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ABSTRACT	

Temperature‐based	replica	exchange	(RE)	is	now	considered	a	principal	technique	for	enhanced	

sampling	of	protein	conformations.	It	is	also	recognized	that	existence	of	sharp	cooperative	

transitions	(such	as	protein	folding/unfolding)	can	lead	to	temperature	exchange	bottlenecks	and	

significantly	reduce	the	sampling	efficiency.	Here,	we	revisit	two	adaptive	temperature‐based	RE	

protocols,	namely,	exchange	equalization	(EE)	and	current	maximization	(CM),	that	were	

previously	examined	using	atomistic	simulations	(Lee	and	Olson,	J.	Chem.	Physics,	134,	24111	

(2011)).	Both	protocols	aim	to	overcome	exchange	bottlenecks	by	adaptively	adjusting	the	

simulation	temperatures,	either	to	achieve	uniform	exchange	rates	(in	EE)	or	to	maximize	

temperature	diffusion	(CM).	By	designing	a	realistic	yet	computationally	tractable	coarse‐grained	

protein	model,	one	can	sample	many	reversible	folding/unfolding	transitions	using	conventional	

constant	temperature	molecular	dynamics	(MD),	standard	REMD,	EE‐REMD,	and	CM‐REMD.	This	

allows	rigorous	evaluation	of	the	sampling	efficiency,	by	directly	comparing	the	rates	of	

folding/unfolding	transitions	and	convergence	of	various	thermodynamic	properties	of	interest.	

The	results	demonstrate	that	both	EE	and	CM	can	indeed	enhance	temperature	diffusion	compared	

to	standard	RE,	by	~3‐	and	over	10‐fold,	respectively.	Surprisingly,	the	rates	of	reversible	

folding/unfolding	transitions	are	similar	in	all	three	RE	protocols.	The	convergence	rates	of	several	

key	thermodynamic	properties,	including	the	folding	stability	and	various	1D	and	2D	free	energy	

surfaces,	are	also	similar.	Therefore,	the	efficiency	of	RE	protocols	does	not	appear	to	be	limited	by	

temperature	diffusion,	but	by	the	inherent	rates	of	spontaneous	large‐scale	conformational	

re‐arrangements.	This	is	particularly	true	considering	that	virtually	all	RE	simulations	of	proteins	in	

practice	involve	exchange	attempt	frequencies	(~ps‐1)	that	are	several	orders	of	magnitude	faster	

than	the	slowest	protein	motions	(~μs‐1).	Our	results	also	suggest	that	the	efficiency	of	RE	will	not	

likely	be	improved	by	other	protocols	that	aim	to	accelerate	exchange	or	temperature	diffusion.	

Instead,	protocols	with	some	types	of	guided	tempering	will	likely	be	necessary	to	drive	faster	

large‐scale	conformational	transitions.	 	 	

1.	Introduction	

Successful	computer	simulations	of	protein	conformational	equilibrium	and	transitions	not	only	

require	accurate	description	of	protein	energetics	in	complex	heterogeneous	environments,	but	

also	require	sufficient	sampling	of	the	relevant	conformational	space.	At	present,	generating	

atomistic	structure	ensembles	that	are	statistically	representative	of	the	accessible	conformations	

of	a	protein	under	a	given	set	of	thermodynamic	conditions	remains	a	challenging	problem1.	The	
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difficulty	arises	not	only	because	of	the	large	and	complex	conformational	space	of	biomolecules,	

but	also	due	to	significant	energy	barriers	that	might	separate	different	conformational	subspaces.	

The	efficiency	of	conventional	Monte	Carlo	(MC)	or	molecular	dynamics	(MD)	is	limited	due	to	

frequent	trapping	of	protein	in	numerous	local	energy	minima.	The	replica	exchange	(RE)	

method2‐5,	also	known	as	parallel	tempering,	has	emerged	as	a	relatively	straightforward	but	

powerful	approach	for	enhanced	conformational	sampling.	The	basic	idea	is	to	simulate	multiple	

replicas	of	the	system	at	different	temperatures	independently	using	either	MC	or	MD.	Periodically,	

replicas	attempt	to	exchange	simulation	temperatures	according	to	a	Metropolis	criterion	that	

preserves	the	detailed	balance	and	ensures	canonical	distributions	at	all	temperatures.	The	

resulting	random	walk	in	the	temperature	space	helps	the	system	to	escape	states	of	local	energy	

minima	and	thus	facilitate	conformational	sampling.	Replica	exchange	molecular	dynamics	(REMD)	

in	particular	has	been	widely	applied	to	and	shown	to	be	successful	in	protein	simulations6‐10.	

Nonetheless,	questions	remain	regarding	the	true	efficiency	of	RE	in	sampling	large‐scale	(protein)	

conformational	transitions	and	its	dependence	on	the	properties	of	the	system	and	key	RE	

parameters,	such	as	the	number	of	replicas,	exchange	attempt	frequency,	and	choice	of	simulation	

temperatures,	etc.	

The	key	parameters	of	REMD	of	protein	simulations	has	been	a	subject	of	substantial	research	

interest	in	recent	years,	examined	both	based	on	theoretical	considerations11‐16	and	through	actual	

simulations	of	small	peptides8,17‐19.	These	studies	generally	confirm	that	RE	can	enhance	the	

conformational	sampling	as	long	as	the	activation	enthalpies	are	positive.	In	particular,	recent	

theoretical	analysis14	and	kinetic	network	models13,16	of	RE	for	two‐state	systems	have	emphasized	

the	importance	of	choosing	a	maximum	temperature	slightly	above	the	temperature	where	the	

folding	rate	is	maximal	because	of	the	anti‐Arrhenius	behavior	of	protein	folding	at	high	

temperatures.	Once	the	maximum	temperature	is	chosen,	other	REMD	parameters	can	be	set	to	

achieve	effective	diffusion	of	replicas	across	the	temperature	ladder,	arguably	with	the	smallest	

possible	number	of	replicas.	Many	strategies	have	been	previously	proposed	for	the	later	purpose,	

such	as	more	frequent	exchange	attempts18,	global	energy	reassignment20,	and	non‐equilibrium	

switches21.	More	aggressive	approaches	attempt	to	reduce	to	number	of	replicas	required	for	

effective	temperature	diffusion	by	directly	reducing	the	number	of	particles	that	participate	in	

temperature	exchanges22‐24,	but	sometimes	with	undesirable	consequences25.	

It	is	typically	assumed	that	REMD	will	provide	the	highest	sampling	efficiency	if	all	the	replicas	

spend	equal	amount	of	time	at	each	temperature.	As	proposed	by	Sugita	and	Yokomoto4	and	

Kofke26,	this	may	be	achieved	through	optimizing	the	allocation	of	simulation	temperatures	to	

provide	efficient	and	uniform	exchanges.	Nonetheless,	it	is	not	clear	whether	consideration	of	

exchange	efficiency	alone	is	sufficient	to	optimize	the	sampling	efficiency,	which	is	more	directly	
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measured	by	the	frequency	of	conformational	transitions,	and	ultimately	by	the	convergence	of	

various	thermodynamic	properties	of	interest.	For	example,	REMD	simulations	were	previously	

performed	in	the	GBSW	implicit	solvent	to	examine	the	conformational	equilibrium	of	a	β‐hairpin	

derived	from	protein	GB1	domain	(GB1p;	residues	41‐56)27.	The	exchange	(acceptance)	rates	of	

both	folding	and	control	REMD	simulations	were	very	uniform	and	>60%	for	all	pairs	(Fig.	1A).	

Nonetheless,	there	was	an	apparent	segregation	of	replicas	in	the	temperature	space:	a	few	of	

replicas	dominated	the	lowest	temperature	and	had	much	lower	averaged	temperatures	(e.g.,	

replicas	2,	6	and	10;	see	Fig.	1B).	Closer	examination	suggests	that	the	observed	temperature	

trapping	reflects	a	lack	of	reversible	folding	and	unfolding	transitions	during	these	simulations.	The	

few	replicas	happened	to	fold	first	during	the	folding	run	(or	those	did	not	unfold	at	first	during	the	

control	run)	remained	folded	throughout	the	simulation	timespan	and	thus	had	much	higher	

tendency	to	visit	the	lower	temperature	windows	(e.g.	replicas	2	and	10;	the	black	and	red	traces	in	

Fig.	1C).	Even	though	the	folded	replicas	did	visit	higher	temperatures	frequently,	they	did	not	

spend	sufficient	time	to	unfold	spontaneously	and	thus	quickly	reversed	back	to	lower	

temperatures.	Vice	versa	was	true	for	the	unfolded	replicas.	As	a	result,	there	was	rapid	mixing	of	

the	replicas	due	to	uniform	and	high	exchange	rates,	but	all	replicas	remained	trapped	in	various	

free	energy	basins.	Similar	observations	have	also	been	made	by	Periole	and	Mark17.	

In	light	of	the	inadequacy	if	uniform	exchange	to	promote	folding/unfolding	transitions,	the	recent	

proposed	current	maximization	(CM)	protocol28	is	very	attractive.	CM	aims	to	systematically	

optimize	temperature	diffusion	such	that	the	number	of	“round	trips”	in	the	temperature	space	of	

each	replica	is	maximized.	Arguably	the	number	of	“round	trips”	is	more	directly	related	to	the	

ability	of	RE	to	drive	conformational	transitions,	and	thus	CM	could	substantially	improve	the	

sampling	efficiency28.	Lee	and	Olson	recently	compared	the	sampling	efficiency	of	CM	and	another	

adaptive	temperature‐based	REMD	protocol,	namely,	exchange	equalization	(EE)29,	using	the	

57‐residue	SH3	domain	of	α‐spectrin	in	implicit	solvent	as	a	model	system.	However,	due	to	the	

system	size	and	associated	computational	cost,	no	reversible	folding/unfolding	transitions	were	

sampled.	As	a	result,	how	effectively	the	improved	temperature	diffusion	in	CM	can	translate	into	

sampling	efficiency	remains	to	be	established.	 	

Identification	of	appropriate	protein	model	systems	for	rigorous	benchmarking	of	sampling	

efficiency	has	actually	been	difficult.	Due	to	the	computational	cost	constraint,	small	peptides	have	

been	mainly	used	as	model	systems8,17,18.	REMD	simulations	of	the	21‐residue	Fs‐21	peptide	in	

implicit	solvent	demonstrated	that	REMD	could	enhance	the	sampling	efficiency	by	14	to	72	times	

at	different	temperatures	compare	to	conventional	MD	based	on	examination	of	helicity	

auto‐correlation	functions8.	Periole	and	Mark	simulated	a	β‐heptapeptide	in	explicit	solvent	to	

examine	the	convergence	and	sampling	efficiency,	which	suggested	REMD	to	be	at	least	one	order	
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of	magnitude	more	efficient	than	MD17.	While	these	studies	have	provided	important	insights	into	

the	efficacy	of	REMD,	small	model	peptides	lack	long‐range	ordering	that	exist	in	actual	globular	

proteins,	and,	more	importantly,	do	not	fully	reflect	globular	proteins	where	folding/unfolding	

transitions	often	occur	at	much	longer	timescales	compare	to	local	conformational	fluctuations.	Our	

previous	simulations	of	small	proteins30‐32	(also	see	Fig.	1)	have	suggested	that	the	ability	to	drive	

slow	global	conformational	transitions	is	a	key	bottleneck	in	REMD	sampling.	Therefore,	there	is	a	

need	to	develop	realistic	yet	computationally	tractable	protein	models	for	more	rigorous	

benchmarking	of	REMD	sampling	efficiency.	

In	this	work,	we	first	construct	a	protein	model	derived	from	coarse‐grained	topology‐based	

models33,	which	are	based	on	the	principle	of	minimal	frustration	for	evolved	proteins	and	allow	

direct	simulations	of	folding	and	unfolding	transitions	to	characterize	folding	mechanisms.	In	

particular,	impressive	correspondence	has	been	demonstrated	between	experiment	and	theory	for	

many	proteins33,34,	supporting	the	notion	that	topology‐based	models	a	capture	the	essence	of	

folding	behaviors	of	globular	proteins.	Specifically,	the	original	sequence‐flavored	Gō‐like	model35	

was	modified	to	include	non‐specific	hydrophobic	interactions	to	mimic	the	presence	of	non‐native	

interactions	in	real	proteins.	Inclusion	of	non‐specific	interactions	also	increases	the	complexity	of	

the	energy	landscape,	and	thus	the	sampling	challenge.	Such	a	model	arguably	provides	a	

reasonable	balance	between	the	level	of	realisticity	and	computational	tractability	for	more	

rigorous	benchmarking	of	how	the	above‐discussed	adaptive	temperature‐based	REMD	protocols	

enhance	sampling	of	protein	conformations.	 	
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2.	Methods	

2.1 Adaptive temperature-based REMD protocols 

A	typical	REMD	involves	multiple	replicas	simulated	simultaneously	at	different	temperatures.	For	

given	choices	of	the	number	of	replicas	N,	the	minimum	temperature,	Tmin,	and	the	maximum	

temperature,	Tmax,	the	temperature	distribution	is	usually	assigned	as:	 	

T1  Tmin ,	 Ti1  Ti (
Tmax

Tmin

)
[

1

N1
]
.	 		 	 	 	 	 	 	 (1)	

Exchange	of	simulation	temperatures	are	attempted	periodically	and	accepted	according	to	a	

Metropolis	criterion	that	maintains	the	detailed	balance4.	

p(i  j)  min[1, e(i j )(EiE j ) ],	 	 	 	 	 	 	 	 (2)	

where	 i 1/ kBTi ,	 kB 	 is	Boltzmann’s	constant,	and	 Ti 	 and	 Ei 	 are	the	temperature	and	

potential	energy	of	replica	i.	After	a	successful	exchange	of	simulation	temperatures,	the	velocities	

of	swapped	replicas	are	rescaled	according	to,	

P(Tj ) 
Tj

Ti

P(Ti ),  P(Tj ) 
Ti

Tj

P(Ti ) .	 	 	 	 	 	 	 (3)	

Exchange rate equalization (EE) 

For	systems	displaying	strong	phase	transitions	such	as	protein	folding	and	unfolding,	the	standard	

REMD	can	suffer	from	depressed	exchange	rate	near	the	transition	temperature,	Tm.	One	approach	

to	resolve	this	limitation	is	to	dynamically	adapt	the	temperature	spacing	and	populate	more	

simulation	windows	near	Tm..	This	may	be	achieved	by	equalizing	the	exchange	rates	through	out	

the	REMD	temperature	range.	Briefly,	as	described	by	Lee	and	Olson36,	the	simulation	

temperatures,	 {Ti} ,	can	be	updated	periodically	during	REMD	to	maximize	the	sum	of	exchange	

acceptance	rates,	 sii1 ,	raised	to	a	properly	chosen	negative	power,	r,	

  max[ (sii1)r

i1

N1

 ]
.	 	 	 	 	 	 	 	 	 	 (4)	

In	the	limit	of	 r  ,	the	exchange	rates	would	be	uniform	with	maximized	Ω.	The	value	of	r	was	

assigned	to	be	‐4	in	the	current	work	as	suggested	by	Lee	and	Olson36.	Assuming	that	the	energy	

distributions	at	all	temperatures	are	Gaussian,	the	exchange	rates	can	be	estimated	by	integrating	
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the	acceptance	probability	over	the	energy	distributions29.	This	allows	numerical	optimization	of	

according	to	Eqn.	4	to	achieve	approximate	equalization	of	exchange	rates	between	all	

neighboring	replica	pairs.	

Current maximization (CM) 

The	CM	method	aims	to	maximize	the	number	of	round	trips	that	the	replicas	travel	between	the	

lowest	and	highest	simulation	temperatures37.	For	this,	a	replica	is	marked	as	cold	or	hot	depending	

on	its	last	visit	to	either	temperature	extremes.	The	cold	fraction	can	be	then	calculated	for	each	

temperature	as	

f (T ) 
ncold (T )

ncold (T ) nhot (T )
,	 	 	 	 	 	 	 	 	 (5)	

where	 ncold (T ) 	 and	 nhot (T ) 	 are	the	number	of	cold	and	hot	replicas	at	temperature	T.	It	has	

been	shown	that	the	current	of	temperature	diffusion	can	be	maximized	by	adjusting	the	

temperatures,	Ti,	such	that	f(T)	increases	linearly	as	a	function	of	the	temperature	index,	i38.	This	

can	be	achieved	by	first	interpolating	a	continuous	f(T)	from	the	computed	values	of	f	at	the	current	

set	of	temperatures	and	then	using	it	to	search	for	new	temperatures	within	the	pre‐specified	

temperature	ranges	where	f(T)	=	i	⁄	(N‐1).	To	avoid	crowding	of	replicas	near	Tm,	a	constraint	is	

introduced	such	that	no	neighboring	temperatures	can	be	more	than	two	geometric	spacing	units	

apart29	

Ti1 / Ti  (Tmax / Tmin )2/(N1) .	 	 	 	 	 	 	 	 	 (6)	

2.2 A topology-based coarse-grained protein model with rugged energy landscape 

The	sequence‐flavored	Gō‐like	model35	is	an	advanced	topology‐based	model	that	exploits	the	idea	

that	sequence	can	provide	differing	statistical	weights	to	alternative	folding	pathways.	By	including	

knowledge‐based	pseudo‐torsional	potentials	and	using	the	Miyazawa‐Jernigan	(MJ)	statistical	

potentials39	for	residue‐specific	Cα‐based	native	interactions,	the	model	can	recapitulate	subtle	

differences	in	folding	mechanisms	that	arise	from	sequence	differences	in	topologically	analogous	

proteins40,41.	In	this	work,	we	further	extend	this	model	to	include	nonspecific	hydrophobic	

interactions.	Specifically,	an	initial	model	was	first	generated	for	the	B1	domain	of	streptococcal	

protein	G	(GB1)	(PDB:	3gb1)42	(see	Fig.	2)	using	the	Multiscale	Modeling	Tools	for	Structural	

Biology	(MMTSB)	Gō‐Model	Builder	(http://www.mmtsb.org)43.	We	then	recalibrated	the	model	to	

{Ti}
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have	Tm	~	350K	by	uniformly	adjusting	the	strength	of	all	native	contacts.	Non‐specific	van	der	

Waals	(vdW)	interactions	were	then	introduced	between	all	Cα	beads	with	strengths	similar	to	

those	of	the	native	contacts.	Specifically,	the	well	depth	was	empirically	set	to	ε	=	‐1.1	kcal/mol,	

which	appeared	to	provide	a	reasonable	compromise	between	retaining	fast	folding	rates	and	

increasing	energy	landscape	complexity	based	on	pilot	REMD	simulations.	The	pilot	simulations	

also	suggested	that	non‐specific	1‐4	vdW	interactions	as	well	as	those	in	two	short	loops	(see	Fig.	2)	

needed	to	be	turned	off	to	avoid	steric	restriction	of	rotation	around	Cα‐Cα	bonds	and	facilitate	

chain	diffusion.	The	final	model	retains	a	sharp	folding	transition	(Fig.	3A),	but	displays	more	

complex	energy	landscape	with	multiple	intermediate	states	(Fig.	3B;	also	see	Section	3.4).	

Compared	to	the	original	sequence‐flavored	Gō‐like	model,	the	folding	and	unfolding	rates	are	

about	15	times	slower	at	corresponding	Tm’s.	 	 	

2.3 Simulation protocols and analysis 

All	the	REMD	simulations	were	performed	using	the	MMTSB	Toolset43	with	8	replicas	spanning	300	

to	400K.	For	each	replica,	Langevin	dynamics	simulation	was	performed	using	CHARMM44,45	with	a	

dynamic	time	step	of	10	fs	and	a	friction	coefficient	of	0.1	ps‐1.	The	SHAKE	algorithm46	was	applied	

to	constrain	all	virtual	bond	lengths.	Replica	exchanges	were	attempted	between	neighboring	

replicas	every	5000	MD	steps	(50	ps).	The	geometrically	spaced	distribution	(Eqn.	1)	was	used	as	

the	initial	temperature	profile.	Pilot	runs	were	first	performed	to	obtain	the	optimized	temperature	

distributions	according	to	either	EE	or	CM	protocol.	Specifically,	multiple	cycles	of	1‐μs	REMD	were	

performed,	each	followed	by	optimization	of	the	temperature	distributions	using	the	EE	and	CM	

methods	until	the	whole	profile	stabilized.	Additional	5‐μs	REMD	simulations	were	then	performed	

verify	that	the	EE	and	CM	temperature	distributions	were	stable	(for	the	given	protein	model).	

Finally,	the	converged	EE	and	CM	temperature	profiles	were	used	for	independent	production	

REMD	simulations,	initiated	from	the	native	structure	(control	run)	and	a	fully	extended	structure	

(folding	run),	respectively.	The	length	of	all	REMD	simulations	was	100	μs.	The	parallel	control	and	

folding	runs	allow	additional	diagnosis	of	convergence.	For	control,	standard	REMD	and	

constant‐temperature	MD	simulations	(at	300	K	and	Tm	≈	354K)	were	also	performed	(initiated	

from	the	native	structure).	These	simulations	are	summarized	in	Table	1.	We	note	that	Tm	

calculated	from	the	production	simulations	are	slightly	different	from	the	value	estimated	using	the	

pilot	run	(~354K).	

The	sampling	efficiencies	of	various	simulation	protocols	are	judged	mainly	based	on:	the	number	

of	folding/unfolding	transitions	NTS,	average	time	of	conformational	transitions,	τTS,	and	

convergence	of	the	calculated	folding	free	energy,	ΔG,	and	several	1D	and	2D	potential	of	mean	

forces	(PMFs).	In	the	context	of	topology‐based	modeling,	the	fractions	of	native	contacts	provide	
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natural	reaction	coordinates	for	describing	folding	and	unfolding	transitions47.	The	model	for	

protein	GB1	includes	75	native	contacts.	Based	on	the	1D	PMF	as	a	function	of	native	contact	

fraction	(see	Fig.	3B),	conformations	with	<25	native	contacts	were	assigned	to	be	in	the	unfolded	

state,	and	those	with	>55	native	contacts	to	the	folded	state.	These	definitions	of	the	folded	and	

unfolded	states	were	then	used	to	calculate	the	number	of	folding	and	unfolding	transitions	

sampled	in	MD	or	by	all	replicas	in	REMD	simulations	(see	Table	1).	We	further	divided	the	native	

contacts	into	those	involving	the	N‐terminal	residues	1‐20	(Q‐nt),	the	C‐terminal	residues	42‐55	

(Q‐ct),	or	the	central	α‐helical	residues	23‐36	(Q‐h),	and	calculated	2D	various	PMFs.	Achieving	

convergence	on	these	2D	PMFs	should	be	more	challenging	than	converging	on	folding	stability	

alone	or	1D	PMF.	Thus,	it	provides	a	more	stringent	test	on	various	REMD	protocols’	ability	to	

enhance	sampling.	The	weighted	histogram	analysis	method	(WHAM)	was	used	to	combine	

information	from	all	temperatures	to	compute	either	the	Cv	curves	or	various	unbiased	1D	and	2D	

probability	distributions48.	All	the	analysis	was	performed	using	a	combination	of	the	MMTSB	

toolset,	CHARMM	and	in‐house	scripts.	The	numbers	of	temperature	round	trips	in	REX	simulations	

were	calculated	between	the	lowest	two	temperature	and	highest	two	temperatures.	

3.	Results	and	discussion	

3.1 Convergence of the EE- and CM-optimized temperature distributions 

For	given	temperature	range	and	number	of	replicas,	the	EE‐	or	CM‐optimized	temperature	

distributions	should	depend	solely	on	the	nature	of	the	system	(e.g.,	the	density	of	state	

distribution).	Indeed,	as	shown	in	Fig.	4,	both	EE‐	and	CM‐optimized	temperature	distributions	

quickly	deviated	from	the	initial	geometrically	spaced	profile	(black	traces),	but	started	to	stabilize	

by	the	fourth	1‐μs	cycles	of	iterative	REMD	runs.	In	the	next	couple	1‐μs	cycles,	the	temperature	

profiles	varied	only	slightly	between	cycles	(<5	K),	which	appears	to	arise	mainly	due	to	the	finite	

length	of	the	pilot	REMD	cycles.	Additional	5‐μs	pilot	REMD	runs	further	validate	that	the	final	EE‐	

and	CM‐optimized	temperature	profiles	are	well	converged.	As	previously	observed29,	the	

EE‐optimized	temperature	distribution	sets	large	intervals	at	lower	temperatures	and	closely	

places	simulation	windows	at	higher	temperatures;	whereas	CM	optimization	tends	to	place	dense	

windows	near	the	melting	temperature	of	the	protein.	The	final	EE‐	and	CM‐optimized	temperature	

distributions	(red	traces	in	Fig.	4)	were	used	in	the	100‐μs	control	and	folding	production	REMD	

simulations.	 	
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3.2 Exchange acceptance rates and numbers of round trips in the temperature space 

As	a	first	step	towards	examining	the	efficiency	of	EE	and	CM,	key	REMD	metrics,	including	

exchange	acceptance	rates	and	numbers	of	temperature	round	trips,	were	calculated	to	ensure	that	

the	adaptive	temperature	distributions	achieved	the	goals	of	EE	and	CM.	As	shown	in	Fig.	5,	the	

exchange	acceptance	rates	are	indeed	approximately	equalized	(~60%)	in	both	control	and	folding	

EE‐REMD	production	simulations.	Note	that	the	exchange	acceptance	rates	between	control	and	

folding	simulations	are	similar,	indicating	that	simulations	were	well	converged.	In	contrast,	the	

geometrically	spaced	temperature	distribution	used	in	standard	REMD	leads	to	an	exchange	

bottleneck	near	Tm,	albeit	less	pronounced	compared	to	what	was	observed	in	atomistic	

simulations29.	CM‐REMD	yielded	higher	exchange	acceptance	rates	near	Tm	(>80%),	which	is	

consistent	of	denser	windows	in	this	region.	The	exchange	acceptance	rates	in	CM	are	lower	at	both	

low	and	high	temperature	extremes,	which	is	also	similar	to	the	previous	study	using	atomistic	

model	with	more	replicas29.	The	numbers	of	round	trips	in	the	temperature	space	are	summarized	

in	Table	1.	The	results	show	that	the	CM‐optimized	temperature	distribution	does	enhance	the	

diffusion	in	the	temperature	space,	about	13‐fold	compared	to	the	standard	REMD.	In	comparison,	

equalizing	the	exchange	rates	also	enhances	temperature	diffusion,	but	only	about	3‐fold	compared	

to	standard	REMD.	In	the	following,	we	further	examine	whether	such	equalized	exchange	rates	and	

enhanced	temperature	diffusion	can	effectively	translate	into	more	conformational	transitions	and	

faster	convergence	in	various	thermodynamic	properties.	

3.3 Number of folding and unfolding transitions  

The	sampling	efficiency	of	REMD	is	arguably	more	directly	related	to	the	number	of	major	

conformational	transitions	sampled,	such	as	between	folded	and	unfolded	states.	As	summarized	in	

Table	1,	28	and	24	folding‐unfolding	transitions	were	observed	during	the	control	and	folding	

EE‐REMD	runs,	respectively.	Interestingly,	despite	enhanced	temperature	diffusion,	the	numbers	of	

conformational	transitions	sampled	by	CM‐REMD	simulations	are	actually	smaller,	23	in	the	folding	

run	and	only	18	in	the	control	run.	Using	the	differences	between	the	control	and	folding	runs	as	

rough	estimates	of	the	uncertainties,	EE‐	and	CM‐REMD	generated	26	±	4	and	20.5	±	5	reversible	

folding/unfolding	transitions	in	an	aggregated	length	of	800	μs.	These	numbers	are	not	significantly	

higher	than	a	total	of	21	reversible	folding/unfolding	events	sampled	in	the	standard	REMD	

simulation.	Therefore,	enhanced	temperature	diffusion,	using	either	EE	or	CM,	does	not	appear	to	

accelerate	large‐scale	conformational	transitions.	The	implication	is	that	temperature	diffusion	is	

not	limiting	in	driving	large‐scale	conformational	transitions	even	with	the	standard	REMD.	We	

note	that	similar	observations	have	also	been	made	by	Kouza	and	Hansmann	in	their	recent	study	

of	so‐called	rejection	free	replica	exchange	simulations49.	 	
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Theoretical	studies	based	on	two‐state	model	systems	have	predicted	that	REMD	cannot	drive	

transitions	faster	than	the	maximal	rates	at	all	the	temperatures	sampled	(which	should	occur	at	

slightly	above	Tm	for	actual	proteins)13.	Indeed,	the	average	time	per	conformational	transition,	τTS,	

is	~30	μs	or	more	in	all	REMD	simulations,	which	over	twice	longer	than	τTS	of	~14.3	μs	observed	in	

regular	MD	at	Tm	(see	Table	1).	We	note	that	a	key	advantage	of	REMD,	however,	is	the	ability	to	

generate	correct	thermodynamic	dynamic	ensembles	at	all	temperatures,	such	that	conformations	

sampled	at	all	temperatures	can	be	combined	together	using	WHAM50	to	calculate	thermodynamic	

properties	any	temperature	of	interest	(e.g.,	the	lowest	temperature	sampled).	In	contrast,	

recovering	thermodynamic	properties	at	the	room	temperature	using	a	single	simulation	at	Tm	is	

generally	unreliable.	Therefore,	slower	average	τTS	in	REMD	compared	to	MD	at	Tm	does	not	suggest	

that	REMD	is	less	efficient	than	regular	MD	(the	contrary	has	been	shown	to	be	true	extensively	by	

previous	works	as	discussed	in	Introduction).	We	also	note	that	at	300	K	no	reversible	folding	and	

unfolding	transition	was	sampled	in	multiple	100‐μs	MD	runs	and	REMD	is	thus	necessary	for	

efficient	generation	of	converged	ensembles.	 	 	

3.4 Convergence of thermodynamic properties 

Arguably,	the	ultimate	goal	of	REMD	simulations	is	to	generate	statistically	representative	structure	

ensembles	such	that	well‐converged	thermodynamic	properties	can	be	derived.	Here,	we	focus	on	

several	typical	thermodynamic	properties	frequently	involved	in	protein	folding	studies,	including	

Tm,	CV,	folding	stability	(ΔGfold,	“zero‐dimensional”	free	energy),	1D	PMF,	and	several	2D	PMFs.	

Importantly,	both	CV	and	1D	PMF	as	a	function	of	the	total	native	contact	fraction	(Q)	are	

well‐converged	among	all	REMD	simulations	(e.g.,	see	Fig.	3).	ΔGfold	values	at	Tm	≈	354K	derived	

from	all	REMD	and	MD	simulations	are	within	0.25	kT	from	each	other	(except	the	CM‐REMD	

control	run,	which	deviates	by	~0.5	kT	from	other	runs).	Sample	2D	PMFs,	calculated	from	the	

control	EE‐REMD	run,	are	shown	in	Fig.	6.	We	note	that	inclusion	of	non‐specific	hydrophobic	

interactions	does	not	change	the	fundamental	features	of	these	free	energy	surfaces	compared	to	

the	original	sequence‐flavored	model35.	For	example,	the	folding	of	the	C‐terminal	hairpin	precedes	

that	of	the	N‐terminal	hairpin	(see	Fig.	6D).	However,	all	the	free	energy	surfaces	are	significantly	

more	rugged	with	several	local	minima	that	are	not	present	in	the	surfaces	derived	from	the	

original	model	(e.g.,	see	Fig.	6B).	 	

Fig.	7	compares	the	self‐convergence	of	1D	PMF	and	a	representative	2D	free	energy	(Q	vs.	Q‐nt)	as	

a	function	of	simulation	time,	measured	using	the	root	mean	square	deviation	(RMSD)	from	the	

final	profiles	calculated	using	all	100	μs	data.	A	few	observations	can	be	made.	First,	among	all	three	

simulations	initiated	from	the	folded	state	(EE	control,	CM	control	and	standard	REMD),	both	EE‐	

and	CM‐REMD	runs	appear	to	converge	faster	compared	to	the	standard	REMD.	For	example,	the	
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1D	PMF	quickly	converged	within	about	5	μs	in	both	EE‐	and	CM‐REMD	control	runs	while	it	took	

~15	μs	to	achieve	a	similar	level	of	convergence	for	the	standard	REMD	(Fig.	7A).	Similar	

observations	were	also	made	in	2D	PMFs	(e.g.,	see	Fig.	7B).	Importantly,	the	apparent	faster	

convergence	of	EE‐	and	CM‐REMD	control	simulations	within	short	timescales	does	not	appear	to	

arise	from	more	efficient	conformational	sampling.	Instead,	it	is	mainly	attributed	to	faster	mixing	

of	conformation	states	sampled	at	different	temperatures	due	to	more	efficient	temperature	

diffusion	in	EE‐	and	CM‐REMD.	Second,	comparing	the	results	of	the	control	and	folding	runs	

suggests	that	the	true	convergence	of	thermodynamic	properties	is	much	slower	than	the	apparent	

rates	of	self‐convergence	in	the	control	runs.	Interestingly,	EE‐REMD	appears	to	be	slightly	more	

efficient	than	CM‐REMD	despite	less	efficient	temperature	diffusion,	which	is	consistent	with	the	

larger	number	of	folding/unfolding	transitions	sampled.	Third,	the	convergence	of	higher	

dimensional	PMFs	expectedly	is	much	slower.	All	three	REMD	protocols	perform	very	similarly,	

with	the	RMSD	from	the	final	profiles	gradually	decreasing	throughout	the	100	μs	simulation	span.	

To	further	investigate	how	the	number	of	actual	conformational	transitions	sampled	affects	the	

accuracy	of	calculated	thermodynamic	properties,	we	divided	both	EE	and	CM	control	simulations	

into	uniform	fragments	of	various	lengths	and	calculated	the	average	numbers	of	conformational	

transitions	and	standard	deviations	of	calculated	ΔGfold.	The	results	are	summarized	in	Fig.	8.	It	

shows	a	clear	inverse	correlation	of	the	standard	deviation	of	ΔGfold	and	the	number	of	

conformational	transitions	sampled.	Importantly,	due	to	rapid	mixing	of	conformations	sampled	at	

different	temperatures	(as	noted	above),	reasonable	estimates	of	ΔGfold,	with	~1	kT	uncertainty,	

appear	feasible	even	with	“ultra‐short”	REMD	simulations	on	the	order	of	100	ns	(which	is	actually	

the	typical	length	of	atomistic	REMD	simulations),	even	though	virtually	no	reversible	transitions	

could	be	sampled	in	such	a	short	simulation	timespan.	In	addition,	the	uncertainty	in	the	calculated	

ΔGfold	does	not	decrease	significantly	with	longer	simulations,	until	significant	numbers	of	

reversible	folding/unfolding	transitions	are	sampled.	The	later	requires	simulation	timescales	a	few	

fold	of	the	inherent	folding/unfolding	time,	which	is	>20	μs	for	the	current	protein	model.	Along	

this	line,	it	appears	that	equalized	exchange	achieved	by	EE‐REMD	is	slightly	advantageous	(e.g.,	

compare	the	black	vs.	red	traces	in	Fig.	8),	in	allowing	more	rapid	mixing	of	different	temperatures	

to	achieve	better	convergence	with	simulations	much	shorter	than	the	folding/unfolding	timescales	

(which	is	the	case	for	most	atomistic	simulations).	 	

4.	Conclusions	

Existence	of	sharp	cooperative	transitions	in	proteins	can	lead	to	temperature	exchange	bottleneck	

and	subsequently	limit	the	sampling	efficiency	of	the	popular	REMD	method.	Several	approaches	
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have	been	proposed	to	address	this	bottleneck,	including	two	adaptive	temperature	REMD	

protocols	previously	examined	by	Lee	and	Olson29.	In	this	work,	we	constructed	a	reasonably	

realistic	yet	computationally	tractable	protein	model	to	re‐evaluate	how	effective	equalizing	the	

exchange	rates	or	maximizing	the	current	of	temperature	diffusion	can	enhance	the	sampling	of	

large‐scale	protein	conformational	transitions.	The	results	demonstrate	that,	despite	substantially	

enhanced	temperature	diffusion,	neither	EE‐	nor	CM‐REMD	could	generate	significantly	more	

folding/unfolding	transitions.	As	the	result,	the	convergence	of	key	thermodynamic	properties	is	

similar	with	EE‐,	CM‐	or	standard	REMD,	except	for	very	short	simulations.	In	the	later	case,	the	

apparent	convergence	can	be	mainly	attributed	to	mixing	of	conformations	sampled	at	different	

temperatures	and	thus	can	benefit	from	enhanced	temperature	diffusion	from	either	EE‐	or	

CM‐REMD.	We	note	that	typical	atomistic	REMD	simulations	are	on	the	oder	of	100	ns	and	thus	do	

fall	into	the	“very	short”	category.	A	key	lesson	from	the	current	work	is	also	that,	with	exchange	

attempt	frequency	(~ps‐1)	several	orders	of	magnitude	faster	than	the	inherent	timescale	of	slowest	

protein	motions	(~μs‐1),	temperature	diffusion	does	not	appear	to	be	limiting	in	the	ability	of	REMD	

to	drive	large‐scale	conformational	transitions.	Therefore,	it	is	unlikely	that	any	protocol	that	aims	

to	accelerate	temperature	exchange	or	temperature	diffusion	will	lead	to	substantial	enhancement	

in	true	sampling	efficiency	of	REMD	protein	simulations.	One	will	likely	need	to	explore	protocols	

that	involve	some	types	of	guided	tempering	to	allow	the	protein	to	take	advantage	of	faster	

unfolding	at	high	temperatures	simultaneously	with	rapid	folding	near	the	transition	temperature.	
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Tables	

Table	1.	Summary	of	production	REMD	and	MD	simulations.	

Method	 Initial	State	 Length	(μs)	 Tm	(K)	 NTR	 NTS	 τTS	(μs)	

EE	
Folded	 100	 351	 4423	 28	 28.6	

Extended	 100	 352	 4003	 24	 33.3	

CM	
Folded	 100	 354	 18533	 18	 44.4	

Extended	 100	 352	 19570	 23	 34.8	

Standard	 Folded	 100	 352	 1411	 21	 38.1	

MD	@	354K	 Folded	 200	 −	 −	 14	 14.3	

MD	@	300K	 Folded	 100	 −	 −	 0	 Undef	

Tm	values	shown	were	estimated	based	on	the	peak	of	the	final	calculated	CV	curves.	NTR	is	the	total	

number	of	round	trips	that	all	replicas	travel	between	temperature	extremes.	 	
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Figures	

	

Figure	1	REMD	simulations	of	GB1p	β‐hairpin.	A).	Exchange	acceptance	rates	between	neighboring	

temperatures	for	the	control	(initiated	from	the	native	structure)	and	folding	(from	a	fully	extended	

structure)	REMD	simulations.	Condition	numbers	correspond	to	different	simulation	temperatures.	

B).	Average	temperatures	and	percentages	of	occupancy	at	the	lowest	temperature	(260	K)	of	all	

replicas	in	the	folding	REMD	simulation.	C).	50‐ps	running	averages	of	the	temperature	history	of	

four	representative	replicas	(2:	black,	10:	red,	12:	blue,	16:	green)	during	the	folding	REMD	

simulation.	The	grey	traces	in	the	background	are	the	raw	time	traces.	Details	of	these	simulations	

were	described	in	Reference	27.	 	
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Figure	2.	The	structure	of	B1	domain	of	streptococcal	protein	G	(PDB	ID:	3GB1)42.	The	center	helix	

is	colored	in	violet,	β‐strands	in	yellow,	and	loops	in	cyan.	

	

	

Figure	3.	A)	The	heat	capacity,	CV,	as	a	function	of	temperature	and	B)	free	energy	as	a	function	of	

the	native	contact	fraction	(Q)	at	Tm	=	354	K,	calculated	from	various	100‐μs	EE‐	and	CM‐REMD	and	

standard	REMD	simulations.	The	PMF	derived	from	a	200‐μs	constant	temperature	MD	at	Tm	=	

354K	is	also	shown	(green	trace	in	panel	B).	
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Figure	4.	Temperature	distributions	optimized	by	A)	EE	and	B)	CM	at	the	end	of	multiple	cycles	of	

1‐μs	and	5‐μs	pilot	REMD	runs	(see	Methods).	

	

	

Figure	5.	Exchange	acceptance	rates	extracted	from	the	100‐μs	production	REMD	simulations.	

Solid	and	dash	lines	correspond	to	results	from	the	control	and	folding	simulations,	respectively.	

	



- 20 -	

	

Figure	6.	2D	free	energy	surfaces	of	folding	of	protein	GB1	along	various	order	parameters	at	Tm	

calculated	from	control	EE‐REMD	simulations.	Q,	Q‐nt,	Q‐ct	and	Q‐h	are	fraction	of	native	contacts	

of	the	whole	protein,	the	N‐terminal	hairpin,	the	C‐terminal	hairpin	and	central	helix	respectively.	
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Figure	7.	Self‐convergence	of	A)	1D	PMF	(as	a	function	of	Q),	and	B)	a	representative	2D	free	

energy	surface	(as	a	function	of	Q	and	Q‐nt)	during	various	100‐	μs	REMD	simulations.	The	RMSD	

values	shown	were	calculated	with	reference	to	the	final	1D	or	2D	free	energy	profiles	extracted	

using	all	100	μs	data	of	corresponding	REMD	runs.	

	

Figure	8.	Standard	deviation	of	calculated	folding	free	energy	(σΔG) and	average	number	of	

conformational	transitions	(<NTS>)	calculated	using	various	length	of	EE‐	and	CM‐REMD	control	

simulations.	
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Figure S1: Time series of the temperature (condition number), total energy, RMSD and the numbers of 

native and total (nonspecific) contacts for a single replica (replica 1 from the EE control run; see main text). 

Nonspecific contacts are considered formed whenever the CA-CA distance is below 10 Å. 
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