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Commentary 

SNPing Aegilops tauschii genetic diversity and the birthplace of bread wheat 

 

Towards the end of second world war, McFadden & Sears (1946) published a lengthy 

and classic paper on the origin of hexaploid or bread wheat. In the appendix to this paper 

they acknowledged that Kihara (1944) had also independently identified Aegilops 

tauschii (syn. Ae. squarrosa, Tritcum tauschii) as the D-genome donor of bread wheat. 

Since then, there have been many studies on the taxonomy, biology, and genetics of this 

grass to seek answers to many questions, including the center of genetic diversity of Ae. 

tauschii and the place of origin of bread wheat. In this issue of New Phytologist, a paper 

by Wang et al. (pp. 000–000) is a culmination of these efforts and in many respects is a 

landmark contribution. It is a triumph of high-throughput genomics. They used 7,815 

previously mapped (Luo et al., 2009, and unpublished), single nucleotide polymorphisms 

(SNPs) providing complete coverage of the genome to interrogate 402 accessions of Ae. 

tauschii, 75 hexaploid wheats, and seven tetraploid wheats using an Illumina Infinium 

Platform. But before delving deeper into their findings, let me fill in the key findings of 

the intervening period. 

 

‘… an arms race may have primed not only the resistance gene evolution but also the 

birth of hexaploid wheat in Caspian Iran …’ 

 

Kihara & Tanaka (1958) made extensive collections of Ae. tauschii in the 1950’s and, 

based on morphology, described subspecies eusquarrosa varieties typica, anathera, and 
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meyeri, and subsp. strangulata. Kihara et al. (1965) also described extensive 

physiological specialization based on resistance to rust races and evidence of incipient 

speciation based on the sterility in F1 hybrids among individuals from different 

populations. Later work, with molecular markers, mainly isozymes and storage proteins 

(reviewed in Wang et al.), indicated that subsp. strangulata was the probable D-genome 

donor of bread wheat and Caspian Iran and/or Armenia as the center of diversity and 

origin of Ae. tauschii. 

 

In a first application of DNA-based, RFLP marker analysis of genetic diversity, Lubbers 

et al. (1991) identified two genetically diverse groups, one consisting of subsp. 

eusquarrosa vars. typica and anathera, and another of subsp. strangulata and subsp. 

eusquarrosa var. meyeri. The analysis strongly supported the Caspian Sea region as the 

center of genetic diversity and origin of Ae. tauschii. The practical aim of this study was 

to identify genetically diverse Ae. tauschii accessions for direct introgression into bread 

wheat (Gill & Raupp, 1987) to enrich the genetically impoverished D genome of bread 

wheat (Kam-Morgan et al., 1989). The Ae. tauschii-derived materials had a huge 

worldwide impact on wheat crop improvement (Gill et al., 2006). 

 

Returning to Ae. tauschii genetic diversity studies, Dvorak et al. (1998), in a large study 

of RFLP markers, confirmed the existence of two genetically diverse groups in Ae. 

tauschii, which crosscut taxonomic groupings but surprisingly proposed Armenia as the 

center of genetic diversity and origin of bread wheat.The current paper from his lab has 

revisited this question and, from SNP analysis, they conclude that, in fact, southwestern 
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Caspian Iran is the center of genetic diversity. Because they included a large number of 

wheat accessions in the analysis, they also have pinpointed the center of origin of bread 

wheat in Caspian Iran. 

 

Wang et al. indicate a remarkable genetic differentiation of Ae. tauschii populations into 

S-1 and S-2 (mainly strangulata but also includes other forms) and T-1 and T-2 (mainly 

tauschii but may include other forms) gene pools occupying distinct habitats and 

geographic regions. There appears to be little genetic exchange between the two gene 

pools. The S-1 populations are restricted to Transcaucasia between 400–1500 m above 

sea level; the S-2 to the southwestern to eastern Caspian region at elevations of 25 m or 

less. The T-1 and T-2 populations are found only at high elevations, 400–3000 m above 

sea level. T1 is distributed in Transcaucasia, Turkey, and western Iran. T2 is found 

mainly in central Iran, Afghanistan, and eastward extending into China. 

 

The S2 populations in Caspian Iran are morphologically and genetically diverse, and 

came into contact with cultivated teraploid emmer wheat, and produced hexaploid wheat 

through spontaneious hybridization. Surprisingly, of the 12 accessions most closely 

related to the wheat D genome, only one is of the stranguata type. Recently, some 

workers  had proposed the independent origin of hexaploid wheat in Turkey (Giles and, 

Brown 2006), but the analysis reported here provides no evidence for this hypothesis.  

 

Intriguingly, Wang et al. reported intermediate populations between the S and T pools 

near Ramsar, Iran, a region of tremendous genetic diversity for resistance to leaf rust, and 
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also evidence that c. 4% of the wheat D genome is derived from the T gene pool. This 

region is where the Lr21 (a major gene providing resistance to leaf rust pathogen 

Puccinia triticina, a plague of wheat since Roman times) was postulated to have arisen 

from hybridization between two susceptible Ae. tauschii accessions, each carrying 

haplotypes H1 and H2, via a rare intragenic recombination event that produced a 

functional Lr21 gene of chimeric origin (H1H2 haplotype) (Huang et al., 2009).  Both H1 

and H2 haplotypes were also found in leaf rust susceptible hexaploid wheats, and from 

the F2 progeny of an H1/H2 hybrid, Huang et al. reconsituted the resistant Lr21(H1H2) 

locus. Huang et al. (2009) postulated that for such a rare recombinant resisting leaf rust to 

survive and spread over a large area in the Caspian region, strong selection pressure on 

Ae. tauschii weedy populations must have been exerted by leaf rust epidemics brought 

about by a susceptible wheat crop. One can also argue that a rare wheat hexaploid also 

would be selected if it survived leaf rust epidemics. Thus, an arms race may have primed 

not only the resistance gene evolution but also the birth of hexaploid wheat in Caspian 

Iran from hybrid swarms of susceptible tetraploid wheat with leaf rust resistant Ae 

tauschii strains. 

 

Wang et al. also analyzed the patterns of genetic diversity among wheat chromosomes 

and arms. Chromosome 5D was found to be the genetically least diverse and 1D and 2D 

were found to be highly polymorphic. This observation again relates to the fact that 

chromosomes 1D and 2D are hotspots where many resistance genes have been mapped 

(Gill et al., 2008). Most genetic diversity was localized to the ends of chromosomes and 

was correlated with high recombination rates. Previously, deletion bin mapping had 
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provided compelling evidence for the restriction of recombination and genetic novelty to 

the ends of chromsomes (Qi et al., 2004; See et al. 2006).  

 

This paper by Wang et al. will be of great interest to plant breeders who need to choose 

the most diverse Ae. tauschii accessions for genetic introgression into wheat. Is this the 

last word on the orgin of the wheat D genome? Probably not, but now that we are homing 

in to the place where bread wheat originated, perhaps a more thorough sampling of these 

regions or previously collected samples from these areas may provide additional data. 

More powerful genetic diversity tools, such as genotyping-by-sequencing, are coming on 

board, stay tuned! 
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