-6-(methacryloyloxy)-ethyl-1,3,5-triazine 

DMF Dimethylformamide 

DMSO Dimethylsulfoxide 

DNA Desossiribonucleic acid 

DPA D-Phenylalanine 

DVB Divinylbenzene 

E2 17β-estradiol 

EBP Engineered binding proteins 

E. coli Escherichia coli 

EGDMA Ethylene glycol dimethacrylate 

ELISA Enzyme-linked immunosorbent assay 

EtOH Ethanol 

FITC Fluorescein isothiocyanate 

GA Glutaraldehyde 

GPC Gel permeation chromatography 

HCOOH Formic acid 

HEK Human embryonic kidney 

HEMA 2-hydroxyethyl methacrylate 

HF Hydrofluoric acid 

HPLC High-perfomance liquid chromatography 

IgG(s) Immunoglobulin(s) G 

Iniferter Initiator, transfer agent, terminator 

IVD In vitro diagnostics 



xxiii 

LPA L-Phenylalanine 

LR 2,4,6-trimethylbenzoylphenyl-phosphinic acid ethyl ester 

MAA Methacrylic acid 

mAbs Monoclonal antibodies 

MAm Methacrylamide 

ME β-mercaptoethanol 

MeOH Methanol 

MIP(s) Molecularly Imprinted Polymer(s) 

MMA Methylmethacrylate 

MQD Methacryloyl quinidine 

MQN Methacryloyl quinine 

MSM Metsulfuron-methyl 

NaOH Sodium hydroxide 

NIPAm N-isopropylacrylamide 

NH4HF2 Ammonium hydrogen fluoride 

NIP(s) Non Imprinted Polymer(s) 

NMP N-methyl-2-pyrrolidone 

NMR Nuclear magnetic resonance 

NOM(s) Nanoparticles-on-microsphere(s) 

NP(s) Nanoparticle(s) 

OPA o-phtalaldehyde 

PAD Pulsed amperometric detection 

PAMAM Poly(amido amine) 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDA Polydopamine 

PDI Polydispersity index 

PEG Poly(ethylene glycol) 

PET Poly(ethylene terephthalate) 

PGMA-co-EGDMA Poly(glycidyl methacrylate-co-ethylene glycol 
dimethacrylate) 

PMMA-co-AAc Poly(methyl methacrylate-co-acrylic acid) 

POC Point-of-care 

PS Polystyrene 



xxiv 

PSP Pseudostationary phase 

PTFE Polytetrafluoroethylene 

PVA Poly(vinyl alcohol) 

PyS Pyridinium 12-(4-
vinylbenzyloxycarbonyl)dodecanesulphate 

QCM Quartz crystal microbalance 

RAFT Reversible addition–fragmentation chain transfer 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

SAM Self-assembled monolayer 

SD Standard deviation 

SDS Sodium dodecyl sulphate 

SELEX Systemic evolution of ligands by exponential enrichment 

SEM Scanning electron microscopy 

SERS Surface-enhanced Raman spectroscopy 

SMO Sulfamethoxazole 

SPE Solid-phase extraction 

SPR Surface plasmon resonance 

St Styrene 

TBAm N-tert-butylacrylamide 

TBS TRIS buffered saline 

TEM Transmission electron microscopy 

TEMED N,N,N',N'-tetramethylenethylenediamine 

TEOS Tetraethoxysilane 

TFMAA 2-(trifluoromethyl)acrylic acid 

THO Theophylline 

TNT 2,4,6-trinitrotoluene 

TRIM Trimethylolpropane trimethacrylate 

TyS Pyridinium 12-
(cholesteryloxycarbonyloxy)dodecanesulphate 

UV Ultraviolet 

V-70 2,2'-azobis(2,4-dimethylvaleronitrile) 

 



 

1 

1 Introduction 

1.1 Antibodies: “all that glisters is not gold” 

Molecular recognition processes are playing an important role in various 

applications such as diagnostics, chemical catalysis, separation systems, and 

drug delivery. Natural molecular recognition systems, like enzymes, antibodies 

and receptors, are widely used in the fundamental study of molecular 

recognition phenomena as well as in the development of practical therapeutic or 

diagnostic systems (Yan, 2002).  

Antibodies largely dominate in most of the commercial applications. To provide 

an example, the global monoclonal antibodies (mAbs) market in 2009 was 

evaluated as $40 Billion, with $30 Billion related to therapeutic applications 

(RNCOS, 2011; Biocompare Surveys and Reports, 2009). The global in vitro 

diagnostics (IVD) market, another application area for antibodies and enzymes, 

has been estimated in 2010 as $44 Billion and is expected to reach $52 Billion 

by the end of 2013. Among the key constituents of the IVD market, the point-of-

care (POC) segment holds the major part, followed by immunochemistry and 

molecular diagnostics (RNCOS, 2011; Espicom, 2011). 

Antibodies are proteins which the immune system synthesises to detect and 

neutralise “non-self” substances (e.g., bacteria, viruses, and toxins), also known 

as antigens (Hoshino and Shea, 2011). The most commonly used 

immunoglobulins G (IgGs) possess a Y-shape resulting from the arrangement 

of two longer (“heavy”) chains and two shorter (“light”) chains, all stabilised by 

disulfide bonds, with an average molecular weight of 150–160 kDa. The lower 

part of the “Y” is referred to as the Fc region, and its role is to confer stability 

and drive the interactions with other components of the immune system (e.g., 

effector mechanisms). The upper part of the “Y” is known as the Fab region and 

contains the variable domains at which the antigen recognition and binding take 

place (Ruigrok et al., 2011). The antibody–antigen interaction is driven by a 

precise combination of electrostatic, hydrogen bonding, van der Waals, and/or 
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hydrophobic forces, which results in extremely strong affinity (Hoshino and 

Shea, 2011). 

Antibodies are undoubtedly highly specific and selective for several kinds of 

chemical and biological moieties and can be produced on a large scale 

(Lavignac et al., 2004). Unfortunately, they also show some disadvantages. 

Their industrial production relies on the cultivation of modified mammalian cell 

lines [e.g., those from Chinese-hamster ovary (CHO) and human embryonic 

kidney (HEK)-2930]. The manufacturing process is logistically difficult and 

expensive (Ansell, 2004; Shukla and Thömmes, 2010; Ruigrok et al., 2011). 

Furthermore, antibody production against small molecules requires chemical 

coupling between haptens and a carrier protein in order to generate an immune 

response in animals (Lavignac et al., 2004) and their purification involves 

several steps (especially for applications in therapy), which contribute towards 

the manufacturing costs up to 50-80% of the total (Roque et al., 2004; 

Steinmeyer and McCormick, 2008). In addition, antibodies also can give rise to 

immunogenic adverse reactions, in relation with their production method 

(Hansel et al., 2010). Moreover, it is difficult to generate antibodies against 

molecules such as immunosuppressant drugs or toxins, because these 

chemicals act directly on the immune system and prevent its natural response 

(Haupt et al., 1998a; Urraca et al., 2007). Additionally, being proteins, the 

characteristic problems related to their usage are low stability and poor 

performance in organic solvents, at low and high pH and at high temperature 

(Szenczi et al., 2006; Piletsky and Turner, 2006; Ahrer et al., 2006). All these 

factors may alter their recognition properties, thus shortening their shelf-life 

(Hock et al., 1999; Omersel et al., 2010). Finally, biomolecules may be difficult 

to immobilise on suitable supports for use in assays and sensors (Butler, 2000; 

Piletsky and Turner, 2006), which is an extremely important feature for 

developing diagnostic devices.  

For all these reasons, other affinity tools, such as engineered binding proteins, 

aptamers, and molecularly imprinted polymers (MIPs), have gained interest as 

potential antibodies substitutes. Their attractive features include enhanced 
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stability, efficient selection and screening procedures, and cost-effective 

production methods. In the following sections a brief overview of engineered 

binding proteins (EBPs) and aptamers is provided, before discussing more 

thoroughly multiple aspects of the Molecular Imprinting approach to produce a 

new generation of affinity tools suitable for different applications such as 

diagnostics, therapeutics and drug delivery, as well as separation and catalysis. 

1.1.1 Engineered binding proteins (EBPs) 

As already stated above, the recognition ability of antibodies relies on a limited 

variable region structurally embedded in a more conserved framework. In the 

same way, proteins capable of binding to a certain target might be selected 

from a random library, characterised by a constant structural peptide framework 

and randomised variable binding regions. However, a large amount of peptide 

derivatives have to be generated and screened to successfully design and 

engineer a binding protein scaffold. This can be achieved by performing high-

throughput screening based on molecular display technology, which establishes 

a physical link between phenotype and genotype. The most commonly used 

display technology is phage display in which genes encoding proteins of interest 

are fused to a gene that encodes a phage coat protein. In this way, phage 

particles can be made to display peptides of interest on their surface (Paschke, 

2006; Sidhu and Koide, 2007). Escherichia coli (E. coli) cells are infected with 

the members of the phage library to produce many copies of each of the library 

members displaying the variant proteins. This library is screened against the 

immobilised target molecule and the phages with appropriate specificity and 

affinity are separated and collected in a process known as biopanning. The 

collected high-affinity phages are used to re-infect E. coli cells and the process 

is repeated iteratively (usually three to five rounds) using more stringent 

washing steps. Eventually, monoclonal phages are selected, and the high-

affinity protein scaffolds identified by sequencing the DNA of the corresponding 

phage (Ruigrok et al., 2011). Scaffolds that have good stability are required to 

have a sufficiently long shelf-life, which is important from a commercial point of 

view. Among the successful examples of engineered proteins there are 
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fibronectin type III domain, which has a certain degree of similarity with the 

structure of an immunoglobulin G variable domain, and designed ankyrin repeat 

proteins (DARPins) (Hey et al., 2005; Binz et al., 2005; Grönwall and Ståhl, 

2009). However, developing scaffolds for a certain application is not easy, in 

particular due to the unpredictable, costly, and time-consuming nature of the 

screening procedure, hence the commercialisation of these products is still at 

early stage (Ruigrok et al., 2011). 

1.1.2 Aptamers 

Nucleic acids ligands (aptamers) can also be exploited as affinity tools. The 

term “aptamer” derives from the Latin word “aptus”, which means “fitting”, and 

the Greek word “meros”, which means “particle”. Aptamers are short (15–60 

nucleotides) single-stranded nucleic acid (DNA or RNA) oligomers with a 

specific and complex three-dimensional shape, which allows them to recognise 

a variety of targets ranging from small organic molecules to large protein 

complexes (Stoltenburg et al., 2007; Ruigrok et al., 2011). Aptamers can exhibit 

affinities down to the nanomolar range, but in contrast to mAbs they are 

produced entirely in vitro through the generation of combinatorial libraries (1014–

1015 synthetic nucleic acid sequences) and the subsequent stringent selection 

process with the immobilised target. The selected sequences are amplified by 

polymerase chain reaction (PCR) and used in several selection/amplification 

cycles (6–20) with increasingly stringent selection conditions in a process called 

SELEX (systemic evolution of ligands by exponential enrichment). Eventually, 

these aptamers are cloned, sequenced, and tested for the intended application 

(Stoltenburg et al., 2007; Ruigrok et al., 2011). 

Aptamers with molecular weight 5–20 kDa are smaller than antibodies and can 

be used in high-density arrays. Furthermore, thanks to their robustness, 

aptamers can be chemically modified by, e.g., through biotinylation or by 

addition of fluorescent labels. They are exploited in ELISA assays or as 

detection elements in biosensors. Target binding may significantly alter the 

structure of an aptamer in a reversible way and such an event could be 

exploited to detect molecules of interest, either fluorescently or 
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electrochemically. Moreover, unlike antibodies, aptamers are easy to 

regenerate, either at high temperature or high salt concentration which can be 

used in affinity purification of proteins. Another important advantage is that 

aptamers can be generated for virtually any target, even those for which 

antibodies cannot easily be raised (such as toxins or poorly immunogenic 

molecules). The SELEX process can also be performed under conditions similar 

to those used in the assay for which the aptamer has been developed. In this 

way it can be ensured that the oligonucleotide will retain its structure and 

recognition ability in the final process for which it was intended (Danielsson, 

2007). 

SELEX processes are, however, quite lengthy and labour intensive (Mairal et 

al., 2008). In addition attempts to automate SELEX procedure have so far 

proved to be unsuccessful. Moreover, despite their claimed robustness, 

aptamers are prone to degradation. Furthermore, commercialisation of aptamer 

technology has been hindered by exclusive ownership of IP by a small number 

of companies (Missailidis and Hardy, 2009; Ruigrok et al., 2011). 

1.1.3 Molecularly Imprinted Polymers (MIPs) 

Among the alternatives to natural recognition systems, Molecularly Imprinted 

Polymers (MIPs) have shown high promise. The increasing amount of papers 

and patents published per annum in this area, which has almost tripled over the 

last twenty years (Figure 1–1) (Whitcombe, 2012), reflects the potential and 

broad interest in these materials. 
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Figure 1–1. Number of published papers and filed patents in the area of 

molecularly imprinted polymers for the period 1992-2012 (Whitcombe, 2012). 

According to the authors of a recent review (Alexander et al., 2006), the first 

example of molecular imprinting dates back to 1931, in which Polyakov 

investigated polymerisation process of sodium silicate in water after the addition 

of ammonium carbonate. He noticed that if the polymerisation process was 

carried out in presence of an additive (i.e. benzene and toluene), the silica 

particles produced were able to rebind this additive more than its structural 

analogues, thus exhibiting a sort of “memory” effect. 

However, 40 years more had to pass before the same approach was 

successfully applied to organic polymers, when Wulff and Sahran (1972) were 

able to resolve a racemate of glyceric acid by polymerising the 

vinylphenylboronic ester of the D-enantiomer with divinylbenzene (DVB) and 

subsequently hydrolysing the ester bonds. During the rebinding process, then, 

D-glyceric acid reformed a covalent boronate ester bond more than its L-

enantiomer, which in turn got more concentrated in solution. 

Molecular imprinting, then, has been recently defined as “the construction of 

ligand selective recognition sites in synthetic polymers where a template (atom, 
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ion, molecule, complex or a molecular, ionic or macromolecular assembly, 

including micro-organisms and viruses) is employed in order to facilitate 

recognition site formation during the covalent assembly of the bulk phase by a 

polymerisation or polycondensation process, with subsequent removal of some 

or all of the template being necessary for recognition to occur in the spaces 

vacated by the templating species” (Alexander et al., 2006). The process is 

schematically represented in Figure 1–2. 

 

Figure 1–2. Schematic representation molecular imprinting. The template and the 

functional monomers may interact by: (A) reversible covalent bonds, (B) 

covalently attached polymerisable binding groups, subsequently activated for 

non-covalent interaction by template cleavage, (C) electrostatic interactions, (D) 

hydrophobic or van der Waals interactions, (E) metal-ion mediated interactions. 

Each one of these is established with complementary functional groups or 

structural elements of the template (a-e), respectively (adapted from Alexander et 

al., 2006). 

As the figure shows, the synthesis of molecularly imprinted polymers involves 

one or more types of monomer, which possess functional groups capable of 

interacting with the target molecule (template), either covalently or through non-

covalent interactions. The reaction mixture includes also a cross-linker agent 

and a porogenic solvent and, after mixing, it is cured, usually thermally or by UV 

light, thus leading to highly cross-linked polymers with a porous structure. After 
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this step, the template is usually removed from the imprinted polymer by 

washing with solvent or through a combination of chemical treatments and 

washing steps, leaving behind binding sites that are both spatially and 

chemically complementary to the template molecules, and capable of rebinding 

either the template or its structural analogues (Alexander et al., 2006, Mayes 

and Whitcombe, 2005). 

In contrast to biomolecules, MIPs are usually stable at low and high pHs, 

pressures and temperatures (< 150 °C) (Svenson and Nicholls, 2001; Piletsky 

and Turner, 2006), even if their recognition performance is maximal when the 

operational parameters used in the rebinding step (i.e. solvent, temperature) 

match the ones used in the polymerisation process, as it has been 

demonstrated by Piletsky et al. in a series of comprehensive papers regarding 

the influence of the polymerisation conditions on the performance of MIPs 

(2002, 2004, 2005, 2006, 2009). In addition, MIPs are able to retain their 

recognition ability for longer periods of time than natural antibodies or receptors 

(Svenson and Nicholls, 2001). Moreover, they are less expensive than 

biomolecules and easier to obtain, and they can be used in organic solvents. 

Finally, they can be synthesised for diverse classes of substances, such as ions 

(Esen et al., 2009; Shamsipur et al., 2010), nucleic acids (Ogiso et al., 2007; 

Diltemiz et al., 2008), proteins (Hoshino et al., 2008; Hoshino et al., 2010b; 

Zeng et al., 2010), drugs (Puoci et al., 2004; Ciardelli et al., 2004; Cunliffe et al., 

2005; Cirillo et al., 2009) and even yeast cells and erythrocytes (Jenik et al., 

2009). 

However, MIPs are also burdened with some limitations, mainly connected with 

the methods of their production and the final format of the polymer. For 

example, they generally exhibit a better performance in organic rather than in 

aqueous medium, though molecular imprinting in aqueous conditions is 

feasible. Moreover, they also suffer from lack of a standard common procedure 

for their preparation (Piletsky and Turner, 2006).  
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1.2 Molecular imprinting approaches 

In terms of imprinting strategies, three main kinds of approaches can be 

distinguished. They are all classified according to the nature of the bonds 

established between the template and the functional monomers, and in 

particular they are indicated as covalent, semi-covalent and non-covalent 

approaches. 

1.2.1 Covalent imprinting 

Covalent imprinting approach was pioneered by Wulff and colleagues (1972, 

1982) and it involves the covalent modification of the template, which is 

chemically bound to the functional monomers in a reversible way. This 

modification is then followed by the polymerisation step, during which the 

template is still covalently connected to the monomer, now polymerised. Finally, 

the template is cleaved through a mild chemical reaction (e.g. hydrolysis or 

reduction), leaving behind the binding cavities. This approach shows very 

important advantages, such as that thanks to the strong interaction which 

occurs between the template and the functional monomer, it usually leads to 

binding sites that are quite homogeneous (Umpleby II et al., 2000). However, 

both the removal of the chemically bound template and its subsequent rebinding 

are not simple, because they involve the disruption and the re-establishment of 

covalent interactions, which in turn make the kinetics of these processes really 

slow. This latter thing has to be considered, especially in the case of separation 

applications, in which the presence of a fast rebinding kinetics is important (Zhu 

et al., 2010). Moreover, the prior derivatisation of the template is not easy with 

this approach, and is dependent on the chemical nature and the available 

functional groups of the template (Ye and Mosbach, 2002). 

1.2.2 Semi-covalent imprinting 

A variation of the above-mentioned method has been developed by Sellergren 

and Andersson (1990), and consists in carrying out the imprinting step using the 

polymerisation of the functional monomer bound to the template (usually 

through an ester bond), while the rebinding process takes place only due to 
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non-covalent interactions. The template is removed by hydrolysis, allowing the 

subsequent rebinding step to take place through the establishment of mainly 

hydrogen and electrostatic bonds. Unfortunately, this process is not as 

advantageous as it appears, because the template hydrolysis may not be easy 

to perform due to steric hindrance. Moreover, the same steric aspects might 

also interfere with the non-covalent interactions in the rebinding step (Mayes 

and Whitcombe, 2005). In order to overcome these problems the cleavage of 

the template has been carried out through the reduction of the covalent bond 

using LiAlH4. With this technique, for example, a hydroxyl group was obtained 

instead of a carboxylic one (Byström et al., 1993; Ikegami et al., 2004). 

However, although this cleavage procedure is very strong, it may not allow all 

the bound template molecules to be removed, even after several reduction 

steps. This might reduce the amount of binding sites available for the 

subsequent interactions between the target molecule and the MIP. In a totally 

different and clever way, Whitcombe and co-workers (1995) connected the 

functional monomer to the template using a linker group, which was “sacrificed” 

during the removal of the template. In this first example the carbonyl group of a 

carbonate ester was used as a spacer group in the imprinting of cholesterol. A 

4-vinylphenyl carbonate ester of cholesterol was exploited as a template 

covalently bound to the monomer; the template can in turn be easily cleaved by 

hydrolysis, releasing CO2. After this removal, recognition sites were obtained, 

which bore a phenolic group able to establish hydrogen bonds with the 

template. The role of this spacer is to connect the template and the monomer, 

but also it helps to avoid the steric hindrance which might take place during the 

rebinding step. This results in the creation of binding sites with higher and 

narrower homogeneous affinity, and hence with recognition characteristics more 

similar to true biological receptors (Umpleby II et al., 2000). 

1.2.3 Non-covalent imprinting 

The third approach is the so-called non-covalent imprinting, which was 

pioneered by Mosbach and co-workers (1981, 1984, 1990). It exploits several 

kinds of non-covalent bonds between the template and the monomers, such as 
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hydrogen, electrostatic and also hydrophobic interactions like van der Waals 

forces. Since all these types of interactions are not really strong, a way to obtain 

more stable template-functional monomer complexes is to use an excess of 

monomers. Unfortunately this choice is far from being free from drawbacks, 

since it often leads to a broad distribution of heterogeneous binding sites 

(Umpleby II et al., 2000; Haupt, 2003). The coupling of this approach with semi-

covalent imprinting has been recently found to increase the imprinting effect of 

poorly functionalised molecules (e.g., paracetamol) (Rosengren-Holmberg et 

al., 2009). However, the prior chemical derivatisation of the template still 

remains a drawback of these combined approaches. Despite the stated 

disadvantages, thanks to its simplicity and the faster template removal and 

rebinding steps, the non-covalent imprinting approach is probably the most 

widely exploited method to prepare MIPs. It relies on large variety of functional 

monomers which are commercially available, as well as many others which are 

tailor-made for specific templates (Alexander et al., 2006).  
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1.3 Different formats for different applications 

1.3.1 Bulk monoliths 

MIPs have usually been, and sometimes still are, prepared as monoliths, 

exploiting 'bulk' polymerisation processes of vinyl monomers. Since this process 

produces insoluble bulk materials, they require grinding and adequate sieving to 

obtain a fraction of particles with a narrow range of sizes (typically 5-50 μm), 

before being useful for various applications. Even if this procedure is simple and 

convenient, it presents some limitations. First of all, the milling process is time-

consuming and it causes a loss of a significant amount of material (up to 80% 

w/w) (Brüggemann et al., 2000; Pérez-Moral and Mayes, 2006b). Moreover, it 

might alter or damage the correct orientation of the imprinted sites (Kandimalla 

and Ju, 2004). In addition, these latter are mostly located in the inner part of the 

porous matrix. This reduces their accessibility, giving rise to poor mass transfer 

and slow recognition kinetics. Furthermore, bulk polymerisation is unsuitable for 

extensive industrial application because of the poor heat dispersal. Free radical 

addition polymerisation reactions are indeed exothermic and the bulk format 

prevents efficient heat exchange with the exterior. This can lead to rapid 

increases in the temperature of the polymerisation mixture up to values at which 

most solvents may boil, with a consequent increase in pressure within the 

reaction mixture. This may adversely affect MIP properties and can lead to 

explosions for anything other than small-scale reactions (Piletsky et al., 2002; 

Mayes and Whitcombe, 2005; Piletska et al., 2009). Furthermore, after the 

sieving step, irregularly shaped particles are obtained. This complicates their 

applications, such as chromatography or solid-phase extraction (SPE) (Mayes 

and Whitcombe, 2005; Alexander et al., 2006). These latter techniques indeed 

require micron size spherical beads in order to pursue an efficient packing into 

columns or cartridges. Monoliths however could be useful for coating of sensor 

devices, where the format of thin films is quite suitable. Nevertheless, 

integration of bulk MIPs with sensors and assay protocols has not been very 

straightforward so far (Mayes and Whitcombe, 2005; Alexander et al., 2006; 

Piletsky and Turner, 2006). However, probably the main drawback of bulk 

polymerisation is that it is often difficult to obtain a complete removal of the 
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template from the bulk MIPs. This in turn could result in the potential for leakage 

of residual template from the matrix, thus interfering with the intended 

application, particularly when used for trace analysis (Lorenzo et al., 2011).  

To optimise the performance of imprinted polymers, then, it is important to 

develop a synthetic method which allows them to be obtained in a predefined 

structural format, appropriate to enhance their properties and make them more 

suitable with respect to different applications. Several methods have already 

been developed in order to obtain MIPs under these various formats, like films 

and membranes, micro- and nanoparticles. Nevertheless, it is not easy to fit the 

synthetic conditions with the operational parameters required to obtain an 

adequate imprinting (Pérez-Moral and Mayes, 2006b). 

1.3.2 Films and membranes 

Two of the most important formats which have been investigated to obtain 

MIPs, especially when they are meant to be used as responsive layers in 

sensing devices, are films and membranes. Some of the synthetic approaches 

tested for these applications include polymerisation in moulds or layers, in situ 

electropolymerisation, and grafting "from" or "to" a support. 

Polymerisation in moulds or layers 

The first method described has the advantage of obtaining MIP layers and 

membranes characterised by uniform and very reproducible thickness (Haupt et 

al., 1999; Cao et al., 2001; Percival et al., 2001; Liu et al., 2006).  

It has been used very recently by Sergeyeva and co-workers (2010), who 

synthesised MIP membranes able to mimic the catalytic properties of the 

natural enzyme tyrosinase, in order to fabricate biosensors for phenols 

detection. The membranes were obtained through a thermo-initiated radical 

polymerisation carried out between two glass slides, used as a mould. MIP 

membranes exhibited good catalytic activity and selectivity towards catechol, as 

well as long-term stability. However, the porosity of the material had to be 

improved by adding a high molecular weight poly(ethylene glycol) (PEG), and 

the sensitivity was lower than biosensors based on the natural enzyme.  
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By using the same fabrication method, Wu and his group (2009) created an 

optical sensor for formaldehyde based on the changes of optical reflective 

intensity of the MIP film when illuminated by a laser beam in presence of the 

template. For this reason, the MIP film was directly photopolymerised onto a 

mirror surface after deposition of the polymerisation mixture and coverage with 

a cover slip. In this way, a MIP layer about 1 mm thick was obtained, which 

allowed to achieve good sensitivity and selectivity for the imprinted template. 

Moreover, the sensor gave consistent responses up to six consecutive tests, 

but again the porosity of the MIP layer had to be carefully adjusted to guarantee 

a good level of sensitivity. 

In situ electropolymerisation 

A very elegant method useful for preparing MIP layers is in situ 

electropolymerisation. It is a very simple and versatile procedure which allows 

preparing MIP layers with reproducible characteristics (e.g., thickness and 

porosity) and does not require any initiator or post-processing of the material 

except from the template removal (Suriyanarayanan et al., 2012). However, 

only a certain type of redox monomers can be used for this kind of process, 

which might reduce the possibility to achieve a successful imprinting.  

Aghaei and colleagues (2010) exploited the electropolymerisation of 2-

mercaptobenzimidazole through cyclic voltammetry (CV) on a gold electrode to 

fabricate a biosensor for cholesterol based on capacitive detection. To avoid 

undesirable redox reactions, which might interfere with capacitive 

measurements, the film-coated electrodes had to be treated with n-

dodecanethiol. Alkanethiols are indeed used to fill the defects of the membrane 

after electropolymerisation, thus increasing the insulating properties of the 

material. The biosensor produced showed good sensitivity, selectivity and 

stability, compared to other sensors for cholesterol. Furthermore, as expected, 

this polymerisation method allowed the authors to obtain a very good control 

over the film thickness, thus improving the sensitivity of the sensor. 

Another good example of MIP films obtained by electropolymerisation has been 

provided by Choong et al. (2009), who performed the electropolymerisation of 
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caffeine (CAFF)-imprinted polypyrrole thin nanofilms on arrays composed by 

vertically aligned carbon nanotubes (CNTs) with different densities, which acted 

as high-surface 3D-scaffolds for the MIP deposition. The sensors produced 

were analysed using pulsed amperometric detection (PAD) and showed an 

improved binding capacity with signal up to 15-fold higher than the sensor 

coated with a conventional MIP thin film. However, despite the increased 

sensitivity brought by the high-surface CNTs array, the PAD procedure had to 

be carefully optimised to avoid the formation of dendrites on the tips of CNTs 

during the measurements. 

Grafting approaches 

Since it is not easy to generate high-affinity binding sites while controlling the 

porosity and other features of the materials, a recent trend is to separate the 

imprinting process from the generation of a material (membrane, particle or 

sensor) characterised by a precise morphology (Rückert et al., 2002). This last 

aim can be achieved by grafting MIPs “to” or “from” a support. In particular the 

"grafting to" approach involves the reaction between the end-functional groups 

of the polymer chains in solution and suitable functional groups immobilised on 

the support (usually vinylic ones). Unfortunately, this method usually does not 

allow depositing a sufficient amount of polymer onto the surface of the support. 

Moreover, at the same time uncontrolled bulk polymerisation might take place in 

solution. The "grafting from" technique, instead, requires that the polymerisation 

process starts from the support using an initiator immobilised on its surface. 

This usually results in layers characterised by higher amounts of grafted 

polymer chains, and in turn higher capacity (Sulitzky et al., 2002; Tan and Tong, 

2007; Minko, 2008). 

An example of this last approach has been given by Piacham et al. (2005), who 

coated the Au electrode on a quartz crystal microbalance (QCM) with a polymer 

imprinted for S-propranolol. The surface of the electrode had been previously 

treated with 11-mercaptoundecanoic acid, to provide derivatisable carboxylic 

groups onto the surface of the sensor. These groups were then activated to 

attach an azo-initiator, 2,2'-azobis(2-amidinopropane) hydrochloride. The MIP 
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film was then grafted by UV photopolymerisation technique, carried out at 4 °C 

for 2-4 h (Figure 1–3). 

 

Figure 1–3. Preparation of MIP films using a surface bound photoinitiator 

(reproduced from Piacham et al., 2005). 

The low temperature has been chosen in order to avoid the growing polymer 

detaching from the sensor surface during the polymerisation reaction. In this 

way the authors obtained various types of MIP/QCM sensors with ultrathin 

layers of 30 nm. The sensors exhibited good specific rebinding and response 

time (< 1 min), thanks to the high binding-site accessibility. However, the 

detection limit needed to be improved, together with the selectivity of the 

system, which showed somehow similar response to the template and its 

analogues. Moreover, even with this kind of approach, gelation and 

polymerisation processes still might take place in solution (Sulitzky et al., 2002).  

This is why new kinds of initiators, known as iniferters, are now used. This 

composite term stands for initiator, transfer agent and terminator. Initiators of 

this type decompose reversibly to a pair of free radicals; one of which is the 

active propagating species, while the second is much less reactive (“dormant”), 

acting as a transfer agent and terminating the growing polymer chains in 

solution, reforming a new initiating species in the process (Otsu et al., 1989; 
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Rückert et al., 2002). This results in a better control over the polymerisation 

process, as well as conferring the possibility to reinitiate the polymerisation 

process again by simply applying the energy source, which is UV light in most 

of the cases (Figure 1–4). 

 

Figure 1–4. Scheme of a general iniferter polymerisation mechanism. 

On this basis, Lakshmi and co-workers (2009) have prepared an 

electrochemical sensor for catechols by exploiting iniferters in a grafting "from" 

approach. First they created a layer of an electrically conducting polymer on the 

gold electrode surface, through electropolymerisation of N-phenylethylene 

diamine methacrylamide. This monomer bears two orthogonal polymerisable 

functional groups, an aniline and a methacrylamide function, both independently 

polymerisable. After this step, the methacrylamide groups on the 

electropolymerised layer were activated through an iniferter, N,N-

diethyldithiocarbamic acid benzyl ester. Finally the MIP components, chosen to 

obtain a mimic of the enzyme tyrosinase, were grafted (Figure 1–5). In this way 

authors created a catalytic sensor which was able to selectively oxidise catechol 

and dopamine, even in the presence of an excess of interfering compounds, 

and with a very good limit of detection (228 nM). However, the number of CV 
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cycles required to electropolymerise the film had to be tailored to obtain a layer 

with thickness and morphology suitable to exhibit a good sensitivity. 

 

Figure 1–5. Scheme of the preparation of the catalytic MIP-hybrid electrodes 

imprinted with catechol (adapted from Lakshmi et al., 2009). 

1.3.3 Microparticles 

As already stated above, molecularly imprinted materials are usually obtained 

as monoliths, which are then crushed and sieved to obtain MIP particles, but 

these often have irregular shapes and a broad size distribution. Thus, if they are 

meant to be used, for example, as stationary phases for chromatography 

processes, they provide very low column efficiency, together with a 

heterogeneous distribution of the affinity of binding sites. That is why the 

attention of researchers has shifted towards obtaining regular-shaped imprinted 

polymer particles, both of micro- and nano- sizes (Ye and Mosbach, 2002). 

Unfortunately, not all the methods which are usually exploited for obtaining 

monodisperse polymeric particles are suitable for MIPs technology. Aspects 

such as the cross-linking degree required to obtain stable high-affinity imprints, 

or the need for very strong interactions between the template and the 
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monomers, narrow the choice of the synthetic methods which can be used to 

obtain MIP particles (Sulitzky et al., 2002; Pérez-Moral and Mayes, 2006b). 

Micron-sized MIP particles are particularly useful for chromatography and SPE. 

In these applications, precise flow properties are required to enhance the 

separation step of the various analytes, whether they are intended for 

pharmaceutical, biomedical or environmental applications. To date, these kinds 

of particles have usually been prepared by suspension polymerisation in water, 

liquid perfluorocarbon or mineral oil, and also by seed polymerisation and 

dispersion/precipitation polymerisation. Furthermore, two-steps procedures 

have also been used, which involve the grafting of MIP layers on the surfaces of 

silica or organic porous materials (grafting imprinting), or filling the pores of 

silica moulds with MIPs and then dissolving the moulds (hierarchical imprinting, 

discussed in section 1.6 - Immobilised templates: a new imprinting strategy). 

Suspension polymerisation 

The first approach, suspension polymerisation, is known as one of the best 

methods for preparing micron-sized polymer beads, and it is usually exploited to 

obtain particles with diameter ranging from 3 μm to 20 μm. It can be carried out 

in both aqueous and non-aqueous medium. The polymerisation process 

proceeds in droplets made of polymerisation mixture which are suspended in a 

continuous phase. This often requires the help of a suspension stabiliser 

(surfactant) (Pérez-Moral and Mayes, 2006b). 

Kotrotsiu and co-workers (2009) have prepared MIP microparticles imprinted 

with Boc-L-tryptophan using a water suspension polymerisation method. They 

used several different polymerisation mixtures to investigate the effects of 

parameters such as the amount of porogen, or different concentrations and 

types of monomers and cross-linkers on the size, morphology and binding 

properties of the imprinted particles. Authors have used methacrylic acid (MAA) 

and methacrylamide (MAm) as functional monomers and ethylene glycol 

dimethacrylate (EGDMA) and trimethylolpropane trimethacrylate (TRIM) as 

cross-linkers, while chloroform was chosen as porogen and 2,2'-azobis-(2-

isobutyronitrile) (AIBN) as initiator. The particles obtained exhibited good 
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recognition properties, especially in terms of selectivity, but their affinity strictly 

depended on the polarity of the solvent. In fact, a highly polar solvent could 

compete with the template molecule for the binding sites, reducing in this way 

the specific interactions between MIP functional groups and template 

molecules. The same thing might happen during the polymerisation step, in 

which the presence of the polar aqueous continuous phase of the suspension 

may interfere with the non-covalent interactions between templates and 

functional monomers, leading to less homogeneous and less specific binding 

sites. Moreover, depending on operational parameters such as the amount of 

stabiliser, the size of the obtained particles might be difficult to control, leading 

to quite polydisperse MIP microparticles. 

To overcome these problems, other suspension polymerisation techniques 

which exploit different continuous phases have been developed. One method 

has been described by Mayes and Mosbach (1996) and involves the use of 

liquid perfluorocarbons as dispersing phase. These are mostly immiscible with 

many organic compounds, thus they represent a good inert phase for 

suspension polymerisation. To stabilise the droplets, a special perfluorinated 

polymeric surfactant has been synthesised and used to obtain microparticles 

with optimal size characteristics. The imprinting mixture, composed of MAA, 

EGDMA or TRIM, AIBN, porogen solvent (chloroform, toluene or acetone) and 

Boc-L-Phenylalanine as template, was polymerised using UV irradiation at 366 

nm under constant stirring. In this way, the authors were able to obtain MIP 

microparticles the diameter of which ranged from 5 to 50 μm, depending on the 

amount of surfactant and the type of porogen. The particles produced 

performed well in HPLC enantiomeric resolution of the template, especially the 

5 μm microparticles in which TRIM was used as cross-linker. These ones 

exhibited an excellent resolution even at high flow rates. In addition, the 

fabrication procedure was quite rapid (3 h), hence the operational parameters 

could be easily adjusted. All the produced microparticles exhibited however 

more surface defects than usually observed for beads produced by water 

suspension methods, and only the microparticles obtained using higher 

amounts of surfactant were narrowly polydisperse. Moreover it is worth noting 
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that, even if they can be reused after distillation, liquid perfluorocarbons are 

quite expensive substances. 

Two years later (1998), the same authors investigated the possibility of 

incorporating iron oxide in the preparation, in order to produce magnetic MIP 

microparticles. Strong magnetic properties indeed enable the particles to be 

easily recovered with magnetic separation. They also allow MIPs to be applied 

in magnetic immunoassays. Moreover, magnetic cores allow the particles to be 

easily concentrated and redispersed after the external magnetic field is 

removed (Wang et al., 2009). Authors prepared then magnetic microparticles 

imprinted for S-propranolol using this liquid perfluorocarbon suspension 

approach. However, UV polymerisation could not be used because of the strong 

adsorption given by the magnetic material, therefore a thermal polymerisation 

was performed in toluene at 50 °C or 60 °C, with 2,2'-azobis(2,4-

dimethylvaleronitrile) (V-70) as initiator. MIP magnetic microparticles exhibited 

an average diameter of 9.4 μm, specific binding for the template and low cross-

reactivity levels also in aqueous medium. Moreover, they could be successfully 

applied in a radioligand binding assay, providing fast magnetic separation. 

However, the size distribution of the microparticles was quite broad, and no 

more than 5% w/w of iron oxide could be incorporated in their bulk, thus 

resulting in long magnetic separation times. Eventually, MIP microparticles 

prepared without magnetic properties did not exhibit any or slightly low specific 

binding, even if a direct comparison with magnetic MIP microparticles could not 

be made because the cross-linking degree and the polymerisation temperatures 

for the two products were different. 

Suspension polymerisation in liquid perfluorocarbon has also been adapted to 

achieve the fast synthesis of MIP microparticles directly inside SPE cartridges 

through UV irradiation (Figure 1–6). 
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Figure 1–6. A: experimental setup used in the "high-throughput" synthesis. B: 

scheme of the synthetic process: 1, loading of the polymerisation mixture into an 

SPE cartridge; 2, homogenisation of the components to create the 

microdroplets; 3, argon flow to remove oxygen; 4, UV polymerisation for 30 min, 

with low argon flow to maintain mixing; 5, vacuum applied to remove the solvent 

and traces of monomers (the solvent can be collected and distilled to be reused); 

6 and 7, washing steps to remove template, surfactant and other possible 

impurities (adapted from Pérez-Moral and Mayes, 2006a). 
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Using this "high-throughput" approach, in a 3-days period, Pérez-Moral and 

Mayes (2006a) were able to synthesise a total of 12 kinds of MIP microparticles 

for each of the template tested, propranolol and morphine. They used in fact 

four different monomers, i.e. MAA, acrylic acid (AAc), 2-hydroxyethyl 

methacrylate (HEMA) and 2-vinylpyridine (2-VPy), and three different ratios of 

cross-linker (EGDMA) to functional monomer. MIP microparticles exhibited 

morphologies similar to the ones prepared with the usual suspension approach, 

and similar rebinding performances. Moreover, the synthetic setup used could 

have been easily automated. However, it is worth noting that MIP microparticles 

synthesised using this system exhibited a broader size distribution than 

conventional ones, probably because of coalescence phenomena that 

happened in the SPE cartridge during the synthesis. 

Another suspension polymerisation method exploits mineral oil (usually paraffin) 

as continuous phase for the formation of polymerisation mixture droplets. It has 

been developed by Kempe and Kempe (2004), who directly mixed the 

polymerisation mixture with the oil using a special homogenising equipment. In 

this work the polymerisation mixture was made of MAA, TRIM, 2,2'-azobis(2-

methylpropionitrile) as initiator, acetonitrile (ACN) as porogen and propranolol 

as template and did not contain any surfactant. The droplets were 

photopolymerised into beads overnight. The fact that no surfactants or other 

stabilisers are needed for obtaining the droplets is really advantageous but, 

unfortunately, this method does not allow use of porogen solvents miscible with 

mineral oils, thus restricting the choice to ACN and a few others. Furthermore 

the microparticles obtained, despite their regular spherical shape, were not 

monodisperse and had to be sieved to collect the fraction of interest (between 

25 and 50 μm in diameter).  

Wang and co-workers (2006) used an original polymerisation approach in 

silicone oil instead of paraffin to prepare magnetic MIP microparticles imprinted 

with 2,4-dichlorophenoxyacetic acid (2,4-D). Their choice was driven by the fact 

that this suspension media is sufficiently viscous to allow the dispersion of 

polymerisation mixture droplets without using any kind of surfactant, stabiliser or 
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stirring that might interfere with the template-monomer interactions. They 

prepared then magnetic nanoparticles coated with 

methacryloxypropyltrimethoxysilane and dispersed them with the template and 

4-vinylpyridine (4-VPy) as functional monomer and EGDMA as cross-linker. UV 

initiation could not be used because of the opacity of the magnetic material, 

neither thermal polymerisation because it would have lowered the viscosity of 

the silicone oil, thus resulting in agglomeration of the MIP product. Authors 

decided then to use a benzoylperoxide/dimethylaniline redox initiation system, 

which allowed the polymerisation process to be performed at 10 °C. Even if the 

size distribution of the particles was not homogeneous, they had a regular 

spherical shape (20.1 μm in diameter). Moreover, they exhibited good magnetic 

properties, and 2-fold more affinity than control microparticles. Nevertheless, 

the preparation procedure was quite long and required several synthetic and 

purification steps, thus making it impractical for being performed manually. 

Both the previous methods (i.e. in liquid perfluorocarbon and in mineral oil) have 

been recently improved by Zourob and co-workers (2006), who developed a 

spiral microflowreactor (Figure 1–7a) through which they obtained nearly 

monodisperse microparticles with an average diameter of 25 μm (coefficient of 

variation < 2%). The immiscible phase contained liquid perfluorocarbons (Figure 

1–7b) or mineral oil (Figure 1–7c). For comparison purposes, they also 

synthesised microparticles using conventional methods, and the results showed 

that the binding constants of the MIP particles obtained through the micro-

reactor were comparable with those of the particles obtained through 

conventional methods. However, the size distribution of the latter, as expected, 

was broader, with coefficients of variation equal to 12% and 67%, respectively 

for the particles prepared using liquid perfluorocarbons (Figure 1–7d) or mineral 

oil (Figure 1–7e). 
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Figure 1–7. Scheme of the spiral microflow-reactor developed by Zourob et al. (a) 

and scanning electron microscopy (SEM) images of the beads produced using 

the microreactor in liquid perfluorocarbon (b) and in oil (c) and the beads 

produced using conventional suspension polymerisation in liquid 

perfluorocarbon (d) and in mineral oil (e) (adapted from Zourob et al., 2006). 
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Seed polymerisation 

Another method used for preparing MIP microspheres is the so-called seed 

polymerisation which has been pioneered by Hosoya et al. (1994). It involves 

the use of particles of a uniform size (mainly made by polystyrene, PS), which 

act like seeds for the formation of final MIP microparticles. It is usually a multi-

step swelling and polymerisation procedure, which implies that the seed 

particles undergo a first swelling step by micro-emulsion droplets of an 

activating solvent and, after that, other swelling steps by the polymerisation 

mixture. At the end of the whole swelling process the polymerisation step takes 

place thermally or through UV irradiation, resulting in nearly monodisperse MIP 

microparticles. 

Haginaka and colleagues (2008) have recently exploited this method to obtain 

MIP microparticles imprinted for D-clorphenamine, using different functional 

monomers (MAA or 2-(trifluoromethyl)acrylic acid, TFMAA) and different 

porogens (toluene, phenylacetonitrile, benzylacetonitrile or chloroform), with the 

aim of studying their influence on the morphology and the recognition properties 

of the MIP particles. The polymerisation process has been thermally performed 

after three swelling steps using PS seed particles. The MIP microparticles 

obtained were nearly monodisperse, with an average diameter of 5-6 μm, and 

they exhibited good porosity and recognition properties. However, the 

procedure involves the presence of water, which might interfere with the non-

covalent interactions between the template and the functional monomers 

(Haginaka et al., 2008). Moreover, since several synthetic steps are required to 

produce MIP microspheres with this method, other easier and more 

straightforward approaches have been usually preferred. 

Dispersion/precipitation polymerisation 

It is hard actually to distinguish between dispersion and precipitation. The 

former process in fact implies that primary particles undergo a swelling step in 

the polymerisation mixture and then the polymerisation takes place inside and 

on the surface of the same particles, giving rise to spherical-shaped polymer 

beads. Precipitation polymerisation instead does not include this swelling step, 
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while the polymerisation process happens directly in the medium (Van Herk and 

Monteiro, 2003). This polymerisation method is usually exploited to obtain MIP 

sub-micron particles, so it will be fully described in the following section (1.3.4 - 

Nanoparticles and nanogels: true “artificial antibodies”?). However, by properly 

adjusting the operational parameters, it can be successfully used also to obtain 

MIP microparticles. 

Puoci and co-workers (2004) exploited this polymerisation approach to produce 

MIP microparticles as drug delivery systems, imprinted for the pro-drug 

sulfasalazine. They performed a thermo-initiated precipitation polymerisation 

using a mixture of MAA, EGDMA and AIBN in ACN/toluene. In this way they 

obtained MIP and non-imprinted (NIP) microparticles with a diameter of 4 μm 

and 2 μm, respectively. This shows that the presence of template may influence 

the particle growth. But the most important result has been obtained after 

having loaded the particles with the drug and tested their release in simulated 

gastric fluid for 2 h, and in intestinal fluid for the following 18 h (Figure 1–8). 

Authors observed that, while the NIP particles had completed the release after 5 

h, a controlled release of the drug was achieved for the MIP particles, which 

slowly released sulfasalazine over 18 h thanks to their imprinting effect. 

 

Figure 1–8. Release profile of sulfasalazine from MIP and NIP microparticles in 

simulated gastric fluid (pH 1, from 0 to 2 h) and in simulated intestinal fluid (pH 

6.8, from 2 to 20 h) (adapted from Puoci et al., 2004). 
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Liu and co-workers (2010) reported the preparation of three different kinds of 

MIP microparticles, all imprinted for cinchonidine, using precipitation 

polymerisation. The first two kinds of MIPs were prepared by thermal 

polymerisation of a mixture of template, MAA, DVB, HEMA and AIBN in 

ACN/toluene (3:1, v/v). The third type of microparticles has been obtained 

through two subsequent precipitation polymerisations, both thermo-initiated. 

The first one resulted in the creation of a DVB core, while the second step gave 

rise to an imprinted shell made of MAA and DVB. The MIP microparticles 

obtained through all the three methods had diameters smaller than 5 μm (3.7 ± 

0.07 μm, 2.8 ± 0.11 μm and 4.1 ± 0.14 μm) with very good size distributions. 

Scatchard analysis demonstrated that the binding sites were also 

homogeneous. Moreover, in a chromatographic evaluation of the synthesised 

MIP particles, core-shell MIP microparticles had a much higher 

stereoseparation factor for cinchonidine than MIP microparticles obtained 

through other methods and tested under the same conditions. Also in this case, 

the results showed that the presence of the template could influence particle 

growth, together with the type of functional monomers chosen for the imprinting 

procedure. 

Grafting approaches 

A convenient method for preparing MIP microparticles is grafting a thin MIP 

layer on the surface of prefabricated microparticles. As starting material, beads 

made of silica or organic polymers are usually utilised. This allows the 

polymerisation conditions to be adjusted in order to achieve a better imprinting 

performance, rather than focusing on the best synthetic parameters for 

obtaining a defined spherical format (Rückert et al., 2002). Moreover, this core-

shell strategy results in faster mass-transfer kinetics, which constitute a main 

issue of bulk polymers. 

The extensive work made by Sellergren and his group has led to several 

developments in this approach (2002). These authors first studied the grafting 

of MIP layers on silica microparticles with different size and porosity by using 

the covalent and non-covalent immobilisation of the azo-initiator 4,4'-azobis(4-
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cyanopentanoic acid) (ACPA). They subsequently tested the performance of the 

MIP products in HPLC for the enantiomeric resolution of the template, L,D-

Phenylalanine (LPA or DPA). In case of covalent immobilisation, silica surface 

had to be previously derivatised with amino or epoxy reactive groups to which 

attach the initiator. The polymerisation mixture was composed by MAA and 

EGDMA in toluene or dichloromethane and, after the addition of the modified 

silica particles, the grafting of the MIP layer has been achieved through UV 

irradiation. Results showed that the grafting rate was directly proportional to the 

density of immobilised initiator, and that the amount of grafted MIP was 

dependent also on the reaction time. However, too high initiator density values 

or reaction times caused a difficult control over the polymerisation, thus 

resulting in the blockage of the material pores and the loss of any imprinting 

effect. Moreover, gelation and aggregation phenomena occurred in solution. On 

the other hand, when coated with a 0.8 nm thick MIP film, the most porous silica 

used (surface area: 380 m2/g) could achieve a separation factor (α) of 6.3 for 

the template racemate with very high efficiency. Non-covalently derivatised 

supports, as expected, exhibited lower performance and a low quality of the 

grafted MIP layers. 

Zheng and colleagues (2009) have reported the preparation of MIP microbeads 

with the same approach, but using PS beads as seed particles. MIP 

microparticles have been obtained in three steps. The first one involved a 

single-step swelling and polymerisation of PS cores to obtain poly(glycidyl 

methacrylate-co-ethylene glycol dimethacrylate) (PGMA-co-EGDMA) 

microparticles bearing a surface epoxy group. In the second step, ACPA was 

bound to the surface of PGMA-co-EGDMA particles. Finally, the third and last 

step involved the grafting of a MIP layer imprinted for S-naproxen onto the 

PGMA-co-EGDMA particles. The polymerisation reaction involved 2-VPy and 

EGDMA with chloroform as porogen, and it was thermally initiated. As 

expected, the amount of initiator bound on the initial particles, together with the 

grafting reaction time, controlled the mass of grafted MIP. This parameter, in 

turn, had an important role in defining the morphology and the surface 

properties of the MIP microparticles, hence their binding properties. In fact, the 
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highest recognition capabilities were obtained when the MIP content was 

16.75% (w/w), with an α of 2.39 between S- and R-naproxen. This grafting 

approach then, even if it is time-consuming and not synthetically 

straightforward, can lead to MIP microparticles in which porosity, morphology 

and sizes of the beads can be finely controlled by varying the operational 

parameters. 

Nevertheless, to avoid oligomerisation and gelation phenomena in solution, 

typical of the use of azo-initiators, Rückert and co-workers (2002) tested also 

the grafting of MIPs on microparticles using immobilised iniferters (see 1.3.2 - 

Films and membranes). They immobilised then sodium diethyldithiocarbamate 

trihydrate (DEDTC) on the surface of chloromethylated PS resin beads or 

chloromethyl-modified silica beads. Then a MIP layer composed by MAA and 

EGDMA in toluene was grafted using UV polymerisation, in presence of the 

templates, LDA or DPA. Also in this case, the mass of grafted MIP could be 

adjusted by modifying the amount of surface-bound iniferter. However, in the 

case of PS particles, no imprinting effect was observed. This has been ascribed 

to the marked decrease in porosity after the grafting of the MIP. Silica particles, 

instead, exhibited a good imprinting effect after grafting, with an α of 2.4 

between the two enantiomers. In addition, they did not exhibit any remarkable 

change of porosity due to the MIP layer deposit. Moreover, 1H-NMR studies 

performed on the polymerisation solution after grafting did not show any trace of 

oligomers, thus confirming that the grafting reaction happened mostly at the 

surface of iniferter-derivatised microparticles. 

1.3.4 Nanoparticles and nanogels: true “artificial antibodies”? 

Nanotechnologies are gaining importance in several areas like pharmaceutics, 

diagnostics and many others. It is not surprising then that many research 

groups have started developing MIPs in this format. In contrast to bulk 

monoliths, MIP nanoparticles (MIP NPs) show improved characteristics, which 

are summarised in Table 1-1. 
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Table 1-1. Comparison of properties of bulk MIPs and MIP NPs. 

Bulk MIPs MIP NPs 

Broad distribution of binding sites with 
varying affinity, high level of non-specific 
binding 

Similar affinity for all binding sites, 1-2 per 
particle, 2-3 orders of magnitude difference 
between specific and non-specific binding 

Affinity in the range 10
-9

-10
-3

 M depending 
on template 

Affinity in the range 10
-10

-10
-6

 M, possibility of 
using affinity chromatography for the 
fractionation of high-performance NPs 

Insoluble material, difficult to process 
Soluble NPs which can be treated as 
standard reagents 

Substantial batch-to-batch variability 
Better control of manufacturing process, using 
chemical reactors 

Possibility of template leaking from the 
polymer 

Traces of template can be relatively easily 
removed using dialysis or affinity separation  

Limited prospects for in vivo applications 
MIP NPs with biological activity can be 
produced 

MIP NPs have higher surface-to-volume ratio and greater total active surface 

area per weight unit of polymer. Imprinted cavities are more easily accessible to 

the templates, which improves binding kinetics and facilitates the template 

removal process, thus enhancing their overall performance (Tokonami et al., 

2009). This is clarified in the scheme elaborated by Gao et al. (2007) (Figure 1–

9). 
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Figure 1–9. Schematic representation of the distribution of effective binding sites 

in the imprinted bulk materials and MIP NPs after the template removal step 

(adapted from Gao et al., 2007). 

According to this model, for a bulk imprinted polymer with a size of d, only the 

templates which are within x nanometres from the surface may be removed, 

then leaving behind accessible binding sites. If this is the case, the effective 

volume of imprinted polymer which is able to rebind target analytes is d3 – (d – 

2x)3. If the imprinted materials are prepared as NPs with a scale of 2x nm, all 

the sites may be completely accessible and effective for removing and then for 

rebinding the template molecules. 

Additionally, this format fits better with surface-imprinting strategies (Tan and 

Tong, 2007) allowing in vitro assays to be designed using probes conjugated 

with enzymes, which are usually too bulky to fit into recognition cavities. 

Moreover, since NPs easily remain in suspension/solution, it is easier to dose 

them precisely, e.g. for use in ELISA-like tests (Haupt et al., 1998b; Ge and 

Turner, 2009). 
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MIP NPs have been synthesised as enzyme substitutes for catalysing chemical 

reactions (Wulff et al., 2006; Carboni et al., 2008), as drug delivery systems for 

better controlling and targeting the release of drugs (Ciardelli et al., 2004; Cirillo 

et al., 2009), as antibody substitutes in binding assays (Ansell, 2004; Lavignac 

et al., 2004; Yoshimatsu et al., 2007; Ge and Turner, 2009) and for creating 

stationary phases in capillary electrochromatography (CEC) (Schweitz et al., 

2000; Spégel et al., 2003; Nilsson et al., 2007; Priego-Capote et al., 2008), as 

well as constituents in developing sensors (Piletsky and Turner, 2008; Reimhult 

et al., 2008; Schirhagl et al., 2010). 

Unfortunately, it is not easy to obtain MIP NPs, and several methods have been 

investigated in recent years. The most popular include precipitation 

polymerisation and mini- and micro-emulsion polymerisation. Other approaches 

include core-shell emulsion polymerisation or grafting techniques. Not least, the 

new living radical polymerisation techniques like ATRP and RAFT are starting to 

find their use in the production of MIP NPs. Each one of these procedures has 

its own pros and cons, which will become clearer through the discussion of the 

various examples in the literature detailed in the following section 1.4 - MIP 

nanoparticles: manufacturing. 

The applications of MIP NPs, instead will be discussed in detail in section 1.5 - 

MIP nanoparticles: applications in an attempt to highlight the advantages and 

disadvantages arising from the use of MIP NPs for each different purpose. 
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1.4 MIP nanoparticles: manufacturing 

1.4.1 Precipitation polymerisation 

The precipitation polymerisation approach for obtaining MIP NPs was first 

developed in 1999 by Ye and co-workers. This methodology involves formation 

of the imprinted NPs in an excess of solvent (monomer represents only 2% of 

the total volume of the reaction mixture). In this system the growing polymer 

chains do not coagulate but continue to capture oligomers and monomers from 

solution, and then precipitate when they reach a size which makes them 

insoluble in the reaction medium. In this way there is no need to use a stabiliser 

to prevent coalescence of the particles, which is very good for non-covalent 

imprinting approaches. Furthermore, the technique is easy and less time-

consuming than other procedures, offering good yields. Ye and co-workers 

fabricated NPs imprinted for 17β-estradiol (E2) and theophylline (THO), using 

both UV and thermal polymerisation methods. MAA was used as functional 

monomer, TRIM as cross-linker, and the reaction was carried out in ACN with 

AIBN as initiator. In this way they obtained nearly monodisperse MIP NPs with 

an average diameter of 200 nm for the THO imprinted nanospheres, and 300 

nm for the E2 imprinted ones. Synthesised MIP NPs showed uniform spherical 

morphologies (Figure 1–10), and were obtained with good yield (85% w/w). 
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Figure 1–10. SEM images of MIP NPs imprinted for E2 at 7500× of magnification 

(a) and 30000× of magnification (b). The right hand bar corresponds to 1 μm 

(adapted from Ye et al., 1999). 

Concerning the adsorption properties, MIP NPs were able to bind 3 to 4-fold 

more template than NIP control particles, and had low cross-reactivity for the 

template analogues (< 1%). The binding equilibrium for MIP NPs could be 

achieved in 4 h. 

Later (2000), the same authors evaluated the effect of the cross-linking density 

and of the amount of template on the binding properties of the MIP NPs. They 

found that, thanks to its high intrinsic cross-linking efficiency, TRIM performed 

better than EGDMA for obtaining MIP NPs with good binding properties, 

especially when it was used at a molar ratio 1:2.3 with respect to the functional 

monomer. Moreover, they noticed an increase in the number of non-specific 

interactions, together with a slight reduction of the amount of binding sites, 

when the MIP NPs had been prepared with a reduced amount of template. 

The same group one year later exploited this precipitation method to synthesise 

MIP NPs which incorporated a UV fluorescent scintillation monomer, 4-

hydroxymethyl-2,5-diphenyloxazole acrylate, for sensing purposes. This 

monomer self-distributed together with MAA through the whole MIP NPs matrix. 

In order to produce the particles, TRIM has been used as cross-linker and AIBN 

as initiator. The precipitation polymerisation process was carried out in toluene, 
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and the response was evaluated in the same solvent. The diameter of the 

imprinted particles ranged from 600 nm to 1 μm, so they were not really 

monodisperse, but they showed about 2-fold higher response for the template 

than non-imprinted ones. Nevertheless, the size and morphology of the material 

would definitely need an improvement to achieve a better performance. 

In 2003, Li and his group extensively studied the effects of monomer 

concentration, polymerisation temperature and types and concentrations of 

initiators on the size and uniformity of MIP NPs obtained through precipitation 

polymerisation. Hence, they prepared NPs imprinted for L-2-chloromandelic acid 

in ACN, using acrylamide (AAm) as functional monomer, 1,4-butanediyl 

diacrylate as cross-linker and AIBN or 2,4,6-trimethylbenzoylphenyl-phosphinic 

acid ethyl ester (LR) as initiator. Several polymerisation processes have been 

thermally performed, using various amounts of solvent, reaction temperatures 

and concentrations of initiator (either AIBN or LR). In this way they found that 

decreasing the volume of the solvent (increasing the monomer concentration) 

resulted in larger particle diameters. In fact, they were able to adjust the 

diameter of the MIP NPs from 155 to 509 nm by decreasing the solvent volume 

from 140 to 60 mL. They also found that a low concentration of monomers 

results in particles with more uniform spherical morphology. In particular, the 

particles obtained using 100 mL of solvent had very good uniformity and 

dispersibility (Figure 1–11). 
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Figure 1–11. Spherical MIP NPs obtained through precipitation polymerisation, 

arranged on a glass layer (adapted from Li et al., 2003). 

The particle size also increased by increasing the reaction temperature (Figure 

1–12A). They studied this effect in the temperature range between 50 °C and 

95 °C because lower temperatures were not able to initiate the polymerisation 

process. Too high temperature values strongly interfered with the uniformity of 

the particles. This is probably due to the fact that higher temperatures result in 

faster initiation kinetics, i.e. in higher formation of nuclei. In addition, the 

polymer solubility may increase at higher temperatures. As a consequence, the 

critical polymer chain length may increase, so reducing the number of polymer 

particles. Moreover, the viscosity of the system is reduced by an increase in 

temperature, allowing easier aggregation of the nuclei thanks to the higher 

diffusion rate. The increase in the amount of initiator also resulted in larger 

polymer particles (Figure 1–12B). 
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Figure 1–12. Effect of temperature (A) and of initiator concentration (B) on the 

diameters of spherical MIP NPs obtained by precipitation polymerisation. For the 

(B) graph, (a) is LR and (b) is AIBN (adapted from Li et al., 2003). 

According to the authors, this effect might be explained by considering that an 

increased amount of initiator results in a higher reaction temperature due to 

exothermic nature of the initial phase of the polymerisation reaction. In addition, 

it is worth noting that higher concentration of initiator increases both the creation 

of radicals and the chain termination and decreases the average molecular 

weight of the polymer. In order to analyse the binding characteristics, the 

authors selected the MIP NPs prepared at 70 °C in 100 mL of ACN and with 

AIBN as initiator. The imprinted NPs showed much higher template adsorption 

than the non-imprinted ones. Thanks to the higher specific surface area they 

also showed higher binding capacity and binding rates than MIPs prepared 

under similar conditions by bulk polymerisation. The authors also evaluated the 

binding properties through Scatchard analysis, which revealed two classes of 

binding sites. The dissociation constant (KD) and the maximum number of 

binding sites (Qmax) were evaluated for both classes, and they were equal to 

102.5 × 10-6 M and 75.8 × 10-6 mol/g for the high-affinity binding sites, and 1.7 × 

10-3 M and 222.4 × 10-6 mol/g for the low-affinity ones, respectively. This was 

further confirmed by simulating the interactions between AAm and the template 

through the software 'Hyperchem'. In fact, two molecular models of two types of 

monomer-template complexes have been found. They had different calculated 
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binding energies, which were consistent with the presence of two classes of 

binding sites. 

In a subsequent work (2007), Lai and co-workers produced MIP micro- and 

nanospheres imprinted for (2-ethylhexyl)phthalate (DEHP) for studying the 

effects of the use of ACN or cyclohexane as solvents and EGDMA or TRIM as 

cross-linkers. They also studied the effect of the template on the particles size. 

Synthesised NPs had an average diameter of 450 nm and a very good binding 

capacity. Authors found that matching the solubility of the growing polymer 

chains with that of the porogenic solvent results in larger microparticles, so in 

order to obtain NPs this parameter has to be carefully optimised. Moreover, 

results suggested that also the shape of the reactor might have a role in 

fostering the formation of nano- rather than microparticles. Under the same 

synthetic conditions, the latter were obtained with a round-bottom flask, while 

the former by using a conical flask. Probably, the shape of the reactor could 

influence kinetic parameters such as radial diffusion or local concentration of 

reactants. 

In a later work (2007), Yoshimatsu and co-workers also investigated how to 

control the size of MIP beads synthesised through precipitation polymerisation. 

In particular, they focused on the effect that the amount of cross-linker might 

have on the size and the yield of the beads. They used R,S-propranolol as 

template model, and different polymerisation mixtures composed by MAA as 

functional monomer, TRIM or DVB as cross-linkers and AIBN as initiator. All the 

polymerisation processes were performed in ACN by heating the mixtures at 60 

°C for 24 h. In this way authors found that, since it is a major reaction 

component, the cross-linker has a strong effect both on final size and yield of 

the NPs. In particular, when DVB was used as cross-linker, they obtained MIP 

particles with a low yield, quite polydisperse (0.6 – 3.1 μm). They reduced the 

polydispersity by applying a mild agitation (20 rpm). Using TRIM as cross-linker 

they obtained MIP NPs with diameter 100-300 nm with 90% yield. These 

particles were uniform in size, and were obtained without agitation. By using 

combinations of DVB and TRIM, authors were able to tune the size of the 
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obtained particles. It is worth noting that for the TRIM NPs the presence of the 

template had a strong influence on their size and uniformity. As can be seen in 

Figure 1–13, NIP NPs had a size which was 2-fold larger than imprinted ones, 

both in dry state and after swelling in ACN. This has been explained by 

considering that without the template MAA exists in solution as monomers and 

as hydrogen-bonded dimers. When the template is added, another interaction 

can be established between MAA and propranolol. This might influence the 

polymer growth, resulting in smaller MIP NPs. 

 

Figure 1–13. Particle size distribution of imprinted (a) and non-imprinted (b) 

poly(TRIM-co-MAA) NPs, measured by photon correlation spectroscopy. Inserts 

are SEM images of the same NPs (adapted from Yoshimatsu et al., 2007, 2010). 

All the obtained MIP beads showed high template rebinding in aqueous buffer, 

while rebinding levels for non-imprinted particles were negligible. In addition, all 

the imprinted beads showed low cross-reactivity levels of S-propranolol-

imprinted sites towards the other enantiomer (below 5%). These values are 6 or 

7-fold lower than those obtained for irregular MIP particles prepared by grinding 

and sieving of MIP monoliths. Once again this highlights the advantages gained 

by producing MIPs with specific morphologies and sizes. 

Also Schweitz et al., in 2000, synthesised MIP NPs for propranolol using 

precipitation polymerisation. The synthesis was carried out through UV 

photopolymerisation of MAA, TRIM and AIBN in ACN at -26 °C, to strengthen 

the interactions between the template and the functional monomer. In this way, 
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authors obtained MIP NPs of 200-500 nm in diameter, hence quite 

polydisperse. NIP NPs, on the other hand, had a smaller size (100 nm). These 

results are in contrast with the ones obtained in the works discussed before (Lai 

et al., 2007; Yoshimatsu et al., 2007; Yoshimatsu et al., 2010), in which MIP 

NPs imprinted for propranolol and prepared with the same polymerisation 

mixture have been found to be smaller than correspondent non-imprinted ones. 

Maybe in this case the low polymerisation temperature exhibited an effect over 

the size of the NPs. The details of the application of the MIP NPs produced in 

this work in CEC are discussed in section 1.5.2 - Capillary 

Electrochromatography (CEC). 

Shea and co-workers recently (2008) prepared very small MIP NPs imprinted 

with a peptide, i.e. melittin. They optimised the composition of the precipitation 

polymerisation mixture by creating a small combinatorial library composed by: 

N-isopropylacrylamide (NIPAm, backbone monomer), AAm (hydrogen bonding 

monomer), AAc (negative-charged monomer), N-(3-aminopropyl) 

methacrylamide hydrochloride (positive-charged monomer), N-tert-

butylacrylamide (TBAm, hydrophobic monomer) and N,N'-

methylenebisacrylamide (BIS) as cross-linker. To avoid denaturation of the 

protein, polymerisation processes were carried out without any organic solvent 

or heating. The authors dissolved the monomers in water or ethanol (EtOH) with 

the help of a small amount of sodium dodecyl sulphate (SDS) and performed 

the polymerisation reactions for 15-20 h at 23-25 °C through the addition of 

ammonium persulphate (APS) and N,N,N',N'-tetramethylenethylenediamine 

(TEMED) as initiating system. From all synthesised NPs only MIPs which 

contained at least 40% (mol) TBAm and 5% (mol) AAc were able to 

successfully rebind the peptide. These are important data, considering the 

effect that the presence of water and surfactant may have in a non-covalent 

imprinting process. These NPs were also obtained with good yields (80-90% 

w/w) and uniform diameters of about 54 nm, which is comparable to the size of 

IgM. The KD for the obtained nanoparticles was calculated to be about 25 pM 

and was found comparable to that of natural antibodies for melittin (17 pM). 

Moreover, no or only slight cross-reactivity with other proteins was observed. 
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However, the fact that only 2 out of 13 kinds of MIP NPs synthesised in total 

showed specific binding, once again stresses the importance of the composition 

of the polymerisation mixture for obtaining MIP NPs with good characteristics. 

Moreover, considering that the purification of the product involved a 4-days 

dialysis process, an optimisation of the work-up procedure might be indicated, 

especially for large-scale production purposes. 

Ciardelli et al., in 2004, modified the approach of Ye and colleagues (1999) to 

investigate if the binding capacity of MIP NPs could be modulated by using a 

mixture of MAA as functional monomer and methyl methacrylate (MMA) as 

"non-functional" monomer. Working on this assumption, they synthesised 

several kinds of MIP NPs for THO with different MMA/MAA ratios. In 

accordance with the previous results obtained by Ye and co-workers, they 

found that MIP NPs had smaller diameters than non-imprinted ones. Moreover, 

they noticed that diameter of the particles decreased from 231 to 202 nm by 

increasing the amount of MAA, while the rebinding capacity for the template 

was enhanced. This is an evidence of the stronger template-MAA interactions 

taking place into the NPs. More detail on the drug release properties of the MIP 

NPs produced in this work are discussed in section 1.5.1 - Drug delivery. 

Aiming to industrial large-scale production, Yang and his group (2009) applied a 

distillation-precipitation polymerisation technique for the production of MIP NPs. 

This method required the precipitation polymerisation process to be performed 

under refluxing conditions. In this way they synthesised NPs imprinted for R,S-

propranolol using MAA as functional monomer, BIS or TRIM as cross-linkers 

and AIBN as initiator. The polymerisation mixtures in ACN were placed in a 

proper setup and heated up to 115 °C to ensure reflux conditions. For the last 

1.5 h, half of the solvent volume was distilled out. The whole process lasted for 

3 h, which is a very short time if compared to a conventional precipitation 

polymerisation procedure. In addition, the reflux of the solvent ensured efficient 

mixing conditions for the reaction mixture. Interestingly, the distillation did not 

have any effect on the particles size. In fact, all the synthesised imprinted 

particles exhibited diameters below 300 nm, reasonably monodisperse. The 
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same method allowed grafting a hydrophilic AAm shell to MIP NPs in a one-pot 

reaction, without need to isolate the cores. However, MIP NPs prepared using 

this distillation-precipitation polymerisation method exhibited a reduction in 

binding affinity and selectivity, especially in aqueous solvents, as compared to 

MIP NPs prepared by conventional precipitation polymerisation. This has been 

ascribed to the high temperature at which the polymerisation process has been 

carried out, which probably interferes with template-monomer interactions 

during the imprinting process (Piletsky et al., 2002; Piletsky et al., 2004; 

Mijangos et al., 2006). Nevertheless, the short reaction time and the suitable 

setup of the synthesis suggest that this method, if well optimised, might be 

suitable for large-scale production of MIP NPs. 

Another attempt to modify the precipitation polymerisation approach, making it 

more clean and applicable for industrial large-scale production, has been 

attempted by Ye et al. (2006), who carried out the synthesis of MIP NPs for S-

propranolol in supercritical CO2. Authors performed the thermal polymerisation 

of MAA and DVB as functional monomer and cross-linker, with AIBN as initiator, 

in presence or in absence of a small volume of ACN as modifier. MIP NPs of 

about 100 nm in diameter were obtained, and the addition of ACN did not have 

any effect on the particle morphology. However, it resulted in an increased non-

specific binding, while MIP NPs synthesised only in supercritical CO2 exhibited 

a specific binding up to 81%. This approach seems quite advantageous 

because it is easy to scale-up and it reduces the production of organic solvent 

waste and environmental pollution, since supercritical CO2 is not toxic. 

Moreover, this fluid does not interfere with non-covalent interactions between 

template and functional monomers, which makes it suitable for MIP synthesis. 

However, supercritical CO2 is poorly miscible with most of the acrylic cross-

linkers used to prepare MIPs, such as EGDMA and TRIM, as well as with highly 

polar monomers. This strongly limits the choice of functionalities that can be 

introduced in the imprinting mixture, and might hinder the imprinting process. 

From the above, it appears that precipitation polymerisation is a straightforward 

approach for obtaining MIP NPs; it is quite fast and easy to perform. However, 
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the fact that high dilutions are required in order to avoid the cross-linking of the 

NPs represents a limit to this technique, because high amounts of solvents and 

templates are required. These are not always very cheap or commercially 

available. Dilution also has negative impact on the strength of the template-

monomers interactions. Moreover, this technique requires the characteristics 

and the composition of the imprinting mixture to be carefully matched with the 

operating conditions of the system (type of initiation, temperature, shape of the 

reactor) in order to better control size, shape and imprinting properties of the 

product. 

1.4.2 Mini- and micro-emulsion polymerisation 

Another method which has been used to obtain MIP NPs is mini-emulsion 

polymerisation. Its application to the MIP area is quite recent, and it was first 

performed by Vaihinger et al. (2002), who exploited it to obtain NPs imprinted 

with L- or D-Boc-Phenylalanine anilid (BFA). Emulsion polymerisation is usually 

carried out by producing an O/W emulsion in which monomer, cross-linker and 

template are in the disperse phase, while the initiator is in the continuous 

aqueous phase. The polymerisation process then is carried out in micelles 

composed of the polymerisation mixture and stabilised by a proper surfactant. 

However, this usually gives rise to large microparticles. Mini-emulsion 

polymerisation is very similar, but it additionally involves a high-shear 

homogenisation step and the use of a co-surfactant for obtaining particles in the 

range 50-500 nm (Van Herk and Monteiro, 2003). The co-stabiliser is needed to 

suppress the diffusion in the aqueous continuous phase and to increase the 

stability and the homogeneity of the system. In this way it may be possible to 

obtain nearly full conversion of the nanodroplets into nanoparticles. In the work 

of Vaihinger and colleagues, the oil phase was composed of MAA as functional 

monomer and EGDMA as cross-linker, used in different molar ratios in order to 

study their effect on the particle size. The oil phase also contained hexadecane 

as co-stabiliser and 2,2'-azo(2-methylbutyronitrile) (AMBN) as initiator, in 

addition to the aminoacidic template. This phase was then mixed by vigorous 

stirring with the aqueous continuous phase composed of surfactant SDS 
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dissolved in water. After that, the mixture was sonicated and polymerised at 80 

°C for 16 h. A very high conversion rate (about 98%) of the nanodroplets into 

MIP NPs was obtained. Moreover, thanks to the use of the hydrophobic initiator 

AMBN, the polymerisation occurred just into the droplets. The MIP NPs 

produced also exhibited very good enantio-selectivity, in particular when the 

monomer-to-cross-linker molar ratio was 1:4. MIP NPs imprinted with L-BFA 

bound this template 10-fold more efficiently than they bound the D-enantiomer. 

They also had very good affinity, since NIP NPs bound the template 4-fold less 

than the MIP. However, these rebinding properties were exhibited only when 

the amount of template was above 5 μmol, because for lower amounts of 

template no rebinding differences could be appreciated between MIP and NIP 

NPs, especially in presence of a higher MAA content. Moreover, despite the 

particles obtained were regularly spherical, their polidispersity was quite 

pronounced, since the diameters ranged between 50 and 300 nm (Figure 1–

14). 

 

Figure 1–14. Transmission electron microscopy (TEM) image of MIP NPs 

produced through mini-emulsion polymerisation by Vaihinger et al. (2002). 

In order to improve the mass transfer of the ligands, a recent trend is to try to 

control and restrict the location of binding sites mainly onto the surface of the 

particles. In this way an easier accessibility of the imprinted cavities may be 

achieved. Priego-Capote and his group in 2008 modified the mini-emulsion 

polymerisation technique in order to obtain surface-imprinted NPs with a more 
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homogeneous binding site distribution. Their strategy was to use a polymeric 

surfactant monomer instead of a conventional one, in order to form more stable 

micelles and help to locate the template at the surface of the synthesised MIP 

NPs. In particular, authors used sodium N-undecenoyl glycinate as surfactant 

monomer and EGDMA as cross-linker. These were mixed with hexadecane and 

AIBN, adding S-propranolol as template. This oil phase was emulsified with 

water under ultrasonication, and then the mini-emulsion was polymerised at 70 

°C for 16 h. The synthesised MIP NPs were able to bind 3-fold more template 

than non-imprinted ones. However, the affinity for the template was lower than 

the values obtained through other polymerisation methods. In addition the size 

of the MIP NPs was not really uniform and it ranged from 30 to 150 nm when 

analysed through dynamic light scattering (DLS) and SEM, confirming the 

presence of aggregates. Moreover, the composition of the polymerisation 

mixture had to be carefully optimised in order to avoid stability issues and 

sedimentation phenomena. Nevertheless, the MIP NPs produced in this work 

were successfully used in CEC analysis (see section 1.5.2 - Capillary 

Electrochromatography (CEC) for more details). 

Very recently (2009) Curcio and his group prepared MIP NPs imprinted with 

glucopyranoside using the same modified mini-emulsion polymerisation 

approach. They exploited a semi-covalent imprinting technique instead of a 

non-covalent one in order to force the template to be located on the surface of 

the MIP NPs. For this purpose, a polymerisable surfactant template was 

synthesised, with four acrylic ester groups and a lipophilic chain with a polar 

sulphonated head. This compound was dissolved in styrene (St), chosen as 

functional monomer, and DVB. Then AMBN and hexadecane were added and 

this solution was mixed with an aqueous solution of SDS under ultrasonication. 

The obtained mini-emulsion was thermally polymerised at 80 °C for 20 h, after 

which the template was removed by alkaline hydrolysis. MIP NPs exhibited 

good rebinding capacity in comparison with non-imprinted ones, as well as very 

good selectivity for glucopyranoside rather than galactopyranoside (α = 6.5). 

Also the rebinding kinetics was quite fast, since it took only 5 h to reach the 

equilibrium, while for MIPs prepared by bulk polymerisation it usually requires 
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24 to 48 h. According to the Scatchard analysis, two classes of binding sites 

with low (KD = 5780 × 10-6 M) and high affinity (KD = 439 × 10-6 M) had been 

created. However, the use of a semi-covalent imprinting approach did not allow 

removing all the template from MIP NPs. Moreover, the synthesised MIP NPs 

did not exhibit a homogeneous size distribution when analysed by TEM (Figure 

1–15). 

 

Figure 1–15. TEM image of MIP NPs synthesised by Curcio et al. (2009). 

Another group (Zeng et al., 2010), very recently used a similar approach to 

obtain MIP NPs imprinted with a small hydrophilic peptide, GFP-9. They used 

an inverse micro-emulsion polymerisation, which involves creation of 

nanodroplets of an aqueous solution of monomers dispersed in an organic 

continuous phase. Also in this case, a surfactant is required to stabilise the 

droplets. Authors used GFP-9 peptides coupled with fatty acid chains of 

different lengths (5, 13 and 15 carbon atoms) as a template. The polymerisation 

process was performed by dissolving in water AAm and N,N'-

ethylenebisacrylamide, chosen respectively as monomer and cross-linker. This 

solution was then dispersed in the oil phase containing surfactants bis(2-

ethylhexyl)sulfosuccinate sodium salt and Brij 30, dissolved in hexane. The 

modified peptides were then added and the mixture was vigorously stirred to 

form the micro-emulsion. Finally, the polymerisation was started by adding APS 
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and TEMED and carried out for 2 h. Very small MIP NPs were obtained, about 

28 nm in diameter and spherical in shape. Moreover, MIP NPs imprinted with 

the peptides coupled to acid chains of 13 and 15 carbon atoms exhibited a very 

strong affinity for the template and good specificity. The calculated KD ranged 

between 90 and 900 nM. However, MIP NPs imprinted with the template 

coupled to the shortest fatty acid chain did not exhibit any relevant imprinting 

effect. Probably the carbon chain (C5) was too short to successfully locate the 

templates onto the surface of the aqueous nanodroplets. Moreover, the affinities 

of the binding sites were distributed and only a small amount of high-affinity 

sites had been created. In addition the yields were not very high (50% w/w). 

To overcome the presence of water which characterises and disrupts the 

majority of every mini-emulsion imprinting polymerisation process, Dvorakova 

and co-workers (2010) recently proposed a non-aqueous mini-emulsion 

imprinting polymerisation approach which involves the use of a non-ionic, 

polymeric emulsifier, polyisoprene-block-poly(methyl methacrylate) co-polymer 

rather than a classic surfactant, and n-hexane and DMF respectively as external 

and internal phase of the emulsion. Authors used MAA and EGDMA as 

monomer and cross-linker and propranolol as template. These compounds 

were dispersed in DMF and then emulsified with the external phase containing 

the co-polymer through ultrasonication. The mini-emulsion was then 

polymerised thermally at 40 °C for 24 h after the addition of 2,2'-azobis(2,4-

dymethylvaleronitrile) as initiator. Monodisperse MIP NPs of 100-120 nm in 

diameter were obtained, independently from the amount of template used in the 

preparation. Predictably, both an increase in the amount of emulsifier and a 

decrease in the volume of internal phase resulted in a decrease in the NPs 

diameter. MIP NPs exhibited an evident imprinting effect when compared to 

their NIP counterparts, up to 30% mol of specific template rebinding, with a 

specific KA of 1.68 × 106 M-1 (about 2 orders of magnitude higher than the KA 

calculated for the NIP NPs). Nevertheless, the approach still needs some 

optimisation because the non-porous rigid nature of the NPs or the shielding 

effect of the polymeric emulsifier did not allow to remove all the template at the 
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end of the production process, which could result in potential leakage and 

contamination in the case of sensing/separation applications. 

In summary, the mini-emulsion polymerisation method also suffers from several 

drawbacks for producing MIP NPs. In fact, even if very small spherical-shaped 

NPs can be produced, the presence of several chemicals (surfactants, co-

stabilisers) might interfere with the imprinting process, thus broadening the 

affinity distribution of the binding sites. This problem could be limited by using 

semi-covalent imprinting approaches, but such a strategy is not always 

applicable, and it depends also on the chemical nature of the template. 

Moreover, the purification steps required to remove all these substances are 

quite long and tedious, and they still might not be exhaustive in eliminating all 

the interfering chemicals. 

1.4.3 Core-shell approaches 

In order to achieve a surface-imprinting of NPs, core-shell approaches have 

also been used. These techniques involve the deposition of a MIP layer onto 

preformed support nanospheres made of various materials such as silica, PS or 

others. In this way it is also possible to use cores with specific properties, like 

fluorescence or magnetism, which might improve the whole performance of the 

imprinted nanosystems (Pérez-Moral and Mayes, 2002; Tan and Tong, 2007). 

Core-shell emulsion polymerisation 

The most direct technique to produce core-shell MIP NPs is core-shell emulsion 

polymerisation, which was pioneered by Pérez and co-workers (2000). This 

approach involves a two-stage process in which the first step requires the 

production of a latex, which can be prepared from several materials (St, DVB, 

alkyl acrylate). This latex is usually monodisperse, with diameters ranging from 

30 nm to 1 μm. The second stage of the process involves the creation of an 

imprinted shell on the seed particles, through an emulsion polymerisation 

process. In this first example, core-shell particles were imprinted for cholesterol 

using a sacrificial spacer approach. The feasibility of this emulsion 

polymerisation technique for preparing core-shell MIP NPs was investigated by 
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using various monomers (MMA or St) and cross-linkers (EGDMA, DVB). 

Authors first prepared a polymeric latex, which was then swollen in a solution of 

cross-linker and functional monomer. After this swelling step, an aqueous 

solution of SDS was added together with APS to initiate the polymerisation of 

the imprinted shell, which was performed at 60 °C for 24 h. Once the 

polymerisation was finished, the template was removed by alkaline hydrolysis. 

All the imprinted NPs exhibited similar sizes, ranging from 50 to 100 nm, and 

high surface areas (80 ÷ 120 m2/g) depending on their composition. The best 

results were obtained with particles bearing EGDMA shells, which exhibited 

good rebinding capacities and negligible non-specific binding, while MIP NPs 

produced with DVB shells had poor binding properties. The authors also 

investigated the possibility of using magnetic cores, thus obtaining 

superparamagnetic core-shell MIP NPs of 74 nm in diameter and good 

rebinding characteristics, which underwent a rapid separation (30 s) when a 

magnetic field was applied. It is worth noting that the same MIP NPs required 

75 h to be recovered by sedimentation. 

In a subsequent work (2001) the same authors proposed a slightly modified 

approach in order to improve the imprinting characteristics of the core-shell MIP 

NPs. Firstly a St/DVB seed latex was produced under the same conditions as in 

the previous work. In a second stage of the emulsion polymerisation process a 

mixture of DVB with a tailor-made polymerisable surfactant, pyridinium 12-(4-

vinylbenzyloxycarbonyl)dodecanesulphate (PyS), and template surfactant, 

pyridinium 12-(cholesteryloxycarbonyloxy)dodecanesulphate (TyS) was used. 

The aim of the authors was to force the template molecules (cholesterol) to be 

located at the polymer-water interface during the shell formation step, thus 

creating hydrophobic binding sites preferably on the surfaces of the MIP NPs. 

The effect of the variation of the TyS/PyS ratio on the morphology and the 

rebinding properties of the particles was investigated. Authors obtained MIP 

NPs with relatively uniform morphology and small diameters (60 nm) when the 

amount of TyS ranged from 0 to 5% (mol), while for greater amounts of TyS 

polydisperse particles were obtained (Figure 1–16) 
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Figure 1–16. TEM images of MIP NPs obtained when the amount (mol) of TyS 

used was: (a) 0%; (b) 2.5%; (c) 15% (adapted from Pérez et al., 2001). 

The cholesterol rebinding reached a maximum when the amount of TyS ranged 

between 2.5 and 7.5%, but it was lower when higher amounts of TyS were 

used, probably because the binding sites were no longer isolated from each 

other. It is worth noting that the use of PyS and TyS, also allowed obtaining MIP 

NPs with two different surface functionalities (sulphate charged groups or 

benzyl alcohol groups), thus regulating the hydrophilicity of the particle 

surfaces. Despite these materials were successfully tested for an 

"immunoprecipitation-like" reaction (see section 1.5.4 - Sensing applications), 

the results of this work suggest that the choice of surfactant, template and 

monomers has to be carefully tailored to achieve a good imprinting effect on the 

surfaces of the NPs. 

Non-covalent imprinting approaches have also been exploited with the core-

shell polymerisation procedure. Pérez-Moral and Mayes (2004) prepared core-

shell MIP NPs non-covalently imprinted with propranolol. Authors also studied 

the effects which the template amount and the presence of the porogen had on 

the rebinding properties of the NPs. The seed latex was prepared by thermally 

polymerising an emulsion prepared from an aqueous phase containing NaHCO3 

and SDS and an oil phase composed by MMA and EGDMA. The obtained latex, 

previously mixed with MAA, EGDMA and the template, was then added to an 

aqueous solution of SDS and the imprinted shell was polymerised by adding 
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APS. The synthesised MIP NPs were recovered with very high yield (98-100%), 

and their diameters ranged from 60 to 70 nm. The authors found that MIP NPs 

prepared with more than 6% (mol) of template had increased binding capacity 

but were not very stable. They also found that the presence of a porogen 

(toluene in this case) had a strong effect on the shell porosity, making the 

structure more accessible and thus increasing the surface area and the 

rebinding capacity of the core-shell MIP NPs. The conditions of the second 

stage of the polymerisation had to be carefully optimised in order to avoid 

secondary nucleation phenomena, which were very frequent. Moreover, the 

presence of the aqueous phase during the non-covalent imprinting resulted in a 

relatively low imprinting effect, if compared to other polymerisation methods. It 

is worth noting that the authors of this work also introduced a fluorescent 

monomer (9-anthrylmethyl methacrylate) into the core of one of the 

preparations. The obtained MIP NPs did not exhibit any difference in 

morphology or rebinding characteristics from the ones without the fluorescent 

core, and might be suitable for sensing applications in diagnostics (see section 

1.5.4 - Sensing applications). 

Summarising, core-shell emulsion polymerisation is a good method to obtain 

surface-imprinted MIP NPs, thus increasing the rebinding capacity and kinetics, 

as well as the yield of the synthetic process. Moreover, thanks to the heat 

dispersion, it is more suitable for large-scale applications in industry, especially 

if compared to the bulk polymerisation method. However, the complexity of the 

procedure and the presence of surfactants and aqueous phase represent 

serious drawbacks for standardising the procedure, both in terms of particle 

dimensions and imprinting effects. 

Grafting approaches 

Another way to obtain surface-imprinted MIP NPs is represented by grafting 

approaches (see 1.3.2 - Films and membranes). In the case of NPs, the support 

is a suitable spherical monodisperse nanomaterial such as silica, PS or even 

magnetite (Fe3O4). 
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In 2007, Pérez-Moral and Mayes fabricated core-shell MIP NPs by exploiting a 

living radical polymerisation process initiated by a dithiocarbamate iniferter 

immobilised on the surface of polymeric NPs. Authors first synthesised two sets 

of polymeric seed particles, supposed to act as the core. These particles were 

composed in one case by MMA/EGDMA, while the other set was made by 

St/DVB. Both of the particles contained also 20% (mol) of vinylbenzyl chloride, 

in order to provide the functional groups for immobilisation of the iniferter 

DEDTC. After the purification of the cores and the immobilisation step, the MIP 

layers were finally synthesised on the core NPs surfaces by adding monomers, 

cross-linkers, templates (propranolol, naproxen or morphine) and toluene as 

porogen solvent. The polymerisation process was performed by UV irradiation 

for 5-12 h (Figure 1–17).  

 

Figure 1–17. Scheme of the immobilisation of the DEDTC iniferter and 

subsequent application for grafting the MIP shell onto the core surface (adapted 

from Pérez-Moral and Mayes, 2007). 

The synthesised particles showed a clear imprinting effect similar to the one 

evaluated for MIP NPs prepared by conventional approaches. In addition, 
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thanks to the absence of water, this method allowed naproxen to be effectively 

imprinted, while previous attempts to imprint this drug molecule on core-shell 

MIP NPs were unsuccessful (e.g., by emulsion polymerisation). However, the 

imprinting of this drug could be confirmed only when the rebinding test was 

performed in an aqueous environment. The same test carried out in toluene 

(solvent used in the imprinting process) did not exhibit any imprinting effect for 

naproxen. These results suggest that the approach still needs to be optimised 

for different types of templates. Nevertheless, this method is particularly 

interesting because it allows very thin MIP layers to be deposited on the 

particles surface. The authors of this work, in fact, were able to build four-

component particles, i.e. core and three layers. The first layer was made by 

MAA/EGDMA and imprinted for propranolol; a second layer was composed of 

vinylbenzyl chloride and a third one contained an anthracene methacrylic 

derivative which gave the particles fluorescent properties. The increase of the 

shell thickness after the addition of each layer slightly affected the amount of 

specific rebinding, which progressively decreased after each layer addition. 

However, this approach remains very promising if well optimised, because the 

living-nature of the radical process is compatible with the formation of multi-

layer MIP NPs. 

Gao et al. in 2007 prepared core-shell MIP NPs imprinted with 2,4,6-

trinitrotoluene (TNT) using silica NPs as cores. Authors prepared uniform silica 

colloidal NPs by hydrolysis of tetraethoxysilane (TEOS). The obtained silica 

cores with a diameter of 100 nm were subsequently modified by the addition of 

3-aminopropyltriethoxysilane (APTES), in order to provide a surface amino 

group. This latter was needed to introduce acryloyl chloride on their surface, 

thus obtaining vinyl polymerisable end groups. After this step the imprinted TNT 

shell was synthesised using AAm as functional monomer, EGDMA as cross-

linker and AIBN as initiator. The polymerisation process was performed in ACN 

through a two-step thermal polymerisation, in order to slow the reaction rate and 

avoid formation of secondary polymeric particles in solution. In this way core-

shell MIP NPs with a diameter of about 125 nm were obtained, nearly 



 

55 

monodisperse (Figure 1–18A). A correlation between shell thickness and 

particles binding capacity was also found (Figure 1–18B). 

 

Figure 1–18. A) SEM image of surface-imprinted silica core-shell MIP NPs (the 

insert is a high-magnification image). B) Evolution of density of effective 

recognition sites with shell thickness of MIP NPs (adapted from Gao et al., 2007). 

Another key point in this work is that the authors exploited the strong charge-

transfer interaction established between the nitroaromatic ring of TNT and the 

residual electron donor amino groups of APTES. In this way the template 

preferentially located itself onto the particle surface and so increased the 

density of imprinted sites in the shell, without need to use semi-covalent 

imprinting approaches or surfactant templates like in other methods. This 

stresses the importance of the choice of monomers in relation to the chemical 

nature of the template. Regarding the binding properties, the core-shell MIP 

NPs produced in this work exhibited a 5-fold higher density of active imprinted 

binding sites than traditional 2 μm size imprinted particles. These latter were 

prepared for comparison purposes using precipitation polymerisation. Moreover, 

the rebinding kinetics of the MIP NPs was 4.5-fold faster than that of 

conventional microparticles, with very good selectivity. Probably the main 

drawbacks which emerge from this work are represented by the number of 

synthetic steps required to obtain the final product, together with the fact that 

such a thin imprinted shell might not be suitable to successfully imprint bulkier 

templates. In addition, if the thickness of the shell is not carefully controlled, it 

could be difficult to avoid the formation of aggregates of NPs. Moreover, it might 
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be difficult to match other templates and monomers in order to establish such 

strong interactions during the imprinting process. 

More recently, Yao and Zhou (2009) used a similar approach to fabricate 

surface-imprinted core-shell MIP NPs imprinted for bensulfuron-methyl. Like in 

the work previously cited, authors first prepared 250 nm size silica core NPs 

through hydrolysis of TEOS. Then, they modified the surface of these particles 

with 3-(trimethoxysylil)propylmethacrylate through a one-step ultrasonic 

procedure. In this way C=C double bonds were introduced faster and more 

effectively than in the two distinct synthetic steps described in the work of Gao 

et al. Also in this work, the MIP shell was grafted through a step-by-step thermal 

polymerisation performed in ACN, using MAA as functional monomer, EGDMA 

as cross-linker and AIBN as initiator. MIP NPs exhibited a uniform 35 nm thick 

shell and a spherical shape (Figure 1–19A). Their binding properties were 

compared to 3 μm size MIP microparticles produced by common precipitation 

polymerisation under the same conditions. The results showed that the 

rebinding capacity of the surface-imprinted NPs was about 1.5 times higher 

than traditional microparticles. Moreover, MIP NPs exhibited a 5-fold higher 

density of effective imprinted sites, probably thanks to the surface-imprinting. 

They also possessed good rebinding kinetics and selectivity, thanks to the 

strong interactions occurring between the template and the functional monomer. 

However, the thermal polymerisation seems to be a key step in the production 

process of these surface-imprinted nanosystems. If it is not carefully controlled 

and slowly performed through subsequent steps, it could cause the formation of 

small particles on the surface of the silica nanobeads (Figure 1–19B), instead of 

the creation of a grafted MIP shell (Figure 1–19A). 
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Figure 1–19. SEM images of surface-imprinted silica core-shell MIP NPs obtained 

through (A) step-by-step polymerisation or (B) directly heating at 80 °C for 3 h. In 

(B) self-aggregation of particles can be observed (adapted from Yao and Zhou, 

2009). 

Li and his group (2009) recently prepared surface-imprinted magnetic PS MIP 

NPs for bovine haemoglobin through a multi-stage core-shell polymerisation 

process. It involved the use of 3-aminophenylboronic acid (APBA) as functional 

and cross-linking monomer. In fact, thanks to its water solubility and the variety 

of reversible interactions which it establishes with amino acids, APBA is 

particularly suitable for protein imprinting (Bossi et al., 2001). First core 

magnetite NPs were synthesised with a size smaller than 25 nm in order to 

achieve superparamagnetic properties. Then these cores were coated with a 

silica layer using TEOS, and subsequently surface-modified using 3-

methacryloxy(propyl)trimethoxysilane. This allowed further introducing a thin PS 

layer on the surface. Eventually, the MIP layer was created by polymerising 

APBA on the magnetic PS particles for 14 h, in the presence of the template, 

using APS as initiator. The final size of the coated particles reached a diameter 

of 480 nm, in which the MIP film was 15-20 nm thick. TEM analysis did not 

reveal presence of aggregates, so confirming that each coating step occurred 

only on the particle surface. Moreover, the core-shell MIP NPs exhibited 

magnetic properties suitable for an easy separation, also in large scale. 
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Additionally, they had a fast rebinding kinetics (30-120 min). The Scatchard 

analysis revealed that MIP NPs also had very good specificity (imprinting factor, 

IF = 2.3) and selectivity (α = 1.98). However the complexity and the amount of 

time required to execute all the synthetic steps, even if the particles obtained at 

the end of each step can be recovered through a strong magnet, represent 

serious drawbacks for the production of this type of MIP NPs on large scale. 

Wang and co-workers (2009) prepared Fe3O4 magnetic NPs coated with a silica 

shell imprinted for estrone. Authors chose to use a semi-covalent imprinting 

approach. The imprinted shell was indeed fabricated by grafting an estrone-

silica monomer complex to the magnetic cores, previously coated with silica. To 

extract the template, MIP NPs were heated at 180 °C in a mixture of 

dimethylsulfoxide (DMSO) and water for 3 h, causing the cleavage of the 

urethane bond which connected the template to the shell. Because of the 

presence of water, the dissociated isocyanato group left behind in the silica 

shell was hydrolysed to an amino group, allowing non-covalent interactions to 

be subsequently established with estrone. Relatively monodisperse 

superparamagnetic MIP NPs (Figure 1–20) of about 150 nm in diameter were 

obtained. 

 

Figure 1–20. Separation of estrone-imprinted magnetic core-shell silica NPs by a 

magnet (reproduced from Wang et al., 2009). 

The linear result of the Scatchard analysis revealed the presence of 

homogeneous binding sites (R2 = 0.998). The calculated values of KD and Qmax 
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were 4.53 mM and 183.4 μmol/g, respectively. MIP NPs rebound estrone about 

3.6-fold more than the non-imprinted ones, and 3.2-fold more than they rebound 

testosterone, thus exhibiting low cross-reactivity. However, even if the semi-

covalent imprinting approach used in this work resulted in better rebinding 

properties, the amount of synthetic and heating steps required for obtaining this 

kind of products still make these approaches poorly suitable for large-scale 

processes. 

Among the techniques suitable for preparing core-shell MIP NPs, Lu and 

colleagues (2007) exploited the advantageous reversible addition–

fragmentation chain transfer (RAFT) controlled living radical polymerisation 

approach. RAFT is a versatile and simple polymerisation protocol compatible 

with several types of monomers. Authors prepared surface-imprinted core-shell 

MIP NPs imprinted for 2,4-D. They first synthesised silica cores (about 200 nm 

in diameter), which were then surface-functionalised by grafting trichloro(4-

chloromethylphenyl)silane. This was needed to subsequently immobilise the 

RAFT agent, dithiobenzoate, synthesised in situ from CS2 and 

phenylmagnesium bromide. The final step involved the production of the MIP 

shell by mixing the surface-modified silica particles with 4-VPy, EGDMA, AIBN, 

and the template 2,4-D, in a methanol (MeOH)/water (4:1, v/v) mixture. The 

polymerisation was then thermally performed for 12 h at 60 °C. TEM analysis 

revealed the presence of a MIP shell about 25 nm thick and quite uniform, 

probably thanks to the controlled nature of the RAFT polymerisation technique. 

Moreover, in presence of the same concentration of 2,4-D, MIP NPs were able 

to bind 50% of the template, while the non-imprinted ones only 7.9%, thus 

indicating a higher rebinding capacity resulting from the imprinting procedure. 

Core-shell MIP NPs also exhibited good selectivity, comparable to bulk MIPs. 

More recently (2009), the same group used another living radical polymerisation 

protocol for preparing surface-imprinted core-shell magnetic MIP NPs. Atom 

transfer radical polymerisation (ATRP) has indeed proved suitable for grafting 

polymeric layers from solid supports. Authors first coated Fe3O4 core NPs with a 

protective silica layer, thus obtaining NPs about 300 nm in diameter. The 
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thickness of the silica layer could be controlled by varying the amount of TEOS 

initially added. Authors then grafted 3-aminopropyltrimethyloxysilane (APTMS) 

onto the surface of the particles, in order to introduce an amino group suitable 

to subsequently immobilise 2-bromoisobutyrylbromide as initiator. The MIP 

layer was then synthesised by mixing in ACN the surface-modified core NPs 

with CuBr and pentamethylendiethylentriamine, together with 4-VPy as 

functional monomer, EGDMA as cross-linker and bisphenol A as template. The 

final core-shell MIP NPs exhibited a diameter of 370 nm and a uniform MIP 

shell about 15 nm thick (Figure 1–21). 

 

Figure 1–21. TEM image of a core-shell silica-coated magnetic MIP NP 

(reproduced from Lu et al., 2009). 

Moreover, they exhibited high capacity and selectivity, together with a fast 

rebinding kinetics (60 min to reach the equilibrium, instead of 300 min required 

by conventional bulk MIPs). In addition, they were successfully applied in 

separation applications thanks to their superparamagnetic properties (see 

section 1.5.5 - Separation). However in this polymerisation approach catalytic 

complexes formed by the Cu ion and acidic or basic ligands might be disrupted 

by the template molecules, thus interfering with the polymerisation process. 

Moreover, the metallic catalyst has to be removed from the final product. This is 

why usually other living radical polymerisation processes (such as RAFT or 

iniferter-based approaches) seem to be more suitable for imprinting procedures 
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(Ye and Mosbach, 2008). However, since their application in molecular 

imprinting is relatively new, these techniques deserve more studies to better 

understanding if they can be fully exploited for obtaining MIP nanomaterials. 

A modified original core-shell approach has been used by Li and co-workers 

(2006b) to prepare MIP NPs imprinted for 1-ethyluracil. First, they used ATRP 

to prepare a diblock co-polymer of tert-butyl methacrylate and 2-

(trimethylsylyloxy)ethyl methacrylate as monomers. They further modified this 

co-polymer by derivatising it with 2-acrylamido-6-carboxybutylamidopyridine, in 

order to introduce a triple-hydrogen bonding moiety and cross-linkable double 

bonds into the co-polymer. This modified co-polymer was then dissolved in 

chloroform with the template and thoroughly mixed with cyclohexane to form 

polymeric micelles, which were subsequently cross-linked in their shell by 

adding an azo-type initiator (V-65). After the removal of the template, TEM 

confirmed the creation of uniform core-shell MIP NPs of about 100 nm in 

diameter. Moreover, the triple-hydrogen bonding moiety ensured good 

selectivity for the template. In addition, core-shell MIP NPs exhibited 2.4-fold 

more rebinding capacity than traditional bulk MIPs prepared with the same 

polymerisation mixture. However, the synthetic complexity of the protocol does 

not make it particularly suitable for large-scale applications. 

Another very interesting approach for preparing core-shell MIP NPs has been 

recently developed by Zhou and co-workers (2010), who imprinted human 

haemoglobin on a polydopamine (PDA) layer synthesised on the surface of 

magnetic Fe3O4 NPs. This is an original approach that involves the self-

polymerisation process which this catecholamine undergoes when exposed to 

slightly basic pH values. In particular, the authors first synthesised Fe3O4 100 

nm size core NPs, and then they coated them by exploiting the self-

polymerisation of dopamine in TBS (pH = 8.0) in the presence of haemoglobin. 

The PDA layer was deposited spontaneously on the surface of the NPs, with an 

uniform average thickness of 10 nm after 3 h of polymerisation. The 

synthesised MIP NPs exhibited superparamagnetic properties, suitable to 

recover them in a short time using a strong magnet. According to the Scatchard 
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analysis performed in aqueous media, they also exhibited strong recognition 

affinity towards haemoglobin, with a KD of 18.13 μg/mL. Moreover, MIP NPs 

possessed good binding capacity, since the Qmax was evaluated as 22.3 μg/mg. 

In addition, they showed low cross-reactivity, evaluated against proteins such 

as myoglobin, horseradish peroxidase and cytochrome c, with an IF of 5.01, 

even in case of competitive rebinding. Given these results, it seems that the use 

of PDA is particularly suitable for imprinting protein templates, because it is 

hydrophilic, biocompatible and it has amino and catechol groups which can help 

in establishing interactions with the macromolecular template. Moreover, the 

thickness of the PDA layer can be tuned by changing the polymerisation time 

(Lee et al., 2007), suggesting that this approach might represent a promising 

innovation in molecular imprinting, especially in case of macromolecules. 

1.4.4 Soluble nanogels 

The creation of soluble MIP nanosystems, able to properly mimic recognition 

and catalytic phenomena such the ones proper of enzymes and antibodies, is 

the real new frontier for the development of MIPs. 

Between the approaches tested to produce soluble MIP nanosystems, it is 

worth noting the work of Zimmerman and co-workers, who extensively studied 

the possibility of exploiting dendrimers as macromolecular hosts into which 

imprint a single molecule, thus obtaining a system more similar to natural 

receptors in terms of number of binding sites. They reported the covalent 

imprinting of porphyrin molecules (2002), in which these templates were used 

as starting cores to generate dendrimers. Then, after the subsequent cross-

linking of vinyl end-groups of dendrimers through ring closing metathesis, the 

porphyrin core was removed by hydrolysis. The imprinted cavities exhibited a 

certain degree of selectivity, since only porphyrins able to establish four binding 

interactions were complexed. 

Subsequently (2004), the same authors also prepared MIP dendrimers 

imprinted for a smaller template, tris(aminoethyl)amine. Dendrimers also 

contained a colorimetric reporter group able to signal the template binding by 

changing the colour. These dendrimers exhibited a KD of 3 × 10-7 M. 
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Nevertheless, the fact that complex multi-step organic synthesis is required to 

prepare these materials, together with the limited availability of templates 

compatible with this approach, have limited its development in favour of more 

straightforward procedures. 

In this respect, systems such as micro/nanogels might represent a viable 

alternative. The term “microgel” indicates "unimolecular, cross-linked polymer 

particles possessing a size comparable to the statistical dimensions of non-

cross-linked macromolecules (≈ 100 nm) which can exist as stable solutions in 

appropriate solvents" (Biffis et al., 2001). They might be considered then as 

soluble NPs. Hence it is not surprising that the cross-over between this 

technology and molecular imprinting has been investigated in the recent years, 

resulting in materials which contain a recognition site built in a soluble polymer 

particle. The dimensions of these particles, together with their solubility, make 

them similar to a natural enzyme or antibody. 

A first attempt to synthesise water-soluble MIP NPs was performed in 1998 by 

the group of Piletsky and colleagues, who investigated the possibility to prepare 

MIP NPs imprinted for the thylakoid membrane D1 protein by extensive grinding 

and sieving of bulk monoliths. A mixture of urocanic acid as functional monomer 

and N,N'-bisacryloyl piperazine as cross-linker was polymerised in water in 

presence of the template, after the addition of APS and TEMED as initiating 

system. Monoliths obtained were then washed with diluted chloridric acid to 

remove the template and then extensively ground and ultrafiltered during 

centrifugation. Three fractions of soluble MIP NPs with different Mw (< 5 kDa, 5 

÷ 10 kDa and > 10 kDa) were collected and extensively characterised. Affinity 

chromatography showed that MIP NPs with Mw ranging from 5 to 10 kDa had a 

capacity factor almost double if compared to non-imprinted polymers. This 

demonstrated that the grinding process did not excessively destroy the structure 

of the binding sites. Moreover, MIP NPs exhibited good selectivity. However, 

the yield of the NPs synthesised with this method was very low (about 0.2 mg 

per fraction). Moreover, since it relied on grinding of bulk monoliths, it was not 

further developed. Nevertheless, this first work represents a milestone in the 
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production of soluble MIP NPs with biological activity (see section 1.5.6 - The 

future: biologically active MIP nanoparticles). 

The first proper example of synthesis of MIP microgels has been provided by 

Biffis et al. (2001), who extensively studied the best suitable radical 

polymerisation conditions to prepare MIP microgels imprinted for α-D-

mannopyranoside. They used a covalent imprinting approach which involved 

the polymerisation of a vinylphenylboronic ester of the template with MMA as 

co-monomer, AIBN as initiator, and different amounts of either EGDMA, TRIM 

or 2,5-di-O-methacryloyl-1,4;3,6-dianhydro-D-sorbitol as cross-linkers. Several 

solvents (cyclohexanone, cyclopentanone, dimethylformamide (DMF), 

tetrahydrofuran, mixtures of toluene/ACN) have been tested and the 

polymerisation processes have been performed at 80 °C for 4 days. In all the 

cases, the value of the monomer concentration was always maintained below 

the critical monomer concentration (cm), i.e. that concentration value at which 

microgels growth is no longer stabilised by steric factors and the system 

evolves towards the formation of a macrogel. This was done to ensure a good 

solubility of the MIP microgels. Molecular weights and polydispersities (Mw/Mn) 

have been found to increase at higher monomer concentrations and cross-

linking degrees. Also, when the rebinding of the template was tested in a 

solvent unable to dissolve the product but capable only to swell it (MeOH), MIP 

microgels prepared in cyclopentanone exhibited the highest selectivity, without 

any relevant effect due to the monomer concentration used during the 

preparation. The cross-linking degree, instead, influenced the selectivity values, 

which reached a maximum when the cross-linking was 70%, while for higher 

cross-linking degrees the selectivity decreased. This behaviour was 

independent from the type of cross-linker used, so it was ascribed to the high-

dilution of the polymerisation mixture required to obtain MIP microgels, which 

resulted in a poor imprinting effect. On the other hand, when the same rebinding 

tests were performed in DMF, solvent able to dissolve the MIP microgels, they 

rebound much more template. However, in this case the selectivity values were 

lower than the ones measured in MeOH, for all the synthesised MIP microgels. 

It is worth noting that also the selectivity values for the control bulk MIPs 
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dropped in DMF. This suggests that the conditions for the rebinding tests have 

to be carefully optimised to precisely assess the recognition properties of the 

MIP microgels. 

The same group, some years later (2006), produced soluble MIP nanogels able 

to catalyse carbonate hydrolysis. Also in this case, they used several 

preparation methods. A standard preparation procedure involved a radical 

thermopolymerisation at 80 °C in cyclopentanone for 4 days, using the template 

complexed with the functional monomer N,N'-diethyl-4-vinylbenzamidine, MMA, 

EGDMA as cross-linker and AIBN as initiator. However, several variations of 

this method have been attempted in order to improve the quality of the MIP 

nanogels, like increasing the cross-linker content or changing it with TRIM, or 

use a step-by-step polymerisation. Also in this case, authors found that 

increasing either the amount of monomer or cross-linker resulted in higher 

molecular weights and higher polydispersities (Mw/Mn). However, it resulted also 

in an increased catalytic activity. Nevertheless, the concentration of the 

monomer could be increased only up to 1.5%, which had been evaluated as cm 

value for this polymerisation system. The use of a step-by-step thermal 

polymerisation also improved the characteristics of the product, but the best 

properties were obtained through a so-called "post-dilution method" developed 

by the authors. It involved carrying out the polymerisation process at high 

concentrations of monomer, similar to those used in bulk polymerisation, but 

with the addition of a large volume of solvent just before the point of macro-

gelation. In this way they increased the cross-linking degree and also the 

catalytic activity of the MIP nanogels with simultaneous reduction of the 

polydispersity. The use of TRIM instead of EGDMA in this method, as expected, 

greatly improved the imprinting effect. However, the polydispersity index also 

increased exponentially (Mw/Mn = 18.6). By reaching a concentration of 

monomer of 0.1% after dilution, authors obtained MIP nanogels with very low 

polydispersity (Mw/Mn = 1.54) and particle size between 10 and 20 nm. A more 

detailed discussion on the catalytic properties of the MIP nanogels produced in 

this work is given in section 1.5.3 - Enzyme mimics. 
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More recently (2009) Guerreiro et al. synthesised soluble MIP NPs imprinted for 

acetoguanamine by using an early termination of iniferter-initated 

polymerisation. According to these authors, NPs are always formed during the 

early stages of the MIP synthesis (Figure 1–22a). If the progressive association 

of polymer chains is allowed to continue, an insoluble MIP will be obtained 

(Figure 1–22c). 

 

Figure 1–22. Scheme of the chain-growth process. On the right – images of 

polymer growth representing the three last stages on the scheme. (a) TEM image 

of NPs formed by UV irradiation for 170 s, magnification 340000×; (b) and (c) SEM 

images of polymer formed by aggregation of molecular clusters achieved during 

180 and 250 s of UV irradiation, respectively (adapted from Guerreiro et al., 2009). 
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Authors successfully used affinity separation for collecting particles with 

pseudo-monoclonal binding properties. Differently from the post-dilution method 

proposed by Wulff and co-workers, they performed polymerisation in the 

monomer mixture containing high concentration of monomers such as TRIM, 

EGDMA and MAA in ACN with N,N-diethyldithiocarbamic acid benzyl ester as 

initiator, using UV irradiation applied for 2.5 min. This polymerisation technique 

has been chosen since at the stage depicted in Figure 1–22a it is not easy to 

control the size of the particles because the reaction rate is high. The use of 

iniferter allows the reaction kinetics to be adjusted. Moreover it introduces the 

possibility to reinitiate the polymerisation later by simply exposing the material 

to UV irradiation (Otsu et al., 1989; Otsu et al., 1995; Kannurpatti et al., 1996; 

Otsu, 2000). After the synthesis, NPs of Mw ranging from 3 to 100 kDa were 

obtained. Then they were divided in fractions of different sizes through gel 

permeation chromatography (GPC). After this step, an affinity chromatography 

analysis was performed. Authors found that particles with Mw ranging from 90 to 

100 kDa possessed the highest affinity for the template. The authors then 

exploited the iniferter-moiety still present on the NPs to immobilise them onto 

the surface of poly(TRIM) microparticles using UV irradiation. After this 

immobilisation procedure, the binding properties of the NPs could be tested in 

solution. The KD of the MIP NPs for the template was evaluated to be equal to 

6.6 × 10-8 M. This affinity was comparable to the value reported for monoclonal 

antibodies for the same template, 3.87 × 10−7 M (Grant et al., 1999) and 9.20 × 

10−9 M (Kramer, 2002). At the same time the KD value was significantly smaller 

than the KD values found for non-imprinted NPs and bulk polymers prepared 

with a similar composition. Moreover, MIP NPs exhibited a clear specificity for 

acetoguanamine, compared to structurally correlated triazines. This work 

represents a milestone in the production of high-affinity soluble MIP NPs, 

because it relies on UV polymerisation instead of a thermal one, which could 

interfere with the recognition ability of the MIP nanogels (Piletsky et al., 2002, 

Piletsky et al., 2004, Mijangos et al., 2006). Moreover, it does not involve high-

dilution, then ensuring the formation of stronger complexes between template 
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and functional monomers. Probably, the main drawback of this method was the 

low yield of the NPs obtained (3% w/w). 

Eventually, one of the last innovations achieved in the field of MIP nanogels is 

the coupling of their recognition properties with the possibility to respond to 

external stimuli. Chen and his group (2010) recently prepared a water-soluble 

pH-sensitive catalytic MIP nanogel able to mimic the activity of horseradish 

peroxidase (see also section 1.5.3 - Enzyme mimics). It was prepared by 

polymerising a mixture composed by NIPAm, 4-VPy, hemin and AAm as 

monomers, EGDMA as cross-linker and homovanillic acid (HVA) as template, 

using AIBN as initiator and a mixture DMSO/water (7:3, v/v) as solvent. The 

polymerisation process was performed at 70 °C for 48 h. MIP nanogels were 

obtained with a narrow size distribution, confirmed by ESEM, DLS and GPC. 

Moreover, MIP nanogels also showed good affinity and selectivity properties. 

Despite all these advantages, the low yield (12.5%) and the long times required 

to purify the product by dialysis, make this process poorly suitable for large-

scale applications. 

Summarising, the synthesis of soluble nanoMIPs represents a challenge to 

obtain artificial enzymes, or even “synthetic antibodies". Moreover, they might 

improve the mass transport issues typical of insoluble MIP materials, resulting 

in very fast rebinding kinetics. Thanks to the easier synthetic strategies and 

larger compatibility with the imprinting procedures, MIP micro/nanogels seem to 

be more promising and feasible than imprinted dendrimers. In addition, 

compared to traditional MIPs, their characterisation may be easier because they 

can be investigated using the standard techniques available for soluble 

macromolecules. However, the synthetic methods available today for these 

materials need to be improved, especially in terms of yields and purification 

procedures. Nevertheless, very soon MIP nanogels could provide a viable 

alternative to the biological molecules used in sensors, separation and 

catalysis. Even more exciting could be the opportunity to develop these 

materials for in vivo real life applications, such as drug delivery and diagnostics. 
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These applications are discussed in more detail in the following section 1.5 - 

MIP nanoparticles: applications.  
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1.5 MIP nanoparticles: applications 

1.5.1 Drug delivery 

The cross-linked nature and affinity properties of MIPs make them intrinsically 

suitable to act as reservoirs from which achieving a controlled or sustained drug 

release to enhance pharmacological therapy. This is particularly useful for those 

drugs with a low therapeutic index (e.g., THO), which might cause adverse 

effects if their concentration is not kept below a certain threshold value. 

Similarly, in the case of racemic drugs in which the two enantiomers have 

different activity levels or effects, MIPs could selectively release the more 

effective one. Chemically or physically triggered release or targeting properties 

also can be achieved using MIPs, e.g., when the polymer interacts with the 

specific imprinted target moiety, like a cell surface receptor overexpressed in a 

tumor area (Cunliffe et al., 2005). Due to their dimensions and high-surface 

area, MIP NPs could represent a very interesting solution for these applications. 

In a pioneering work by Ciardelli and co-authors (2004), MIP NPs were used as 

a drug delivery system for the controlled release of THO. Particles of 200 nm 

average diameter were synthesised using a modification of the precipitation 

polymerisation approach of Ye and co-authors (1999). However drug release 

properties of MIP NPs were not so easy to predict and understand. The release 

pattern depended on the fine balance of the strength of monomers–template 

interaction, concentration of monomers and polarity of the particles. The slowest 

release was achieved with MIP NPs in which the ratio MMA/MAA was 75:25 

(mol). In all other cases, the release rate was higher. Authors suggested that an 

optimum amount of MAA can help to bind drug molecules more strongly, while 

too low or too high amounts of MAA result in NPs capable of establishing only 

weak interactions with THO, either because of absence of interacting groups or 

because of too high hydrophilicity of the NPs. This, in turn, would increase the 

accessibility of the phosphate buffered saline (PBS) used in the release test, 

thus resulting in a faster release rate. However, while the batch rebinding tests 

were performed in ACN (the same solvent used for the imprinting process), the 

release tests were performed in PBS. It might be interesting to assess the 
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rebinding properties also in PBS, for better understanding the system. 

Alternatively, the imprinting polymerisation process could be adapted to be 

performed in aqueous media. 

Rather than using directly MIP NPs, Jantarat and co-authors (2008) fabricated 

composite cellulose membranes embedded with MIP NPs supported on the 

surface of microspheres (nanoparticles-on-microspheres, NOMs) for the 

transdermal enantioselective release of racemic propranolol. The S-enantiomer 

of this β-blocker is indeed 100–130 times more potent than its R-isomer. Such a 

delivery system would allow containing the synthetic costs, which can be quite 

high in case of enantiomerically pure compounds (Barrett and Cullum, 1968). 

The authors modified the suspension polymerisation method in liquid 

perfluorocarbons from Mosbach et al. (1996), thus obtaining MIP NPs with 

diameters in the range 300-500 nm directly attached on the surface of of 3-10 

μm microspheres. MIP-NOM exhibited enantioselectivity properties, as well as a 

remarkable imprinting effect in comparison to NIP-NOM when tested in batch 

rebinding experiments. The corresponding composite membranes, prepared by 

phase inversion method, exhibited very high surface areas and good 

robustness. In addition, the release of the S-enantiomer from the composite 

membranes was 1.7 times more rapid than the R-enantiomer, and with greater 

enantioselectivity than other composite membranes prepared with irregular MIP 

granules or MIP microspheres. This was probably due to the higher surface 

area and accessibility of the binding sites characteristic of NOMs. Similar results 

were obtained during in vitro permeation studies on rat skin (S/R flux ratio = 

1.3). However, differences between MIP and NIP composite membranes were 

less remarkable than when NOMs were tested before the incorporation. 

Probably the effect of the cellulose matrix has to be more carefully evaluated for 

this approach to be used as a practical method for clinical applications. 

The same group (2010) also prepared NOMs imprinted for S-omeprazole to be 

used in the fabrication of an orally administered drug delivery system. Authors 

exploited polymerisable cinchona alkaloids (methacryloyl quinine, MQN, or 

methacryloyl quinidine, MQD) as functional monomers, to provide strong 
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anchoring groups. MIP-NOMs, also in this case, were subsequently embedded 

in cellulose membranes and additionally covered with 

polyhydroxyethylmethacrylate and polycaprolactone triol to provide 

gastroresistant properties. MIP NPs of 50-150 nm were obtained, directly 

attached on the surface of microspheres of 10-20 μm (Figure 1–23A, B, C). 

When tested in batch rebinding experiments, MIP-NOMs prepared using MQN 

exhibited a remarkable imprinting effect as well as interesting enantioselectivity 

properties in comparison to MQD based systems, probably due to the almost 

opposite chirality of the two monomers. The corresponding delivery devices 

exhibited gastroresistant properties and a selective release of S-omeprazole 

with an S/R enantiomeric ratio of 2, while NIP systems did not exhibit significant 

enantioselectivity (Figure 1–23D). It might be interesting to investigate the 

performance of these devices in vitro and in vivo to assess if they might be 

suitable for commercialisation. 
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Figure 1–23. (A) SEM image of a cross-section of the controlled delivery device 

containing the MIP NOMs. (B, C) SEM images of the prepared MIP NOMs at 9000-

fold magnification (B) and 30000-fold magnification (C). (D) In vitro dissolution 

profile of omeprazole enantiomers from MIP- and NIP-loaded delivery systems in 

dissolution medium changed every 2 h with pH 1.2, 6.8 and 8.0, respectively 

(mean ± SD, n = 6) (adapted from Suedee et al., 2010). 

Very recently (Cirillo et al., 2009), MIP hydrogel nanospheres were prepared by 

thermo-initiated precipitation polymerisation and used as drug delivery systems 

for 5-fluorouracil (5-FU). The use of this drug is hampered by its short half-life, 

hence carefully controlled daily injections are needed to maintain the 

therapeutic activity. However, this might easily result in severe toxic effects 

(Johnson et al., 1999). MIP NPs should allow better controlling the drug release 

profile from the therapeutic system, thus reducing the risks of overdose. The 

NPs obtained were about 274 nm in diameter, with low polydispersity (Figure 1–

24, left). Moreover, the IF evaluated for the imprinted systems versus non-

imprinted ones was 4.6 and 3.6, respectively in ACN and in aqueous buffer. 

This indicates that the MIP NPs obtained here can specifically rebind the target. 

In addition, MIP NPs exhibited very low cross-reactivity, even for the analogue 
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uracil, which differs from the template only by a hydrogen atom replacing 

fluorine. Finally, release of 5-FU was tested in simulated plasma fluid and MIP 

NPs showed a sustained release over 50 h (65% of the total amount of drug 

loaded), while non-imprinted polymers completed the release after 5 h (Figure 

1–24, right). 

 

Figure 1–24. On the left, SEM image of MIP NPs. On the right, 5-FU release profile 

from MIP (■) and NIP (♦) NPs (adapted from Cirillo et al., 2009). 

It would be interesting to assess the biocompatibility of these MIP NPs using a 

suitable in vitro model in comparison with the free drug, to verify if they can 

effectively enhance the therapeutic index of 5-FU. 

The first example of magnetic MIP NPs developed as drug delivery systems has 

been reported by Kan et al. (2010), who grafted an aspirin-imprinted MIP shell 

onto 12 nm diameter silane-modified magnetic cores, thus obtaining 500 

diameter MIP NPs. These latter had an IF of 2.4 and exhibited good selectivity 

for the template in comparison to its structural analogues such as salicylic acid 

or o-aminobenzoic acid. When tested in vitro, during the first 2 h magnetic MIPs 

released about 50% of the loaded drug, while NIP NPs already released about 

85%, due to the absence of specific interactions with the template. In addition, 

thanks to magnetic properties, MIP NPs could be easily separated and 

manipulated. Theoretically, they could be used to target the drug release 

towards particular sites in the body by exploiting an external magnetic field (Giri 

et al., 2005). It might be really interesting to further develop this last application 

by fabricating magnetic MIP nanosystems below 100 nm in size, i.e. suitable for 
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passing through altered capillary fenestrations in tissues such as sites of 

inflammation or tumours. 

1.5.2 Capillary Electrochromatography (CEC) 

CEC is a hybrid separation technique that combines the high efficiency typical 

of capillary electrophoresis with the phase selectivity of a high-performance 

liquid chromatography (HPLC) (Myers and Bartle, 2001). An interesting aspect 

of this technique is the possibility to use a so-called pseudostationary phase 

(PSP). Different from a common stationary phase, PSPs are interaction phases 

that move with (or against) the mobile phase and are continuously replaced, 

without needing to be packed. In this way, every analysis is performed on a 

fresh column, thus avoiding stationary phase carry-over effects (Nilsson and 

Nilsson, 2006). Moreover, since tedious packing procedures are not needed, 

there is no need also for using frits, which might interfere causing bubbles and 

peak broadening phenomena (Behnke et al., 2000; Spégel and Nilsson, 2002). 

NPs have been used as PSP in CEC (Nilsson et al., 2006). However, to be 

suitable for this purpose, they have to possess certain properties, such as: i) 

form stable suspensions and exhibit enough selectivity in the electrolyte 

solutions used as mobile phases; ii) be charged, in order not to co-elute with the 

electroosmotic flow; iii) have a uniform velocity to avoid peak broadening; iv) 

exhibit high surface areas and low mass-transfer resistance; and v) not interfere 

with the detection mechanism (Göttlicher and Bächmann, 1997). 

When MIP NPs have been used in CEC as PSP, a “partial filling” technique has 

been exploited, whereby a fraction of NPs suspension is injected before the 

sample (Figure 1–25a). Assuming that the NPs have different mobility than the 

analytical sample, this latter will pass through the NPs fraction when voltage is 

applied. During this migration step, analytes will be separated on the MIP NPs 

(Figure 1–25b) and will arrive at the detection window before the NPs, thus 

avoiding scattering and absorption phenomena from the PSP during UV 

detection (Figure 1–25c) (Spégel and Nilsson, 2002; Nilsson et al., 2004; 

Nilsson and Nilsson, 2006). 
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Figure 1–25. Schematic of the partial filling technique (reproduced from Spégel 

and Nilsson, 2002). 

Schweitz et al., in 2000, successfully synthesised and used MIP NPs of 200-

500 nm in diameter in CEC separation of propranolol enantiomers. The authors 

used UV-initiated precipitation polymerisation at -26 °C to strengthen the 

interactions between the template and the functional monomer. Under 

optimised conditions, racemic resolution was achieved in slightly more than 1 

min, by using the minimum amount of MIP per every run. Moreover, non-

imprinted NPs did not exhibit any separation property. Despite some cross-

reactivity for propranolol structural analogues was later observed, this was 

actually exploited to perform multiple separation of racemic mixtures of atenolol, 

pindolol and propranolol in a single run by sequential injections of the samples 

(Spégel and Nilsson, 2002). 

Encouraged by these results, the same group exploited the versatility and ease 

of optimisation of the partial filling approach to perform the simultaneous CEC 

resolution of two different racemic analytes, propranolol and ropivacaine 
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(Spégel et al., 2003). Authors tried either by injecting two different types of MIP 

NPs at the same time, or by using MIP NPs which were simultaneously 

imprinted for the two templates. In the first case it was possible to separate the 

racemic mixtures of the two different templates in a single run (Figure 1–26), 

and the optimisation of the separation conditions was quite easy. 

 

Figure 1–26. Separation of ropivacaine and propranolol enantiomers in CEC by 

the partial filling technique using a plug composed of S-ropivacaine MIP and S-

propranolol MIP. Detection was performed at 214 (top) and 195 nm (bottom) 

(reproduced from Spégel et al., 2003). 

However, the multi-template imprinting was not so straightforward and careful 

optimisation of the synthetic conditions and the relative amount of templates 

was required. In particular, the amount of S-propranolol used in the MIP NPs 

synthesis strongly affected the recognition performance for S-ropivacaine, and it 

had to be decreased down to a template-to-monomer ratio of 1:80 in order to 

obtain MIP NPs with 2-fold selectivity. It is likely that at higher S-propranolol 

concentrations the interactions between the S-propranolol and the functional 

monomer interfered with the imprinting process of S-ropivacaine. Nevertheless, 
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once optimised, this approach might allow multi-templated MIP NPs to be 

prepared, suitable for fast CEC analysis. 

Since slow mass transfer of the analytes and broad affinity distribution of the 

binding sites result in peak tailing and bad CEC performance, Priego-Capote 

and co-authors (2008) exploited a modified mini-emulsion polymerisation 

technique to try restricting the location of binding sites mainly to the surface of 

the NPs. In this way an easier accessibility of the imprinted cavities was 

achieved, together with a more homogeneous binding site distribution. When 

tested in CEC analysis, for the first time a resolution of a racemic mixture of the 

template (propranolol) was achieved without evident peak tailing. However, the 

affinity for the template was only suitable for CEC analysis. In addition, NPs 

aggregates and bigger particles had to be removed prior being used in CEC. 

Nevertheless, the fact that the system could be easily tailored for working in 

aqueous conditions (thanks to its amphiphilic nature) enabled efficient 

separation of both enantiomers and encourages to further develop and optimise 

this approach. 

Rather than exploting a partial filling technique, Qu and co-authors (2010) 

recently fabricated and optimised a microfluidic CEC device for resolution of 

racemic ofloxacin, based on the application of magnetic MIP NPs. Ofloxacin is 

an antibiotic in which the S-enantiomer is 8–128 times more potent than the R-

enantiomer (Hayakawa et al., 1986), hence a fast and efficient 

enantioseparation method would be useful. A MIP layer was grafted onto the 

surface of 25 nm diameter magnetic NPs, previously modified with an acryloyl-

silane. The obtained MIP NPs of 200 nm in diameter were then pumped into the 

capillary as a slurry, and packed in a specific region next to magnets. Then, the 

device assembly was finalised by introducing buffer, sampling and detection 

reservoirs, as well as electrodes systems to ensure adequate sampling, 

separation and amperometric detection. Authors thoroughly investigated both 

polymerisation conditions as well as electrochromatographic parameters on the 

recognition performance of the CEC microfluidic device. In optimal conditions, a 

resolution value of 1.46 was achieved in slightly more than 3 min of analysis. 
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Even if more studies are needed to assess the versatility of the system to 

analyse different templates, especially in relation to the long time required for 

optimisation, this approach seems really promising, at least for a fast and very 

cheap qualitative analysis. The detection limits (5 μM for the template S-

ofloxacin, and 1 μM for R-ofloxacin) are however quantitatively too high 

compared to conventional chromatographic methods, and hence require further 

improvement. 

1.5.3 Enzyme mimics 

Given their small size as well as their dispersibility/solubility characteristics, MIP 

NPs are very promising candidates for the development of enzyme mimics, 

especially in the case of low-density MIP microgels (Biffis et al., 2001). 

The first example in literature of the synthesis of catalytic MIP NPs has been 

reported by Markowitz and co-authors (2000), which used micro-emulsion 

polymerisation to imprint a surfactant-derivative of a transition state analogue 

(TSA) of α-chimotrypsin. To mimic the enzyme, the authors included in the 

preparation specific silanes with a structure resembling amino acids of the 

catalytic triad found in the active site of serine proteases. MIP NPs with 

diameters in the range 400–600 nm were obtained, which exhibited an 

enantioselective hydrolysis (10 times faster for the D-enantiomer than for the L- 

one), especially when high amounts of surfactant-template have been used in 

the preparation. However, increasing the amount of specific silanes over 5% of 

the total monomer concentration resulted in a drastic reduction of the catalytic 

activity, probably because of the establishment of molecular interactions 

between the monomers themselves rather than with the template molecules. 

After this first attempt of catalytic silica MIP NPs, Resmini’s group (2004, 2005) 

presented for the first time soluble MIP catalytic microgels with hydrolytic 

activity obtained using radical polymerisation in high-dilution conditions. The 

dimensions of these particles, together with their solubility, make them similar to 

a natural enzyme or antibody (Biffis et al., 2001). The authors exploited two 

polymerisable derivatives of tyrosine and arginine as specific catalytic functional 

monomers in the imprinting of a phosphate-based TSA for the carbonate 
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hydrolysis reaction. Catalytic microgels produced in this way followed a 

Michaelis-Menten kinetics and exhibited a turnover number (kcat) 530 times 

higher than the control reaction, together with a remarkable substrate 

selectivity. Authors found that MIP microgels containing more than 70% of 

cross-linker exhibited a reduced catalysis rate, even if the values were still 

higher than the uncatalysed reaction. A lower cross-linking degree probably 

ensured a sufficient flexibility to the catalytic residues, thus increasing the 

reaction rate. MIP microgels produced either in absence of the TSA template or 

in absence of the specific functional monomers exhibited low or no difference 

with the uncatalysed reaction rate, thus confirming the imprinting effect on the 

MIP product and the success of the approach.  

Wulff and co-workers exploited a similar approach, but rather than using 

specific monomers mimicking the structure of aminoacids, they prepared highly 

efficient catalytic MIP NPs by polymerisation of an ionic complex between the 

diphenyl phosphate TSA and N,N’-diethyl-4-vinylbenzamidine as functional 

monomer (2006). Particular attention was paid in controlling the size of the 

particles, which is not easy to adjust when using free radical polymerisation 

processes. Authors obtained the best product in terms of size and catalytic 

activity through a so called "post-dilution method" (see section 1.4.4 - Soluble 

nanogels). The increased degree of cross-linking that resulted from the method 

was beneficial for the catalytic activity of the synthesised material and for 

reduced polydispersity. Indeed, monodispersed catalytic MIP nanogels with 

particle size between 10 and 20 nm were obtained. More importantly, for the 

first time MIP nanogels with on average one active site per particle were 

produced. Like in the work of Resmini et al., the catalytic activity of the MIP NPs 

obeyed Michaelis–Menten kinetics, but in this case the kcat was 3000 times 

higher than the non-catalysed reaction. It would be interesting also to test the 

products towards other carbonate substrates, in order to assess their selectivity. 

In addition, it should be appropriate to rely on the actual amount of active sites 

present in the catalyst, perhaps by exploiting a titration method like the one 

recently optimised by Pasetto et al. (2009), since knowledge of this parameters 
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would allow characterising more precisely the catalytic activity of these enzyme 

mimics and better comparing their performance with other catalysts. 

In 2007, Chen et al. reported the preparation of peroxidase-mimic MIP 

microgels for the oxidation of HVA, exploiting hemin groups to create the 

catalytic sites. Also in this case, the polymerisation process was performed in 

high-dilution conditions to avoid macro-gelation. Authors obtained microgels of 

about 200 nm in diameter (as analysed by TEM), with a moderate degree of 

polydispersity and aggregation. Nevertheless, MIP nanogels were able to 

specifically increase the oxidation rate of HVA (kcat = 4.56 × 107 M-1 s-1), 3-fold 

more than NIP ones. In addition, MIP nanogels exhibited a remarkable 

selectivity towards the oxidation of template analogues, while simple hemin and 

NIP nanogels could not distinguish between the different structures. However, 

5% of DMSO had to be added to help the solubilisation of the system in buffer 

media, while higher amounts resulted in a dramatic decrease of the catalytic 

activity. To improve the water-solubility of the MIP microgels as well as for 

introducing the possibility for them to respond to external stimuli, the same 

authors tried introducing a certain amount of NIPAm into the microgel 

composition (2010). In this way monodispersed MIP microgels were obtained, 

easily dispersable in water without need for any co-solvent. However, the main 

interesting aspect of this work is that, by changing the pH of the medium from 2 

to 11, both the size and the catalytic activity of the microgels could be 

modulated (Figure 1–27) with a maximum of activity in correspondence of pH 

8.5 and a minimum size (about 250 nm) at the same pH value, very near to the 

calculated pI for the polymer (7.8).  
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Figure 1–27. pH effect on the catalytic rate in TBS (50 mM) (A) and on the 

hydrodynamic particle size of imprinted microgels measured by DLS (B) 

(adapted from Chen et al., 2010). 

Such behaviour was attributed, as expected, to the presence of ionic monomers 

in the polymerisation mixture, which at the isoelectric point of the polymer were 

electrically neutral and then more hydrophobic. This in turn caused the MIP 

microgels to shrink and the exclusion of water from the active sites, thus 

producing an increased catalytic activity. This latter instead dropped when MIP 

microgels were at too low or too high pH values, conditions in which the 

polymeric structure was ionised and underwent swelling in aqueous media. In 

addition to the pH-sensitive catalytic behaviour, which followed a Michaelis-

Menten kinetics, MIP microgels retained good affinity and selectivity properties. 

Despite all these advantages, as already mentioned in section 1.4.4 - Soluble 

nanogels, drawbacks such as the low yield (12.5%) and the long purification 

times, as well as the lack of information about long-term stability should be 

addressed in order to properly assess the potential commercialisation of these 

products. 

Aiming more at a potential therapeutic application, Huang and co-workers 

(2008) produced gluthatione peroxidase-mimicking MIP NPs prepared using 

micro-emulsion polymerisation. In particular they exploited allyl arginine and 

acryloyloxypropyl 3-hydroxypropyl telluride as specific monomers to mimic the 

active center of the enzyme, and selectively build it on the surface of polymeric 

NPs. In this way MIP NPs very regular in shape and size (30-40 nm) were 

obtained, able to increase the efficiency of the degradation of cumene 
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hydroperoxide of about 600000 times. However, the difference between MIP 

and NIP NPs was not impressive, and the behaviour of the polymers strictly 

depended on the ratio between the two functional monomers. 

In 2011, the group of Resmini reported the production of a MIP microgel 

suitable to catalyse Kemp elimination reaction, for which no natural enzymes 

are currently known to exist. They imprinted an indolic structure as TSA and 

used 4-VP as basic functional monomer, in a free radical polymerisation 

reaction performed in high-dilution conditions. MIP NPs were completely soluble 

in water, and exhibited an optimum activity at pH value 9.4. However, one of the 

most important aspect of this study is that authors found that the addition of 

10% ACN and especially 0.5% surfactant (Tween 20) drastically increased both 

the catalytic activity as well as the imprinting effect (2-fold more). This could be 

due to the higher physicochemical stabilisation of the system and better 

accessibility of the catalytic sites in presence of a small amount of surfactant. 

Nevertheless, it is the first time that such an effect has been demonstrated on 

catalytic MIP microgels and undoubtedly it deserves further investigation.  

The same group (2008) also reported the first example of MIP microgel capable 

of catalysing a C–C bond formation reaction, and in particular a cross-aldol 

reaction between 4-nitrobenzaldeyde and acetone, thus mimicking the 

enamine-based mechanism of the natural aldolase type I enzymes. In this case 

a covalent imprinting approach was exploited, bonding a diketone TSA to a 

polymerisable proline derivative as functional monomer. This latter was chosen 

by the authors because of the good data available on its catalytic activity and 

the feasibility of its chemical transformation into a polymerisable derivative. By 

using high-dilution radical polymerisation, the authors obtained 20 nm MIP NPs 

with a very low polydispersity (Figure 1–28), while their average molecular 

weight was evaluated as 260 kDa.  
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Figure 1–28. TEM image of MIP catalytic nanogels (stained with OsO4) 

(reproduced from Carboni et al., 2008). 

The MIP NPs were not inhibited by product, and the ones containing 10% of 

functional monomer exhibited 20-fold higher catalytic activity compared to the 

non-imprinted NPs. In addition, thanks to the chirality of the functional monomer 

used, the produced nanogels also had good enantioselectivity (62% 

enantiomeric excess). Moreover, the data showed a homogeneous affinity 

distribution for the catalytic sites, consistent with the covalent imprinting 

approach. These results are very exciting and, even if they are still far from the 

activity values of natural aldolase enzymes, they confirm that MIP catalytic NPs 

could be used for instance to complement enzymes for those molecules which 

lack of a natural synthetic system, or in those conditions in which natural 

enzymes are unstable or very expensive. 

1.5.4 Sensing applications 

Given their robustness and entirely synthetic nature, MIP NPs are particularly 

suitable for being immobilised on sensors surfaces or properly labelled for use 

in assays. 

Reimhult and co-authors (2008) produced a QCM sensor by coating its surface 

with MIP NPs imprinted with R- or S-propranolol. MIP NPs of 130 nm diameter 

were synthesised by precipitation polymerisation, then dispersed in a solution of 
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poly(ethylene terephthalate) (PET) and eventually spin-coated onto the surface 

of the QCM crystal. This supporting matrix allows the sensor to be used in 

several solvents, because it has good chemical resistance. Spin-coating, in 

turn, allows fine adjustment of the thickness of the MIP layer to be achieved (in 

this case the thickness was below 1 μm), an important aspect to consider in 

order to guarantee rapid diffusion of the analyte and following sensor response. 

Nevertheless, while the MIP NPs alone exhibited chiral recognition properties, 

MIP coated sensors did not. Despite the small thickness of the PET matrix, it is 

possible that the exposure of the sensors to organic solvents (ACN, in this 

case) resulted in changes of the rigidity of the PET layer, thus altering the 

accessibility of MIP binding sites and adversely affecting the polymer 

recognition properties. Perhaps optimising the spin-coating conditions could 

improve the performance of the sensor. 

Rather than using MIP NPs directly as sensing elements, Schirhagl and co-

authors (2010) exploited them as a “secondary template” to transfer their 

imprints onto a modified QCM wafer. The authors first prepared MIP NPs for 

IgG raised against human rhino virus 14 by precipitation polymerisation (Figure 

1–29a). MIP NPs ranging from 15 to 700 nm were obtained. Following removal 

of the target IgG (Figure 1–29b), they were deposited on microscope slides and 

used as stencils to imprint a secondary polymeric layer (made of the same 

components of the NPs) on a QCM wafer (Figure 1–29c, d). In this way, authors 

fabricated a chemosensor able to give a response, when exposed to the virus, 

about 6 times higher than that of the sensor coated with natural antibodies. 

Despite the polydispersity of the product obtained, this represents a very good 

example of using MIP NPs not directly as sensing elements, but as stencils to 

imprint another polymeric structure.  
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Figure 1–29. Schematic representation of the QCM sensor based on artificial 

antibody replicas (reproduced from Schirhagl et al., 2010). 

The same group later compared the performance of a QCM sensor for atrazine 

prepared by using natural antibodies, a polymeric bulk layer or MIP NPs 

embedded in a polymeric matrix (2011). Authors found that the sensor based on 

natural antibodies exhibited the highest detection limit (0.43 ppm), while 

polymeric film and MIP NPs allowed reaching 20 and 18 ppb detection limit, 

respectively. However, while the polymeric film exhibited saturation behaviour at 

the atrazine concentrations tested, the MIP NPs sensor exhibited a linear 

response, probably thanks to their higher surface area and less hindered 

diffusion of the target into the binding sites. This is confirmed by the fact that the 

QCM sensor prepared with MIP NPs having smaller diameter (45 to 85 nm, 

hence with higher surface area) exhibited a faster and stronger response than 

the sensor prepared using larger 200-300 nm MIP NPs. In addition, MIP NPs 

sensors exhibited the highest selectivity properties when compared to the other 

two sensors. The sensitivity of this system could be further improved by using 

devices working at higher frequencies than QCM. Nevertheless, these results 

are promising enough in relation to the potential use of imprinted NPs in 

sensing platforms. 

Rather than using QCM devices as transduction elements, which often exhibit 

too low sensitivity, Bompart et al. (2009) investigated the possibility of using 
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micro-Raman spectroscopy to identify and quantify the target molecule 

adsorbed by MIP NPs. Authors imprinted R- or S-propranolol on MIP micro- (1 

μm diameter) and nanoparticles (200 nm diameter) using precipitation 

polymerisation. The MIP product tested in batch rebinding experiment exhibited 

a remarkable imprinting effect. In addition, micro-Raman spectroscopy allowed 

to perform bulk measurements on a group of MIP NPs pre-equilibrated with the 

template, allowing to identify and quantify propranolol with good selectivity down 

to a concentration of 1 μM (KD = 59 ± 7.7 μM). However, one-particle 

measurements were not possible because the NPs underwent degradation due 

to the power of the laser. Furthermore, standardisation of the measurements 

parameters was difficult and the detection level was not impressive. 

To increase the sensitivity of the system the authors used surface-enhanced 

Raman spectroscopy (SERS) performed on 400 nm composite gold core–shell 

MIP NPs produced by seeded emulsion polymerisation (2010). This allowed 

performing target molecule measurements on single MIP NPs, reaching a 

detection limit of 0.1 μM, while for NIP NPs the detection limit was 100-fold 

higher. This detection capacity was retained even in presence of a 100-fold 

excess of interfering compounds such as CAFF or acetylsalicylic acid. In 

addition, measurements could be performed also in spiked biological samples 

(diluted equine serum) down to a detection limit of 1 μM. Despite the 

remarkable improvements, more work needs to be done in order to increase the 

detection limits of this system. Nevertheless, the possibility of performing 

multiplexed measurements on several substances by using different MIP NPs is 

quite attractive and deserves further investigation. 

Sener and co-workers (2010) recently assessed the potential of using MIP NPs 

in sensors for larger protein templates. MIP NPs of 50 nm in diameter imprinted 

for lysozyme were synthesised by mini-emulsion polymerisation and physically 

deposited on a QCM crystal by solvent evaporation. Atomic force microscopy 

(AFM) confirmed the homogeneous deposition of MIP NPs on the QCM wafer 

surface. In addition, the imprinted sensor exhibited a detection level of 1.2 

ng/mL for lysozyme in the analysis of real chicken egg-white samples. 
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Moreover, the system could be used up to 4 consecutive measurements without 

loss of detection ability. 

The same lysozyme-imprinted MIP NPs were used in a surface plasmon 

resconance (SPR) sensor (2011). Also in this case the MIP sensor exhibited a 

selective response in presence of competing proteins, while the non-imprinted 

one did not show any selectivity. The reproducibility was quite good, up to 5 

consecutive measurements without loss of sensitivity, but most importantly the 

SPR sensor exhibited a response 5 times faster than the QCM sensor, with a 

1000-fold lower detection limit. However, the saturation level was remarkably 

lower (330 nM vs 30 μM in the case of QCM), but this is actually quite 

interesting because depending on the expected concentration of the target 

molecule in the sample, a specific sensing platform for high or low concentration 

levels might be chosen, thus covering a larger range of analytical 

concentrations. 

Another possibility of using MIP NPs for detection and diagnostic purposes is 

designing a proper assay to detect the analyte either by a change of fluorescent 

properties, radioactivity, or another measureable property. Most of these assays 

rely on a displacement mechanism, in which the binding sites of the system are 

saturated with a labelled template analogue, which is later displaced by an 

unknown amount of non-labelled target. 

One of the first MIP NPs-based assays reported in literature was described by 

Haupt et al. in 1998. The MIP NPs were imprinted with 2,4-D, and used with 

structurally related fluorescent, chemiluminescent or electrochemical probes to 

quantify the amount of bound analyte. The detection limit achieved was 100 nM. 

However, the assay did not perform very well in buffer medium, showing 

remarkable cross-reactivity with 2,4-D structural analogues in comparison with 

an antibody-based ELISA assay. Nevertheless, these first results paved the 

way for the use of MIP NPs in pseudoimmunoassays. 

Ye and co-authors synthesised 200–300 nm MIP NPs imprinted with THO and 

E2 by precipitation polymerisation and used them in a first MIP NPs-based 

radioimmunoassay (1999, 2001). The authors were able to quantify templates 
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down to concentrations of 0.1 and 0.01 mg/mL for THO and E2, respectively, 

even in the presence of competing structural analogues. 

However, classical radioimmunoassays always require a separation step 

between unbound and bound ligand before adding the scintillation media. That 

is the main reason that led the authors to further improve this assay system by 

adding a so called “scintillation monomer”, 4-hydroxymethyl-2,5-

diphenyloxazole acrylate, to the preparation (2001). The binding signal was 

generated by proximity energy transfer, which arose from the specific binding of 

a tritium-labelled template (S-propranol, in this case). In this way there was no 

need to remove the unbound labelled ligand, because this latter was too far 

from the scintillation monomer to generate a signal. MIP NPs exhibited 2-fold 

higher response than NIP NPs, and discrete enantioselectivity. However, even if 

these MIP NPs performed well in aromatic solvents, the lack of any aromatic 

compound in their preparation hampered the generation of the scintillation 

signal in other media. For this reason, authors also used DVB as cross-linker 

(2002). This allowed achieving a very good imprinting effect as well as very 

good enantioselectivity in ACN. However, the same performance could not be 

obtained in pure citrate buffer, and 50% of ACN had to be added to retain the 

imprinting effect and selectivity properties. With further development, this 

approach might lead to a reliable assay technique. Nevertheless, it relies on the 

use of radioactive materials which are not very easy to handle and dispose. 

Systems based on optical detection are easier to handle, even if they are 

usually more prone to cross-reactivity issues. Surugiu and co-authors (2000) 

developed an ELISA-like assay based on MIP NPs imprinted with 2,4-D. The 

target analyte was labeled with tobacco peroxidase as an enzymatic probe and 

used to detect the template either colorimetrically or by chemiluminescence. In 

both cases the MIP NPs were suitable to quantify the template down to a 

concentration of 1 μg/mL, even if a certain percentage of non-specific binding 

was detected. This was probably due to the higher amount of binding groups 

present in the enzyme probe, considering that the competition between free 
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template and analogue was monitored in solution. In addition, cross-reactivity 

with structural analogues was quite high. 

Authors tried to improve this system by making it more similar to a traditional 

ELISA assay (2001). The same MIP NPs were immobilised on microtiter plate 

wells using poly(vinyl alcohol) (PVA) as glue, and the detection of 

chemiluminescence from the competition reaction was performed using a CCD 

camera. The detection limit of the assay was decreased to 34 nM. As in the 

previous cases, some cross-reactivity was exhibited, especially when compared 

to the same assay performed using antibodies. However further optimisation is 

possible, both in terms of amount of PVA needed for the immobilisation, as well 

as possible automation of the production of the microplates. 

Pérez and co-authors designed an “immunoprecipitation like assay” for 

cholesterol using surface-imprinted MIP NPs prepared by core–shell emulsion 

polymerisation (2001). Spherical MIP NPs of 60 nm in diameter were 

flocculated by the addition of a proper quantity of a multi-ligand template, PEG-

bis-cholesterol, while mono-ligand template did not give rise to these effects 

(Figure 1–30). 
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Figure 1–30. “Immunoprecipitation-like” separation of surface-imprinted MIP NPs 

in the presence of PEG-bis-cholesterol. The addition of the multi-ligand template 

resulted in flocculation of MIP NPs (adapted from Pérez et al., 2001). 

These results encourage undertaking more studies for applying MIP NPs in 

similar immunoassays. However, it should be noted that the presence of 

surfactant strongly affected the rebinding properties of synthesised MIP NPs. 

Maybe a different polymerisation strategy might allow adapting this assay more 

easily also to other templates with an even better performance. 

Another possible strategy to better exploit MIP NPs in such diagnostics assays 

would be to make them more easily detectable by introducing for example 

fluorescent probes. 

Pérez-Moral et al. prepared core-shell MIP NPs either with fluorescent cores 

(2004), or with multi-layer shells in which one of the layers contained a 

fluorescent label (2007). In the first case, however, they did not assess nor the 

binding efficiency or the fluorescent behaviour of the product in dependence of 

the binding to the template (cholesterol). In the second case, as expected, 
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addition of several layers onto the imprinted shell caused some reduction of the 

binding of the template propranolol, but unfortunately also in this case a 

systematic assessment of the fluorescence of the particles in relation to the 

template rebinding was beyond the scope of the work. 

Rather than using a fluorescent monomer, Diltemiz and co-workers exploited 

CdS quantum dots as core-labels onto which graft a guanosine-imprinted shell 

(2008). MIP NPs had an average diameter of 45 nm, and their intrinsic 

fluorescence was enhanced by the template binding, being proportional to its 

concentration. MIP NPs also exhibited very high selectivity for guanine and 

guanosine, while adenosine did not give rise to any change in fluorescence. 

This is probably due to the recognition mechanism in these MIP NPs, which is 

based on a ligand-exchange with Pt ions embedded in the polymeric structure. 

However, to be exploitable for example in the diagnosis of DNA mutations, 

several studies have to be still undertaken since the binding to double-stranded 

DNA was quite low. 

Purely organic MIP NPs with fluorescent sensing capability were recently 

synthesised by Ivanova-Mitseva et al. (2012) who prepared a fluorescent core 

by partially modifying the peripheral amino groups of a poly(amido amine) 

(PAMAM) dendrimer with dansyl residues. The remaining free amino groups 

were then modified with DEDTC iniferter groups capable of initiating 

photochemical polymerisation of a MIP shell. The particles had an unusual 

cube-like shape and were 50 nm in size. The fluorescent MIP NPs (but not 

blank NPs) showed an enhancement of fluorescence in the presence of the 

template (acetoguanamine) with a detection limit of 30 nM, but did not respond 

to relevant structural analogues.  

Very recently (2011), Li et al. went one step further and developed MIP NPs 

with a double-layer core-shell structure made of a Fe3O4 NPs core, an inner 

shell of fluorescein isothiocyanate (FITC) and an outer MIP shell, for faster 

separation and recognition of E2. MIP shell was produced using a controlled 

living RAFT polymerisation. MIP NPs exhibited a diameter of about 350 nm, 

with the fluorescent intensity decreasing with increasing concentrations of E2 
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and showing a detection limit of 0.19 μM. A discrete imprinting effect and very 

good selectivity properties were also achieved, and MIP NPs could be reused 

up to 5 times after washing. Such a system not only provided a source of 

fluorescence but also allowed magnetic separation to replace centrifugation and 

filtration steps during the experimental procedure in a convenient and cost-

effective way. Given these advantages, these products could be really 

interesting especially in the case of high-throughput and automatic detection 

applications. 

1.5.5 Separation 

The most popular MIP formats used in separation are membranes and 

microparticles. Nevertheless MIP NPs with high surface area might offer 

advantages if they can be integrated with membranes or fibers to improve their 

performance.  

The first example of MIP NPs-containing composite membrane for separation 

purposes dates back to 2002. In this work Lehmann and co-authors prepared 

MIP NPs imprinted with L-BFA using mini-emulsion polymerisation, then used 

them to prepare a composite membrane for enantiomeric separation purposes. 

Despite MIP NPs exhibited a remarkable imprinting effect and enantioselective 

properties in batch rebinding tests, the authors did not study the separation 

performance of the composite membrane, but only its porosity and flow 

properties.  

Silvestri and co-workers (2005) prepared MIP NPs imprinted for THO and for 

CAFF through precipitation polymerisation, and embedded them in poly(methyl 

methacrylate-co-acrylic acid) (PMMA-co-AAc) membranes using a solid-phase 

inversion method. CAFF-MIP NPs were 174 nm in diameter and performed well 

in batch rebinding tests, retaining their characteristics after being deposited on 

the surface of the membranes. Unfortunately THO-MIP NPs (202 to 313 nm in 

diameter) did not exhibit impressive recognition properties during batch 

rebinding studies in buffer. However, after being incorporated into the 

membranes, their recognition properties dramatically improved, since they 

rebound about 6 times more THO than NIP membranes and 40 times more 
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THO than control membranes without NPs. Moreover, they exhibited a 

selectivity factor for THO versus CAFF of 10. According to these results, the 

membrane structure helped the rebinding process for THO-MIP NPs, probably 

by improving the establishment of interactions with the template.  

The same authors later used this strategy to create composite membranes 

containing MIP NPs for cholesterol (2006). All the synthesised NPs exhibited 

specific rebinding capacities for the template both in EtOH and in PBS, even if 

the materials with lower cross-linking degree performed better (50-60 mg 

specifically rebound template/g of MIP NPs). This trend was mirrored by the 

membranes which possessed a specific binding capacity of 14 mg template/g of 

the composite system. The results of these works are really promising. 

Nevertheless, further investigation on the mechanism responsible for the 

modification of the MIP NPs binding properties due to the matrix effect would 

probably be helpful to further improve the performance of these composite 

systems. 

Chronakis and colleagues (2006) incorporated MIP NPs into composite 

nanofibers using the electrospinning technique. This is an interesting approach 

since these materials can constitute well-controlled filtration matrixes, e.g., for 

SPE applications. MIP NPs imprinted for E2 and THO were prepared using 

precipitation polymerisation (Ye et al, 1999), suspended in a solution of PET in 

dicloromethane and trifluoroacetic acid, and electrospun to obtain nanofibers. 

These latter possessed regular diameters, ranging from 150 to 300 nm, and 

MIP NPs were clearly still visible inside them (Figure 1–31). 
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Figure 1–31. SEM image of electrospun PET nanofibers containing 37.5% w/w of 

MIP-E2 NPs. The scale bar is 10 μm (adapted from Chronakis et al., 2006). 

Produced nanofibers were able to accommodate up to 75% (w/w) of NPs, 

exhibiting excellent binding properties, since MIP nanofibers rebound 2 to 3 

times more template than control nanofibers. Moreover, the encapsulation 

process modified the surface properties of the MIP NPs, making them able to 

rebind the template in solvents (i.e. toluene) in which they normally gave rise to 

aggregates. However, the amount of incorporated NPs had to be optimised to 

avoid direct exposure to the solvent, which caused high non-specific 

interactions. 

The same authors assessed the feasibility of these materials for the analysis of 

real samples by incorporating MIP NPs imprinted for propranolol into nanofibers 

prepared using the same electrospinning approach (2008). MIP composite 

nanofibers were able to rebind 70% of total propranolol, while only 10% was 

rebound by NIP. In addition, MIP nanofibers mats could be used to specifically 

extract and concentrate propranolol from spiked tap water samples even in 

presence of other β-blockers, while in the same conditions the non-specific 

recovery from NIP nanofibers was about 30%. Some cross-reactivity with the 

structural related compounds was observed, but if it represents a group 

specificity this could actually be an advantage since these molecules could be 
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extracted all with a single SPE process. This material was stable for up to 10 

consecutive extractions without showing any loss neither of NPs nor of binding 

properties. However, some issues need to be addressed in these MIP 

composite nanofibers, such as the amount and the size of incorporated MIP 

NPs. This has to be optimised to avoid aggregation phenomena and direct 

exposure of the particles to the solvent, which result in non-specific interactions. 

Rather than using PET, Piperno and co-workers (2011) exploited the cross-

linking of PVA to create more stable and water-compatible electrospun 

nanofibers impregnated with MIP NPs imprinted with dansyl-L-Phenylalanine. 

The 400 nm MIP NPs were produced by precipitation polymerisation, and were 

able to rebind 2-fold more template than non-imprinted ones, exhibiting good 

enantioselectivity. Electrospun materials with diameters between 80 and 350 

nm were not able to encapsulate MIP NPs completely, thus leaving them able to 

interact and rebind the template with micromolar affinity (KD = 21 μM) and 

enantioselectively. Most importantly, the fibers retained their recognition activity 

even after multiple adsorption/desorption cycles, thus highlighting their stability 

and possibility to be used as SPE media. However, all the rebinding tests were 

performed in ACN. Given the water-compatibility of PVA, it would have been 

interesting to verify the rebinding properties of these materials also in buffer. 

Instead of supporting NPs on membranes or fibers, Zhu et al. (2010) 

synthesised core-shell silica MIP NPs to be used directly in SPE applications for 

bisphenol A. A 50 nm MIP silica shell was produced onto the surface of 400 nm 

silica NPs by exploiting a sol-gel process. MIP NPs had an adsorption capacity 

2.5-fold higher than NIP ones, with a very fast rebinding kinetics, probably 

thanks to the binding sites located mostly at their surface. In addition, they 

recovered close to 100% of the template, even in presence of an excess of 

structural analogues. Eventually, when assessed for SPE extraction of true 

cosmetic samples spiked with bisphenol A, MIP NPs performed better than 

commercial silica, thus decreasing the level of noise in the subsequent HPLC 

quantification. 
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The same group (2010) also synthesised 300–400 nm core–shell MIP NPs for 

SPE of the herbicide metsulfuron-methyl (MSM). A MIP layer was thermally 

grafted to silica cores modified with an acryloyl silane. The optimised MIP NPs 

had a maximum adsorption capacity 3.4 times higher than NIP NPs and 3.8 

times higher than conventional C18 silica. In addition, rapid rebinding kinetics 

could be obtained. In the SPE extraction of samples of soil or from crops spiked 

with the template and its structural analogues, MIP NPs allowed pre-

concentrating MSM to a much higher level than commercial silica or non-

imprinted NPs, thus allowing the subsequent HPLC quantification to be 

performed with minimal noise. However, some cross reactivity with analogue 

herbicides was observed, even if it should not be a major issue for the 

application of this material. For a practical application, the amount of 

polymerisable double bonds on the surface of silica cores, as well as the 

conditions of the thermal polymerisation process and the composition of the 

polymerisation mixture had to be carefully adjusted to optimise the rebinding 

conditions. 

In a similar way, Gao et al. prepared core-shell MIP NPs imprinted with 

sulfamethoxazole (SMO) to be used in SPE applications (2010). As in their 

previous work (2007), authors exploited the strong interaction established 

between the template and the acrylamide moiety on the core-surface to 

increase the density of imprinted sites in the shell. Core-shell MIP NPs rebound 

3-fold more SMO than bulk MIPs or NIP NPs, reaching the adsorption 

equilibrium in about 45 min. Moreover, MIP NPs exhibited high selectivity for the 

template (IF = 21) when compared to the binding of five other sulfonamidic 

structural analogues (IFs between 2 and 4). When assessed for the SPE pre-

concentration of real eggs and milk samples spiked with sulphonamides, the 

recoveries ranged from 73.2 to 89.1% with relative standard deviations below 

7.5%, allowing detection of SMO and of another structural analogue, 

sulfadiazine, through HPLC analysis of the concentrates.  
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Even ions have been imprinted onto MIP NPs for subsequent separation 

purposes. Shamsipur et al. (2010) prepared MIP NPs with an antraquinone 

(AQ) derivative as specific complexing monomer for the extraction of copper ion 

from water. MIP NPs of 60-100 nm with a slight irregular shape were obtained. 

Under optimised adsorption conditions the synthesised material exhibited a 

binding capacity of 73.8 μmol/g, as well as very good selectivity in the presence 

of other ions. In addition MIP NPs could be reused to bind and desorb Cu+2 up 

to 20 consecutive times, without any loss of affinity. Futhermore, when tested 

with real well and tap water samples spiked with Cu+2, MIP NPs recovered 95 to 

105% of the ions present, thus highlighting the possibility of using this materials 

for purification or preconcentration purposes. 

With a similar aim, the group of Prasada Rao (2011) prepared core-shell MIP 

NPs imprinted for uranyl ions for water purification. The authors first prepared 

functionalised silica cores bearing an amino silane for the immobilisation of 

quinoline-8-ol to improve the specific interaction with the uranyl ions. Then, an 

imprinted shell was prepared by precipitation polymerisation, giving rise to MIP 

NPs of 50-80 nm diameter. Under optimised rebinding conditions, MIP NPs 

were able to selectively remove 500 to 1000 ppb of uranyl ions from water 

samples, about 25% more than non-imprinted materials. Moreover, when tested 

with real water spiked samples, the recovery performance was almost around 

94% for ground water. However, for salt water samples, the recovery was lower 

(70%). Maybe the high concentration of sodium chloride present disrupted the 

specific interactions between the template and the binding sites. 

Li and his group (2009) recently prepared surface-imprinted magnetic 

polystyrene NPs for bovine haemoglobin through a multi-stage core-shell 

polymerisation process. It involved the use of APBA as functional and cross-

linking monomer, which is particularly suitable for protein imprinting (Bossi et 

al., 2001). Magnetite core NPs of 25 nm in diameter were coated with several 

layers and eventually the MIP shell was created by polymerising APBA in the 

presence of the template. The final size of the coated particles reached a 

diameter of 480 nm, in which the MIP film was 15-20 nm thick. Moreover, the 
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core-shell MIP NPs exhibited superparamagnetic properties suitable for an easy 

separation, also in large scale. Additionally, they showed a fast rebinding 

kinetics (30-120 min), good specificity and selectivity for the template, as well as 

a very high adsorption capacity of about 45.5 mg/g. Such a high capacity is 

unusual for this kind of material and together with their magnetic properties 

makes these MIP NPs very attractive for enrichment of low-concentration 

proteins in proteomics. 

1.5.6 The future: biologically active MIP nanoparticles 

Undoubtedly the most interesting development for MIPs and MIP NPs is the 

creation of biologically active systems that can be used as drugs, antibody, or 

enzyme substitutes in vivo.  

The first example of water-soluble MIP NPs demonstrating biological activity 

dates back to 1998, when Piletsky and co-authors investigated the possibility to 

modify the photosynthetic reaction catalysed by thylakoid membrane D1 

protein, either by disrupting the electron acceptor site or interacting with the 

cytosolic site of the photosystem. For this purpose MIP and NIP bulk monoliths 

were prepared in water and extensively ground to produce MIP NPs. Affinity 

chromatography on immobilised D1 protein showed that 5–10 kDa MIP NPs 

had increased binding affinity to this protein as compared to non-imprinted 

polymers. In addition, MIP NPs were able to increase the activity of the D1 

protein up to 45%, data consistent with a binding at the cytosolic site of the 

photosystem. However, this example remained isolated in literature because of 

the production method and the low yield. Nevertheless, this first work 

represents a milestone in the production of soluble MIP NPs with biological 

activity. 

A different approach was followed by Haupt and his group who recently 

synthesised water-soluble MIP microgels capable to inhibit the enzymatic 

activity of trypsin (2009). Their method exploited the synthesis of a tailor-made 

“anchoring monomer”, methacryloylaminobenzamidine (a polymerisable 

derivative of benzamidine), to complex the template with high affinity and locate 

the synthesis of the MIP nanogels preferably at the surface of the enzyme. 
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Benzamidine is indeed a well-known low molecular weight competitive inhibitor 

of trypsin. Differently from Piletsky and co-workers, authors synthesised water-

soluble MIP nanogels through a precipitation polymerisation from a highly 

diluted solution. Apart from the anchoring monomer, several water-soluble 

monomers and cross-linkers with different molar ratios were tested. The best 

imprinting effects were obtained when HEMA and MAm were used as functional 

monomers (IF respectively of 2.8 and 2.5). Authors found that the presence of 

the anchoring monomer is a key factor for obtaining MIP nanogels with high 

inhibition capacity for trypsin. Despite the not so high affinity, calculated 

inhibition constant (Ki) for the imprinted nanogels was indeed 79 nM. This value 

is much lower than the Ki value for free benzamidine (18.9 µM), which proved 

the effectiveness of this imprinting strategy. Moreover, imprinted nanogels 

exhibited selectivity properties for trypsin, because negligible inhibition activity 

was found for trypsin-related enzymes such as chimo-trypsin or kallikrein. 

Shea and co-workers recently prepared MIP NPs by precipitation 

polymerisation for the bee venom peptide melittin (2008) (see 1.4.1 - 

Precipitation polymerisation for more details on NPs production and 

characterisation). MIP NPs were tested in vitro on fibrosarcoma cells and did 

not show any toxic effect (2010). Particles were then injected intravenously in 

mice (dose: 30 mg/kg) 20 s after the administration of a lethal dose of melittin 

(4.5 mg/kg). Authors found that MIP NPs halved the mortality in mice treated 

with the toxin, while mice treated with NIP NPs and untreated mice showed a 

mortality of 80% and 100%, respectively. Moreover, mice treated with MIP NPs 

exhibited reduced common toxic effects caused by melittin, such as peritoneal 

phlogosis and weight loss. Authors also investigated the biodistribution of 

fluorescently marked MIP NPs and melittin during time. They found that while 

melittin alone distributes extensively into the body through the bloodstream, the 

administration of MIP NPs results in a concentration of melittin in the liver. This 

is followed by the removal of the MIP-melittin complexes through the 

mononuclear phagocytic system (Figure 1–32). 
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Figure 1–32. Scheme of function of MIP NPs in vivo (reproduced from Hoshino et 

al., 2010b). 

These results are undoubtedly very interesting, and once again they testify the 

broad range of applicability of MIP NPs. However, it would be interesting to test 

also anti-melittin antibodies in vivo under the same conditions to compare the 

efficacy of these MIP NPs in respect of their natural counterparts. It is known 

that nanoparticles could cause an increased production of reactive oxygen 

species (ROS), i.e. increased oxidative stress of cells with possible subsequent 

inflammation. In addition, once in the blood flow, they can distribute virtually to 

every organ of the human body, with hardly predictable translocation rates 

(Oberdörster et al., 2005; Borm et al., 2006; Jones and Grainger, 2009). Finally, 

they can interact with proteins, altering their structure or function, and could 

accumulate in excretion organs such as kidney or liver, physically blocking 

filtration pores and thus causing the organ failure (Oberdörster et al., 2005). 

Thus the toxicological properties of MIP NPs need to be carefully investigated to 

assess the risks deriving from the use of these nanomaterials prior to their 

application in humans.   
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1.6 Immobilised templates: a new imprinting strategy 

Many of the perceived disadvantages of MIPs and MIP NPs can be traced to 

the way how soluble templates behave in the polymerisation reaction. Soluble 

templates are in motion, both translational and rotational, during the critical 

stages of the formation of the recognition sites. The accessibility of these latter 

into porous polymeric matrixes is also a matter of chance, ranging from partial 

sites on the inner surface of micro- or macro-pores to complete encapsulation, 

with an ideal situation lying somewhere in between (Sellergren and Hall, 2000). 

These factors are major contributors to the problems of binding site 

heterogeneity and accessibility, and therefore responsible for the “polyclonal” 

nature of traditional MIPs. However, during the last decade, some examples of 

MIPs synthesised by using a template covalently immobilised on a suitable 

support have been reported, thus opening the way to a new strategy of MIP 

polymerisation at the interphase between liquid and solid. Immobilisation of 

templates might address some drawbacks typical of MIP polymerised in 

solution. First of all this approach allows substances that are not soluble in the 

polymerisation mixtures to be imprinted, thus expanding the range of solvents 

that can be used in imprinting. The addition of surfactants or co-solvents as 

solubilising agents can be avoided as well, since these substances indeed 

might interfere with the interactions between the monomer and the template. In 

addition, template-template interactions which might occur in solution are 

suppressed. Moreover, immobilised templates possess a reduced numbers of 

degrees of freedom and the formation of the polymer at the interface with the 

template support means that the imprinted sites will always be accessible. This 

would facilitate also the template removal and the rebinding kinetics (Yilmaz et 

al., 2000; Tan and Tong, 2007), avoiding complicated strategies involving the 

synthesis of surfactant templates (Pérez et al., 2001; Priego-Capote et al., 

2008; Curcio et al., 2009). Immobilisation also allows the orientation of the 

template to be controlled (Liu et al., 2012) hence creating more homogeneous 

binding sites in MIPs. Finally, so far the synthesis of every batch of MIP product 

has always required a new batch of template molecules which, if expensive, 
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might represent an important economical drawback for scaling up the 

production process. 

The first example of MIPs synthesised using an immobilised template has been 

performed by Yilmaz et al. (2000), who synthesised a MIP imprinted for THO by 

immobilising its 8-carboxypropyl derivative through an amide bond on 

aminopropyl silica gel, chosen as solid support. After the immobilisation, the 

authors blocked the remaining aminopropyl groups by using acetic anhydride, to 

avoid interference in the imprinting procedure. The synthesis of MIP was 

performed using thermal polymerisation at 45 °C of TFMAA as functional 

monomer and DVB as cross-linker, with V-70 as initiator. The monolith has 

been mildly wet-milled and the silica solid support with the immobilised template 

removed by treatment with aqueous hydrofluoric acid (HF) (Figure 1–33). This 

imprinting strategy that involves the dissolution of the solid support with the 

template has been given the name of "hierarchical imprinting". 

 

Figure 1–33. Molecular imprinting using immobilised template and subsequent 

dissolution of the support, better known as "hierarchical imprinting" (adapted 

from Yilmaz et al., 2000). 

The MIP exhibited an evident imprinting effect compared to the control polymer, 

which bound 5 times less analyte. However, MIPs synthesised using free THO 

in solution exhibited a higher rebinding capacity, even if they had less uniform 

binding sites.  

Using the same approach, Titirici and co-workers (2002) fabricated 

microparticles imprinted for adenine or triaminopyrimidine to be exploited in 

HPLC applications. Authors immobilised the halogenated template precursors 

on porous silica microparticles previously derivatised with APTES and, after 
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blocking the remaining aminopropyl groups, performed the synthesis using 

thermopolymerisation at 60 °C of a mixture of MAA and EGDMA, with AIBN as 

initiator. The silica has been removed by treatment with aqueous ammonium 

hydrogen fluoride (NH4HF2). After this treatment, porous microparticles with a 

diameter similar to the starting silica ones have been obtained. They exhibited a 

homogeneous pore distribution and performed well in HPLC analysis of purine 

and pyrimidine DNA bases. However, the removal of the support with the 

template required 4 days to be completed. In addition, the correspondent MIP 

fabricated using the free template exhibited higher selectivity values. This has 

been ascribed to the steric hindrance which takes place at the surface of the 

silica, which in turn might hamper the monomer-template interactions. Probably 

the use of a spacer group to covalently bind the templates on the silica surface 

might help avoiding the hindrance problems. 

In a later work (2004), the same authors combined this hierarchical imprinting 

procedure with an epitope imprinting approach. This latter refers to the 

imprinting of a small peptide sequence (i.e. an epitope) instead of a whole 

target protein, which can be subsequently recognised and bound to the 

imprinted cavity thanks to this peptide moiety (Ge and Turner, 2008). Authors 

synthesised peptide sequences directly on the surface of silica microparticles 

and prepared MIP microparticles using this approach. When tested in HPLC 

separation, some of the polymers exhibited higher capacity and selectivity 

values than the correspondent MIP fabricated in presence of free template in 

solution, even in the case of separation of larger peptide sequences that 

contained the epitope moiety. 

The hierarchical imprinting approach has also been investigated to prepare 

catalytic MIPs. In 2004, Lettau et al. prepared MIPs able to catalyse the 

hydrolysis of esters. The TSA for an esterolytic reaction, (4-aminobenzyl)-

phosphoramidic acid-4-nitrophenylester was immobilised on aminopropyl silica 

gel by coupling with succinic anhydride and N,N'-diisopropylcarbodiimide. After 

blocking the residual carboxylic groups, MIP synthesis has been carried out 

thermally in MeOH for a total of 95 h, by using 4-vinylimidazole as functional 
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monomer and DVB as cross-linker, with AIBN as initiator. After this the silica 

has been removed by treatment with HF, leaving behind particles in high yield 

and very similar in morphology to the starting silica gel. MIPs exhibited higher 

activity than control polymers (3.5-fold higher), and similar or higher activity than 

correspondent MIPs synthesised with free TSA in solution. Moreover, MIPs 

obeyed to Michaelis-Menten kinetics. Nevertheless, the synthesis still relied on 

the removal of the silica support, and it was quite time-consuming. 

An innovative hierarchical-approach has been recently reported by Shen and 

Ye (2011), who synthesised hydrophilic surface-imprinted MIP microparticles 

imprinted for a β-blocker moiety by exploiting an unconventional polymerisation 

process carried out in Pickering emulsion. Unlike conventional emulsions, which 

are stabilised by the use of surfactants or polymeric emulsifiers, Pickering 

emulsions are stabilised by solid particles, which prevent instability phenomena 

by locating themselves at the interphase between the two immiscible liquids. In 

this particular approach, the authors used template-modified silica NPs as 

emulsion stabilisers, thus obtaining regular spherical MIP microparticles 

imprinted only on their surface. The synthesised material exhibited a 

remarkable specificity in water, thanks to the surface-imprinting which 

concentrated the hydrophilic COOH groups from the functional monomer MAA 

on the microparticles surface. The rebinding kinetics was also quite impressive, 

since MIP microparticles incubated with the template reached the equilibrium in 

20 min. Nevertheless also in this case the removal of the template was 

performed by dissolution of the silica NPs in HF for 12 h. Moreover, despite the 

use of the immobilised template, additional washing steps were required to 

remove polyMAA chains, thus making the synthetic process even more time-

consuming. 

In the field of nanostructures, the formation of MIP nanowires synthesised by 

immobilising the template on the surface of a nanoporous alumina membrane 

was reported (Yang et al., 2005). Authors first coated the membrane pores with 

silica, then they immobilised trimethoxysilylpropylaldehyde to provide aldehyde 

groups able to bind the template, glutamic acid, through an imino bond. The 
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modified membranes were immersed in a solution of pyrrole (functional 

monomer) and then mixed with an oxidant agent to start the polymerisation. 

MIP nanowires have been collected by dissolving first the alumina membrane, 

and subsequently removing the silica layer by exploiting the usual treatment 

with HF. The imprinted products exhibited higher capacity than the non-

imprinted ones, and also very good selectivity. Moreover they also showed a 

fast rebinding kinetics, thanks to the imprinting effect preferably at the surface of 

the MIP nanowires.  

The same group later applied this approach to synthesise MIP nanowires 

imprinted for whole proteins (2006). Instead of using pyrrole as monomer, they 

used AAm and BIS as monomer and cross-linker, respectively, thus imprinting 

bovine serum albumin, bovine cytochrome c and horseradish peroxidase. 

Authors found that the cross-linking degree of the MIP strongly affects its shape 

and its capacity, and could result in a too rigid material from which the template 

removal is too difficult to achieve, despite its high surface area. Nevertheless, 

imprinted nanowires exhibited about 5 times higher capacity for their templates 

than control ones. Moreover, MIP nanowires showed good specificity, even in 

case of very similar proteins. A serious drawback, however, is the fact that the 

synthetic procedures were quite complex and time-consuming, and still involved 

the dissolution of both the alumina and the silica supports.  

Shea and co-workers, in 2006, reported the synthesis of a MIP film imprinted 

with cytochrome c, alcohol dehydrogenase or bovine serum albumin by using 

an epitope approach combined with the immobilisation of peptide moieties for 

these proteins on a suitable support, either silica or glass. Each support has 

been previously treated with 7-octenyltrichlorosilane to provide a spacer. This 

latter has been subsequently oxidised to carboxylic group in order to immobilise 

the target peptides through an amide bond (Figure 1–34A). The MIP film has 

been synthesised by depositing the polymerisation mixture formed by AAm, 

BIS, PEG 200-diacrylate and 2-hydroxy-4'-(2-hydroxyethoxy)-2-

methylpropiophenone as photoinitiator onto the derivatised surface. The mixture 

was subsequently photopolymerised for 10 min using UV irradiation. The 



 

107 

support then has been detached from the MIP film by soaking it in PBS (Figure 

1–34B) without any dissolution step. The MIP films were able to selectively 

rebind all the imprinted proteins (Figure 1–34C) with good capacity and affinity. 

For instance, the calculated KD between the MIP film imprinted for cytochrome c 

and the protein was 72.6 nM. 

 

Figure 1–34. Protocol for template imprinting with protein epitopes. A) Glass 

modification and peptide attachment. B) Photopolymerisation and support 

removal. C) Target protein recognition (adapted from Nishino et al., 2006). 

In summary, despite the advantages stated here, the hierarchical imprinting 

approach does not provide benefits from an economical and synthetic point of 

view when compared with a normal imprinting procedure with a free template in 

solution. The template molecules are still discarded at the end of the MIP 

synthesis, together with the silica support, which requires long and harsh 

treatments for its dissolution (3-4 days for dissolution of the silica in 

concentrated HF or NH4HF2). The last described approach seems more 

promising, since the separation between the solid support and the MIP product 

was much milder and faster (one night) than the classical hierarchical 

imprinting. However, the authors did not test the feasibility of synthesising MIPs 

in different formats.  
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1.7 Conclusion and future outlook 

In recent years we have witnessed a growth of activity in the development of 

alternative affinity materials to antibodies such as aptamers, EBPs and MIPs. A 

general overview of these alternatives, with particular emphasis on MIPs, 

imprinting approaches and different MIP formats has been provided. Recent 

developments in the synthesis and applications of MIP NPs are particularly 

encouraging. The feasibility of developing MIP NPs has been analysed in depth, 

using several examples taken from the recent literature. Several polymerisation 

methods for MIP NPs have been reviewed, noting their pros and cons and their 

compatibility with molecular imprinting procedures. A number of interesting 

practical applications for such materials were also described and discussed in 

the present review, as well as the most recent progress made in the synthesis 

of MIPs by using immobilised templates.  

It is clear that the process of replacing natural antibodies with their synthetic 

analogues is mainly hindered by the lack of suitable low-cost protocols for large-

scale manufacturing of such materials together with the “polyclonal” nature of 

synthesised MIPs. Given the importance of MIP NPs as antibody substitutes, 

and considering their improved properties when compared to larger size MIPs, 

the automation of their production is an area that really needs to be explored 

and investigated. To date, there are only few companies that produce MIP 

micromaterials to be used in SPE applications, i.e. the Swedish company 

Biotage and the French PolyIntell. A more recent entry is the US company 

Raptor, which produces MIP-coated wipes for the detection of explosives 

(Haupt, 2012). Following further advances in polymer and synthetic chemistry, 

as well as in screening tools, this situation is set to change, motivating 

companies to put more investment into the development of novel synthetic 

receptors, thus leading to a new generation of superior affinity materials, readily 

available for routine diagnostic and industrial applications. New synthetic 

approaches for MIP preparation can be expected in the next years, which will 

allow MIPs to be obtained directly in the form of nanoparticles. Hopefully this 

will allow producing MIPs on a commercial scale for a full range of novel 

applications. 
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2 Materials and methods 

2.1 Chemicals 

Formic acid (HCOOH), boric acid, melamine, vancomycin, desisopropylatrazine 

(DA), ethylene glycol dimethacrylate (EGDMA), methacrylic acid (MAA), 

trimethylolpropane trimethacrylate (TRIM), 3-aminopropyltrimethyloxysilane 

(APTMS), 1,1'-azobis-(cyclohexanecarbonitrile) (ABCN), β-mercaptoethanol 

(ME), o-phtalaldehyde (OPA), glutaraldehyde (GA), phosphate buffered saline 

(PBS), TRIS buffered saline (TBS), dimethylformamide (DMF), N-methyl-2-

pyrrolidone (NMP), pentaerythritol-tetrakis-(3-mercaptopropionate), N-

isopropylacrylamide (NIPAm), acrylic acid (AAc), N,N'-methylene-bis-acrylamide 

(BIS), N-tert-butylacrylamide (TBAm), N,N,N',N'-tetramethylethylenediamine 

(TEMED), ammonium persulphate (APS), calcium chloride (CaCl2), cysteamine, 

α-amylase, pepsin A, methanol (MeOH), ethanol (EtOH), toluene and acetone 

were purchased from Sigma-Aldrich, UK. Trypsin and bicinchonic acid (BCA) 

Protein Assay Kit were purchased from Thermo Scientific (UK). Acetonitrile 

(ACN) and sodium hydroxide (NaOH) were obtained from Fisher Scientific (UK). 

Poly(ethylene glycol) (PEG) 35000 was purchased from Fluka (Germany). N,N-

diethyldithiocarbamic acid benzyl ester was obtained from TCI Europe 

(Belgium). Polymerisable derivative 2,4-diamino-6-(methacryloyloxy)-ethyl-

1,3,5-triazine (DMET) from Wako (Japan). Double-distilled ultrapure water, 

obtained from a Millipore Direct-Q 3 Ultrapure Water Systems (Watford, UK) 

fitted with a Millipak-20 Express 0.22 μm non-sterile filter, was used for analysis. 

All chemicals and solvents were analytical or HPLC grade and were used 

without further purification. The peptide TATTSVLG-NH2 was synthesised and 

kindly provided by The National Physical Laboratory (UK). 
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2.2 Preparation of solid-phase affinity media for MIP NPs 

synthesis 

2.2.1 Preparation of polymeric resin as affinity media 

Polymeric resin for MIP NPs synthesis was prepared by mixing 5 g DMF, 5 g 

EGDMA (2.52 × 10-2 mol, Mw = 198.22 g/mol), 0.3 g DMET (polymerisable 

derivative of melamine) (1.29 × 10-3 mol, Mw = 233.23 g/mol), 0.1 g ABCN (4.09 

× 10-4 mol, Mw = 244.34 g/mol) and 0.3 g of PEG 35000 (1.43 × 10-5 mol, Mw = 

35000 g/mol). This mixture was purged with N2 for 2 min and then polymerised 

under UV light for 20 min (UVAPRINT 100 CVI UV source with 0.163 W/cm2 

intensity, Dr. Hönle) in a closed 20 mL glass vial. The obtained white monolith 

was initially manually ground in smaller pieces in a mortar and then 

mechanically ground using a Retsch Ultra Centrifugal Mill ZM 200 (Retsch, 

Germany) at 14000 rpm. The fine powder obtained was wet sieved in MeOH 

and polymer particles with size 25-63 μm were collected and washed overnight 

in a Soxhlet extractor with MeOH. Particles were then dried overnight at 80 °C 

in an oven before use. The procedure has been adapted from Guerreiro et al. 

(2009). 

2.2.2 Preparation of template-derivatised glass beads as affinity 

media 

Glass beads were purchased from Sigma-Aldrich, UK (9-13 μm or 75 μm in 

diameter) or from Blagden Chemicals, UK (Spheriglass® 2429, 53-90 µm 

diameter). The latter beads had a silane surface coating, which was removed 

prior to any further treatment by vibrating them with abrasive ceramic beads on 

a Retsch Vibratory Sieve Shaker AS 200 basic (Retsch, Germany) for 5 h with a 

70% amplitude. Glass beads to be used in the photoreactor were activated by 

boiling in 4 M NaOH for 10 min, while in the case of the aqueous reactor the 

activation was performed in 1 M NaOH for 1 min. The glass beads were then 

washed with double-distilled water at 60 °C, followed by acetone and finally 

dried at 80 °C in an oven. They were then incubated in 150 mL of a 2% v/v 

solution of APTMS in toluene overnight, then thoroughly washed with acetone 

and subsequently incubated in 150 mL of a 7% v/v GA solution in PBS 0.01 M 
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pH 7.2 for 2 h. After this step, the glass beads were rinsed with double-distilled 

water. The surface immobilisation of the template was performed by incubating 

beads with 150 mL of a template solution in PBS 0.01 M pH 7.2 overnight at 4 

°C. The concentration of template used was 5 mg/mL in the case of melamine; 

0.05 mg/mL in the case of peptide TATTSVLG-NH2; 0.5 mg/mL in the case of 

vancomycin, pepsin A, α-amylase or trypsin (Piletsky et al., 2011). In the case 

of trypsin, the immobilisation was performed in TBS 0.05 M, pH 8.0 with 0.02 M 

CaCl2 at 4 °C (Rocha et al., 2005). In the case of melamine, NMP (10% v/v) 

was also added as co-solvent. Finally, the glass beads were thoroughly washed 

with double-distilled water and dried under vacuum at room temperature, then 

stored at 4 °C (melamine, peptide or vancomycin glass beads) or at -18 °C 

(pepsin A, trypsin or α-amylase glass beads) until used. The procedure was 

adapted from Piletsky et al. (2011).  

OPA fluorimetry test of melamine-derivatised glass beads 

The reaction between OPA, ME and free amino groups of melamine was 

exploited to confirm the surface derivatisation of glass beads by analysing the 

fluorescence of the isoindole adduct. The assay protocol was adapted from 

Piletska et al. (2001). Briefly, 3 mg of 75 µm glass beads, either bare or 

derivatised with melamine or APTMS, were suspended in 2.3 mL of freshly 

prepared borate buffer 0.1 M pH 9.5. To this suspension, 300 µL of a 5 mM 

aqueous solution of OPA and 300 µL of a 5 mM aqueous solution of ME were 

added. The emission spectrum was recorded after 1 h (excitation wavelength, 

λex = 355 nm) in a 3 cm3 quartz cuvette using a FluoroMax-2 fluorimeter (ISA 

Instruments S.A (UK) Ltd., Jobin Yvon-Spex, Middlesex, England). 

Elemental analysis of melamine-derivatised glass beads 

Elemental analyses of 75 µm glass beads which were either bare, derivatised 

with APTMS or derivatised with melamine were carried out by MEDAC LTD 

(Surrey, UK). The accuracy of the analyses was ± 0.30% absolute and the 

detection limit was 0.1%. 
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HPLC-MS quantification of template (melamine) on the glass beads 

An aliquot of 23.5 g of 75 µm glass beads derivatised with GA was placed in a 

SPE cartridge equipped with a polypropylene frit (porosity: 20 µm) and 

incubated with 15 mL of a solution of the template in the same conditions as 

during the preparation. At the end of the incubation, the supernatant was 

collected and the solid phase washed with 6 volumes of double-distilled water. 

The washings were included with the supernatant and the amount of free 

melamine quantified by HPLC-MS. HPLC separation was conducted using a 

Waters 2975 HPLC system equipped with Luna C18 (2) column (50 × 3 mm, 3 

µm, Phenomenex). Mobile phase: MeOH with 0.1% (v/v) HCOOH. The flow rate 

was 0.2 µL/min, the injection volume was 10 µL and the column temperature 

was 25 ºC. Fragments of melamine m/z 85 were detected using a mass-

spectrometric detector Micromass Quattro Micro (Waters, UK) equipped with an 

ESI interface in positive ion mode. The detector parameters were the following: 

desolvation gas: 850 L/h; cone gas: 50 L/h; capillary: 3.5 kV; cone: 35 V; 

collision energy: 19 eV; source temperature: 120 ºC; desolvation temperature: 

350 ºC; multiplier: 650 V. The amount of template immobilised was determined 

by measuring the difference between the initial amount of melamine incubated 

and the unbound melamine present in the solution after the immobilisation 

process. 

BCA assay of protein-derivatised glass beads  

Immobilisation of protein templates was confirmed by performing a BCA Protein 

Assay with an aliquot of 75 µm derivatised glass beads, according to the 

specifications of the manufacturer. Briefly, an aliquot of 150 mg of protein-

derivatised glass beads was suspended in 2 mL of freshly prepared working 

reagent and then incubated at 60 °C for 30 min. A purple colour change 

confirmed the presence of proteins. 
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Spectrophotometric quantification of the template on protein-derivatised glass 

beads 

An aliquot of 1.5 g of 75 µm glass beads derivatised with GA was put into a 

SPE cartridge equipped with a polypropylene frit (porosity: 20 µm) and 

incubated with 1 mL of a solution of the template in the same conditions as 

during the preparation. After the end of the incubation, the supernatant was 

collected and the solid phase washed with 6 volumes of double-distilled water. 

The washings were added to the supernatant and the amount of free protein in 

this solution was determined spectrophotometrically (λ = 280 nm) using a UV-

1800 spectrophotometer (Schimadzu, Japan). The amount of protein 

immobilised was determined by measuring the difference between the initial 

amount of protein incubated and the free protein present in the solution after the 

immobilisation process.  
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2.3 Automatic solid-phase photoreactor for MIP NPs 

2.3.1 Feasibility studies: photopolymerisation conditions and 

reactor setup 

Reactor setup 

The reactor setup was optimised by performing the synthesis of MIP NPs either 

within a “short” (4 mm internal diameter, 70 mm length) or a “long” (4 mm 

internal diameter, 150 mm length) glass column (Soham Scientific, UK). The 

column was packed with the affinity media under vacuum. For polymeric resin 

and 9-13 μm derivatised glass beads the packing was performed by producing 

a slurry of the affinity media in ACN. In all other cases, the dry material was 

loaded into the column, and then acetone and ACN added under vacuum to 

pack the glass beads. Custom-cut SPE frits (Sigma Aldrich, UK) were 

positioned at each end of the column. The column was then fitted into two 

PEEK™ adapters 10-32 TO M6 (0.020 inch. hole, Sigma-Aldrich, UK), 

previously modified with a drill and equipped with a custom-made rubber gasket 

to fit the glass columns. Eventually, the column was mounted on a custom-

made aluminium frame and connected to the HPLC system through 

polytetrafluoroethylene (PTFE) flexible tubes (Phenomenex, UK). 

General photopolymerisation and selection conditions 

A typical polymerisation mixture was prepared by mixing 0.32 g MAA (3.72 × 10-

3 mol, Mw = 86.06 g/mol) as functional monomer, 0.36 g TRIM (1.06 × 10-3 mol, 

Mw = 338.40 g/mol) and 0.36 g EGDMA (1.82 × 10-3 mol, Mw = 198.22 g/mol) as 

cross-linkers, 0.087 g N,N-diethyldithiocarbamic acid benzyl ester (3.63 × 10-4 

mol, Mw = 239.40 g/mol) as iniferter and 0.02 g pentaerythritol tetrakis(3-

mercaptopropionate) (4.09 × 10-5 mol, Mw = 488.66 g/mol) as chain transfer 

agent (CTA) in 1.17 g ACN (Table 2-1, k). The composition was adapted from 

that used for the preparation of MIP NPs formed under homogeneous 

conditions (Guerreiro et al., 2009). These conditions were used to perform the 

first set of experiments discussed in section 3.2.2 - Optimisation of the 

polymerisation/elution conditions. After the experimental setup was established, 
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all polymerisation conditions listed in Table 2-1 were tested to assess the 

influence of the different parameters on the yield of the synthesised NPs (see 

the following subsection Effect of UV irradiation time and composition of the 

polymerisation mixture on the synthesis of MIP NPs). In all cases the 

polymerisation mixture was prepared in a 20 mL glass vial and then purged with 

N2 for 2 min. Then 500 μL of the mixture, previously filtered through 0.22 μm 

PTFE syringe filter (Cronus, Jaytee, UK), were injected into the column packed 

with the affinity media, and then polymerised under UV irradiation (Philips HB 

171/A facial tanning lamp, 4 × 15 W power with 0.09 W/cm2 intensity, Philips) 

for a varying time period (Table 2-1). After the polymerisation, the column was 

connected to the HPLC system (Agilent 1100 Series HPLC or an HPLC system 

equipped with a Gilson 305 pump (Anachem, UK) and a WATERS Millipore 

Lambda-max 481 LC spectrophotometric detector).  

The elution step to select and collect MIP NPs was performed according to the 

optimal conditions (3.2.2 - Optimisation of the polymerisation/elution conditions). 

The elution was performed at a flow rate of 1 mL/min with UV detection at 220 

nm. For the first 90 min ACN was used as the mobile phase while the column 

was held at 0 °C using an ice bath. Then for 45 min the mobile phase was 

switched to ACN with 10 mM HCOOH (used as additive) and the temperature 

raised to 25 °C, and finally for 35 min the same mobile phase was used but the 

column was heated to 60 °C in a water bath. 

Effect of UV irradiation time and composition of the polymerisation mixture on 

the synthesis of MIP NPs 

The effects of UV irradiation time, concentrations of monomers, CTA and 

iniferter on the synthesis of MIP NPs were evaluated according to the 

polymerisation conditions listed in Table 2-1.  
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Table 2-1. Polymerisation conditions tested during the feasibility study of the 

automatic synthesis system for the production of MIP NPs. 

Set of 
polymerisation 

conditions 

UV 
irradiation 

time 
(min) 

Amount of 
iniferter 

(g) 

Amount of CTA 
(g) 

Monomer 
concentration 

(% w/v)* 

a 1 0.044 - 70% 

b 1 0.044 0.01 70% 

c 1 0.044 0.02 70% 

d 2 0.044 - 70% 

e 2 0.044 0.01 70% 

f 2 0.044 0.02 70% 

g 1 0.087 0.01 70% 

h 1 0.087 0.02 70% 

i 1 0.087 0.04 70% 

j 2 0.087 0.01 70% 

k 2 0.087 0.02 70% 

l 2 0.087 0.04 70% 

m 1 0.131 0.01 70% 

n 3 0.087 0.02 70% 

o 2 0.087 0.02 52.5% 

p 2 0.087 0.02 87.5% 

q 2 0.087 0.02 140% 

*expressed as % ratio between the total amount (g) of MAA, EGDMA and TRIM and the total 
amount (mL) of ACN added. 

The area of the chromatographic peak of the fraction collected during the 

heating step at 60 °C was chosen as the main parameter to assess the impact 

of varying polymerisation conditions on the yield of NPs. Corresponding elutions 

without UV irradiation were performed as a control for the conditions listed in 

Table 2-1. To calculate the yield, the fraction collected during the heating phase 

of the elution was evaporated and weighed, and the yield was expressed in 

terms of % w/w in relation to the weight of the initial monomers.  
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2.3.2 Automatic solid-phase photoreactor prototype design 

Applying the data obtained from the preliminary results, an automated flow 

photoreactor system was designed using components purchased from HEL Ltd. 

(UK). Standard components which were used “off the shelf” included: 

 Multiple liquid feed: 2 × HEL Dual V6 automated syringe pumps, suitable to 

provide 4 independently controlled liquid feeds with auto-refill function, and 

PTFE feed lines constructed of 1/8" internal diameter. An automated 

switching valve allows each liquid reagent to flow sequentially into the 

column with a programmable flow rate (mL/min) using the supplied control 

software. Each syringe pump can be fitted with either a 10 mL, 25 mL, 50 

mL or 100 mL glass syringe; 

 UV light source: the complete column and column temperature controller is 

housed in a UV light chamber (W × H × D: 45 × 30 × 32 cm) which can be 

manually switched on/off as required. The UV light source is composed by 2 

× 8 W lamps used to initiate photopolymerisation processes; 

 Column temperature controller: the reaction column accommodates the 

affinity media and is located within a jacketed glass sleeve. The sleeve is 

connected to a circulator to provide even cooling around the entire column. 

Inside the column a rod heater provides rapid heating of the column. This 

allows the rapid changing of temperature within the column from 4 °C to 60 

°C; 

 Reaction column: the reaction column is constructed of borosilicate glass 

(main body) and PEEK™ (end piece), with the following dimensions: 6.6 mm 

internal diameter × 150 mm length. These materials provide stability at 

temperatures ranging from 4 °C up to 150 °C, and pH values from 1 to 14. 

The column is also resistant to aqueous solutions and solvents commonly 

used in liquid chromatography; 

 Separation of product and waste: a 6-ways valve enables the separation of 

product from waste. After the polymerisation, the product deriving from the 

affinity separation step performed at low temperature is discarded using the 

waste line, while at high temperatures the remaining five lines allow the 

collection of the high-affinity fractions of the MIP NPs; 
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 Control system: individual feed-rates of each solution and solvent as well as 

reactor temperature are controlled by HEL's proprietary software WinISO, 

which is installed on a PC. The software enables the logging and control of 

all reaction parameters in real-time, with reaction procedures being 

designed, saved, reloaded and edited using this system. All data are 

displayed on screen in real-time, and also saved automatically in a 

WindowsTM compatible data-file for off-line analysis. The software also 

provides integral safety parameters with audible and visual alarms, warnings 

and shutdown states adjustable by the user. 

2.3.3 Solid-phase automated photochemical synthesis of MIP NPs 

for melamine, vancomycin and a model peptide 

For melamine MIP NPs, the polymerisation mixture was prepared by mixing 

0.96 g MAA (1.12 × 10-2 mol, Mw = 86.06 g/mol) as functional monomer, 1.08 g 

TRIM (3.18 × 10-3 mol, Mw = 338.40 g/mol) and 1.08 g EGDMA (5.46 × 10-3 mol, 

Mw = 198.22 g/mol) as cross-linkers, 0.261 g N,N-diethyldithiocarbamic acid 

benzyl ester (1.09 × 10-3 mol, Mw = 239.40 g/mol) as iniferter and 0.06 g 

pentaerythritol-tetrakis-(3-mercaptopropionate) (1.23 × 10-4 mol, Mw = 488.66 

g/mol) as CTA in 3.51 g ACN (total monomer concentration: 70% w/v). The 

mixture was placed in a 20 mL glass vials and purged with N2 for 10 min. Then 

4 mL of the mixture were automatically injected into the column packed with the 

immobilised template phase and polymerised under UV irradiation for 3.5 min at 

4 °C. After polymerisation, the reactor was maintained at 4 °C and flushed with 

120 mL ACN (flow rate: 2 mL/min). Then the temperature was raised to 25 °C, 

after which 45 mL ACN with 10 mM HCOOH (used as additive) were eluted. 

Finally, 40 mL of the same mobile phase were eluted at 60 °C to collect the 

high-affinity MIP NPs. When used continuously in full-automatic mode, the 

column was flushed (flow rate: 2 mL/min) at 60 °C with 80 mL ACN with 10 mM 

HCOOH, and then at 20 °C with 30 mL ACN between the cycles. Absence of 

template in the MIP NPs fraction has been confirmed by HPLC-MS, performed 

according to the conditions described above in the subsection HPLC-MS 

quantification of template (melamine) on the glass beads. 
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For vancomycin and peptide MIP NPs, the polymerisation mixture was prepared 

by mixing 0.936 g NIPAm (8.27 × 10-3 mol, 53% mol, Mw = 113.16 g/mol) as 

monomer, 0.048 g BIS (3.11 × 10-4 mol, 2% mol, Mw = 154.17 g/mol) as cross-

linker, 0.8 g TBAm (6.29 × 10-3 mol, 40% mol, Mw = 127.19 g/mol) as 

hydrophobic functional monomer, 56.8 µL AAc (8.28 × 10-4 mol, 5% mol, Mw = 

72.06 g/mol, ρ = 1.051 g/mL) as negatively-charged functional monomer and 

0.152 g N,N-diethyldithiocarbamic acid benzyl ester (1.09 × 10-3 mol, Mw = 

239.40 g/mol) as iniferter in 7.87 g ACN (total monomer concentration: 18% 

w/v). The composition was adapted from that used by Hoshino et al. (2008). 

The mixture was placed in a 20 mL glass vials and purged with N2 for 10 min. 

Then 4 mL of the mixture were automatically injected into the column packed 

with the immobilised template solid-phase and then polymerised under UV 

irradiation for 3.5 min at 20 °C. After polymerisation, the reactor was maintained 

at 20 °C and flushed with 60 mL ACN (flow rate: 2 mL/min). Then the 

temperature was raised to 25 °C, after which 45 mL ACN with 10 mM HCOOH 

(used as additive) were eluted. Finally, 40 mL of the same mobile phase were 

eluted at 60 °C to collect the high-affinity MIP NPs.  

The resulting yield has been expressed in mg of MIP NPs produced. Apparent 

molarities of the analysed NPs fractions were calculated using the Equation 2-1 

(Hoshino et al., 2008) and used for the calculation of dissociation constants: 

 

Equation 2-1 

where NA is Avogadro's constant, d is the hydrodynamic diameter of particles 

found by DLS (nm), ρ is polymer density of particles (g/cm3) and X is NPs 

weight concentration (mg/mL). For the NPs imprinted for melamine, a ρ value of 

1 g/cm3 has been assumed (Ivanova-Mitseva et al., 2012). In the case of NPs 

imprinted for vancomycin and the model peptide, the ρ value for NPs with a 

similar composition ranges from 0.08 to 0.27 g/cm3 (Debord and Lyon, 2003; 

Hoshino et al., 2008) 

 𝑁𝑃𝑠 =  
6

𝜋𝑁𝐴𝑑3𝜌
𝑋 



 

120 

2.3.4 Effect of irradiation time on size, yield and affinity of MIP NPs 

To study the effect of irradiation time on size, yield and affinity of MIP NPs, 

melamine MIP NPs were synthesised using three different UV irradiation times 

(2.5, 3.5 and 4.5 min) in the presence of a constant amount of polymerisation 

mixture (4 mL). At the end of each cycle, the yield of the MIP NPs fractions was 

evaluated by drying each solution and then reported in mg of MIP NPs 

produced. Their size has been evaluated by SEM, TEM and DLS, and their 

affinity and specificity has been tested on melamine and DA-derivatised 

BIAcore gold chips using a BIAcore 3000 SPR instrument. The detailed 

experimental conditions used for SEM, TEM, DLS and SPR are reported in the 

section 2.5 - Characterisation of MIP NPs. 
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2.4 Automatic solid-phase chemical reactor for MIP 

nanoparticles 

2.4.1 Automatic solid-phase chemical reactor prototype design 

An additional module designed to operate in aqueous conditions using a mild 

persulphate-initiated polymerisation performed at room temperature was 

developed. All system components were purchased from HEL Ltd. (UK). 

Standard components which were used “off the shelf” included:  

 Multiple liquid feed: 2 × HEL Dual V6 automated syringe pumps, capable of 

providing 4 independently controlled liquid feeds with auto-refill function, and 

PTFE feed lines constructed of 1/8" internal diameter. An automated 

switching valve allows each liquid reagent to flow sequentially into the 

column with a programmable flow rate (mL/min) using the supplied control 

software. Each syringe pump can be fitted with either a 1 mL, 10 mL, 25 mL, 

50 mL or 100 mL glass syringe; 

 Column temperature controller: the reaction vessel accommodates the 

affinity media and is located inside a jacketed glass sleeve. The sleeve is 

connected to a circulator to provide even cooling/heating around the entire 

column. This guarantees a control over the temperature in a range from 4 °C 

to 60 °C; 

 Reaction vessel: the reaction column is constructed of borosilicate glass 

(main body) and PEEK™ (end piece), with the following dimensions: 25 mm 

internal diameter × 205 mm length (≈ 100 mL capacity). It is equipped with a 

polypropylene SPE frit (porosity: 20 µm) and a rubber gasket at the bottom 

to retain the solid phase, which is pre-loaded before assembly onto the 

stand. These materials provide stability at temperatures ranging from 4 °C 

up to 150 °C, and pH values from 1 to 14. The column is also resistant to 

aqueous solutions and solvents commonly used in liquid chromatography; 

 Reactor stand: the reactor stand includes a motor connected to a shaking 

system through a rubber belt for the homogenisation of the reactor contents. 

The shaft of the motor is interchangeable, thus the shaking frequency can 

be adjusted depending on the size of the shaft used; 
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 Gas line: an additional inlet at the top of the reactor provides for flushing N2 

(or another inert gas) to remove oxygen and to pump out the reactor 

contents; 

 Separation of product and waste: a 6-ways valve allows for separation of 

product and waste. After the polymerisation, the product deriving from the 

affinity separation step performed at low temperature is discarded using the 

waste line, while at high temperatures the remaining five lines allow the 

collection of the high-affinity fractions of the MIP product; 

 Control system: individual feed-rates of each liquid feed and reactor 

temperature are controlled by HEL's proprietary software WinISO, which is 

installed on a PC. The software enables the logging and control of all 

reaction parameters in real-time, with reaction procedures being designed, 

saved, reloaded and edited even once a reaction has started. All data are 

displayed on screen in real-time, and also saved automatically in a 

WindowsTM compatible data-file for off-line analysis. The software also 

provides integral safety parameters with audible and visual alarms, warnings 

and shutdown states adjustable by the user. 

2.4.2 Solid-phase automated chemical synthesis of MIP NPs for 

pepsin A, trypsin and α-amylase 

This procedure was adapted from Hoshino et al. (2008). In 100 mL double-

distilled water, the following monomers were dissolved: 39 mg NIPAm (3.44 × 

10-4 mol, 53% mol, Mw = 113.16 g/mol) as backbone monomer, 2 mg BIS (1.26 

× 10-5 mol, 2% mol, Mw = 154.17 g/mol) as cross-linker, 33 mg TBAm (2.60 × 

10-4 mol, 40% mol, Mw = 127.19 g/mol) as hydrophobic functional monomer and 

2.2 µL AAc (3.24 × 10-5 mol, 5% mol, Mw = 72.06 g/mol, ρ = 1.051 g/mL) as 

negatively-charged functional monomer. TBAm was dissolved in 2 mL EtOH 

and then added to the aqueous solution. The total monomer concentration was 

6.5 mM. The solution was degassed under vacuum and ultrasonication for 10 

min, and then purged with N2 for 30 min. After this time, the container with the 

polymerisation mixture was connected to one of the pumps of the automatic 

synthesiser and 80 mL of it injected in the reactor vessel containing 60 g of 
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template-derivatised glass beads. The polymerisation was started by injecting 

800 µL of an APS aqueous solution (60 mg/mL, Mw = 228.20 g/mol) and 24 µL 

of TEMED (9.36 × 10-5 mol, Mw = 198.22 g/mol, ρ = 0.775 g/mL), after which the 

solution was drawn through the bulk of glass beads under pressure down to a 

total active polymerisation volume of 25 mL. The polymerisation was carried out 

at room temperature for 2 h. After this the reactor temperature was adjusted to 

15 °C and the remaining polymerisation mixture washed out with two fractions 

of 50 mL of double-distilled water (flow rate: 2 mL/min). The high-affinity MIP 

NPs were eluted from the affinity media by passing three fractions of 50 mL of 

double-distilled water at 60 °C (delivery flow rate: 2 mL/min). The yield of the 

NPs fractions was evaluated by freeze-drying an aliquot (13 mL) of each 

solution. Apparent molarities of the analysed NPs fractions were calculated 

using the Equation 2-1 (Hoshino et al., 2008) and used for the calculation of 

dissociation constants. The ρ value for non-swollen particles with a similar 

composition ranges from 0.08 to 0.27 g/cm3 (Debord and Lyon, 2003; Hoshino 

et al., 2008). Absence of the protein template in the MIP NPs fraction was 

confirmed by BCA Protein Assay performed on the NPs solutions according to 

the specifications of the manufacturer. 

2.4.3 Effect of the amount of derivatised glass beads on yield and 

size of MIP NPs 

To study effect of the amount of derivatised glass beads on the yield of MIP 

NPs four different amounts of template-derivatised glass beads (20 g, 40 g, 60 

g and 80 g) were tested in the presence of a constant amount of polymerisation 

mixture (25 mL). At the end of each cycle, the yields of the MIP NPs fractions 

were evaluated by freeze-drying 13 mL of each solution, and reported in weight 

percentage of the total amount of monomers present in the active 

polymerisation mixture. The MIP NPs size was evaluated by DLS (see 2.5.1 - 

Dynamic Light Scattering (DLS) size analysis of MIP NPs). All the results were 

corrected by subtracting the amount of material obtained after a blank run 

performed with just double-distilled water on the same amount of derivatised 

glass beads.  
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2.5 Characterisation of MIP NPs 

2.5.1 Dynamic Light Scattering (DLS) size analysis of MIP NPs 

To verify the size of the synthesised MIP NPs, the eluted fractions were 

ultrasonicated for 20 min, then filtered through 1.2 μm glass fibre syringe filters 

(Cronus, Jaytee, UK) and analysed either in a 3 cm3 glass cuvette (for organic 

solutions) or in disposable polystyrene cuvettes (for aqueous solutions) at 25 °C 

using a Zetasizer Nano (Nano-S) from Malvern Instruments Ltd (Malvern, UK). 

The instrument was allowed to automatically select the attenuator position, the 

measurement duration and the number of runs. A minimum of 5 measurements 

per sample were made. 

2.5.2 Scanning Electron Microscopy (SEM) and Transmission 

Electron Microscopy (TEM) of MIP NPs 

SEM images of MIP NPs were taken using a Philips XL-30 Scanning Electron 

Microscope. Samples for were prepared by depositing 5 μL of each MIP NPs 

solution, previously filtered through a 1.2 μm glass fibre syringe filters (Cronus, 

Jaytee, UK), onto a silicon chip attached to a SEM holder before leaving to dry 

overnight in a desiccator. Prior to SEM analysis, the samples were plasma-

coated with gold using a Polaron Equipment E5100 SEM plasma coater. 

TEM images of MIP NPs were taken using a Philips CM20 Transmission 

Electron Microscope. Samples for analysis were prepared by depositing 5 μL of 

each MIP NPs solution, previously filtered through a 1.2 μm glass fibre syringe 

filters (Cronus, Jaytee, UK), in a carbon coated copper grid before leaving to dry 

overnight in a desiccator. 

2.5.3 Preparation of template-derivatised BIAcore gold chips 

Au-coated chips (SIA Kit Au, BIAcore) were cleaned by immersion in Piranha 

solution (H2SO4/H2O2, 3:1 v/v) for 5 min. Caution! This mixture is highly 

corrosive, hence extreme care is required during this process. The chips were 

thoroughly rinsed with double-distilled water and left in EtOH overnight. The 

immobilisation of the templates was performed by incubating the chips in a 0.2 

mg/mL solution of cysteamine in EtOH at 4 °C for 24 h, after which they were 
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washed with EtOH and incubated in a 7% v/v solution of GA in PBS 0.01 M pH 

7.2 for 2 h. After this step, the chips were washed with double-distilled water 

and immersed in a 1.2 mg/mL solution of each template in PBS 0.01 M pH 7.2 

for 24 h at 4 °C (Jiang et al., 2003). In the case of melamine and DA, 20% v/v of 

MeOH was added as co-solvent. In the case of trypsin the immobilisation was 

performed in TBS 0.05 M, pH 8.0 with 0.02 M CaCl2 (Rocha et al., 2005). Once 

the immobilisation was completed, the chips were washed with double-distilled 

water, dried in a stream of N2 and assembled on their holders. These were then 

stored under Ar at 4 °C until required. In the case of protein-derivatised chips, 

they were used within the following 24 h. To confirm the validity of the 

immobilisation strategy, the modification of the surface of the gold chips with 

melamine and DA was confirmed by performing sessile water contact angle 

measurements using a Cam 100 optical Angle Meter (KSV Instruments Ltd., 

Finland) along with the software provided. 

2.5.4 Surface Plasmon Resonance (SPR) affinity analysis of MIP NPs 

Affinity analysis was performed using a BIAcore 3000 SPR system (BIAcore, 

Sweden). Au-chips with the relevant template immobilised on the surface were 

used for the experiments. A volume of 10 mL of solution of MIP NPs was 

washed and concentrated down to a final volume of 1-2 mL through centrifugal 

membrane filter units (Amicon Centriplus®, 30 kDa MWCO, Millipore, UK) in 

PBS 0.01 M pH 7.4. In the case of MIP NPs in ACN, the NPs solutions were 

diluted with PBS 0.01 M pH 7.4 down to an ACN concentration of 10% v/v 

before loading onto the filtration devices. Each filtration was carried out 

according to the specifics of the filter manufacturer using a Sigma 3-16P bench-

top centrifuge fitted with a swing-bucket rotor, at 2500 g for 2.5-3 min. The 

solutions obtained in PBS were ultrasonicated for 30 min and used as stocks. In 

the case of melamine, vancomycin and peptide MIP NPs, 5 dilutions were 

prepared from 1/2 to 1/32 (stock concentrations: melamine MIP NPs: 330 nM; 

peptide MIP NPs: 1094 nM; vancomycin MIP NPs: 135 nM). In the case of the 

protein-imprinted MIP NPs, 7 dilutions were prepared, from 1/10 to 1/107 (stock 

concentration: 0.4 nM). All the affinity experiments were performed in PBS 0.01 
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M pH 7.4 as mobile phase at a flow rate of 35 μL/min. Measurements were 

made at 25 °C for melamine, vancomycin and protein MIP NPs, while for the 

peptide MIP NPs the temperature was set to 18 °C. From each dilution, 100 µL 

were sequentially injected in order of increasing concentration and the sensor 

response was analysed for 2 min after every injection. Kinetic data were fitted 

using BIAEvaluation Software v4.1 (BIAcore, Sweden) which assumes a 

Langmuir isotherm model. If required, a baseline drifting correction was applied. 
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3 Automatic solid-phase photoreactor for MIP NPs – 

Results and discussion 

As stated in the introduction, MIP NPs offer substantial advantages with 

comparison to natural antibodies. Nevertheless their production is not 

straightforward and there are no protocols available for large-scale 

manufacturing. 

The majority of polymerisation processes described in the literature require at 

least 12 h for completion (Pérez-Moral and Mayes, 2007; Yoshimatsu et al., 

2007; Hoshino et al., 2008). Even more time-consuming are the purification 

procedures for removing templates and non-reacted monomers, which require 

multiple washing steps (Ciardelli et al., 2004; Yoshimatsu et al., 2007), 

ultrafiltration (Pérez et al., 2000; Pérez-Moral and Mayes, 2004), Soxhlet 

extraction (Cirillo et al., 2009), or dialysis (Hoshino et al., 2008; Hoshino et al., 

2010b; Zeng et al., 2010). 

Furthermore, each batch of MIP product has required a new batch of template 

molecules which, if expensive, might represent an important economical 

drawback for scaling up the production process.  

Recently, Guerreiro and co-workers have successfully produced soluble MIP 

NPs imprinted with a triazine derivative (acetoguanamine) which were purified 

by affinity chromatography using a stationary phase derivatised with the 

template (2009). Hoshino et al. (2010) separated different fractions of non-

imprinted NPs using the affinity separation approach reported by Piletsky’s 

group. 

Solid-phase synthesis approaches for the preparation of nucleic acids and 

peptides are now fully established (Merrifield, 2012; Horvath et al., 1987; Kent 

et al., 1984) and automatic synthesisers are commercially available, allowing 

the automatic synthesis of the same peptides and nucleic acids to be performed 

more reproducibly, more cheaply and more rapidly than ever before 

(Hunkapiller and Hood, 1980; Kambara et al., 1988).  
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The aim of the present work was to study whether solid-phase synthesis could 

be used for preparing MIP NPs. Solid phases with immobilised templates (see 

section 1.6 - Immobilised templates: a new imprinting strategy) have not 

previously been used in the preparation of soluble MIP NPs. Successfully 

addressing this issue would offer interesting scientific challenges and great 

opportunities for development and commercialisation. Taking all of these 

challenges into account, the development of a solid-phase synthetic strategy for 

MIP NPs, compatible with automation, was investigated. 

The first stage involved the synthesis of several types of template-derivatised 

solid phases. This was done to assess the feasibility of obtaining MIP NPs 

using a solid-phase platform and to verify which material would have the 

greatest potential for use within an automatic reactor. Melamine was chosen as 

the model template during these feasibility experiments for the reasons detailed 

in the following sections.  
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3.1 Preparation of the affinity media for MIP NPs synthesis 

Two types of affinity media were prepared and tested to verify their suitability for 

the synthesis and purification of high-affinity MIP NPs on a solid-phase support: 

these were a polymeric resin bearing the template moieties within its porous 

structure or non-porous glass beads (of different sizes) where the template was 

immobilised on their surface. 

3.1.1 Preparation of polymeric resin as affinity media 

The first affinity media tested for use in the production of MIP NPs was 

prepared according to a procedure adapted from Guerreiro et al. (2009). A 

polymerisable analogue of the melamine template, DMET (Figure 3–1a) was 

co-polymerised with EGDMA under UV irradiation to produce a resin in which 

the template moiety is randomly present within the polymeric matrix. 

 

Figure 3–1. Structures of DMET (a) and melamine (b). 

The porosity of the matrix was guaranteed by the presence of PEG 35000 as a 

porogen, which after removal leaves behind macroporous cavities necessary for 

the formation and subsequent elution of the synthesised NPs (Barral et al., 

2010). After washing, this material was suspended in ACN and packed in a 

glass column to be tested for its suitability for use as the solid phase during the 

synthesis of MIP NPs (see 3.2.2 - Optimisation of the polymerisation/elution 

conditions). 
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3.1.2 Preparation of template-derivatised glass beads as affinity 

media 

Glass beads were tested as a potential solid phase because they are easy to 

handle and inexpensive. The surface modification of glass can be easily 

performed using silane-based chemistry (Arslan et al., 2006; Bossi et al., 2010). 

The immobilisation procedure used was adapted from Piletsky et al. (2011). 

This protocol is well established for the immobilisation of antibodies, proteins or 

other compounds which bear a primary amino group (Jiang et al., 2003; Shiomi 

et al., 2005; Yang et al., 2005; Li et al., 2006a; Bonini et al., 2007). The 

activation of the glass beads by refluxing in concentrated NaOH increases the 

amount of reactive silanol groups (-Si-OH) available on their surface (Liu et al., 

2002), ensuring that the following silanisation reaction with APTMS produces a 

good coverage of the surface with primary amino groups. In the following steps 

GA acts as a linker between the two primary amino groups (one on the glass 

surface, the other on the template molecule) through the formation of Schiff 

base bonds (Figure 3–2). 
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Figure 3–2. Synthetic protocol for the immobilisation of template on the glass 

beads surface for use in photoreactor. 

Additionally, the APTMS and GA act as a spacer between the surface of the 

glass beads and the template, thus allowing the subsequent polymerisation 

reaction to take place without steric hindrance or interference due to the 

overcrowding of template molecules (Titirici et al., 2002). In the case of the 
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immobilisation of melamine, the addition of NMP as co-solvent is necessary due 

to the low solubility of this molecule in water. 

Qualitative and quantitative analysis of melamine-derivatisation of glass beads 

In order to confirm the surface derivatisation of the glass beads with melamine, 

the reaction between OPA, ME and free primary amino groups of melamine was 

exploited. The nucleophile addition of ME to OPA forms a thioacetal 

intermediate that reacts with free primary amino groups, thus giving rise to the 

fluorescent adduct (Figure 3–3). 

 

Figure 3–3. Reaction scheme of the OPA assay. OPA undergoes a nucleophilic 

attack by the thiol group of ME to form a hemithioacetale, which in turn promptly 

reacts with primary amino groups (such as melamine ones) to provide a 

fluorescent isoindole. 

This protocol was adapted from Piletska et al. (2001). The fluorescence was 

measured after 1 h and before each reading thorough mixing was applied using 

a pipette directly inside the cuvette, to achieve better homogeneity of the 

suspension. The excitation and emission maximums are at 355 nm and 450 nm, 

respectively. The presence of melamine on the surface of glass beads resulted 

in an increased emission intensity at 450 nm, about 2.3-fold more than the bare 

glass beads and 2-fold more than the APTMS-derivatised glass beads (Figure 

3–4), thus qualitatively confirming the immobilisation of melamine on the 

surface. 
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Figure 3–4. Fluorescence emission spectra of ME, OPA and glass beads (bare or 

derivatised, either with melamine or APTMS) in borate buffer 0.1 M pH 9.5. 

Quantification of the amount of melamine immobilised on the surface of the 

glass beads was attempted by performing elemental analysis on samples of 

bare, APTMS-derivatised and melamine-derivatised glass beads. The results, 

however, were inconclusive because the quantity of C, H, and N in APTMS and 

melamine-derivatised glass beads was relatively low and below the limit of 

detection (Table 3-1). 

Table 3-1. Elemental analysis of 75 μm bare, APTMS-derivatised and melamine-

derivatised glass beads. 

 Element 

Glass beads C H N 

Bare 0.77% <0.10% <0.10% 

APTMS-derivatised 0.61% <0.10% <0.10% 

Melamine-derivatised 0.37% <0.10% <0.10% 

For this reason, rather than a direct method, an indirect quantification of the 

immobilised melamine was attempted by performing an HPLC-MS analysis on 
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the residual solution of the template after incubation with GA-activated glass 

beads to assess the amount of free template still present. The aqueous solution 

was analysed by injection into an HPLC-MS. The method enabled the  

evaluation of the amount of immobilised melamine, which resulted to be 0.29 

mg (2.3 × 10-6 mol, Mw = 126.11 g/mol) per gram of glass beads. 
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3.2 Feasibility studies: photopolymerisation conditions and 

reactor setup 

3.2.1 General solid-phase synthesis of melamine MIP NPs 

Melamine was used as a model template in the majority of feasibility 

experiments performed here (Figure 3–1b). This aminotriazine can be used as 

an industrial chemical in the production of melamine-formaldehyde polymer 

resins for several applications (laminates and coatings, adhesives, plastics and 

even flame-retardants). Due to its high nitrogen content, however, unethical 

manufacturers have recently adulterated food products with it to increase the 

nitrogen level while reducing the costs (Chan et al., 2008; Sun et al., 2010). 

This sadly resulted in the occurrence of kidney stones in thousands of infants 

across China in 2008, who had consumed infant formula adulterated with 

melamine, leading in some cases to renal failure, and ultimately death (Chan et 

al., 2008; BBC News, 2010). 

The main concept behind this project involved the possibility of exploiting a solid 

phase with an immobilised template, packed inside a glass column, to perform 

both the synthesis and the selection of high-affinity MIP NPs. The immobilised 

template on the solid phase should act as the template for the imprinting 

process during a first UV-initiated polymerisation step and then act as an 

immobilised ligand in a subsequent affinity chromatography for the removal of 

the low-affinity MIP fraction (including non-polymerised material) from the high-

affinity MIP NPs. 

To imprint melamine a polymerisation mixture adapted from Guerreiro et al. 

(2009) was used (Figure 3–5). 
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Figure 3–5. Polymerisation mixture used for imprinting melamine through UV 

photopolymerisation. 

Aminotriazine-based structures have been successfully imprinted previously 

(Matsui et al., 1995; Muldoon and Stanker, 1995; Muldoon and Stanker, 1997; 

Li et al., 2010b). The molecular recognition in these systems occurs through the 

strong hydrogen interactions that are established between the template 

molecule and the functional monomer, MAA. The carboxylic group of MAA can 

act both as hydrogen bond acceptor and donor, as well as the amino groups 

and the nitrogen atoms of the triazine aromatic ring (Figure 3–6) (Welhouse and 

Bleam, 1993; Matsui et al., 1995; Li et al., 2010b). 
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Figure 3–6. Scheme of the hydrogen bonds between MAA and melamine. 

The polymerisation protocol based on the early termination of an iniferter-

initiated UV polymerisation (Guerreiro et al., 2009) allows the maintainance of a 

high concentration of functional monomers, beneficial for the formation of stable 

pre-polymerisation complexes (Haupt, 2003; Guerreiro et al., 2009). Moreover, 

the short UV-irradiation times reported should ensure the temperature of the 

polymerisation mixture remains low during the imprinting process, thus 

enhancing the affinity of the synthesised material (Piletsky et al., 2002; Piletsky 

et al., 2004; Mijangos et al., 2006; Guerreiro et al., 2009). Short-time UV 

irradiation should also favour the synthesis of polymers with relatively uniform 

low molecular weight, required for the production of MIP NPs. To further 

improve control over the living polymerisation process, pentaerythritol tetrakis(3-

mercaptopropionate) (Figure 3–5) has been added as a CTA (Choi et al., 2002; 

Odian, 2004).  

When considering photochemical initiation methods, living polymerisation based 

on iniferter-type initiators, such as N,N-diethyldithiocarbamic acid benzyl ester 

(Figure 3–5), is a useful approach (Pérez-Moral and Mayes, 2007; Li et al., 

2010a). The use of an iniferter allows better control over the reaction kinetics, 

and provides a living character to the polymerisation process, thus avoiding the 

high polymerisation rate and the autoacceleration effect typical of non-living 
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radical polymerisation (Kannurpatti et al., 1996). Of crucial importance is the 

capacity to initiate polymerisation under mild conditions by this approach using 

near UV irradiation and to terminate it by ceasing the irradiation (Guerreiro et 

al., 2009). An additional valuable feature is the possibility to reinitiate the 

polymerisation from the macroiniferters on the NPs surface by UV irradiation, to 

allow post-functionalisation of the MIP NPs with fluorescein or other labels 

(Otsu et al., 1989; Otsu et al., 1995; Otsu, 2000).  

A mixture of two cross-linkers, EGDMA and TRIM (Figure 3–5), was used to 

provide the correct balance of rigidity/flexibility which is markedly important to 

ensure the molecular recognition properties in MIP NPs (Guerreiro et al., 2009).  

The high-affinity fraction of MIP NPs was purified immediately after the 

polymerisation step by performing temperature-controlled affinity 

chromatography in the same glass column. The experiments that led to the 

optimisation of conditions of the synthetic setup and elution are described in the 

next section (3.2.2 - Optimisation of the polymerisation/elution conditions). 

3.2.2 Optimisation of the polymerisation/elution conditions 

In a typical affinity chromatography process, a raw mixture of molecules (usually 

proteins) is loaded into a column packed with an immobilised affinity ligand. 

Only the molecules able to recognise the immobilised ligand with high affinity 

are retained, and all the others are washed out using mild elution conditions. 

After this step the molecule of interest is eluted by using stronger elution 

conditions, e.g. changing the pH or the ionic strength, or adding surfactants 

(Hage, 1998). The change of temperature is not frequently exploited to promote 

the elution of the retained target molecule since in most cases targets such as 

proteins may undergo denaturation at high temperatures. This is not the case 

for stable MIP NPs, however, which can be eluted at elevated temperature 

without detrimental effect on their recognition properties.  

The first part of the elution process undertaken within this work was performed 

at a low temperature, which facilitates the interactions between the high-affinity 

fraction of MIP NPs and the immobilised template, whilst monomers, oligomers 
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and other material with low or no affinity are flushed from the system. The 

temperature of the column and solvent was then increased to disrupt the non-

covalent interactions between the template and the high-affinity MIP NPs, thus 

allowing pure fraction of particles free of residual template and monomers to be 

collected.  

The difference between the two chromatograms performed in the presence and 

in the absence of irradiation was demonstrated with the appearance of a new 

peak corresponding to the polymeric fraction. The increase in the polymeric 

fraction peak area was used as one of the criteria to assess the feasibility of the 

synthetic conditions. The first set of experiments was performed on a “short” 

glass column (4 mm internal diameter, 70 mm length) (Figure 3–7) packed with 

the polymeric resin as affinity media and connected to an Agilent 1100 Series 

HPLC system. 

 

Figure 3–7. “Short” glass column (4 mm internal diameter, 70 mm length) packed 

with affinity media (either polymeric resin or 9-13 μm melamine-derivatised glass 

beads). 

These conditions were applied first because the affinity separation of MIP NPs 

had been already successfully accomplished using this affinity media (Guerreiro 

et al., 2009). Unfortunately, the use of this material did not allow the occurrence 

of high flow rates when packed into the glass column (no higher than 0.25 

mL/min) due to the high back pressure caused by irregular (and swellable) 

polymer particles. Nevertheless several elution conditions (different 

temperatures, use of 100 mM HCOOH as additive to the mobile phase ACN) 

70 mm
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were tested for separating non-polymerised material and the low-affinity fraction 

of MIP NPs from the high-affinity product. The chromatograms obtained both 

with or without irradiation did not, however, show any difference (Figure 3–8). It 

is possible that the opaque polymeric resin was preventing the penetration of 

the UV light into the bulk of the affinity media, thus hindering the polymerisation 

process. 
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Figure 3–8. Example of comparison between two chromatograms obtained 

without (blue) or with (red) UV irradiation using polymeric resin as affinity media. 

The first 70 min of the elution are performed by keeping the column in an ice 

bath at 0 °C, while for the following 45 min the column is placed in a water bath 

at 60 °C. Mobile phase: ACN; flow rate: 0.25 mL/min; UV detection at 220 nm. The 

areas of the peaks after heating are nearly identical. 

For this reason, the affinity media was switched from ground and sieved 

polymeric resin to glass beads derivatised with the template on their surface, 

with the hypothesis that i) the more regular shape of this material should 

improve the synthetic and separation conditions of the MIP NPs, and ii) glass 

-250

0

250

500

750

1000

1250

1500

1750

2000

2250

0 20 40 60 80 100 120

R
e

s
p

o
n

s
e
 (
m

V
)

Time (min)

Without UV irradiation

-250

0

250

500

750

1000

1250

1500

1750

2000

2250

0 20 40 60 80 100 120

R
e

s
p

o
n

s
e
 (
m

V
)

Time (min)

With UV irradiation

At 0  C for 70 min At 60  C for 45 min



 

142 

beads should allow better penetration and reflection of the UV light, thus 

facilitating the polymerisation process.  

In the first instance, melamine-derivatised hollow glass beads with 9-13 μm in 

diameter were used, packed within the same glass column and connected to an 

Agilent 1100 Series HPLC system. The more regular shape of the stationary 

phase allowed the flow rate to increase up to 0.5 mL/min, hence the flow 

properties were partially improved. In addition different elution conditions were 

tested for their capacity to successfully separate non-polymerised material and 

the low-affinity fraction of MIP NPs from the high-affinity product. These 

conditions were: three different elution temperatures (0 °C, 25 °C and 60 °C) 

and the addition of 10 mM HCOOH to the mobile phase after the first low-

temperature elution step. Nevertheless, the chromatograms obtained without or 

with irradiation did not show significant differences (Figure 3–9). 
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Figure 3–9. Example of comparison between two chromatograms obtained 

without (blue) or with (red) UV irradiation using 9-13 μm melamine-derivatised 

glass beads as affinity media. The first 120 min of the elution are performed by 

keeping the column in an ice bath at 0 °C, using ACN as mobile phase. The 

following 73 min of the elution are performed at 25 °C, using ACN + HCOOH (10 

mM) as mobile phase, while the last 83 min are performed using the same 

solvent but putting the column in a water bath at 60 °C. Flow rate: 0.5 mL/min; UV 

detection at 220 nm. The areas of the peaks after heating are nearly identical. 

Surface area and template exposure were then sacrificed in favour of better 

flow properties by using larger but more uniform non-porous melamine-
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derivatised glass beads (75 μm in diameter), coupled with the use of a “long” 

glass column (4 mm internal diameter, 150 mm length) (Figure 3–10). 

 

Figure 3–10. “Long” glass column (4 mm internal diameter, 150 mm length) 

chosen for the experimental setup, packed with 75 μm melamine-derivatised 

glass beads as affinity media. The column is assembled through tailor-made 

fitters (green plastic parts) and mounted on a custom-made aluminium frame. 

After packing, the column was connected to an Agilent 1100 Series HPLC 

system. With this material, flow rate could be increased up to 1 mL/min. The 

elution was performed for 90 min with ACN while the column was kept in an ice 

bath at 0 °C. Elution continued then for 45 min with HCOOH 10 mM in ACN at 

25 °C, and eventually for 35 min with the same solvent but heating the column 

in a water bath to 60 °C. The results gained from this experimental setup 

demonstrated a difference between the chromatograms performed in the 

presence or in the absence of polymerisation due to UV irradiation (Figure 3–

11). 

150 mm
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Figure 3–11. Example of comparison between two chromatograms obtained 

without (blue) or with (red) UV irradiation using 75 μm derivatised glass beads as 

affinity media. The first 90 min of the elution are performed by keeping the 

column in an ice bath at 0 °C, using ACN as mobile phase. The following 45 min 

of the elution are performed at 25 °C, using ACN + HCOOH (10 mM) as mobile 

phase, while the last 35 min are performed using the same solvent but putting 

the column in a water bath at 60 °C. Flow rate: 1 mL/min; UV detection at 220 nm. 

The areas of the peaks after heating (90 min and 135 min) are considerably 

different; the ratio between the area of the ones with UV irradiation and the ones 

without are about 4:1 and 8:1, respectively for the peaks at 90 and 135 min. 
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In particular, the peak of the chromatogram after polymerisation, during the 

heating step at 60 °C (Figure 3–11, red arrow), exhibited an area of about 

160000 mV*s, about 8-fold higher than the corresponding peak of the 

chromatogram performed without polymerisation (20-25000 mV*s). This 

configuration (Figure 3–12) and these elution conditions were then selected to 

perform the subsequent experiments. 

 

Figure 3–12. “Long” glass column in its aluminium frame connected to the HPLC 

system through PTFE tubes. During the heating phase of the elution process, the 

column is vertically put in the water bath at 60 °C (Erlenmeyer's flask, on the 

right). 

3.2.3 Effect of UV irradiation time and composition of the 

polymerisation mixture on the synthesis of MIP NPs 

After having established an appropriate experimental setup and elution 

conditions promising for obtaining a polymeric material on solid phase, different 

compositions of the polymerisation mixture and synthetic conditions (see Table 

2-1) were tested to assess the effect of UV irradiation time, amount of CTA, 
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amount of iniferter and the monomer concentration on the synthetic process 

performed using this system. The aim of these feasibility experiments was to 

establish the boundaries for possible changes of the operational parameters for 

further studies. The area of the chromatographic peak after the heating step at 

60 °C has been chosen as the defining parameter to assess the outcome of the 

modification of these different conditions, as this can be related to the yield of 

the high-affinity MIP NPs.  

In all the conditions tested, when no irradiation was applied, the area of the 

peak after heating varied between 20000 and 30000 mV*s but, after 

evaporation of the solvent from the collected fraction, no dry residue was found. 

A possible explanation is that these peaks were mainly due to the presence of 

HCOOH (contained in the mobile phase) which was released from the 

immobilised melamine following the increase of temperature. This hypothesis 

was subsequently confirmed using DLS on the fractions collected after the 

elution without irradiation, which did not show the presence of any particles.  

Initially two different irradiation times (1 and 2 min) were cross-tested with three 

different amounts of iniferter (0.044, 0.087 and 0.131 g) and four different 

amounts of CTA (0, 0.01, 0.02 and 0.04 g), to assess their effect on the 

outcome of the process. These correspond to the polymerisation conditions 

listed in Table 2-1 (a to m). In all these experiments the monomer concentration 

was kept constant at 70% w/v. The outcomes of these experiments are plotted 

in Figure 3–13, which correspond to 1 min (A) or 2 min (B) of UV irradiation, 

respectively. 



 

148 

 

Figure 3–13. Dependence of the yield of the product on UV irradiation time (1 min 

in graph A and 2 min in graph B), amount of CTA and amount of iniferter. The 

bars at zero correspond to the boundaries of the system (scarlet red zone), i.e. 

experiments in which a monolith was obtained inside the column during 

polymerisation. 

The shorter irradiation time should theoretically result in a reduced 

polymerisation and thus in a reduced yield of MIP NPs. This was demonstrated 
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to be the case, since most of the area values after 1 min of UV irradiation are 

much lower than the ones obtained after 2 min of UV irradiation (Figure 3–13). 

As expected, increasing the concentration of iniferter generally resulted in an 

increase of the peak area (Figure 3–13). Even with the lowest irradiation time 

tested (1 min), however, the high concentration of initiator (0.131 g) caused the 

creation of a white monolith inside the column (Figure 3–14 and Figure 3–15) 

rather than MIP NPs. 

 

Figure 3–14. Visual assessment of the presence of a white monolith inside the 

packed glass column. The inset is a magnified view of the column in 

correspondence of the end of the monolithic layer. 
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Figure 3–15. Presence of the white polymeric monolith on the inner wall of the 

glass column after unpacking. 

The first time this occurred, the column required unpacking and cleaning. From 

the results obtained, it became evident that the CTA is required to obtain a 

suitable control over the polymerisation behaviour within the column (Figure 3–

13). The polymerisation performed for 1 min without CTA and 0.044 g of 

iniferter gave an area almost twice as high as the one obtained in the same 

conditions but with the addition of 0.01 g of CTA (Figure 3–13A). Increasing the 

irradiation time to 2 min resulted again in the creation of the monolith inside the 

column. Results also show, however, that a high concentration of CTA (0.04 g) 

produces bulk material inside the column (Figure 3–13A). This may be 

explained by the fact that this tetrathiol at high concentrations may increase the 

polymerisation rate (Cramer et al., 2003; Hoyle et al., 2004). Moreover, the 

presence of four thiol groups could potentially result in cross-linking of the 

synthesised particles. This means that the type and the amount of CTA need to 

be properly managed in order to obtain high-quality MIP NPs. 

The best polymerisation conditions found include the use of 0.087 g iniferter 

and 0.02 g CTA (Figure 3–13B). An increase in the irradiation time to 3 min 

(Table 2-1, n) then was attempted to assess if the yield could be further 

increased. In this case a polymer monolith was also produced inside the 

column. 

These conditions, with 2 min of irradiation, were then kept constant and the 

effect of different monomer concentrations was evaluated (Table 2-1, k, o, p, q). 

The results are plotted in Figure 3–16. 
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Figure 3–16. Dependence of the yield of the product on monomer concentration 

(% w/v of the monomer-solvent mixture) (UV irradiation time: 2 min; 0.087 g 

iniferter; 0.02 g CTA). At 140.0% monomer concentration the reaction could not 

be performed due to high column pressure. 

Reduction of the monomer concentration from 70.0% to 52.5% w/v resulted in a 

considerable reduction of the peak area and a low yield of high-affinity product. 

It could be speculated that these conditions are not ideal for the formation of 

strong complexes between the monomers and template. A yield of NPs at 

140.0% w/v concentration of monomers could not be assessed due to high 

back-pressure in the system. In this case the high pressure was not a result of 

bulk polymerisation in the column but most likely caused by the high viscosity of 

the polymerisation mixture. 

According to the results, the optimal polymerisation conditions tested required 

0.087 g initiator, 0.02 g CTA, a concentration of monomers equal to 70.0% w/w 

and 2 min of UV irradiation (Table 2-1, k). More subtle adjustments around the 

boundaries of these conditions might lead to further improvements in the yield 

and quality of the NPs. 
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MIP NPs produced using these optimum conditions exhibited a good size 

distribution (Figure 3–17) and spherical morphology (Figure 3–18). 

 

Figure 3–17. DLS size distribution of melamine MIP NPs produced in optimum 

conditions. 

 

Figure 3–18. SEM image of the melamine MIP NPs produced in optimum 

conditions. The scale bar is 500 nm. 
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The yield of the NPs produced in these conditions was equal to 0.22% w/w of 

the initial mass of monomers. This was evaluated by weighing the dry residue of 

the evaporated fraction eluted during the heating step. This value corresponded 

to the MIP NPs fraction with the highest affinity.  

Considering that the results of these feasibility experiments were quite 

encouraging, an automated photoreactor was designed and assembled in 

accordance to our specification by HEL, Ltd. The details of the design of the 

photoreactor prototype and the subsequent experiments conducted with it are 

discussed in the following sections. 
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3.3 Automatic solid-phase photoreactor: prototype design 

A new fully automated synthesiser which uses the immobilised solid-phase 

template approach was then developed. The following considerations were 

taken into account during the design phase: 

• MIP synthesis should be performed at a moderately low temperature 

(−30  C to +10  C) in an appropriate organic solvent to favour complex 

formation between monomers and template (Allender et al., 1997; Piletsky et 

al., 2002). 

• The requirement for using low temperatures is best met by initiating the 

polymerisation reaction through photochemical means, since it can be 

performed at or below room temperature (O'Shannessy et al., 1989; Mijangos et 

al., 2006). 

• The synthesis of MIP NPs should be performed under controlled 

conditions to prevent polymer precipitation (Bompart and Haupt, 2009; Gonzato 

et al., 2011). 

• The template should be immobilised to prevent contamination of the 

synthesised particles (Lorenzo et al., 2011). 

• Ideally the template should be capable of being recycled to reduce 

manufacturing costs. 

• A mechanism for the separation of high-affinity MIP NPs from low-affinity 

materials and unreacted monomers should be integrated into the reactor design 

(Guerreiro et al., 2009; Hoshino et al., 2010a). 

A schematic of the new reactor design is presented in Figure 3–19 and a picture 

of the reactor is in Figure 3–20. The experimental setup for the automated 

synthesis of MIP NPs was developed with the aim of controlling the column 

temperature, delivery of the monomer mixture and washing solvents, UV-

irradiation time and yield of the synthesised material. The system comprises a 

computer-controlled instrument consisting of a custom-made fluid-jacketed 

glass reactor (which will accommodate the solid phase with the immobilised 
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template) with internal heating element, connected to pumps which deliver the 

reaction mixture, wash and elution solvents. The column is housed within a 

light-tight box fitted with a UV source that can be activated under software 

control for a predetermined time to perform the polymerisation. The fluid-

handling system also employs a multi-way valve post-column to direct the high-

affinity MIP NPs to a collection vessel or wash solutions to waste. 

The control software is very intuitive and allows for a specific control over the 

single components of the reactor in real time, as well as programming, saving 

and executing reaction protocols automatically with the minimum operator 

intervention (Figure 3–21). 
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Figure 3–19. Schematic diagram showing the mode of operation of the automated solid-phase MIP NPs photoreactor. Typical 

operational parameters using melamine as the immobilised target are: operation time: 3 h per cycle; yield of high-affinity 

fraction: 6.6 ± 0.65 mg per cycle; column capacity: 23.5 g derivatised glass beads (solid phase). 
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Figure 3–20. Picture of the automated solid-phase MIP NPs photoreactor. 

 

Figure 3–21. Control graphic-interface of the HEL's proprietary software WinISO 

for the automatic solid-phase MIP NPs photoreactor. 



 

158 

A schematic of a generic automated solid-phase synthesis and purification of 

MIP NPs is represented in Figure 3–22. The procedure by which all 

experimental work was undertaken using this automated reactor is as described 

below. The first step involved loading of the monomer/initiator mixture, 

dissolved in a suitable solvent, onto the temperature controlled column reactor 

containing the template already immobilised onto a solid support (Figure 3–22, 

1). Once the temperature has reached a pre-determined set point, thus 

favouring the formation of the pre-polymerisation complexes between 

immobilised template and functional monomer (Figure 3–22, 2), polymerisation 

was initiated by UV-irradiation of the reactor for the required reaction time 

(Figure 3–22, 3). After polymerisation was arrested, the column was washed 

with fresh solvent at a low temperature. At this stage unreacted monomers and 

other low molecular weight materials were eluted along with those polymer NPs 

with the lowest affinity (Figure 3–22, 4). The desired high-affinity MIP NPs 

remain bound to the immobilised template phase. A second washing step was 

subsequently performed at a slightly elevated column temperature, with the 

possibility of utilising an auxiliary additive, such as HCOOH, to remove low-

affinity MIP NPs from the reactor (Figure 3–22, 5). Finally, the temperature of 

the column was increased once more and, with the inclusion of additional 

reagents such as HCOOH, high-affinity MIP NPs were collected (Figure 3–22, 

6). Raising the temperature increased the rate of exchange between the 

particles and the template phase, which assists in eluting the particles, as well 

as potentially reducing the strength of the association. 
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Figure 3–22. Schematic representation of the solid-phase synthesis of MIP NPs in the automatic photoreactor. A detailed 

description is reported in the main text. 
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The benefits of this approach included: i) uniform binding properties, resulting 

from affinity-based separation on column (Guerreiro et al., 2009); ii) eliminating 

contamination of the product with template; iii) possibility of template reuse; iv) 

ease of standardisation; v) the final product is obtained in a pure form obviating 

the need for lengthy post-synthesis purification steps; vi) imprint sites are only 

formed on one surface of the particle.  
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3.4 Optimisation of the system: automatic solid-phase 

synthesis and characterisation of MIP NPs imprinted for 

melamine 

For the same reasons previously discussed (see 3.2.1 - General solid-phase 

synthesis of melamine MIP NPs) melamine was chosen as the model template 

for demonstration of the solid-phase synthesis of MIP NPs with this newly 

designed automatic system.  

Optimisation of the reaction conditions was performed by varying the irradiation 

time, followed by measuring the resulting yield and properties of the 

synthesised MIP NPs. As expected, there was a direct correlation between 

irradiation time and the yield and diameter of the MIP NPs formed (Figure 3–

23). This trend continued up to a point when the insoluble polymer was 

precipitated in the column reactor. The significant decrease in power of the UV 

lamps of the automated instrument can explain the variation between those 

results gained in previous sections (see 3.2.3 - Effect of UV irradiation time and 

composition of the polymerisation mixture on the synthesis of MIP NPs) and 

those gained within this section of work with respect to the length of irradiation 

time before precipitation occurs within the reactor. 
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Figure 3–23. Influence of the irradiation time on the yield and size of synthesised 

MIP NPs. Error bars represent SD (n ≥ 7). 

The binding properties (affinity and selectivity) of MIP NPs were assessed by 

SPR experiments (BIAcore) using SPR sensor chips modified with the template 

melamine or its structural analogue, DA (Ivanova-Mitseva et al., 2012). This 

immobilisation was carried out as illustrated in Figure 3–24. 
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Figure 3–24. Synthetic protocol for the immobilisation of template on the gold 

surface of BIAcore sensor chips for use in SPR analysis of MIP NPs. 

First a self-assembled monolayer (SAM) of cysteamine was created exploiting 

the capacity of thiols to form SAMs onto gold surfaces (Jiang et al., 2003). 

Following this first step, the immobilisation procedure involved a GA-based 

amino-coupling similar to that used during the immobilisation procedure for the 
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glass beads. The validity of the immobilisation procedure onto the gold SPR 

sensor chips was confirmed by static contact angle measurements of the 

surface (Table 3-2). 

Table 3-2. Static water contact angle measurements for surface-modified BIAcore 

SPR sensor chips (n = 3). 

Surface 
Contact angle 

(degrees, ± SD) 

Bare gold 75.85 ± 0.65 

Cysteamine 55.41 ± 1.38 

Melamine 80.96 ± 0.34 

DA 75.41 ± 1.34 

The highest affinity was achieved with particles exhibiting 60 nm in diameter (80 

nm when measured in ACN) (Figure 3–25, Figure 3–26). The inferior  

performance of small particles may be due to insufficient rigidity caused by low 

levels of cross-linking, or because such small MIP NPs lack the bulk required 

for maintaining the structure of specific binding sites. Particles ≥ 240 nm in 

diameter may be prevented from forming effective interactions with the 

immobilised template due to steric effects, resulting in a reduction of their 

measured affinity. This is in agreement with the results obtained by Piletska and 

Piletsky (2010), in which the high-affinity interaction between biotin and 

streptavidin was found to be strictly dependent on the size of the two interacting 

ligands. 
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Figure 3–25. Influence of the size of the MIP NPs on their affinity (apparent 

dissociation constant) as determined by SPR. Dry size, measured by SEM/TEM, 

and size in ACN (in square brackets) measured by DLS. Error bars represent SD 

(n ≥ 3). 

 

Figure 3–26. SEM image (left, scale bar: 500 nm) and TEM image (right, scale bar: 

50 nm) of the 60 nm diameter MIP NPs. 

A typical sensorgram of 60 nm MIP NPs is showed in Figure 3–27. 
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Figure 3–27. SPR sensograms (BIAcore 3000) showing time-dependent binding 

of 60 nm melamine MIP NPs onto BIAcore sensor chips bearing the specific 

(melamine) and non-specific (DA) molecules. The solution of melamine MIP NPs 

at a concentration of 330 nM was sonicated for 30 min and used as stock to 

prepare 5 further 2-fold dilutions (from 1/2 to 1/32). Injections were made in order 

of increasing concentration, using PBS buffer 0.01 M pH 7.4 as mobile phase. 

The sensorgrams show specific binding and target selectivity. 

The SPR response of the melamine-imprinted MIP NPs to DA was similar to the 

response for the solvent alone (less than 6 RU for all concentrations of NPs) 

and so did not allow for the calculation of the dissociation constant. Conversely 

a preferential binding to the specific surface was clearly demonstrated, hence 

confirming both the selective properties and the affinity of the MIP NPs 

produced. 

It is normal practice in MIP research to prepare a non-imprinted polymer or 

“blank”, prepared under identical conditions as the MIP but in the absence of 

template as an experimental control. Even in the case of traditional “bulk” MIPs 

this is not ideal, since changes in surface area and morphology are often 

evident when the template is excluded, making the comparison with non-

imprinted controls a compromise at best (Yoshimatsu et al., 2007; Hoshino et 

al., 2008; Yoshimatsu et al., 2010). The problem that occurred with the current 
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work was that, without a template, there was no retention of material on the 

column following the low-temperature elution step; hence, it was not possible to 

prepare a comparable blank polymer. Separation of non-imprinted particles 

from the cold fraction was complicated by the presence of a high concentration 

of monomers and the potential presence of a range of lower-affinity imprinted 

particles and oligomeric material which made it impractical to attempt. 

Optimum conditions for the synthesis of high-performance MIP NPs for 

melamine were determined as follows: UV irradiation for 3.5 min applied to a 

polymerisation solution containing 70% monomer mixture (w/v). When the 

synthesiser was run over six days in automatic mode using these conditions, 

five batches of MIP NPs per day were produced with an essentially identical 

yield (20 ± 2 mg per day) and very similar binding properties (KD = 6.3 × 10−8 ± 

1.7 × 10−9 M), for a total of 30 batches of MIP NPs from a single batch of 

template-immobilised solid phase. In terms of affinity, these results were 

comparable to those obtained with monoclonal antibodies produced for haptens 

similar to melamine (Grant et al., 1999; Kramer, 2002). 

The fractions containing high-affinity MIP NPs were analysed for the presence 

of residual template by LC-MS. The template concentration was below the limit 

of detection for this method; this confirmed that the recycling of the template 

immobilised on the solid phase did not result in the detrimental degradation and 

subsequent leakage of the template from the solid phase into the product. 

From the calculation of the density of immobilised template versus the quantity 

of MIP NPs produced in one cycle it was possible to deduce that approximately 

560 melamine molecules were required to generate one high-affinity MIP NP. 

The yield of MIP NPs was limited by the available surface area of the template 

phase (since the template is the limiting reagent in the system) but could be 

further increased by either optimising the morphology of the solid support, using 

several synthesisers in parallel, or eventually increasing the size of the reactor.  

Theoretically the number of binding sites per NP is proportional to the 

concentration of template used in MIP preparation. Considering that the 

template species in this approach were present only at the surface of the solid 
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phase, it follows that the selective binding sites would only be formed in the MIP 

at the point of contact with the surface. The silanisation of glass surfaces 

measured by other authors gave probe densities of between 1 × 1012 and 2.6 × 

1013 functional units per cm2 (0.01 – 0.26 sites/nm3) for (3-

mercaptopropyl)trimethoxysilane (Halliwell and Cass, 2001) and GA-modified 

APTMS (Sheng and Ye, 2009) (as used in this work). Assuming that a similar 

degree of coverage was achieved in the melamine-modified glass beads, then 

in theory, it is likely that the MIP NPs with diameter 30-80 nm would contain 

only 1-5 binding sites per particle, localised in one region of the nanoparticle 

surface. This number is in agreement with previously obtained data for MIP NPs 

synthesised in solution (Guerreiro et al., 2009). 

In terms of stability, dispersions of MIP NPs in ACN were stable for at least one 

year when stored at 4 °C in the dark. When stored in PBS, some aggregation 

and sedimentation was observed; this may be solved, however, by the 

introduction of a more hydrophilic shell (e.g., HEMA or PEG) on the NPs 

surface by exploiting the living nature of the polymerisation process. 
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3.5 A versatile system: automatic solid-phase synthesis of MIP 

NPs imprinted for vancomycin and a model peptide 

MIP NPs were also imprinted with different templates, to demonstrate that the 

reported approach is generic in nature (suitable for small to medium molecular 

weight organic molecules and peptides etc.). MIP NPs were therefore prepared 

for other targets, including vancomycin (Figure 3–28) (Mw = 1449.3 g/mol) and a 

model peptide (TATTSVLG-NH2, Mw = 747.9 g/mol) using the reported 

automatic solid-phase photoreactor. 

 

Figure 3–28. Structure of the antibiotic vancomycin. 

The first template, vancomycin, is a branched tricyclic glycosylated peptide 

antibiotic used in the prophylaxis and treatment of infections caused by Gram-

positive bacteria. Vancomycin acts by inhibiting proper cell wall synthesis in 

these bacteria by binding to the D-Ala-D-Ala moieties of the pentapeptides of the 

peptidoglycan monomers, N-acetylmuramic acid (NAM) and N-

acetylglucosamine (NAG). This results in two effects: i) it prevents the synthesis 

of the long polymers of NAM and NAG that form the backbone strands of the 

bacterial cell wall, and ii) it prevents the backbone polymers that do manage to 

form from cross-linking with each other. This weakens the cell wall and 
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damages the underlying cell membrane, causing its lysis (Small and Chambers, 

1990). 

The second template is a model peptide sequence (TATTSVLG-NH2). As 

already stated above, epitope imprinting refers to the imprinting of a small 

peptide sequence (i.e. an epitope) instead of a whole target protein, and it is a 

very promising approach in protein imprinting (Ge and Turner, 2008). The aim 

of these experiments was to prove that MIP NPs could be developed for 

peptides using the automatic photoreactor.  

The polymerisation conditions were identical to those used for the manufacture 

of MIP NPs for melamine, with the exception of the monomer mixture. The 

composition of the monomer mixture used to prepare MIPs for vancomycin and 

for the peptide was based on a published protocol (Hoshino et al., 2008) (Figure 

3–29). 

 

Figure 3–29. Monomers used to prepare MIP NPs for vancomycin and for the 

peptide sequence. 

Although Hoshino’s protocol was optimised for imprinting in an aqueous-based 

solvent, it was modified for use in ACN with good results. 

The binding properties of the synthesised MIP NPs were analysed by SPR 

experiments (BIAcore) using chips with immobilised templates (Figure 3–30, 

Figure 3–31). 
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Figure 3–30. SPR sensogram (BIAcore 3000) showing time-dependent binding of 

peptide MIP NPs onto BIAcore sensor chips bearing the template. The solution of 

peptide MIP NPs at a concentration of 1094 nM was sonicated for 30 min and 

used as stock to prepare 5 further 2-fold dilutions (from 1/2 to 1/32). Injections 

were made in order of increasing concentration, using PBS buffer 0.01 M pH 7.4 

as mobile phase. The sensorgram shows affinity for the specific target. 
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Figure 3–31. SPR sensogram (BIAcore 3000) showing time-dependent binding of 

vancomycin MIP NPs onto BIAcore sensor chips bearing the template. The 

solution of vancomycin MIP NPs at a concentration of 135 nM was sonicated for 

30 min and used as stock to prepare 5 further 2-fold dilutions (from 1/2 to 1/32). 

Injections were made in order of increasing concentration, using PBS buffer 0.01 

M pH 7.4 as mobile phase. The sensorgram shows affinity for the specific target. 

The sensorgrams have shown that MIP NPs exhibited affinity for their 

respective templates. The calculated apparent dissociation constants 

vancomycin and peptide MIP NPs were KD = 3.4 × 10−9 M and KD = 4.8 × 10−8 

M, respectively. 

Hydrodynamic diameter of the MIP NPs measured by DLS was 250 nm for 

vancomycin MIP NPs and 350 nm for peptide MIP NPs (as measured in ACN, 

Figure 3–32), with a narrow size distribution. 
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Figure 3–32. DLS size distribution of peptide MIP NPs (red) and vancomycin MIP 

NPs (blue) in ACN, produced with the automatic solid-phase photoreactor. 

These experiments have confirmed that the automatic solid-phase photoreactor 

is a versatile and flexible tool for the production of high-quality MIP NPs 

imprinted with low molecular weight templates (up to 1500 Da). The affinity 

properties of the MIP NPs produced in this work resembled, in practical terms, 

natural antibodies. 

 

0

10

20

30

40

50

60

1 10 100 1000 10000

In
te

n
s

it
y

 (
%

)

Diameter (nm)

Peptide MIP NPs

Vancomycin MIP NPs



 

175 

4 Automatic solid-phase chemical reactor of MIP 

nanoparticles: results and discussion 

In the previous chapter the development of the first successful example of an 

automatic solid-phase photoreactor for MIP NPs which explores iniferter living-

polymerisation chemistry was discussed. The polymerisation was performed in 

organic solvent under UV irradiation – conditions which are favourable for the 

imprinting of small molecules.  

Imprinting of high molecular weight targets such as proteins, polysaccharides 

and nucleic acids, however, requires an aqueous environment to assure 

preserving the native structure of these biological molecules during the 

polymerisation process (Whitcombe et al., 2011; Kryscio and Peppas, 2012). 

Due to their structural complexity, as well as their low compatibility with the 

classical preparation methods of MIP NPs, these substances have represented 

a historical challenge in imprinting.  

To address these issues, the solid-phase reactor design for MIP NPs 

preparation described in the previous chapter was adapted to perform a 

persulphate-initiated polymerisation in water – conditions developed specifically 

for protein targets (Hoshino et al., 2008). In this case, much less optimisation 

was required because the polymerisation procedure was already well-known 

and established in literature, and the expertise gained by optimising the first 

reactor allowed a quick and efficient adaptation of the solid-phase synthesis to 

the aqueous environment required for protein imprinting. 

For clarity, within this chapter the expression “chemical polymerisation” has 

been used to indicate a polymerisation process performed in water and initiated 

by the addition of ammonium persulphate, and “chemical reactor” has been 

used to describe the automatic reactor where the polymerisation process is 

carried out. Although these expressions are not entirely correct, since all the 

polymerisation processes are chemical (even if initiated by UV irradiation or 

temperature), they were used here to differentiate the automatic reactor 
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described in the previous chapter from the new machine which relies on 

persulfate-initiated polymerisation. 
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4.1 Preparation of protein-derivatised glass beads as affinity 

media 

The same immobilisation procedure described earlier was used to immobilise 

the protein templates on the surface of the glass beads (see 3.1.2 - Preparation 

of template-derivatised glass beads as affinity media). However, in this case the 

activation in NaOH was performed in milder conditions than for the glass beads 

used in the photoreactor (1 M for 1 min rather than 4 M for 10 min) because a 

high density of functional groups was not required for the immobilisation of large 

protein molecules. The immobilisation of trypsin was carried out in TBS 0.05 M, 

pH 8.0 with 0.02 M CaCl2 to inhibit the auto-digestion of the enzyme (Rocha et 

al., 2005). 
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Figure 4–1. Synthetic protocol for the immobilisation of template on the glass 

beads surface for use in chemical reactor. 

Qualitative and quantitative analysis of protein-derivatisation of glass beads 

In order to qualitatively confirm the surface derivatisation of glass beads with 

proteins, a BCA Protein Assay was performed. This method combines the 

reduction of Cu+2 to Cu+1 by proteins in an alkaline medium (the biuret reaction) 
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with the highly sensitive and selective colorimetric detection of the cuprous 

cation (Cu+1) using a reagent containing BCA (Smith et al., 1985). The purple-

colored reaction product of this assay is formed by the chelation of two 

molecules of BCA with one cuprous ion (Figure 4–2). 

 

Figure 4–2. Reaction scheme of the BCA Protein Assay. 

This water-soluble complex can exhibit a strong absorbance at 562 nm that is 

nearly linear with increasing protein concentrations over a broad working range 

(20-2000 μg/mL). 

The absorbance was measured by UV after 30 min of incubation at 60 °C. As 

expected, it was found that the presence of protein on the surface of the glass 

beads resulted in the development of an intense purple colour in solution, thus 

qualitatively confirming the immobilisation of the protein templates on the 

surface. 

Quantification of the amount of protein immobilised on the surface of the glass 

beads was performed indirectly by measuring the UV absorbance at λ = 280 nm 

on the residual solution of each protein template after incubation with the GA-

activated glass beads. In this instance, the experiment was performed directly 

inside a SPE cartridge to facilitate the separation and collection of the 
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supernatant and the washings from the glass beads. Once a calibration curve 

had been established, this technique enabled the evaluation of the amount of 

immobilised proteins, which was 0.05 mg protein/g beads for trypsin (2.2 × 10-9 

mol, Mw = 23.3 kDa), 0.098 mg protein/g beads for pepsin A (2.8 × 10-9 mol, Mw 

= 34.6 kDa) and 0.15 mg protein/g beads for α-amylase (2.9 × 10-9 mol, Mw = 

52.5 kDa). 
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4.2 Automatic solid-phase chemical reactor: prototype design 

 

Figure 4–3. The automatic reactor setup developed and used for the synthesis of 

protein-imprinted MIP NPs on solid phase. Typical operational parameters using 

proteins as the immobilised targets are: operation time: 4 h per cycle; yield of 

high-affinity fraction: 8.2 ± 0.5 mg per cycle with 60 g of derivatised glass beads 

(solid phase). 

The developed prototype (Figure 4–3) consists of a temperature-controlled 

reactor, which is filled with immobilised template and fitted on a stand with a 

shaking mechanism to ensure adequate homogenisation of the polymerisation 

mixture. The shaking frequency can be adjusted by changing the motor shaft. A 

set of pumps is responsible for delivering the monomer mixture, initiator and 

washing and elution solvents, while the outlet of the reactor is connected to a 

fraction collector to separate waste streams from high-affinity product fractions. 

The machine also includes a N2 inlet to flush the reactor before polymerisation. 

This N2 line is also used to force out the liquid and empty the reactor under 

pressure.  
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All the parameters and components of the reactor are controlled by a computer-

software which allows programming, saving and executing reaction protocols 

automatically with the minimum operator intervention. 

 

Figure 4–4. Control graphic-interface of the HEL's proprietary software WinISO 

for the automatic solid-phase MIP NPs chemical reactor. 
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4.3 Solid-phase chemical synthesis of MIP NPs imprinted for α-

amylase, trypsin and pepsin A 

As model templates, three enzymes with different molecular weights were 

chosen: trypsin (Mw = 23.3 kDa), pepsin A (Mw = 34.6 kDa) and α-amylase (Mw 

= 52.5 kDa). Trypsin and pepsin A are proteolitic enzymes and, more 

specifically, trypsin is produced in the pancreas while pepsin A is produced in 

the stomach. In both cases the enzymes are produced and secreted as pro-

enzymes, which are then activated in situ via other enzymes or the 

environmental pH. The third imprinted enzyme, α-amylase, catalyses the 

cleavage of starch into smaller saccharide units, and is present in the saliva as 

well as in the pancreas (Casella and Taglietti, 1993). 

The following generic protocol was applied for the automated synthesis and 

purification of MIP NPs for proteins: the first step involved loading the monomer 

mixture dissolved in water into the temperature controlled reactor containing the 

template-derivatised affinity media. A mild polymerisation process was then 

initiated by APS and TEMED and carried on for the desired reaction time. The 

polymerisation mixture was adapted from Hoshino et al. (2008), who developed 

it for the imprinting of proteins. The template-derivatised glass beads also acted 

as the affinity media for the subsequent purification of the synthesised NPs. At 

the end of the polymerisation process, the reactor temperature was kept at 15 

°C to allow the removal of all the unreacted monomers and other low molecular 

weight materials while the high-affinity MIP NPs remained attached to the 

immobilised template. After this step high-affinity MIP NPs were removed by 

washing the reactor at 60 °C (Figure 4–5). The increase in temperature disrupts 

the interactions between the immobilised target and the high-affinity MIP NPs, 

thus assisting in their elution and collection. 



 

184 

 

Figure 4–5. Schematic representation of the solid-phase synthesis and 

purification of the high-affinity MIP NPs exploiting the different interaction 

strength at different temperatures. The monomer mixture is injected onto the 

column reactor with the immobilised template and polymerisation is initiated by 

APS and TEMED. The low-affinity MIP NPs, as well as unreacted monomers, are 

washed out at a relatively low temperature. The temperature is then increased 

and high-affinity MIP NPs are eluted from the solid phase for collection. 

The whole procedure lasted about 4 h, after which an average yield of 43 ± 2.8 

% w/w of high-affinity product with respect to initial monomer mass was 

obtained. This value refers to a 60 g quantity of affinity media used in the 

preparation. 

Advantages of this process include high binding site accessibility due to the 

surface-imprinting procedure (Gao et al., 2007; Tan and Tong, 2007) and the 

option of imprinting whole proteins as well as synthetic epitope peptides (Ge 

and Turner, 2008). Furthermore, as already mentioned, this solid-phase 

imprinting approach ensured the formation of a template-free product, as 

confirmed by the BCA Protein Assay performed on the high-affinity NP 

fractions, which did not show any protein contamination. 
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Since proteins are not particularly stable molecules and can be easily 

denatured, the templates were not reused following MIP NPs preparation. Thus 

the proposed protocol would be useful predominantly for research purposes and 

for the imprinting of inexpensive protein targets such as trypsin. It is, however, 

possible to use this approach in imprinting protein epitopes which may offer a 

convenient way to synthesise large quantities of protein-specific MIP NPs where 

the template can be recycled. The potential for recycling the template in MIP 

NPs preparation was demonstrated in the previous chapter. 
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4.4 Effect of amount of template-derivatised solid-phase on the 

yield and size of MIP NPs 

Optimisation experiments were performed to assess the effect the amount of 

glass beads has on the yield and size of MIP NPs, using trypsin as the 

immobilised template. The results showed that the amount of product increased 

proportionally with the amount of derivatised solid-phase used in the synthesis. 

The diameter of the MIP NPs remained fairly constant in a range of 240-290 nm 

(Figure 4–6) and, therefore, did not appear to be dependent on the amount of 

template-derivatised solid-phase used in the synthesis. 

 

Figure 4–6. Effect of the amount of template-derivatised glass beads on MIP NPs 

yield and size. Yield is expressed as % of mass of NPs produced per mass of 

monomers. The template used was trypsin. Error bars represent SD (n ≥ 3). 

Under these conditions, the limiting factor appeared to be the volume of 

polymerisation mixture and the quantity of beads used in the reactor. With this 

experimental setup, the maximum dry weight of high-affinity material that could 

be produced per cycle was 12.5 mg (with 66% yield and 80 g of affinity media). 

Increasing the volume of the reactor and the quantity of the template-derivatised 

glass beads should considerably increase the yield of the product, an important 

aspect to be considered for scaling up the procedure for industrial and 

commercial purposes. Other potential strategies might be the use of a solid 
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support with a different morphology and surface area or running several 

synthesisers in parallel.  
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4.5 Characterisation of enzyme-imprinted MIP NPs 

4.5.1 DLS size analysis 

The results of DLS analyses on the MIP NPs synthesised for the different 

enzymes discussed above are shown in Table 4-1. 

Table 4-1. Hydrodynamic diameter and polydispersity index (PDI) of synthesised 

MIP NPs (n ≥ 5). 

Template 
Diameter 

(nm, ± SD) 
PDI 

Pepsin A 259 ± 4 0.325 

Trypsin 284 ± 5 0.223 

α-amylase 285 ± 13 0.349 

As can be seen from these values, all synthesised MIP NPs had diameters 

within the range from 260 to 285 nm. The different sizes of the templates did not 

exhibit an evident influence on the size of the MIP NPs. The MIP NPs 

synthesised in this work were, however, 5-6 times larger than those synthesised 

by Hoshino et al. using a similar monomer mixture (Hoshino et al., 2008; 

Hoshino et al., 2010a; Hoshino et al., 2010b). A possible explanation to this 

could be related to the effect the solid phase might have on the concentration 

and aggregation of monomers and particles during the phase separation stage 

which resulted in these larger particles. Another important aspect to be 

considered is that in the work of Hoshino et al. 10% w/w ionic surfactant was 

used to stabilise the growing NPs. In this protocol the use of surfactants was 

excluded since their addition interfered with the affinity analysis performed on 

SPR, which resulted in NPs with apparent lower affinity. 

4.5.2 SEM and TEM imaging 

Despite the low focus of the images, due to issues related to the low resistance 

of the organic polymer within the electron beam, SEM and TEM measurements 

have confirmed that the MIP NPs exhibited a size of about 100-150 nm and a 

spherical shape (Figure 4–7). 
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Figure 4–7. Typical sample images of MIP NPs made for proteins: a) SEM image 

of pepsin A MIP NPs (scale bar: 1 µm); b) TEM image of pepsin A MIP NPs (scale 

bar: 500 nm). 

The higher diameter values obtained by DLS measurements could be attributed 

to the swelling of the low cross-linked MIP NPs in water, which would be 

expected with this type of polymer. 

4.5.3 SPR affinity and specificity analysis 

The affinity and specificity of trypsin, α-amylase and pepsin A MIP NPs were 

investigated using BIAcore 3000 SPR system by immobilising each template 

onto the surface of the gold sensors. The immobilisation strategy has already 

been discussed in section 3.4 - Optimisation of the system: automatic solid-

phase synthesis and characterisation of MIP NPs imprinted for melamine. 

However, a slight modification was made in the last step for trypsin 

immobilisation to avoid the auto-digestion of the enzyme (Rocha et al., 2005) 

(Figure 4–8). For this, CaCl2 was added to the solution of the protein used 

during the immobilisation stage. 

a b c
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Figure 4–8. Synthetic protocol of the last step for the immobilisation of protein 

templates on the gold surface of BIAcore sensor chips for use in SPR analysis of 

MIP NPs. 

Several dilutions of the high-affinity fraction of MIP NPs (from 1/10 to 1/107) 

were sequentially injected (from the lowest to the highest concentration) on 

each chip bearing one of the templates, and their binding behaviour was 

recorded. 

As previously mentioned (section 3.4 - Optimisation of the system: automatic 

solid-phase synthesis and characterisation of MIP NPs imprinted for melamine), 

non-imprinted NPs were not synthesised and tested since their preparation and 

collection in the absence of template could not be performed using the existing 

protocol. Instead of this, the specificity of MIP NPs was assessed in a cross-

reactivity study of the MIP NPs towards the proteins which were not used in 

imprinting (e.g., trypsin MIP NPs were also injected onto the pepsin A and α-

amylase-derivatised chips). The results of this study are shown in Figure 4–9 (a, 

b and c). 



 

191 

 

 

0

500

1000

1500

2000

2500

0 1000 2000 3000

R
e

s
p

o
n

s
e
 (
R

U
)

Time (s)

a) Trypsin MIP NPs

α-Amylase surface

Trypsin surface

Pepsin A surface

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000

R
e

s
p

o
n

s
e
 (
R

U
)

Time (s)

b) Pepsin A MIP NPs

Pepsin A surface

Trypsin surface

α-Amylase surface



 

192 

 

Figure 4–9. SPR sensorgrams (BIAcore 3000) showing time-dependent binding of 

increasing concentrations of: (a) trypsin MIP NPs; (b) pepsin A MIP NPs; (c) α-

amylase MIP NPs onto BIAcore sensor chips bearing each of the templates 

tested. Cross-reactivity has been assessed by injecting MIP NPs onto surfaces 

bearing the proteins which were not used in the imprinting. Solutions of trypsin, 

pepsin A and α-amylase MIP NPs at a concentration of 0.4 nM were sonicated for 

30 min and used as stocks to prepare 6 further 10-fold dilutions (from 1/10 to 

1/107). Injections were made in order of increasing concentration, using PBS 

buffer 0.01 M pH 7.4 as mobile phase. The sensorgrams show affinity and 

selectivity for the specific targets. 

The sensorgrams presented here show the ability of all the MIP NPs 

synthesised for each template to specifically recognise and bind their target. 

Apparent KDs of 1.7 × 10-11 M, 4.1 × 10-11 M 3.4 × 10-10 M were calculated for 

pepsin A, trypsin and α-amylase MIP NPs, respectively. Analysis of the specific 

interactions of the MIP NPs with their targets was performed using the 

BIAevaluation software supplied by BIAcore. Despite some non-specific 

interactions, these analyses resulted in apparent non-specific KD values about 2 
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orders of magnitude higher than the KD values of the MIP NPs assessed with 

their corresponding BIAcore chip, thus confirming the specific nature of the 

interactions between MIP NPs and their respective targets. 

These experiments confirmed that the automatic solid-phase chemical reactor is 

a versatile and flexible tool for the production of high-quality MIP NPs imprinted 

for high molecular weight templates (up to 54 kDa). Also in this case, the affinity 

properties of the MIP NPs produced here resemble, in practical terms, natural 

antibodies. 
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5 Conclusions and future work 

5.1 Conclusions 

The first example of automated solid-phase synthesis of MIP NPs was reported. 

Two different types of automatic solid-phase reactor were produced: a 

photoreactor, suitable for the synthesis of MIP NPs imprinted for relatively small 

molecules, and a second module specifically designed to prepare MIP NPs in 

water for high molecular weight templates using mild chemical polymerisation 

conditions. Automation allowed the reactors to operate continuously, eliminating 

human error and operator fatigue and ensuring precisely controlled batch-to-

batch reproducibility. Moreover, for the first time the multiple reuse of molecular 

templates in the formation of imprinted polymers (30 times without loss of 

performance) was achieved through the use of an immobilised template 

approach. This could be of great advantage in relation to templates which are in 

short supply or are expensive to obtain. The only other reports of template 

recycling in the creation of imprinted polymers involved the “double imprinting” 

of immunoglobulin-imprinted NPs, which can be used as “stamps” to imprint 

sensor chips (Schirhagl et al., 2010; Schirhagl et al., 2011; Schirhagl et al., 

2012). In addition, this solid-phase synthesis strategy offers significant 

advantages when compared to traditional approaches which rely on imprinting 

free template in solution, such as full automation and short synthesis/purification 

times, thus making it suitable for industrial applications. Moreover, hydrophilic 

high molecular weight targets have been demonstrated to be imprinted in a 

relatively gentle aqueous environment. There has been only one automatic 

method for MIP synthesis reported in the literature (Zourob et al., 2006), and 

this was related to the fabrication of MIP microparticles using a microflow 

reactor. 

Batches of MIP NPs with diameters 30-400 nm and narrow size distributions 

were prepared using the photoreactor for low molecular weight targets including 

melamine (d = 60 nm, KD = 6.3 × 10−8 M), vancomycin (d = 250 nm, KD = 3.4 × 

10−9 M), and a model peptide (d = 350 nm, KD = 4.8 × 10−8 M). Their recognition 

properties were similar to MIP NPs prepared in similar conditions using free 
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template in solution (Guerreiro et al., 2009), but the automatic solid-phase 

synthesis was performed in less than 3 h/batch. 

In the case of the automated chemical reactor, MIP NPs specific for three 

different proteins were successfully produced: pepsin A (d = 259 nm, KD = 1.7 × 

10-11 M), trypsin (d = 284 nm, KD = 4.1 × 10-11 M), and α-amylase (d = 285 nm, 

KD = 3.4 × 10-10 M). The affinity properties recorded were consistent with those 

of MIP NPs prepared using similar polymerisation procedures but involving free 

template in solution (Hoshino et al., 2008; Zeng et al., 2010; Cutivet et al., 

2009). However, the automatic solid-phase synthesis and purification of MIP 

NPs was performed in 4 h/batch, in comparison to the lengthy synthesis and 

purification procedures reported in the other works. 

The size and yield of MIP NPs synthesised with the photoreactor were directly 

proportional to the irradiation time, and the boundary of the system was 

identified as the irradiation time which caused precipitation of an insoluble 

polymer. In the case of MIP NPs synthesised using the chemical reactor, there 

was a direct correlation between amount of solid-phase and yield, without a 

significant effect on the size of the MIP NPs.  

In all cases, the synthesised MIP NPs exhibited size, specificity and solubility 

characteristics comparable to natural antibodies, thus making them suitable for 

use as direct antibodies replacements for in vitro applications, such as assay 

and sensor development, as well as potential in vivo applications, such as drug 

development and delivery, as well as imaging.  

There are a number of reasons why MIP NPs, produced as described above, 

would have advantages over antibodies for diagnostic and potentially 

therapeutic applications (Table 5-1). 
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Table 5-1. Comparison of the properties of antibodies and MIP NPs. 

 
 

Antibodies 
 

MIP NPs 

Lifetime 6-12 months Years 

Storage Freezer 
From 4 °C to ambient 

temperature 

Regeneration 
Problematic, typically 

<10 times 
Easy (e.g. using acid, 

solvent, surfactant) 

Sterilisation 
Problematic, typically 

using -irradiation 
UV, autoclaving 

Temperature stability Denature at ~70 °C Resistant up to 140 °C 

Price 1-1000 $/mg 0.25-5 $/mg 

Even at this early stage in the development of automated methods for the solid-

phase synthesis of MIP NPs, it is clear that this major advance in MIP synthesis 

and in nanoscience has the potential to usher in a new era in the diagnostics 

and biotechnology sector in much the same way that solid-phase synthesis 

enabled combinatorial chemistry and the automation of DNA sequencing has 

sparked the genomics revolution. 

Nevertheless, in order to realise the full scientific and commercial opportunities 

presented by the technology many more studies need to be performed (see 5.2 

- Future work). 

  



 

198 

5.2 Future work 

At the time of writing a third prototype, combining both the automatic reactors 

described here, is being assembled and all system components will be 

integrated into a single case. This system should allow the execution of either 

photo or chemical polymerisation processes by the same machine, thus being 

suitable for preparing solid-phase MIP NPs for small or large molecular weight 

templates depending on the intended application. 

To broaden the potential interest of commercial and industrial partners for this 

technology, it would be interesting to cover the following research topics in the 

future: 

1) Alternative reactor formats: at the moment “column-like” reactor formats 

(either with packed or not packed solid-phase) have been tested. It would be 

interesting to investigate other possible formats in order to improve the 

penetration of the UV light during photopolymerisation and also the 

homogenisation of the solid-phase and its contact with the polymerisation 

mixture during the production process. 

2) Different solid phases for template immobilisation: glass beads are cheap 

and convenient but the use of non-porous relatively large glass beads 

dramatically reduces the amount of template available for the imprinting 

process and hence the yield of the process itself. An ideal solid-phase 

should guarantee good flow properties and light penetration as well as being 

easy to derivatise and suspend in the polymerisation media. Possibly 

Merrifield-like resins or polymeric materials could present a better alternative 

to glass beads. 

3) Optimisation of the template density: so far a large template excess was 

used during the immobilisation. However, it might not be the best strategy 

and currently a study is in progress to assess the optimum template density 

to obtain better yield, size and affinity of MIP NPs. 

4) Different chain transfer agent for the photopolymerisation: it is plausible that 

other kinds of chain transfer agents, less functionalised with thiol groups, 

could allow better control over the polymerisation process (Odian, 2004).  
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5) Development of MIP NPs with integrated functionalities for diagnostic 

applications: for assays or sensors, the integration of recognition and 

signalling functionalities in the MIP NPs product is mandatory. 

Demonstrations of MIP NPs potential in these applications are being 

currently investigated with promising results. 

6) Biological activity of MIP NPs: the final goal of the MIP NPs technology is 

the development of the first MIP NPs-based drug preparation. Due to their 

recognition properties, MIP NPs are ideal for being exploited either as 

targeting agents for drug-delivery systems or as drug delivery matrixes 

themselves, or both. Moreover, recent advances seem to address the 

possibility of producing MIP NPs with biological activity, hence their future 

use directly as drugs. Currently, enzyme-imprinted MIP NPs described in 

this thesis are being investigated for their biological activity with good 

results, and this last topic has been chosen as theme for a post-doc 

research to be undertaken in a UK institution by the author of this thesis. 
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