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RESUMEN 
 

Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Está formada por 

un total de cuatro artículos publicados en revistas del segundo cuartil del Journal Citation Reports. 

El artículo “A systematic literature review of the Teleo-Reactive paradigm” ofrece una completa 

revisión sistemática de la literatura existente sobre el paradigma Teleo-Reactivo desde su 

presentación por el profesor Nils Nilsson en el año 1994. Su papel en esta tesis es el de servir de 

estado del arte de dicho paradigma, ofreciendo una buena perspectiva de la evolución de los 

sistemas Teleo-Reactivos desde su formulación hasta el presente. 

Para poder desarrollar sistemas Teleo-Reactivos a partir de objetivos, surgió la necesidad de 

especificar los requisitos de estos sistemas usando el lenguaje más apropiado. Ese es uno de los 

objetivos principales del artículo “A controlled experiment to evaluate the understandability of KAOS 

and i* for modeling Teleo-Reactive systems”. Como resultado de dicho trabajo se decidió utilizar i* 

dado que el experimento realizado mostró que las especificaciones realizadas con dicho lenguaje 

resultaban ligeramente más comprensibles que las realizadas con KAOS. 

Aunque i* resultaba más comprensible a la hora de especificar requisitos para sistemas Teleo-

Reactivos, también presentaba ciertas debilidades. Estas debilidades han sido descritas 

detalladamente en el artículo “A family of experiments to evaluate the understandability of TRiStar 

and i* for modeling Teleo-Reactive systems”, en el que además se propone una extensión al lenguaje 

que permite superarlas. La extensión propuesta se denomina TRiStar y fue inicialmente presentada 

en [Morales15]. TRiStar ha demostrado superar los problemas de comprensibilidad identificados 

en i* en el modelado de sistemas Teleo-Reactivos mediante una familia de experimentos realizada 

con estudiantes de últimos cursos de grado y con desarrolladores software experimentados, cuyos 

resultados se exponen exhaustivamente en el artículo mencionado. En él se describe, además, un 

mecanismo que permite obtener mediante transformación de modelos el programa Teleo-Reactivo 

equivalente a un diagrama TRiStar dado. 

TRiStar permite, por lo tanto, partiendo de los objetivos de un sistema Teleo-Reactivo obtener un 

diagrama que especifique su comportamiento. Ese diagrama puede ser transformado en un 

programa Teleo-Reactivo equivalente. Y siguiendo las transformaciones descritas en “From Teleo-

Reactive specifications to architectural components: a model-driven approach” se puede obtener a 

partir del programa Teleo-Reactivo el modelo de componentes y la máquina de estados que 

describe el comportamiento de cada uno de esos componentes. Con estos elementos y usando un 

framework como el descrito en [Iborra09] se cerraría el proceso de desarrollo del sistema Teleo-

Reactivo. 

Como resultado de las investigaciones realizadas en el transcurso de esta tesis, y aunque no forma 

parte del compendio, hay un quinto artículo [Sánchez16] que está en segunda revisión en el Journal 

of Systems and Software en el que se estudian las posibilidades de introducir requisitos de tiempo 

real cuando se sigue el enfoque Teleo-Reactivo desde el modelado a la implementación de un 

sistema. Tras realizar un estudio del tipo de restricciones temporales que se pueden imponer desde 

el punto de vista Teleo-Reactivo, se considera la posibilidad de utilizar TeleoR [Clark14] para 

incorporar dichas restricciones y se proponene una serie de extensiones a TRiStar para permitir 

representar requisitos temporales. Estas extensiones dan lugar a lo que hemos llamado TRiStar+. 
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ABSTRACT 
 

This doctoral dissertation has been presented in the form of thesis by publication. It is comprised of 

four articles indexed in the second quartile of the Journal Citation Reports. 

The article “A systematic literature review of the Teleo-Reactive paradigm” offers a complete 

systematic review of the existing literature on the Teleo-Reactive paradigm since Prof. Nils Nilsson 

presented it in 1994. It plays the role of state of the art of that paradigm, showing a perspective of 

the evolution of Teleo-Reactive systems from their formulation to present time. 

In order to develop Teleo-Reactive systems starting from its goals, there is the need of specifying 

the requirements of these systems using the most adequate language. That is one of the main 

objectives of the article “A controlled experiment to evaluate the understandability of KAOS and i* for 

modeling Teleo-Reactive systems”. As a result, we decided to use i* because the experiment showed 

that i* specifications where slightly more understandable than those made using KAOS. 

Although i* was more understandable when specifying requirements for Teleo-Reactive systems, 

the experiment also showed some shortcomings. These shortcomings have been deeply described 

in the article “A family of experiments to evaluate the understandability of TRiStar and i* for modeling 

Teleo-Reactive systems”. In this article, an extension to i* is proposed in order to overcome the 

identified limitations. The proposed extension is named TRiStar and was initially presented at 

[Morales15]. TRiStar has shown to be more understandable than i* when modeling Teleo-Reactive 

systems through a family of experiments done with last year students and experienced software 

developers, whose results are described in the aforementioned article. In that article, a mechanism 

to obtain a Teleo-Reactive program starting from a TRiStar diagram is also described. 

Therefore, TRiStar allows obtaining a diagram which specifies the behavior of a Teleo-Reactive 

system starting from its goals. That diagram can be transformed into an equivalent Teleo-Reactive 

program. Then, following the transformations described in “From Teleo-Reactive specifications to 

architectural components: a model-driven approach”, a component model and the state machine 

describing the behavior of each of those components can be obtained. With these elements and 

using a framework as that described in [Iborra09], the development process of the Teleo-Reactive 

system would be finished. 

As a result of the research carried out during this dissertation there is another article, which is not 

comprised in the compilation, in second revision at the Journal of Systems and Software 

[Sánchez16]. In that article, after making a study of the type of timing constraints from the TR 

perspective, we consider the possibility of using TeleoR [Clark14] for incorporating such 

constraints. Some extensions on TRiStar notation are proposed to represent temporal 

requirements. Those extensions have been named TRiStar+. 
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OBJETIVOS 
 

Los objetivos principales de esta tesis doctoral son los siguientes: 

 Escoger un lenguaje de especificación de requisitos para sistemas Teleo-Reactivos entre los 

lenguajes GORE (Goal Oriented Requirements Engineering) más extendidos. 

 Una vez escogido ese lenguaje, proponer extensiones si es necesario para mejorar la 

eficacia y la eficiencia del lenguaje a la hora de especificar sistemas Teleo-Reactivos. 

 Las especificaciones en ese lenguaje extendido deben permitir obtener el programa Teleo-

Reactivo correspondiente al sistema especificado mediante transformaciones de modelos. 

 Partiendo de un programa Teleo-Reactivo, obtener una arquitectura de componentes que 

permita su implementación así como una descripción del comportamiento de dichos 

componentes a través de máquinas de estados. 

 Favorecer el “diseño para la reutilización”: es posible guiar el proceso de catalogación de 

componentes a partir de la especificación dada en los programas Teleo-Reactivos. 

 Favorecer el “diseño desde la reutilización”: para el desarrollador es más directo identificar 

del catálogo qué componentes se adaptan al comportamiento del software-to-be.  

 Realizar un estudio de las posibilidades que ofrece el paradigma Teleo-Reactivo para la 

consideración de restricciones temporales en los requisitos. 

 Analizar las posibilidades que ofrece TeleoR para incorporar los requisitos temporales 

identificados y demostrar la viabilidad metodológica mediante un ejemplo. 
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ESTADO DEL ARTE 
 

Uno los artículos que conforman este compendio (“A systematic literature review of the Teleo-

Reactive paradigm”) ofrece una completa revisión sistemática de la literatura existente sobre el 

paradigma Teleo-Reactivo desde su presentación por el profesor Nils Nilsson en el año 1994. 

La ingeniería de requisitos orientada a objetivos (GORE, por sus siglas en inglés) ha demostrado ser 

muy útil en el proceso de la ingeniería de requisitos [Lamsweerde01]. Las distintas propuestas 

GORE (ver [Kavakli05] para una introducción exhaustiva) se centran en el ‘por qué’ del system-to-be 

especificando la motivación y el razonamiento que justifica la especificación de requisitos. Un 

modelo orientado a objetivos puede ser especificado de muchas maneras pero todas ellas utilizan 

grafos dirigidos y refinamiento iterativo de objetivos. 

Las referencias básicas para entender el desarrollo de software dirigido por modelos siguen siendo 

[Atkinson03] y [Selic03] mientras que para el desarrollo de software basado en componentes lo 

son [Szypersky02] y [Lau07]. La utilidad de desarrollar sistemas reactivos, particularmente en 

robótica, basados en componentes reutilizables está muy generalizada en la comunidad científica. 

[Brugali09] y [Brugali10] proporcionan una introducción a la ingeniería del software para robótica 

basada en componentes. Explican en detalle los principios de diseño y los aspectos básicos del 

desarrollo de sistemas robóticos mediante componentes software reutilizables y mantenibles. A 

este respecto, el grupo de investigación DSIE tiene más de una década de experiencia [Iborra09] en 

el desarrollo de sistemas reactivos con inputs de la ingeniería del software (por ejemplo, desarrollo 

de línea de producto software, patrones de diseño, frameworks de arquitectura, desarrollo de 

software dirigido por modelos o desarrollo de software basado en componentes). En particular, 

DSIE ha desarrollado un enfoque integrado para el desarrollo de sistemas reactivos basado en el 

uso de frameworks, patrones de diseño y generación de código a través de transformaciones de 

modelos. 
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PUBLICACIONES 

FROM TELEO-REACTIVE SPECIFICATIONS TO ARCHITECTURAL COMPONENTS: A 

MODEL-DRIVEN APPROACH 

 

RESUMEN 
 

El enfoque Teleo-Reactivo diseñado por el profesor Nils Nilsson ofrece un modelo de programación 

de alto nivel que permite el desarrollo de sistemas reactivos como por ejemplo, vehículos robóticos. 

Los programas Teleo-Reactivos se escriben de manera que facilitan a los ingenieros definir el 

comportamiento del sistema teniendo en cuenta sus objetivos y los cambios que puedan producirse 

en su entorno. Este artículo presenta un enfoque sistemático que hace posible derivar modelos 

arquitectónicos con descripciones estructurales y de comportamiento partiendo de programas 

Teleo-Reactivos. El desarrollo de sistemas reactivos puede por tanto beneficiarse 

significativamente de la combinación de dos enfoques: (1) el enfoque Teleo-Reactivo, orientado a la 

descripción del sistema desde el punto de vista de sus objetivos y del estado de su entorno y (2) el 

enfoque arquitectónico, que se orienta al desarrollo de software basado en componentes, en el que 

las decisiones están condicionadas por la necesidad de reutilizar soluciones ya probadas con 

anterioridad. La integración de este trabajo en un entorno de desarrollo que proporciona 

generación de código mediante transformaciones de modelos abre nuevas posibilidades en el 

desarrollo de este tipo de sistemas. La propuesta se valida mediante un caso de estudio 

representativo del dominio y una encuesta realizada a estudiantes de postgrado. 
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009), since the way in which components are developed and
onnected influences the properties of the final system. Thus, archi-
ectural issues should be taken into account when designing the
omponents that will finally make up the application, as noted in
edvidovic et al. (2007).
The reuse of existing solutions in current robotic systems is

ostly focused on the level of algorithms and libraries, and does not
sually take place at a high abstraction level. In Pastor et al. (2010)
e recently introduced an MDSD-based approach that separates

he component-based description of real-time applications from
heir possible implementations on different platforms. This sepa-
ation is supported by automatic integration of the code obtained
rom the input models into object-oriented frameworks. In this
espect, the management of models from the early stages of soft-
are construction and the support for an automatic transformation
rocess into code in the MDSD framework have proven useful in the
evelopment of reactive systems, as shown in Section 7.

Also, some authors argue that software development should be
irected towards what the user wishes to obtain from it, i.e., its
oals, and that these goals should drive the requirements engi-
eering process (Lamsweerde, 2009). Since reactive systems may
enefit from this approach, we opted for the Teleo-Reactive (TR)
aradigm (Nilsson, 1994), a goal-oriented approach for the mod-
lling of systems that manages their actions, outputs and status in
esponse to stimuli from within or outside them. A very recent work
Castro et al., 2012) follows a similar approach in order to derive
tructural architecture from system goals, using the i* (iStar) lan-
uage for modelling system requirements. However, we think that
he TR paradigm is best suited for modelling the goals that a reac-
ive system should achieve, and in our proposal we generate both
he architectural structure and the behaviour of the components.

The TR paradigm has provided very interesting results in the
obotics domain, as will be shown later. This approach, as applied
o reactive systems, is both a viable and an exciting prospect,
ince TR programs inherently recover from errors and unexpected
vents while proceeding towards their goals. TR programs are writ-
en in a production-rule-like language. Thus, the TR programming

odel is a high-level approach to implementing systems that react
ynamically to changes in their environment. The models that are
enerated are therefore very suitable for describing robotic sys-
ems from a goal-oriented perspective. It is important to distinguish
etween a reactive and a proactive perspective in robotic system
evelopment. A reactive robot responds to changes in the environ-
ent in accordance with a set of rules. In contrast, a proactive robot
ill work to achieve a specialized goal. The reactive robot has sen-

ors that are used to perceive the current state of both itself and its
nvironment. An action performed by this robot will usually pro-
ote a new state in the environment. The perception that the robot

as of the environment obviously needs to be appropriate to ful-
l the predefined set of goals. That is the perspective that will be
onsidered in this article.

Architectural design is not a trivial task because it depends on
he expertise of the developers and on how they understand the
equirements. We  propose a model transformation approach to
erive an architectural design (structure and behaviour) from TR
rograms. The idea presented in this article is a significant step
orward that combines both approaches for the development of
eactive systems: the TR paradigm to specify the overall applica-
ion behaviour, and CBSD to specify the application architecture.
he main contributions of this article are:

The establishment of a bridge between the specifications of TR

programs with the development of component-based software.
The modelling of applications is therefore based purely on goals,
and the developer will not need to know either the details of
the implementation platform, or the modelling languages for
nd Software 85 (2012) 2504– 2518 2505

specifying components, both of which usually require a certain
amount of experience.

• It provides a translational semantics of TR programs based on
components and state machines.

• It favours ‘design for reuse’: guided cataloguing of components is
possible using the specification provided in the TR programs.

• It favours ‘design from reuse’: it is more direct for the developer to
use a catalogue to identify which components can be adapted to
the behaviour of the software-to-be.  This is because the compo-
nents are specific and can be catalogued at a higher abstraction
level, which is closer to the problem domain.

The results are demonstrated by focusing on a case study of a
mobile robot. However, all the solutions that have been developed
can be extrapolated to other reactive systems which can also be
modelled using the TR approach. Since the proposed approach has
TR programs as input artefacts, it can be easily extended and applied
to domains in which the TR paradigm could also be applied. All of
these objectives are very ambitious, but they have been shown to
be feasible and have been achieved incrementally thanks to the
formal and theoretical foundations of MDSD,  and the technological
support provided by the Eclipse development environment.

The rest of this article is organized as follows: Section 2 intro-
duces the TR approach, along with various definitions and a robotic
example. Section 3 presents the proposed systematic approach for
transforming TR programs into component-based models, while
Section 4 provides an overview of the global approach into which
the proposal is integrated. Section 5 presents some details of the
implementation carried out using the Eclipse technology. Section
6 presents a survey-based evaluation of the approach. Section 7
describes the state of the art. And last but not least, Section 8
presents conclusions and future research.

2. Teleo-Reactive programs

As Nilsson (1994) states, a Teleo-Reactive program (TR pro-
gram) is a mid-level agent control program that robustly directs
an agent towards a goal in a manner that continuously takes into
account the system-changing perceptions of a dynamic environ-
ment. In other words, TR programs are a set of reactive rules that
continuously sense the environment and trigger actions whose
continuous execution eventually leads the system to satisfy a goal.
The main advantage of TR programs is their ability to react robustly
to changes in their environment owing to the continuous compu-
tation of sensing values. TR programs provide engineers with an
intuitive approach within which to write goal-directed programs. A
TR program is defined as a set of prioritized condition/action rules.
A TR program interpreter should constantly re-evaluate the trig-
gering condition set for each rule, and should execute the action
corresponding to the highest-priority rule with a satisfied pre-
condition.

A TR program is usually denoted by Nilsson (1994) as:

K1 → a1

K2 → a2

. . .

Km → am

where Ki are the conditions in sensory inputs and in a model of the
world, and ai are actions in the world or which change the model

of the world. The list of rules is evaluated from the top for the first
rule whose condition is true, and its corresponding action is then
executed. An action ai may  consist of a single action, or may  itself
be a TR program.
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Nilsson states that if a TR program is complete (i.e., the condi-
ion K1 or K2 or . . . or Km is a tautology) and respects the regression
roperty (i.e., each condition Ki is a regression of some higher con-
ition through an action ai) then the system implementing the TR
rogram will always achieve its goal. TR programs differ substan-
ively from conventional production systems because actions can
e durative rather than discrete. A durative action is one that can
ontinue indefinitely, and its execution will therefore continue as
ong as the condition is true (for example, move the robot forward is

 durative action, as opposed to a discrete action like move the robot
orward 10 m).  As an example of a TR program, a robot that might
e rotating until it detects the target (sensoring input) and starts to
xecute the (durative) action move forward could be written as:

target detected → move forward

true → rotate

The effects of an action on its environment occur as a conse-
uence of the interaction of the system. They are not modelled

n the TR program but rather present in the changes detected in
he sensor inputs. Some authors, such as Gubisch et al. (2008),
xtend the TR paradigm by additionally considering the simulta-
eous invocation of activities by following the syntax:

i → aj, ak

In this case, when Ki holds, both activities are activated, and
imilarly, when Ki does not hold, the activities are simultaneously
eactivated. The parallel execution of actions ai and aj must con-
inue to satisfy the regression property.

efinition. A basic TR program is a goal defined by the structure
S, A, f), where S ∪ {True} is a set of sensor inputs, A ∪ {nil} is a set of
urative actions, and f : S × P(A) → p is a function that defines a
et of rules having the form s → P(A) with priority p, where s is a
ell formed formula, over the set S using relational (<, <=, >, >=, <>)

nd Boolean operators (and, or,  not), and P(A) is a powerset over
 that represents the set of all possible simultaneous executions of
ctions over the set A.

efinition. Given two rules, r1 and r2, of a TR program, r1 is said
o have a higher priority than r2 if and only if (r1) > f(r2).

Various authors have considered the possibility of including
ierarchies for the definition of TR programs, which favours modu-

arity, greater ease of reuse, refinement, tests, etc. We  also think it
ould be useful for developers to be able to structure TR programs
sing hierarchies, and we  have therefore extended the definition
hown above.

efinition. In a hierarchical TR program, actions can also be basic
R programs. Each TR program that is referenced in a rule is called

 subgoal. The root of the hierarchy of a TR program is called the
oal of the system-to-be.

In a general TR program, conditions, actions and goals may  have
ree variables that are bound when the TR program is called. It is
mportant to highlight that unlike in conventional programming

here a called subroutine assumes control of the execution until
ompletion, a TR program continues to constantly evaluate its set
f conditions even when a subgoal has been called. Consequently,
f another rule condition that has higher priority becomes true, the
ubgoal is immediately terminated.

As a case study we consider a TR program for a robot, as depicted
n Fig. 1 (taken and adapted from Dongol et al., 2010), which has

een developed to clear cans from the floor by moving them to a
epot. The robot is able to rotate, to scan the environment for cans
r the depot, to move forward, and to close or open its gripper. The
obot includes sensors that evaluate whether or not the robot is
Fig. 1. The can collector robot and its environment.
Taken and adapted from Dongol et al. (2010).

holding, seeing, and touching a can. For example, if the robot sees
a can, then it moves forward while it can see the can. Provided that
the environment does not move the can, the robot will eventually
touch it. Using its current location, the robot is able to see the depot
and to know whether it is at the depot or not.

The TR program derived from the above specification is the fol-
lowing:
S = {holding, at depot, see depot, see can}
A  = {forward, rotate, grasp, ungrasp}
f:

holding and at depot → ungrasp (highest priority)
holding and see depot → forward
holding → rotate
see can and touching → grasp
see can → forward
True → rotate (lowest priority)

The guards holding, see can,  at depot, see depot, and touching
are Boolean variables whose values are equivalent to the values
of the corresponding sensors. The primitive actions of the robot
are ‘rotate’, ‘forward’, ‘grasp’, and ‘ungrasp’, and these control the
robot’s basic movements.

The equivalence between the hierarchical and the plain specifi-
cation of a TR program is straightforward. Following is hierarchical
version of the TR program for the robot:
S = {holding, at depot, see depot, see can}
A  = {forward, rotate, grasp, ungrasp}
f:

Robot:
holding → Deliver
True → Collect

Collect:
see can → Fetch
True → rotate

Fetch:
touching → grasp
True → forward

Deliver:
at depot → ungrasp
True → Go depot

Go depot:
see depot → forward
True → rotate
We  can see that the TR program includes one root goal (‘Robot’)

and four subgoals. The fulfilment of each subgoal leaves the robotic
system in a particular state. The actions (subgoals) Deliver and
Collect cause the robot to respectively deliver and collect cans. Fur-
thermore, Deliver is expanded into the primitive action ‘ungrasp’
and the subgoal Go depot. Since the subgoal Fetch is the last action
of the subgoal Collect, both subgoals are fulfilled at the same
time, and the system will consequently hold the same state (hold-

ing). Here, completion of the first action Deliver represents the
accomplishment of the goal, while completion of the second action
Collect represents the achievement of the subgoals that cause
the robot to make progress towards enabling the action Deliver.
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ompletion of the ‘ungrasp’ activity represents completion of
eliver (because holding becomes false), while completion of
o depot enables ‘ungrasp’.

A better understanding of the TR rule activation mechanism can
e gained from Fig. 2, which shows a timing diagram correspond-

ng to an example of typical robot execution in the version of the
R program without subgoals. Actions ‘grasp’ and ‘ungrasp’ were
ubstituted by ‘on electromagnet’ and ‘off electromagnet’, since we
ad a robot without a grasping mechanism, as described in Section
. The timing diagram was obtained with the Xilinks simulation
oftware after generating the electrical circuit for the input TR pro-
ram, given that Nilsson (1994) described the equivalence between
oth representations. The changes in the conditions and the actions
arried out by the robot are shown at the bottom.

At the outset, the only line that is activated is the one corre-
ponding to ‘rotate’, as its guard condition is always true. Whenever
he line see can is activated, ‘forward’ is also activated since its
uard condition is see can and the corresponding rule has higher
riority than “forward”. The next line to be activated is ‘touch-

ng’. This causes compliance with another, higher-priority rule
nd hence activation of the action ‘on electromagnet’, since both
ouching and see can are activated. Soon after the electromag-
et is switched on, the condition holding becomes true, and so

 new, higher-priority rule activates the ‘rotate’ line again until
he condition see depot is verified. This triggers another change
o a higher-priority rule whose condition is true, and hence the
ction ‘forward’ is executed and the action ‘rotate’ terminated.
inally, the line at depot is activated, which verifies the highest-
riority rule of all, causing deactivation of ‘forward’ and activation
f ‘off electromagnet’.

. From TR programs to architectural components

As noted above, TR programs are an effective approach by which
o continuously perform a set of activities in order to achieve par-
icular goals, and to react to changes in the environment. However,
espite the fact that TR programs are an effective framework for
obotics, they have not been fully exploited. One of the greatest
eficiencies lies in the absence of a method that would allow a
R specification to be translated into architectural models from
hich an application could be generated. As is shown in Section 7,

arious authors have tackled the definition, formalization and sim-
lation of TR programs. Although highly significant in terms of their
ontributions to the area of artificial intelligence, all these works
re limited in that for the implementation of robotic systems they
ither reject the reuse of previously developed software artefacts
Estublier and Vega, 2005), ignore the importance of the design
f their software control architecture (Shaw and Clements, 2006),
r avoid the restrictions imposed by the execution infrastructures,
hich are typical of real-time systems (Laplante, 2004).

The utility of developing reactive systems, particularly in
obotics, based on reusable components is generally accepted. In
rugali and Scandurra (2009, 2010),  an introduction to component-
ased robotics software engineering is provided. They explain in
etail the main design principles and implementation issues in the
evelopment of robotic systems through reusable and maintain-
ble software building blocks. In this respect, the DSIE research
roup has more than a decade of experience (Iborra et al., 2009)
n the development of reactive systems with inputs from software
ngineering (for example, software product line development,

esign patterns, architectural frameworks, MDSD and CBSD). In
articular, the DSIE research group has developed an integrated
pproach for the development of reactive systems based on the use
f frameworks, design patterns and code generation through model
nd Software 85 (2012) 2504– 2518 2507

transformations. This is part of a global development approach
which is dealt with in detail in Section 4.

The present article presents a solution combining the best
aspects of both approaches: on the one hand, the benefits of mod-
elling reactive systems using the TR approach, and on the other,
the development of systems in the context of MDSD and CBSD. Our
approach starts by specifying the TR program which describes the
goals that the system must attain. We  first describe the component
types we  have considered for translating the TR program, and then
we outline the patterns that can be used to derive the components
of the applications. And finally we propose an implementation of
the TR semantics using state machines.

3.1. Component types considered

The following two  types of components are considered when
translating a TR specification to components:

(a) Boundary components serve as a bridge between the robot and
its environment, both to collect information from the environ-
ment via its sensors, and to act on it in response to the execution
of actions.

Taking the example of the can collector robot, components
of this type would include Motor, the Camera used to detect
objects, etc. The behaviour of these components is as stated
in their specifications, as these have either been developed by
third parties or been reused or developed specifically for the
application. The invocation of the services provided by bound-
ary components will normally be associated with the execution
of domain-specific algorithms (e.g., to control a motor and to
detect obstacles through computer vision), or monitoring of the
changes that occur in the environment.

(b) TR components, which implement the behaviour of a TR pro-
gram (sub)goal. A TR component has a generic interface, as
shown in Fig. 3. Unified Modelling Language (UML) notation is
used throughout the article where components are modelled
as simple rectangles, the lollipop symbol is used to indicate
an implemented interface, ports are depicted as small squares
on the sides of components, and a required interface is mod-
elled using the socket notation. The I TR interface allows the TR
component to be activated and deactivated by another TR com-
ponent, which is generated from a (sub)goal of higher priority.
That is to say, after a TR component is activated, all the rules
defined in the (sub)goal are evaluated in order to execute the
highest-priority active (its condition is true) rule. The execu-
tion of one of these rules will lead to one of the following three
actions: (1) nothing will occur (nil action), (2) the activation
of another TR component, or (3) the invocation of a boundary
component service. The updating of the state of the environ-
ment, which determines the execution of the TR component, is
carried out through the services (provided or required) of the
boundary components with which it is connected. The state of
a TR component is therefore given by the reference to the rule
that is currently active.

3.2. Deriving components from TR programs

Fig. 4 depicts the general case for translating TR programs to
component diagrams. As noted earlier, a TR program is a set of rules
in which actions or subgoals are executed. A boundary component
will be created for each primitive action, while a new TR component
will be created for each invoked subgoal. This procedure will be

recursively applied to each of the subgoals of the TR program.

As an example, Fig. 5 shows the component-based model that
resulted from translating the TR program from the example of the
can-collector robot following the procedure described above. As
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Fig. 2. Example of activation/deactivation of TR rules and of the invocation of primitive actions.

Fig. 3. Basic schema of 

Fig. 4. Correspondence between (sub)goals, actions and components (general case).

Fig. 5. Component model fo
a TR component.

can be seen, a TR component (shaded component) has been cre-
ated for each subgoal. The main goal in the hierarchy is Robot, and
the activation or deactivation of this TR component therefore rep-
resents the initiation or interruption of the system execution. The
process of constructing the component model therefore follows this
basic rule: each TR component is connected, via the I TR interface,
with each of the TR components corresponding to the subgoals that
are invoked in its rules.

As explained above, the activation of a TR component entails

initiating the execution of the associated TR rules. In the example,
the activation of Collect thus implies executing the rules shown in
the previous section, which will eventually lead to the activation of

r the robot example.
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Fig. 6. From subgoals and acti

etch. Following the semantics of a TR program, when a higher pri-
rity (sub)goal contains a rule which becomes true, this invokes the
eactivation of the activated TR component of lesser priority which,

f it proceeds, will send the deactivation command to the other
R components of lesser priority in the chain. For example, when
etch is active, if the condition of the other rule of the Robot goal
s made true (holding = true because, for example, a can is manually
laced in the robot’s gripper), then ‘deactivate’ is invoked in the TR
omponent Collect, which in turn deactivates the TR component
etch.

In the process of generating the architectural model, it is impor-
ant to bear in mind two factors that affect the resulting design: (1)
he number of TR components that are to be included in the design
nd (2) what boundary components will be providing the services
orresponding to the actions included in the TR rules.

As regards the first factor, it is important to note that the num-
er of TR components will be equal to the number of subgoals in
he TR program. The developer can change the number of subgoals
thus flattening the structure to a greater or lesser extent by replac-
ng subgoals with the sets of rules into which they break down), in
bedience to different criteria, thus influencing the resulting archi-
ectural model. What solution is adopted will be determined by
he degree of granularity desired in the architectural model. Fig. 6
hows two possible situations, one of which considers the initial
ersion of the TR program (Fig. 6a), while the other considers a
otally flattened model in which the subgoals are eliminated leaving

 single TR component containing all the rules (Fig. 6b).
As regards the second factor, the idea is that the number of

oundary components may  vary depending on the available cat-
logue of components providing the required functionality and the
ay in which they provide it. For example, there may  be a single

omponent that encapsulates the entire Motor and Grip function-
lity, or else a component for each one of them as in the example
n Fig. 5. Similarly, changes in the state of the environment may  be
etected either by periodic sampling of the sensorizing devices or
lse by reception of a break indicating a change in that state. Obvi-
usly, one situation requires a different solution from the other. For
nstance, holding becomes true when the Grip component makes
he Robot variable set holding true.

Upon applying these rules, it is possible to systemize the archi-
ectural model’s generation process, as detailed in Section 5. The
roposal presented here has a number of particularly attractive
dvantages:
1) It promotes the reuse of TR components. Developers can have a
catalogue of potentially reusable goals, together with the asso-
ciated TR components, at their disposal. Since these goals are
Fig. 7. Pattern to transform a TR program without subgoals.

defined in the problem domain, their reuse is highly favoured
for various robotic applications.

(2) Developers have a good knowledge of the functionality of the
components, since they are defined at the same abstraction
level as the TR program. This favours the rapid development of
applications and the possibility of involving potential system
users in the design, even if they are not experts in implemen-
tation aspects.

3.3. Deriving state machines from TR programs

The next question that must be answered is how to translate the
TR behaviour to other representations that facilitate the generation
of code. The solution adopted in our case was to generate an imple-
mentation of the behaviour of TR rules using UML  state machines,
and then associate a state machine with each TR component. In this
way  we get a complete development process (described in Section
4), taking advantage of the infrastructure developed by the DSIE
research group so as to generate executable code from architectural
and behavioural models (i.e., components, their relationships and
their behaviour expressed through state machines). More details
on this infrastructure and the possibilities it offers from a method-
ological point of view can be found in Pastor et al. (2010).  Section 4
gives a brief description of the global process and the tools involved.

The process of transforming TR programs into components plus
state machines thus consists of two steps: (1) definition of the
components (boundary and TR) that are to be generated and their
connections (as detailed above) and (2) the detailed design of each
TR component using state machines. The behaviour of the state
machines must correspond to the TR goal from which the TR com-
ponent has been generated.
The state machines considered include two states (see Fig. 7):
an ‘idle’ state representing the TR component when at rest, and
a super-state containing as many orthogonal regions as there are
rules in the (sub)goal that represents the TR component. Both states
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Fig. 9. Pattern to transform a TR program with subgoals.
ig. 8. State machine generated by applying the pattern to the subgoal Fetch from
he  example.

re connected to two transitions: one corresponding to the acti-
ation of the TR component (from ‘idle’ to the super-state), and
nother corresponding to its deactivation (from the super-state to

idle’). Each of the orthogonal regions of the super-state also has
wo states:

An ‘idle’ state in which no action is executed.
A state in which ai will be executed in the do part and which will
be labelled with the name of the action, for simplicity’s sake.

There are two transitions between these two states:

One from ‘idle’ state to ‘ai’ state whose guard condition is that of
fulfilling Ki and of not fulfilling any of the conditions of the higher
priority rules in the (sub)goal:

Ki and ¬(Ki−1 or Ki−2 or . . . or K1)

Another transition from ai state to ‘idle’ state whose guard con-
dition is the negation of the previous guard, i.e., that Ki is not
fulfilled, or that any of the conditions corresponding to a higher
priority rule in the (sub)goal is fulfilled, which is to say:

¬Ki or Ki−1 or Ki−2 or . . . or K1

In all the orthogonal regions corresponding to the implemen-
ation of a TR component, the initial state is ‘idle’. When a TR
omponent is activated (by another TR component or by the oper-
ting system in the case of the TR component that corresponds
o the root goal), its state then changes to the super-state, where
he procedure of generating the transition guards ensures that the
ction corresponding to the highest priority rule that is active is
xecuted. The concurrent regions are necessary to determine, in
arallel, which rule should be activated according to the priority
nd the rule’s activation conditions. The way in which the transi-
ions’ guards are generated, and the use of orthogonal regions, are
etermined by the need to implement the behaviour of TR pro-
rams, as described in Section 2. Fig. 8 depicts the state machine
f the subgoal Fetch from the robot example, resulting from the
pplication of the pattern shown in Fig. 7.

Fig. 9 corresponds to a TR program that includes both actions and
ubgoals in its rules. In this case, the rules include activation of goal
i and there is a separate TR component for this goal. The region
anaging subgoal Gi includes activation of the component when

he condition is fulfilled, and its deactivation when the ‘activateGi’
tate is abandoned, either because the condition is no longer ful-

lled or because the ‘deactivate’ transition has been triggered. The
est of the state machine is generated following the general case
epicted in Fig. 7. This pattern would apply recursively for any TR
rogram.
Fig. 10. Translation between a TR rule with parallel execution (action and subgoal)
and  the equivalent state machine.

As noted earlier, one very interesting possibility offered by TR
programs is for the TR rules to include parallel execution of one
or more actions or subgoals. Fig. 10 shows how to take advantage
of the concurrent nature of state machines to transform a rule of
this kind which includes the parallel execution of an action and a
subgoal. Note that the execution of a1 is affected only by condi-
tion K1 and that this execution is concurrent with the activation of
the TR component associated with Gi. When condition K1 becomes
false, a1 will be interrupted and the TR component concerned will
be deactivated. From there we can readily deduce how to repre-
sent any other case that includes only parallel actions, only parallel
subgoals, a combination of several and so on.

In order to simplify the explanation, we  have excluded the addi-
tional concurrent regions that are needed to model the interactions
of each TR component with its environment (e.g., read sensors and
command actuators). For example, the TR component Fetch should
include a concurrent region with which to update the information
from the environment, and to do this it must be connected to the
boundary component Camera in order to determine whether or
not the see can condition is true. It is up to the software devel-
oper to adjust the minimum updating periods needed to guarantee
a correct functioning of the program while meeting the system
requirements.

4. Description of the development approach

As was  mentioned previously, the DSIE research group has
experience in the development of software using the component-
based development paradigm for reactive systems including the
robotic domain (Iborra et al., 2009), among others (home automa-
tion systems and wireless sensor and actuator networks). In this
context, we have defined a development framework (Pastor et al.,

2010) based on (1) a tool-chain for the design of components and
(2) a set of implementation frameworks and additional support
tools which will be used by the tool-chain. The application devel-
oper designs the architecture on the basis of the components that
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model editor enables the definition of TR programs using the same
Fig. 11. General approach of the proposal.

ulfil the functional requirements of the application, and selects
he framework (from a catalogue) that will provide the desired
on-functional requirements and the run-time support for the
pplication. These frameworks may  have been designed ad hoc, or
hey may  incorporate third-party solutions, and they may  further
nclude configuration and instantiation tools as well as tools for
alidation and verification of certain properties in the final appli-
ation.

This development environment is fully supported by the techno-
ogical framework provided by the MDSD tools, so that there is: (1) a

odelling language with which to work with components and state
achines; (2) a model transformation which instantiates the des-

ination framework in the most appropriate manner and enables
xecution from the application model; (3) a model transformation
hich generates a temporary analysis model for real-time analy-

is tools; and (4) a transformation which generates a deployment
odel that the user can use to decide the application’s deployment

n distributed environments. The problem of generating code from
he component-based architectural model of an application, then,
as been technologically resolved.

The work presented in this article thus constitutes a step fur-
her in this development process, in that it facilitates the transition
etween the specification of what the system should do (require-
ents) and how it should do it (architectural design). Goal-based

anguages, and the TR paradigm in particular, provide a higher-level
erspective that is closer to the problem domain than component-
ased language. These languages are also easier for domain experts
o understand and correct. In this respect, we believe that the inclu-
ion and use of TR programs in our development framework will
acilitate both its use and the refinement of the functionality of the
pplications.

As shown above, the implementation of the semantics of a TR
rogram using a component-based language considers TR com-
onents, which incorporate the behaviour of TR rules. They are
omponents with a regular structure like the other components
n the application (i.e., a common port for activation/deactivation
f the component and a state machine that is derived according to
he rules provided in the TR program). In terms of the component

odelling language and the implementation framework, there is
o difference between the origins of the components of which the

ramework is formed. This is an essential characteristic, since it
ssures uniformity of approach and tools.

Fig. 11 shows the general approach of the proposal. The devel-

per may  have a catalogue (TR goal catalogue) containing goals
vailable, some of which have been previously validated (Validated
R goal catalogue) with regard to their behaviour. In order to carry
nd Software 85 (2012) 2504– 2518 2511

out this validation, the developer is furnished with a tool designed
by the authors to emulate a TR program, given the direct equiv-
alence between TR programs and electrical circuits described by
Nilsson (1994).  The developer uses this catalogue (step 1) to com-
pose the TR program, paying attention to the set of requirements
of the software-to-be.

The developer can use the same emulator (step 2) to validate the
TR program in an integral manner (Validated TR program). Once this
step has been carried out, the developer generates (step 3) a compo-
nent model as described in this article, possibly reusing boundary
components from the Boundary component catalogue. This is done
by using a model-to-model transformation (as described in the
following section) in the Eclipse environment, whose result is inte-
grated into the development process supported in the frameworks
developed by the authors, so that the application’s final code can
be generated (step 4).

5. Implementation

This section describes the tool-chain developed to integrate the
TR modelling of the application into the global component-based
software development framework described above. Specifically,
the tool-chain corresponds to step number 3 in Fig. 11.  These tools
have been developed and integrated into the free, open-source
Eclipse platform using some of the plug-ins that support the MDSD
approach in Eclipse.

As noted earlier, MDSD revolves around three central ideas
(Bézivin, 2005): everything is a model, a model conforms to its
metamodel (which is itself a model that defines a modelling lan-
guage), and models evolve through meta-models by means of
model transformations (which are themselves also treated as mod-
els). Metamodels define the main concepts of the domain and
the relationships existing among them. Software development
approaches normally comprise several metamodels, each of which
defines the level of abstraction at which the software is being devel-
oped, or a specific view of it.

The Eclipse-based tool-chain developed (see screenshot in
Fig. 12)  comprises two metamodels (one for modelling Teleo-
Reactive programs and another for component-based applications),
a textual editor to facilitate the creation and validation of TR
programs, and also a model transformation that embeds the corre-
spondences between TR programs and components (as described in
Section 3). The metamodel for TR programs is shown in Fig. 13.  The
metamodel for component-based applications, which was devel-
oped by the DSIE research group, is described in Iborra et al. (2009).
This metamodel is part of the development approach described
in Section 4, which is already available and thus falls outside
the scope of this article. The complete ATL code of the transfor-
mations between TR program metamodel and component-based
metamodel can be reviewed in Appendices A and B.

All the developed tools have been integrated into Eclipse
using the following MDSD-related plug-ins: EMF  (Eclipse Model-
ing Framework; Steinberg et al., 2008), which adds MOF  support to
Eclipse; EMF  OCL (Object Constraint Language, OCL; OMG, 2006),
which provides a formal language to define constraints and queries
on models; ATL (Atlas Transformation Language; Jouault et al.,
2008), which adds a declarative transformation language; and
Xtext (The Eclipse Foundation, 2011), which provides a framework
for creating textual model editors from metamodels.

The user of the tool-chain starts by using the Xtext model edi-
tor (see Fig. 12,  window 1) to create the TR program. This textual
original syntax, as defined by Nilsson (1994).  Once the program
is finished, the user executes the ATL transformations (arrows in
Fig. 12)  to generate the component model (see Fig. 12,  window 2)
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Fig. 12. Screenshot of the Eclipse tool-chain with the textual model editor (window 1), generated component model (window 2) and generated state machine model (window
3).  An ill-formed TR program is shown (window 1′) together with the violated OCL constraints.

Fig. 13. Metamodel for TR programs. As defined in the MOF standard, metamodels can be depicted using the well-known UML  class diagram representation.
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make design decisions, in the course of which they could make mis-
P. Sánchez et al. / The Journal of Sys

nd the state machines (see Fig. 12, window 3) that implement
he semantics of the input TR program, as described in Section
. The Xtext editor not only provides syntax colouring, but also
acilitates, among other things, the editing and syntax validation
f models and the detection of basic restrictions by means of addi-
ional OCL constraints. These constraints make it possible to detect
ll-formed models, that is models that conform to the metamodel
ut are not correct. For instance, with the metamodel it is possible
o create a goal that has two rules with true conditions but is not
orrect. With MDSD technologies OCL constraints can be used to
etect such ill-formed models. One such ill-formed model is shown

n Fig. 12 (window 1′), where we can see which elements violate
he defined OCL constraints. Some of the added constraints are:
nv ari ant at_ mos t_o ne_n il_ act ion_ all owe d_pe r_g oal:  
rules->selec t(i : Rul e | if i.ac tio n.oclIs Und efi ned(
 else i.acti on.oclI sTy peO f(Nil) end if)- >si ze() <  1;
nv ari ant tru e_c ond itio n_m ust _be_ the _la st_o ne:  

let a  : Rul e  rule s->sel ect(i :  Ru le | i.con dit ion.
 firs t()  in if a.oclIs Und efi ned() then tru e else a  
nv ari ant at_ mos t_o ne_t rue _co ndit ion _al lowe d_p er_ goal 
rules->selec t(i : Rul e | i.condi tio n.oclIs Typ eOf(Tru 

Fig. 13 depicts the metamodel for TR programs, which corre-
ponds to the definitions provided in Section 2. It states that a TR
rogram contains a set of Goals, each of which is composed of a set
f Rules which comprise a Condition (either the True condition or a
eneral-purpose Logical condition) and either an Action (Primitive
r the Nil action) or a Goal (or TR program, since it is also consid-
red a TR-Module). It also considers that Primitive actions can have
ariables, though this fact is not used in the example of the can
ollector robot.

Once  the TR program is well-formed, two ATL model transfor-
ations (see Appendices A and B) are in charge of automatically

enerating a component-based (structure and behaviour) rep-
esentation by applying the rules described in Section 3. ATL
ransformations are defined as sets of declarative rules that define
hich model elements they process (field ‘from’ in the ATL source

ode), and which model elements they generate (field ‘to’). Since it
s a declarative language, relative order among rules is not impor-
ant in ATL.

The  transformation from TR programs to architectural com-
onents (Appendix A) comprises five rules. From a TR program,
ule RootElement (lines 6–19) generates a component repository

n which all the components generated by the rest of the rules will
e stored, as well as the I TR interface that contains the ‘activate’
nd ‘deactivate’ services used by TR components. Rule Action2Iface
lines 20–24) generates an interface with one service for each prim-
tive action in the TR program, while rules Rule2TR Port (lines
2–40) and Rule2Port (lines 41–45) generate, respectively, ports
hat require the I TR interface or the interface created in the cor-
esponding Action2Iface rule. Lastly, rule Goal2SCD (lines 25–31)
ransforms a Goal into a TR component that includes (1) a port pro-
iding the I TR interface (with which to activate and deactivate the
omponent); (2) as many ports requiring the I TR interface as there
re Goals invoked from the rules contained in the Goal that is being
rocessed at that moment (Rule2TRPort rule in the ATL code); and
3) as many ports as there are primitive actions that appear in the
ules contained in the Goal that is being processed at that moment
Rule2Port rule in the ATL code).

Regarding state machine creation, the transformation comprises
our rules (see Appendix B). Rule RootFSM (lines 6–9) generates
he repository for storing all the components’ state machines. Rule
oal2FSM (lines 10–23) generates the overall structure of the state
achine generated from each goal, while rule Rule2Region (lines
9–40) generates a region from each rule in a goal. Both rules
Goal2FSM and Rule2Region) generate all the states and transi-
ions shown in the figures in Section 3, since they follow a regular
nd Software 85 (2012) 2504– 2518 2513

hen fal se  

IsT ypeO f(True))->  
les->la st() endi f; 

->size() <  1;

structure  in which only the conditions of the transitions differ from
goal to goal. Rule Logic2Event (lines 24–28) is in charge of gener-
ating the events that trigger the transitions of the state machine,
depending on the conditions of the input TR program.

6. Evaluation of the proposal

The success of the proposal was  measured by conducting a sur-
vey among postgraduate students at the Universidad Politécnica

de Cartagena in Spain. The survey was  set up according to Pfleeger
and Kitchenham (2001). The first step was to set the survey objec-
tive. The objective of our evaluation was  to determine by how much
the time and effort required to derive a component-based archi-
tectural model from a TR program was  reduced using the proposed
tool and the development approach by comparison with manual
component modelling. The advantage of selecting post-graduate
students to evaluate the proposal is that they are on hand for train-
ing in the use of the environments developed and the evaluation
interests them because of the opportunity to participate in the use
of the tools produced by research work (some of these students
are going on to do PhDs). The drawback of the evaluation method
is firstly that the number of opinions received is not representa-
tive enough for statistical purposes, and secondly that the tool is
intended for a more specialized kind of user who  is more demand-
ing in terms of utilities and the robustness of the environment. But
even so, it was  decided to go ahead with the experiment for the
feedback and opinions, which have helped to improve the tools still
further. As noted below in the conclusions, our future plans include
a survey targeting a more specific group of users for development
in real time.

All  the students had received previous training (as part of the
robotics subject on the ‘information and communication tech-
nologies’ master’s course) in real-time systems, reactive system
modelling (UML, SysML), and a basic introduction to the concepts
and tools associated with MDSD and CBSD. In addition, all stu-
dents were taught the TR formalism and the implementation of
the robotic examples.

The  24 students were randomly divided into two  groups of equal
size. As detailed above, the objective of the evaluation was  to dis-
cover to what extent it was more efficient to derive the component
model of a reactive system (particularly a robotic system) using
the automatic TR component derivation mechanism (Group I), than
to manually derive the component model using a component and
state machine editor (Group II). It is important to note that the
Group I students had to make decisions as to what boundary com-
ponents to use, at what level to group subgoals so as to have more
or less TR components, and so on. For that reason, although they
did not concern themselves with component model generation or
the behaviour of state machines (which is automatic), they had to
takes. Therefore, although the results are much better than without
the environment, there are decisions that cannot be made entirely
without the intervention of the developer.



2514 P. Sánchez et al. / The Journal of Systems and Software 85 (2012) 2504– 2518

Table 1
Questions in the survey.

# Question

Q1 How many attempts were necessary to attain a correct
version? (1–3 or >3)

Q2  How difficult was it to model the case study? (1: not
difficult–5: too difficult)

Q3 How much time was needed to obtain the correct model?
(minutes)

Q4 Were you able to successfully incorporate the modification?
(yes/no)

Q5 What was your degree of confidence in the architectural model
before testing the robot? (1: none–5: total)
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Table 2
Results of the evaluation.

Q1 Q2 Q3 Q4  Q5 Q6

Group I

2 2 50 Y 4 2
1 1 40 Y 4 1
2 2  45 Y 5 2
3 3 60 Y 3 3
2 1 48 Y 5 2
1 2 57 Y 4 1

Average 1.8 1.8 50 Y 4.1 1.8

Group II

>3 4 85 N 2 5
3 4  76 Y 3 4
2 3 70 Y 3 3
3 5 87 N 2 4

>3 5 79 N 1 5
Q6 What level of experience do you consider is required to model
similar case studies? (1: very low–5: very high)

The basic problem of the above-mentioned example of the can
ollector robot was defined for each group. Group II was  only pro-
ided with the tool-chain for component-based development and
he implementation framework (Pastor et al., 2010). Thus, Group II
ad to generate the component model from the TR program manu-
lly. Each group was composed of 6 pairs of students to resolve
he problem, and each pair used the technology placed at their
isposal. Whenever they developed a component model proposal
with the corresponding state machines), they were able to put
t into practice by installing the code they had generated in the
obot, which had been prepared for the case study. Each pair of
tudents was given the opportunity to try out the model that they
ad constructed up to a total of three times. If they did not manage
o implement it correctly by the third attempt, they recorded the
rial as a failure. Every time a model was tested, another pair of stu-
ents verified that its behaviour was as expected. Those pairs that
ound the solution were asked to make a minor modification to the
equirements that had to be incorporated in the model constructed.
n this case, they were only allowed one attempt to incorporate the

odification.
The mobile robot used in the survey (see Fig. 14)  belongs to the

amily of robots used for initiation, teaching and rapid prototyped
obotic applications called the “LabVIEW Robotics Starter Kit” pro-
uced by National Instruments. The kit includes the mobile robot
nd the LabVIEW Robotics software with which to program it.

We drafted a number of questions (see Table 1) to gauge the level
f success in deriving the component model from Teleo-Reactive
pecifications.

The questions were composed with reference to Pfleeger and
itchenham (2001) and have the following properties: they are
eutral, in other words we have avoided the use of wording that
ight influence the answer; they adequately cover the topic; the

rder of the questions is independent, meaning that the answer to
ne does not influence the response to the next; and they repre-
ent unbiased and mutually exclusive response categories. After
re-testing the questionnaire (i.e., reliability, understandability,
alidity, etc.) the students filled it in. No time limit was imposed for
lling in the questionnaire. Before undertaking any detailed anal-
sis, the responses were vetted for consistency and completeness,
s recommended by Pfleeger and Kitchenham (2001).  The students
eceived the questionnaire along with an explanation of the pur-
ose of the survey.

Table 2 shows the statistical results for each of the 6 pairs of
tudents that participated. As this table shows, the outcomes of the
tudy as reflected in the survey indicate that the proposal helped to
rovide a better design of the robotic system, and hence to reduce
ime and costs.
The results of the evaluation indicate that those students who
sed the proposal presented in the article clearly benefitted from

t. It should be highlighted that all the students in Group I were
ble to complete the initial case study in less than the given time,
3 4  76 Y 2 3

Average 3 4.1 78.8 N/Y 2.1 4

and were even able to model the initial problem. Moreover, the
perceived degree of difficulty of the tools is much less than that of
the students from Group II, who perceived the tools as much more
complex to use.

7. Related work

Since the original work by Nilsson (1994),  various authors
have tackled the construction of reactive systems using the Teleo-
Reactive paradigm. Hayes (2008) and Dongol et al. (2010) provide
a formalization of the semantics of TR programs and a set of rules
with which to reason about them. This work provides a reason-
ing framework to support the verification of TR programs, through
time-interval semantics. Nilsson extended his own  work (Benson
and Nilsson, 1995) by introducing an autonomous agent archi-
tecture that integrates the ability to produce robust and flexible
systems and to react appropriately in dynamic environments with
the ability to plan and learn. Later, Nilsson (2001),  the same author
presented the “Triple-Tower T-R Agent”, a three-level (Percep-
tion, Model and Action) architecture for developing robots. The
proposal is an interesting framework for addressing the synthe-
sis of control systems for robots and other reactive systems. In
Coffey and Clark (2006) this last work provided a basis for a
hybrid robot control architecture based on agent control schemes
(Beliefs–Desires–Intentions, BDI) complete with TR programming.
In Broda et al. (2000),  a construct process is presented in which TR
programs can be constructed systematically. This work is partic-
ularly interesting in that it provides methodological steps for the
definition of TR programs. Hawthorne and Anthony (2010),  on the
same subject, present details of a software engineering strategy
for driving program development and reducing the occurrence of
problems.

In Vargas and Morales (2009) a TR program learning process for
mobile robots in different dynamics and unknown environments is
introduced. The learning process is created by using simple gram-
mar  induction algorithms, enabling them to incrementally learn
more complex tasks on top of others that have been learned previ-
ously. Some authors have explored the possibility of implementing
TR programs using high level programming languages such as the
native C++ code (Weiglhofer, 2011), or interpreters using a frame-
work for developing parallel programs (Zelek and Levine, 1995).
Many other papers do not focus specifically on robotics. Marinovic
et al. (2010a) argue that ECA (Event–Condition–Action) policies are

too primitive to use when the agents managed are humans, and
that the use of TR programs to model and integrate the roles of
humans in pervasive services is more appropriate. These authors
also demonstrate the benefits of adopting the TR paradigm in the
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ig. 14. Robot used in the practices and in evaluation of the proposal: frontal view
epot  (right).

anagement of workflow-based systems (Marinovic et al., 2010b)
nd policy-based systems (Twidle et al., 2010). In Broda and Hogger
2005) the TR paradigm is used as a basis to define “Teleo-Reactive
gents” that behave autonomously under the control of policies,
nd are predisposed by those policies to achieve goals. Payne (2008)
resents a flexible policy language that will help designers of pre-
ictably resilient reconfigurable systems to govern the component
econfigurations that may  take place.

Furthermore, the interest in utilizing MDSD and CBSD in the
evelopment of reactive systems (and real-time systems in gen-
ral) is patent in various initiatives, some of which are highly
elevant in terms of the businesses and projects that support the
dea. Prominent among these are the SAE (Society of Automotive
ngineers) AADL standard (Feiler et al., 2006), the AUTOSAR open
rchitecture (AUTOSAR, 2011) and the European project OpenEm-
eDD (OpenEmbedded, 2011). In all these cases there are highly
iverse companies operating in different sectors, but all concerned
ith reactive system development. In addition to the particular

fforts of individual enterprises, there are large European projects
n progress involving several enterprises from different sectors that
re developing reactive systems, in an attempt to create suitable
tandards and support tools that will enable them to start design-
ng their system using the new technologies. It is worth highlighting
hose R&D projects that are financed with European funds—“Robot
tandards and Reference Architectures” (RoSTa) and “Best Practice
n Robotics” (BRICS)—which are devoted to developing software
or robotic systems using the MDSD and CBSD paradigms. Be it
aid, however, that in both cases the basis is an abstraction level
rovided by components, while this article proposes a solution in
hich the design is conceived from the point of view of the goals

hat the robot should attain.
All of the above-mentioned works complement the proposal

resented here, since they address either the domain of artificial
ntelligence or the use of formal techniques for reasoning about
R specifications, or they deal with application of the paradigm
o the construction of systems of various kinds, not only robotics.
one of these works meet our requirements, which are: to produce

 component-based software architecture, to provide a complete
ehaviour description, and to permit the generation of code. The
ontribution of this article is significant in that it is the first solution
hat enables TR programs to be translated to architectural mod-
ls so as to reduce the conceptual leap between specification and
mplementation of the solution. Since there is a great deal of litera-
ure concerning component-based software development, as well

s new mechanisms for code generation in the context of frame-
orks and model driven development, the solution presented here

an obviously be carried forward by any developers who find it
ecessary to combine both approaches.
bot moving towards detected can (left); robot finalizing process of placing can in

In this context, our article makes an additional contribution
to the production of tools, methods and techniques to raise the
abstraction level in the development of reactive systems, while tak-
ing advantage of the reusability provided by the component model,
and the automatic programming facilities from models that offer
an MDSD approach.

8. Conclusions and future work

The TR approach offers a high-level programming style for
the development of reactive systems such as robotic vehicles. TR
programs are written in a way  that allows engineers to define
behaviour taking account of goals and changes in the state of the
environment, which is particularly useful in the case of mobile
robotics. Nowadays TR implementations for reactive system devel-
opment are a highly promising subject of study.

This article has demonstrated the feasibility of translating TR
specifications into component-based representations. This gives
engineers the opportunity to carry on working on code gen-
eration without losing the benefits of both approaches. The
results are highly satisfactory, both as regards the viability of
the tools developed and as regards the degree of acceptance
shown in the evaluation carried out with a group of post-graduate
students.

One of the contributions of this work that we should like to
highlight is the translation of a TR program into architectural com-
ponents, of both boundary and TR types, described in Section 3. This
translation is sufficiently general to allow implementation using
third-party component languages. In this connection, one of our
intended future projects is an alternative implementation to the
one described here, using the OSGi service platform or the Frac-
tal (Blair et al., 2009) component model. The extensions to the
basic Teleo-Reactive formalism that we  are currently considering
include: the use of agents to coordinate the execution of indepen-
dent TR programs (as suggested in Benson and Nilsson, 1995), the
use of discrete actions and a model of the world that could vary
according to the actions to be executed (including an additional
formalism that would allow the change in state to be represented),
and the use of parameters of any type in the invocation of goals
(currently only included in the invocation of actions corresponding
to boundary components).

In the area of Domain Engineering, we  intend to keep on
enhancing the proposal with a catalogue that will be sufficiently
representative of goals (extracted from more complex examples)

in order to evaluate their capacity for reuse. This, along with
the development of a tool integrated in the Eclipse environment
itself, will allow uniform and traceable management that is inter-
related with these goals. Moreover, owing to the very nature of
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A SYSTEMATIC LITERATURE REVIEW OF THE TELEO-REACTIVE PARADIGM 

 

RESUMEN 
 

N.J. Nilsson definió el enfoque Teleo-Reactivo en el año 1994. Desde entonces muchos 

investigadores han usado dicho enfoque bien aplicándolo a un dominio determinado o 

extendiéndolo para añadir nuevas capacidades a la definición original. Este artículo proporciona 

una revisión sistemática de 53 estudios basados  en el paradigma Teleo-Reactivo publicados 

previamente en revistas o actas de congresos. El objetivo de este artículo es identificar, seleccionar 

y sintetizar toda esta actividad investigadora de alta calidad relacionada con el uso del paradigma 

Teleo-Reactivo. La literatura ha sido sistemáticamente revisada para ofrecer una visión del estado 

actual de este campo de estudio y para identificar los principales resultados obtenidos gracias al 

enfoque Teleo-Reactivo. Por último, el artículo detalla los desafíos y dificultades que deben ser 

superador para asegurar futuros avances en el uso de esta técnica. 
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Abstract The Teleo-Reactive approach designed by N. J. Nilsson offers a high-level pro-
gramming model for the development of reactive systems such as robotic vehicles. Teleo-
Reactive programs are written in a way that allows engineers to define behaviour taking
account of goals and changes in the state of the environment. Since Nilsson’s original defi-
nition, published in 1994, various researchers have used the Teleo-Reactive paradigm, either
applied to a particular domain or extended by adding more capabilities to the original defini-
tion. This article provides a systematic literature review of 53 previous Teleo-Reactive-based
studies in journals, conference proceedings and the like. The aim of this paper is to identify,
appraise, select and synthesize all this high-quality research evidence relating to the use of
the Teleo-Reactive paradigm. The literature has been systematically reviewed to offer an
overview of the present state of this field of study and identify the principal results that have
been obtained thanks to the Teleo-Reactive approach. Finally, this article details the chal-
lenges and difficulties that have to be overcome to ensure further advances in the use of this
technique.

Keywords Teleo-Reactive formalism · Reactive systems · Systematic review

1 Introduction

This paper reviews several studies on the Teleo-Reactive paradigm, as defined by Nilsson
(1994), to evaluate progress and the outlook for future research on the development of reac-
tive systems using this paradigm. A reactive system must respond to changes occurring in
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its environment by taking actions and observing a set of rules. The actions taken by a reac-
tive system must produce a change in its environment. These computer-based systems are
commonly used to control critical systems where failures can cost money or lives. One repre-
sentative instance of a reactive system is the mobile robotics domain. This domain embraces
applications in which robotic vehicles act and move autonomously in semi-structured and
non-structured environments. Their field of application is immense, and in fact very many
systems have been designed, both for outdoor use (agriculture, forestry engineering, etc.) and
for indoor use (facilities inspection, care assistance, etc.). Because of the growing sophistica-
tion of these applications, more sophisticated languages and platforms are needed to express,
validate and implement them.

There are a number of authors who maintain that software development should address
what the user seeks from it—i.e. should be goal-oriented—and that these goals should guide
the requirements engineering process (Lamsweerde 2009). Since reactive systems may ben-
efit from this approach, many authors have adopted the Teleo-Reactive paradigm, a goal-
oriented approach for modelling systems that change their actions, outputs and status in
response to stimuli from within or outside them. The Teleo-Reactive paradigm has produced
highly interesting results, particularly in the domain of robotics as detailed further below.
This paradigm as applied to reactive systems is both a viable and an exciting prospect in that
it inherently recovers from errors and unexpected events whilst proceeding towards its goal.
Teleo-Reactive programs are written in a production-rule-like language. The Teleo-Reactive
programming model is a high-level approach to implementing systems that react dynami-
cally to changes in their environment. Because of that, they are very suitable for describing
reactive systems from a goal-oriented perspective. The changes in the environment will be
detected by the reactive system through sensors used to perceive its own state and the state
of the environment.

In his first work Nilsson discussed what the most interesting contributions to the field of
Teleo-Reactive programming might be Nilsson (1994). Principal among these are:

• To derive tools and techniques for verifying Teleo-Reactive programs. For example, in
some environments under particular conditions, agents could never achieve their goals.

• To devise methods for implementing and interpreting TR-programs and the real-time
properties of such implementations.

• To devise methods for modifying Teleo-Reactive programs by automatic planning and
machine learning.

• To allow simultaneous and asynchronous execution of multiple actions.
• To include an explicit reference to time in actions. For instance, an action should not be

initiated until after some time t1 or should cease some time after t2.
• To devise methods for goal definition.

This helps us to identify the areas of particular interest for purposes of the present sys-
tematic review. To that end it will be useful to classify each of the research articles found in
the scientific literature in terms of their contribution to one of the categories listed in Table 1.

Thus, the purpose of this article, following an introduction to the Teleo-Reactive paradigm,
is to provide an overview of the advances achieved, both through the Teleo-Reactive approach
to the development of reactive systems and through contributions aimed at improving that
approach. The most relevant information was gathered on each article, then a comparative
and systematic analysis of the different solutions was conducted. To our knowledge this is
the first study to provide a systematic review of the Teleo-Reactive paradigm. This study
helps to identify and summarize the work done so far and to guide future research into the
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Table 1 List of categories
considered in this review

CategoryDescription

C1 Teleo-Reactive program definition and formalization

C2 Platforms for Teleo-Reactive program validation/emulation

C3 Development of reactive systems

C4 Methodological aspects of Teleo-Reactive program inception

C5 Advances in artificial intelligence

C6 The Teleo-Reactive paradigm as reference for other paradigms

Teleo-Reactive paradigm. The outcomes of the study are therefore an important step towards
expanding the store of knowledge in the field of Teleo-Reactive system development.

The article is organized as follows: Sect. 2 summarizes the Teleo-Reactive approach with
a basic case study. Section 3 describes the review process. Section 4 summarizes the results of
the study. Section 5 presents a discussion of those results and details the principal challenges
and difficulties posed by use of the Teleo-Reactive approach. Finally, Sect. 6 presents the
conclusions.

2 The Teleo-Reactive paradigm

As Nilsson stated in (Nilsson 1994), a Teleo-Reactive program (hereafter TR-program) is a
mid-level agent control program that robustly directs an agent towards a goal in a manner that
continuously takes into account the system-changing perceptions of a dynamic environment.
In other words, TR-programs are a set of reactive rules that sense the environment continu-
ously and trigger actions whose continuous execution eventually leads the system to satisfy a
goal. The main advantage of TR-programs is their ability to react robustly to changes in their
environment due to the continuous computation of the parameters and conditions. TR-pro-
grams offer engineers an intuitive approach within which to write goal-directed programs.

A TR-program is given by a set of prioritized condition/action rules. A TR-program imple-
mentation should constantly re-evaluate the triggering conditions set for each rule, and should
execute the action corresponding to the highest-priority rule with a satisfied pre-condition.
Thus, a TR-program can be denoted by Nilsson (1994):

k1 → a1; k2 → a2; . . . ki → ai . . . km → am

where ki are conditions on sensory inputs and on a model of the world, and ai are actions on
the world or which change the model of the world. The list of rules is evaluated from the left
for the first rule whose condition is true, and its corresponding action is executed. An action
ai may consist of a single action, or may itself be a TR-program.

Nilsson states that if a TR-program is complete (where k1 and k2 and … km is a tautology)
and respects the regression property (i.e., each condition Ki is a regression of some higher
condition through an action ai) then the system implementing the TR-program will always
achieve its goal. Nilsson generalizes the notion of a TR-program by permitting:

• the rules to contain free variables (that are bound when the sequence is called),
• hierarchical sequences in which the actions in the rules are themselves TR-programs, and

recursive definition of actions.
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In a general TR-program, conditions, actions and goals may have free variables that are
bound when the TR-program is called. It is important to highlight that unlike in conven-
tional programming, where a called subroutine assumes control of the execution until it is
completed, a TR-program continues to constantly evaluate its set of conditions even when a
subgoal has been called. Consequently, if any higher-priority rule condition becomes true, the
subgoal is terminated by its parent. At the same time, it is important to note that TR-programs
differ substantively from conventional production systems in that actions can be durative—
rather than discrete. A durative action is one that once initiated can be executed continuously,
for as long as the condition holds true (for example, move the robot, as opposed to a discrete
action such as move the robot ten meters). The effects of an action on the environment are a
consequence of system interaction; they are not modelled in the TR-program but are present
in the changes detected in the sensor inputs.

As an example of a TR-program, we take a robot that has to reach a goal. To achieve this,
its movement has to be guided to the left or the right depending on where the goal is located.
When it detects uncertainties in the environment (obstacles or other hazards), it switches to
not-safe mode then performs the above operations in reverse: i.e., when it detects an obstacle
to its left it turns right, etc. So long as the goal ‘Robot’ is satisfied, the robot is inactive
(‘nil’ represents the null action). Whenever the goal (for changes in the environment) is not
satisfied, the robot becomes active and continues until it reaches the goal. The equivalent
TR-program is the following:

Robot:

at_goal → nil
safe → ToGoal
true → ToSafe

ToGoal:

see_goal_ahead → forward
see_goal_right → turn_right
true → turn_left

ToSafe:

see_obstacle_left → turn_right
see_obstacle_right → turn_left
true → forward

Note that if the robot detects obstacles to both left and right at the same time, this could
trigger an unwanted effect, to counter which some of the extensions described in this review
may be appropriate. Nilsson also considers the graphical representation of TR-programs
where nodes are labelled by conditions and arcs by actions. In order to interpret the graphical
version of a TR-program, the action labelling the arc leading out from the shallowest true
node should be executed. When there are two or more actions that can achieve a condition,
a TR-tree is obtained instead of a single-path graph.

3 Systematic review method

As stated in Kitchenham (2004), “a systematic literature review is a means of identifying,
evaluating and interpreting all available research relevant to a particular research question,
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Table 2 Research questions

RQ# Description

RQ1 What advances have been derived from extensions to the
original formalism proposed by Nilsson in 1994?

RQ2 What broad areas of study has this approach addressed?

RQ3 What fields have benefited most from the approach and what
have been the outcomes there?

RQ4 What are the main challenges and difficulties that have
to be overcome for successful adoption of the approach?
What areas of research around the approach should be
encouraged?

or topic area, or phenomenon of interest”. There are several possible reasons for undertaking
a systematic review of a subject of interest. The most common reasons are:

• To summarize the existing evidence relating to a piece of knowledge or a particular
technology.

• To provide a base on which to define new lines of action on a particular subject.
• To identify the gaps in an area of interest with a view to suggesting specific areas of

research.

In our case the main purpose of undertaking such a systematic review was to answer the
questions listed in Table 2.

With respect to RQ1, we propose to look at all works published since the first Teleo-Reac-
tive formalism. There are many other formalisms proposed for prescribing sensory-directed,
real-time activity in dynamic environments. Some of these are closely related to the Teleo-
Reactive formalism. However, we felt it reasonable to exclude these since objective RQ1
is strictly confined to Nilsson’s Teleo-Reactive paradigm. The aim is thus to determine the
most significant publications in the field that have made a particular contribution to achiev-
ing immediate utility. In the case of RQ2 the idea is to present the directions followed by
researchers in relation to this approach. This part identifies studies ranging from the dem-
onstration of properties to their application in the field of artificial intelligence. To address
RQ3, we have identified and analysed the various fields in which the approach has been
applied, with particular attention to mobile robotics and artificial intelligence in view of the
orientation announced by the very definition. In the case of RQ4 the aim is to highlight the
lines of research that show most promise of results in the light of the most recent advances
(basically in the last five years).

A systematic review must be, and seen to be, fair in order to produce results and conclu-
sions that are of interest and can be extrapolated. In other words, a systematic review should
only be undertaken on the basis of a previously-defined information search procedure or
strategy. This study was carried out following the guidelines defined by Kitchenham (2004)
for the conduct of systematic reviews.

3.1 Search process

The search for case studies was performed manually, analysing proceedings and journal
papers since 1992. As stated in Brereton et al. (2007), we need to search many different
electronic sources as no single source identifies all primary studies. For that purpose the
following electronic databases have been used: IEEE Xplore, Scopus, ISI Web of Science,
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ACM Digital Libray, SpringerLink, CiteSeer and Google Scholar. The following four groups
of search terms were used in each one:

(1) “Teleo-Reactive”,
(2) “TR-programs”
(3) “TeleoReactive”
(4) “Teleo” AND “Reactive”

Our experience supports the suggestion made by Kitchenham (2004): “the simpler search
string might have been just as effective”. Each journal and conference proceedings was
reviewed by the authors, and any papers that addressed literature surveys of any type were
identified as potentially relevant. The three researchers later agreed on what works were
representative following the pre-defined inclusion/exclusion criteria.

3.2 Inclusion and exclusion criteria

Study selection criteria are intended to identify primary studies that provide direct evidence on
the subject of the research. Peer-reviewed articles on the topic of interest, published between
1994 and 2011, were included. Articles were discarded if they presented one or more of the
following characteristics:

• In the case of demonstrations of the use of the approach in implementing reactive systems,
where the article did not demonstrate the deployment of real systems. To so demonstrate
it had to give results of the implementation and include detailed pictures showing the
design of the architecture or the physical device (i.e. a robot).

• How much emphasis, if any, the article placed on the use of the Teleo-Reactive approach.
• Repeat articles on the same study. Where reports of a study had been published in several

different journals, the most complete version of the study was included in the review.

3.3 Data collection and analysis

The data extracted from each study were:

• The source (journal, conference proceedings, etc.) and full reference.
• The organization that carried out the work (universities, research centres, etc.).
• The type of contribution (research article, conference paper, etc.).
• Technical aspects concerning the results (reactive system that was implemented, tool

implemented, extensions to the formalism, etc.).

The researchers did the data extracting and checked the resulting data. Sánchez coordi-
nated the data extraction and the checking, which involved all the authors of this article. In
the event of disagreements, the data were discussed in detail until agreement was reached.
The intention in principle was to exclude any studies that had not been published in first-rate
journals or proceedings, in any of the fields related to reactive system development, but even-
tually it was decided not to exclude any study on that basis since some of the most significant
contributions fell outside that category and to exclude them would be to ignore findings of
interest.

4 Systematic review results

Tables 3 and 4 show the results of the search procedure taking into account the category
classification given in Table 4. It lists all the works identified in the survey published since
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Table 3 List of conference proceedings and journals identified by the review

Publication title Type Year Category

Journal of Artificial Intelligence Research J 1994 C1

National Conference on Artificial Intelligence C 1994 C1

Machine Intelligence Workshop W 1995 C1

Canadian Conference on Electrical and Computer Engineering C 1995 C1, C3

IEEE Intl. Symposium on Computational Intelligence in Robotics and Automation C 1997 C1

IEEE International Conference on Systems, Man, and Cybernetics C 1998 C4

Robotics Laboratory. Computer Science Department. Stanford University T 2000 C5

European Conference on Artificial Intelligence C 2000 C3, C5

Electronic Transactions on Artificial Intelligence J 2001 C1

Conference on Innovative Applications of Artificial Intelligence C 2002 C5

Stanford University B 2002 C6

European Conference on Genetic Programming C 2003 C5, C6

International Joint Conference on Autonomous Agents & Multiagent Systems C 2003 C5

Advances in Artificial Intelligence C 2003 C3

Imperial College London T 2003 C4

German Conference on Artificial Intelligence C 2004 C3, C4, C5

German Conference on Multiagent System Technologies C 2004 C5

Artificial Intelligence and Soft Computing C 2004 C3

Computer Systems: Science & Engineering J 2005 C5

International Symposium Abstraction, Reformulation and Approximation C 2005 C5

AAAI Fall Symposium on Agents and the Semantic Web C 2005 C5, C6

International Conference on Inductive Logic Programming C 2005 C5, C6

International Workshop on Multi-Agent Robotic Systems C 2006 C5

Journal of Machine Learning Research J 2006 C5, C6

International Symposium on Skill Science C 2007 C5, C6

Workshop on Planning and Plan Execution for Real-World Systems W 2007 C6

International Workshop on Software Engineering for Resilient Systems W 2008 C1, C6

Intl. Conf. on Industrial, Engineering and Other
Applications of Applied Intelligent Systems

C 2008 C1, C2, C3

International Conference on Intelligent Robots and Systems C 2008 C5

Joint International Workshop on Software Engineering for Resilent Systems W 2008 C1

International Conference on Robotic and Autonomation C 2008 C6

IEEE International Conference on Mechatronics C 2009 C5

International Conference in Inductive Logic Programming C 2009 C5, C6

European Conference on Ambient Intelligence C 2009 C3

Instituto Nacional de Astrofísica, Óptica y Electrónica P 2009 C5

Intl. Conference on Autonomic Computing and Communications Systems C 2009 C2, C6

The Computer Journal J 2010 C3, C4, C5

The University of Queensland T 2010 C1

International Conference on Network and Service Management C 2010 C6

International Conference on Pervasive Computing and Communications W 2010 C3

IEEE Intl. Symposium on Policies for Distributed Systems and Networks C 2010 C6

IEEE/OES Autonomous Underwater Vehicles C 2010 C3
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Table 3 continued

Publication title Type Year Category

Sea Technology Journal J 2010 C3

International Conference on Software Engineering,
Artificial Intelligences, Networking and
Parallel/Distributed Computing

C 2010 C4

Imperial College London T 2011 C5, C6

International Conference on Autonomic and Autonomous Systems C 2011 C4

Annals of Mathematics and Artificial Intelligence J 2011 C2

Newcastle University T 2011 C6

Universidad Politécnica de Cartagena T 2011 C3

Universidad Politécnica de Cartagena T 2011 C2

Type: J journal, B book chapter, P PhD Thesis, C conference, W workshop, T technical report

1994, the first in the table being the landmark work of Nilsson. In the course of the search
we found a Technical Report by Nilsson (1992) predating the article that he published in this
journal two years later. In the event we decided not to include this preliminary work in the
review findings, as explained in Sect. 5. The identification of relevant literature produced 316
results, of which only 126 articles were found to be potentially useful. However, after filtering
based on article titles, abstracts and in some cases a preliminary reading of contents, only 53
were finally selected as relevant to the review. In some cases an article was discarded because
it was based on different approaches for prescribing sensory-directed real-time activity in
dynamic environments because although closely related to the Teleo-Reactive approach, they
fell outside the scope of this review. Of the 53 works selected, thirty-one articles were pub-
lished in proceedings of international congresses and workshops and seven in journals of
acknowledged prestige. We additionally identified a doctoral thesis, a book published by
an international publisher and seven Technical Reports, all particularly relevant in terms of
content.

There are considerable differences in the proportions of the categories analysed in the
selected articles. In 23 out of the 53 the Teleo-Reactive formalism was used to develop arti-
ficial intelligence-related systems (category C5), the largest of all the categories at 43.4 %
of cases. Following at a distance (14 out of 53) were articles in which the Teleo-Reactive
paradigm was used as a reference for other paradigms (C6), accounting for 26.41 % of cases.
Next (12 out of 53) were articles the original approach or some extension of which was
used to develop reactive systems (C3)—22.64 % of cases. Not far behind (10 out of 53) are
those articles where Nilsson’s original formalism is extended (C1), accounting for 18.87 %
of cases. The remaining categories (C4 and C2) account for smaller percentages (16.98 and
9.43 %, respectively). Obviously, the percentages add up to more than 100 because there are
several articles that fit into more than one category.

To assess the quality of the data reported, it was decided to e-mail the first two authors
of those publications where there were doubts about the classification, asking them to check
or complete the information gathered. We received replies to six out of ten such requests.
In some cases the reply furnished further details of the results. In general terms, there were
no significant discrepancies between the data gathered from the publications and the infor-
mation received by e-mail. Figure 1 shows the distribution of the works considered into the
categories defined.
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Table 4 List of categories identified by the review

RQ# Description References [first-authorYY]

C1 Teleo-Reactive program definition and
formalization Benson and Nilsson (1995), Hayes (2008),

Dongol et al. (2010), Gubisch et al. (2008),
Katz (1997), Lee and Durfee (1994),
Mousavi and Broda (2003), Nilsson (1994,
2001), Zelek (1995)

C2 Platforms for Teleo-Reactive program
validation/emulation Gubisch et al. (2008), Hawthorne and

Anthony (2009), Weiglhofer (2007),
Russell et al. (2001), Soto et al. (2011)

C3 Development of reactive systems
Broda (2000), Broda and Hogger (2004a,

2010), Broda et al. (2009), De Paola et al.
(2004), Di Fatta et al. (2003), Gubisch
et al. (2008), Marinovic et al. (2010a),
Rajan et al. (2010), Saigol et al. (2010),
Zelek (1995), Sánchez et al. (2011)

C4 Methodological aspects of Teleo-Reactive
programs inception Broda and Hogger (2004a, 2010), Hawthorne

and Anthony (2010), Katz (1998),
Kochenderfer (2002, 2003), Mousavi and
Broda (2003), Srinivasan (2002)

C5 Advances in artificial intelligence
Ali et al. (2009), Broda (2000), Broda and

Hogger (2004a,b, 2005a,b, 2010), Choi
and Langley (2005), Coffey and Clark
(2006), Gordon and Logan (2003),
Kochenderfer (2002, 2003), Kowalski and
Sadri (2011), Könik et al. (2009), Langley
and Choi (2006), Li et al. (2007), Nilsson
(2000), Parmar (2002), Vargas (2008),
Vargas (2009), Vargas and Morales (2009),
Salomaki et al. (2005), Srinivasan (2002)

C6 Teleo-Reactive paradigm as reference for
other paradigms Ali et al. (2009), Choi and Langley (2005),

Gamble and Riddle (2011), Hawthorne and
Anthony (2009), Kowalski and Sadri
(2011), Könik et al. (2009), Langley and
Choi (2006), Li et al. (2007), Marinovic
et al. (2010b), McGann et al. (2007, 2008),
Payne (2008), Salomaki et al. (2005),
Twidle et al. (2010)

5 Discussion

This section discusses the replies received to the questions that were initially put. To answer
these questions the study analyses the works in each of the categories. Hence, RQ1 is answered
by analysing categories C1, C2 and C4; RQ2 is answered by analysing category C5; RQ3 by
categories C3 and C6; and finally, question RQ4 rounds up all the categories.

5.1 What advances have been derived from extensions to the original
formalism proposed by Nilsson in 1994?

Since it was first defined by Nilsson, the formalism has been further enriched by various
extensions endowing it with greater expressive and semantic power. As noted earlier, the
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Nilsson explains what TR-trees are and even proposes a grammar for a TR programming lan-
guage. The report details the equivalence between what it calls “teleo-reactive sequences” and
electrical circuits and paves the way to a definition of these sequences using hierarchies and
considering the invocation of parallel actions.

The most immediate field of application that is presented is Robotics and Artificial Intel-
ligence (using the example of the “B-not-last” or BNL-problem where three blocks must be
placed at several locations). In addition, it stresses the need to import many concepts from
Control Theory into the discipline of “Computer Science”. In general terms, both works con-
stitute one and the same contribution, and therefore we decided to continue using the 1994
work published in an international journal (Nilsson 1994) as the benchmark for the approach
and we did not include it in the set of papers selected.

The first work referencing the above two that was identified by the systematic review
is Lee and Durfee (1994), from a national conference on Artificial Intelligence. This pro-
poses a new circuit semantics (entitled Structured Circuit Semantics, SCS), which extends
Nilsson’s formalism and, according to its authors, addresses the following shortcomings of
TR-programs:

• Frequency of the perception-cognition-action cycle: in formalisms based on the notion of
circuit semantics (including TR-programs), ideally conditions are assessed and actions
executed continuously. However, in real circuits the cycle frequency imposes a lag
between the three phases, which does not entirely solve the problem, although the effect is
minimized with high-speed frequencies. According to Lee and Durfee (1994), the prob-
lem with TR-programs lies in whether or not actions are atomically executed and the
race conditions that may arise between the world model update and the updating result-
ing from execution of the perception phase. Therefore, in SCS conditions are checked
only between atomic actions rather than continuously, providing developers with a clear
semantics for the execution and feedback cycles.

• Impossibility of choosing actions non-deterministically: the order of the rules set in the
design imposes rigidities that can affect the system’s performance. This is one of the
major contributions of the SCS formalism to TR-programs. For example, of two actions
that can potentially be executed, it is the one with the higher priority that will be exe-
cuted even although in terms of performance, in a particular context, it would be more
appropriate or more useful to execute the other action. To deal with this, Lee and Durfee
(1994) proposes a more flexible arrangement that uses a decision layer above the circuit
layer where the system can choose which action is more appropriate and a choice can be
made non-deterministically (by introducing the do best, do first and do any constructors).

• It would be useful to allow actions to feed back information about success or failure: in
a TR-program, if an action fails without changing any of the rule conditions, the same
action will be triggered until the action eventually succeeds. If the actions could feed
back information on success or failure, the program could react to that information, for
example following a standard exception-handling format.

The first study to produce tangible results on the original definition of the TR formalism
was (Zelek 1995) in 1995. This work proposed what it called TR+ formalism, extending the
basic syntax of TR-programs while furnishing an interpreter implemented on a PVM (Parallel
Virtual Machine). With this implementation, it can be run in parallel and in real time on dis-
tributed and heterogeneous computers, as the authors demonstrated with several case studies
of mobile robotic systems. The environment further provides a graphic user interface with
capacity to develop TR+ programs and monitor execution of the program in real time. The
syntactic extensions are basically: allowing logical expressions in the conditions, execution
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of actions in parallel (using asynchronousness) or in sequence, and programmer-adjustable
frequency rate of computation of the rule condition.

In the same year, Benson and Nilsson (1995) presented a study which constituted a sig-
nificant extension of the original model. There, they presented an architecture and integrated
subsystems providing facilities for the development of robust and flexible systems in dynamic
environments based on autonomous agents. These facilities included selection from multiple
competing goals and planning and learning of new TR sequences. In this context, according
to the authors the TR-formalism has proven highly suitable because of the facility it provides
for replanning during execution. As to the management of multiple competing goals, the
architecture furnishes a “Plan Library” and a “Planning and Learning System” which are
used to create new TR-programs and to modify existing ones. An “Arbitrator” decides which
of the actions should be selected for execution using a method based on rewards. In addition
to the obvious contribution that this study made to the field of Artificial Intelligence, the
extension to the TR formalism offers the possibility of allowing subprograms to be executed
in arbitrary order depending on circumstances at execution time. To do this, “conjunctive
nodes” and “AND nodes” are defined. Each AND node is the root of a TR-subtree that
achieves its condition without interacting with the other conditions in the conjunction. Thus,
these TR-subtrees can be executed in whatever order environment conditions dictate. More-
over, since continuous computation by processing the entire TR-tree becomes impractical in
many situations, they develop a heuristic method of action selection which usually produces
the equivalent result.

Katz (1997) introduced a TR extension, called Fuzzy-Teleo-Reactive, where fuzzy logic
is substituted for Boolean logic. Since the TR formalism is intended to embody a continuous
monitoring process rather than a state transition model, a continuous-valued logic (more
specifically, the Zadeh logic) is considered as the extension of the work. Here predicates
have continuous value truth strengths and the argument for actions is the truth strength value
of the corresponding condition. Moreover, they propose to eliminate the first true condition
constraint since it allows several rules to be active, each to a different degree (as in fuzzy
expert rule-based systems). The proposal allows for a more parallel evaluation capability and
potentially more robust functionality while preserving the original continuous orientation of
TR formalism.

In 2001, Nilsson published the next representative article for the TR-formalism (Nilsson
2001), where he introduced an architecture for linking perception and action in robots. The
use of TR-programs is allocated to an “action power”, perceptual rules are used in a “recep-
tion tower”, and the predicates are kept faithful to the current environmental situation in a
“model tower”. Moreover, a Java-based program is provided to implement this triple-tower.
While the paper is not actually an extension to the original formalism, it clearly contributes
in the sense of consolidating it in both architectural and methodological terms, to the point
where it serves as a reference for other authors.

The article published by Mousavi and Broda (2003) presents an algorithm for simplify-
ing TR-programs which provides programs that are smaller but semantically equal to the
given ones. This algorithm removes redundant rules (never executed) and redundant literals
(whose removal does not affect the output of the TR-program) from the given TR-program.
The purpose of this simplification is to obtain a smaller but semantically equal TR-program.
The resulting TR-program will require less storage and will be more readable, and hence
it can be processed faster and will give faster responses to stimuli. The article validates the
application of the algorithm to various significant case studies, for all of which it indicates
the percentage of simplification, with highly positive results.
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One significant contribution to the TR-formalism is the possibility of carrying out con-
current actions, presented by Gubisch et al. (2008). Thanks to the grammar they have devel-
oped, it is possible to associate a single condition with several actions which are executed
concurrently when the associated condition is fulfilled. The possibilities of this contribution
can be verified with the compiler they have developed, available in Weiglhofer (2007).

The most recent contribution in this category comes from Dongol et al. (2010). The authors
introduce a temporal logic over continuous intervals (called “durative temporal logic”, a
combination of duration calculus with linear temporal logic) which is used to formalise the
semantics of TR-programs. In the article, the authors present a theory on reasoning about
TR-programs, define durative temporal logic and provide syntax and semantics for TR-pro-
grams. The proposal provides a means of proving TR-program progress and correctness,
which are judged on the basis of behaviour with respect to the environment in which the
reactive system is operating. Earlier, in Hayes (2008) the same author presented a semantics
and an advanced formal notation for TRPs in real time, which is the basis for Dongol et al.
(2010).

Much less has been published on the creation or use of TR-program validation or sim-
ulation platforms. Nilsson used LISP in Nilsson (1992) to simulate TR-programs, but very
few publications mention platforms of this kind. Among all the references considered there
is a TR-program compiler for the C++ programming language. Gubisch et al. (2008) at the
University of Grazhas have proposed a grammar for what they call Extended Teleo-Reactive
Programs and implemented a compiler with which to translate programs following that gram-
mar into C++-executable programs. The outstanding feature of this grammar is that several
actions can be executed simultaneously through activation of one of the rules. The implemen-
tation of that compiler can be found in Weiglhofer (2007). Russell et al. (2001) describes the
implementation of a multi-agent system using a special framework for agents called Agent
Factory, which includes a specific kit for TR-agent development called AF-TeleoReactive.
This provides support for the creation of agents based on the AF-TR agent-oriented program-
ming language. Hawthorne and Anthony (2009) demonstrates a Java framework in which the
programmer has to inherit Condition and Action classes to create conditions and associated
actions.

In the field of educational applications (Soto et al. 2011) presents a novel hw/sw platform
that has proven useful for students to both implement and validate the design of reactive
systems using the Teleo-Reactive approach. The platform explores the possibility of imple-
menting TR-programs through electrical circuits using reconfigurable hardware such as Field
Programmable Gate Arrays (FPGA). Trials conducted with students show that the tool they
have developed helps the students to understand the basics of reactive system development,
allowing them to focus on robotics concepts and not just on programming and platform-
dependent matters.

There are several studies reviewing methodological aspects for the definition of TR-pro-
grams. Particularly significant are those carried out by Kochenderfer and Srinivasan at Stan-
ford University, where they used genetic algorithms to create TR-programs. Thus, Srinivasan
(2002) produced TR-programs using stacking techniques. The proposal is an interesting
one, but it has a drawback in that it does not preserve satisfaction of the regression prop-
erty. Kochenderfer (2002) added the use of indexicals; these are context-dependent expres-
sions with which much better results than (Srinivasan 2002) can be achieved—that is within
the context of block stacking. Kochenderfer (2003) proposed a generalization of the solu-
tion of the Blocksworld problem to cover all hierarchical TR-programs, with better results
than initially proposed by a human programmer. The formal framework for mobile agents
developed by Krysia Broda at Imperial College (London) has also proven very effective in
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the development of TR policies for mobile agents. Using a graph where the intersections
are actions possible in a given state, which is represented by the graph nodes, it is possi-
ble to define such policies by evaluating these graphs using discounted reward techniques
(Broda and Hogger 2004a), and even to evaluate the different policies applicable to an agent
(Broda and Hogger 2010). In 1998 Katz proposed an algorithm to simplify the semantic
circuits in both Nilsson’s TR-programs and Fuzzy-Teleo-Reactive programs which he him-
self had introduced in Katz (1997). Mousavi and Broda (2003) presented an algorithm to
simplify TR-programs by eliminating redundant rules or literals and formally demonstrated
its effectiveness. Finally, Hawthorne and Anthony (2010); Hawthorne et al. (2011) contains
a number of basic Software Engineering guidelines and practices for writing TR-programs.

5.2 What broad areas of study has this approach addressed?

Where the Teleo-Reactive formalism has contributed most is in the field of Artificial Intel-
ligence (AI). Computational learning in particular is undoubtedly the field that has most
benefited from the use of the formalism.

Nilsson himself noted in (Nilsson 2000) that the Teleo-Reactive formalism could be appro-
priate to represent control programs for robotic systems, both purpose-written and learned
automatically. P. Srinivasan and M. Kochenderfer have used genetic algorithms to create
new Teleo-Reactive Programs in relation to BlocksWorld. Kochenderfer (2002) improved on
the results of Srinivasan (2002) by using expressions whose meaning is context-dependent,
which the authors call indexicals. Kochenderfer (2003) generalized the results from Blocks-
World to all recursive and hierarchical TR-programs. Also important in this respect are the
works of B. Vargas in the field of learning. The learning process proposed in Vargas (2008)
and Vargas and Morales (2009) begins with a user-guided execution. Taking the low-level
traces generated in the execution, ALEPH is used to learn basic TR-programs. These TR-
programs are the basis for constructing hierarchical TR-programs using induction algorithms
like FOSeq. Vargas’s doctoral thesis (Vargas 2009) focused on learning of TR-programs for
mobile robotics, building on and broadly contextualizing the findings in Vargas (2008) and
Vargas and Morales (2009).

Articles relating to Teleoreactive logic programs (TLP) are of particular interest in the
field of learning. TLPs are programs whose syntax is very similar to the Horn clauses in
Prolog. They are goal-driven programs which make it possible to react to changes in the
environment. They use two knowledge bases: Concepts (equivalent to the conditions in the
rules of traditional TR-programs) and Skills (similar to TR-programs where certain actions
are executed when certain primitive conditions or concepts are fulfilled). They are, then, a log-
ical adaptation of traditional TR-programs. They first appeared in Choi and Langley (2005),
who used them as a learning goal based on Problem Solving. The article presents a problem
solver that links up primitive skills to deal with new tasks and an associated learning method
that compiles these solutions in executable programs. Langley and Choi (2006) proposed a
modification making it possible to learn recursive TLPs. Salomaki et al. (2005) proposed a
method for learning TLPs through observation: an expert solves a problem, leaving traces of
the primitive skills used, and more complex skills can be learned from these traces. Li et al.
(2007) added priorities to the goals of the TLPs. Könik et al. (2009) proposed a new algorithm
for learning by observation that combines inductive and analytical learning. Lastly, Ali et al.
(2009) used TLPs to demonstrate that in multi-agent environments where training examples
are very costly, purely theoretical knowledge should be reviewed with specific knowledge of
the field using a training agent.
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Leaving aside the field of learning, we should draw attention to the work of K. Broda’s
team at Imperial College (London). Taking as base the formal framework for synthesizing
Teleo-Reactive robot control programs presented in Broda (2000), they have carried out a
series of studies for the design and assessment of Teleo-Reactive policies in multi-agent
environments based on analysis and manipulation of situation graphs. The intersections in
these graphs represent the possible actions that may be taken from a given node, which in
turn represents the environment and the agent’s perception of the environment. For instance,
Broda and Hogger (2004a) presents a method for designing individual agents by means of
discounted-reward evaluation of certain sub-graphs produced by applying certain policies to
these situation graphs. Broda and Hogger (2004b) and Broda and Hogger (2005a) showed
the utility of situation graphs to predict near-optimal policies for groups of cloned robots by
observing the individual behaviour of each one in response to events caused by the others.
Broda and Hogger (2005b) described a method for constructing and assessing TR policies
for one or more agents based on discounted reward evaluation of restricted sub-graphs from
complete situation graphs. The plethora of combinations that could emerge from an evalu-
ation of all the possible sub-graphs is attenuated by using abstractions. Broda and Hogger
(2010) adds the possibility of the agents carrying out cooperative tasks by sharing perceptions
and offers a means of evaluating the possible policies associated with an agent.

Finally, there are a number of papers dealing with other aspects of artificial intelligence.
Kowalski and Sadri (2011) shows how TR-programs can be embedded in a high-level frame-
work for ALPAs (abductive logic programming agents) to extend the traditional logical
programming so that some predicates can be left undefined. Parmar (2002) proposes a log-
ical measurement of progress towards the goal in heuristic planners, from which it might
be possible to derive TR-programs indirectly. Gordon and Logan (2003) used TR-programs
to create an architecture that would enable games agents to define new goals in the light of
the state of play. And lastly, Coffey and Clark (2006) presented a hybrid architecture that
combines TR-programs and BDI (beliefs, desires, intentions) with a view to graduating the
transition from the cognitive to the behavioural layer.

5.3 What fields have benefited most from the approach and what have been
the outcomes there?

Although the idea of the Teleo-Reactive formalism is in principle intended for application
to reactive systems where the factors determining the system’s behaviour are sensorization
of the environment and decisions based on perceived changes, from the outset the fact that
Nilsson himself focused chiefly on mobile robotic systems has meant that most of the work
on this approach has been to do with the development of such systems.

Among the articles considered we have found several examples of the use of the TR par-
adigm in the development of reactive mobile systems. For instance, Gubisch et al. (2008)
used the C++ TR-program compiler developed at the University of Graz to implement the
architecture described in their own paper on RoboCup middle-size soccer robots. However,
the authors do no more than report promising results with robots following implementa-
tion. Rajan et al. (2010) and Saigol et al. (2010) used the T-REX architecture presented in
McGann et al. (2007) for implementation of the control system for autonomous underwater
vehicles (AUV). This system enables the vehicle to survey areas in more detail if biogeo-
chemical markers indicate the presence of a target feature, and even to follow dynamic ocean
phenomena such as fronts. Zelek (1995) used an extension of TR-programs called TR+ to
implement behaviour of mobile robots exploring a given environment. The authors stated
that the robot navigated successfully around newly discovered obstacles to different goal
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locations within the experimental environment. The work of Krysia Broda’s Group at Impe-
rial College London (Broda 2000; Broda and Hogger 2004a, 2010) has proven highly useful
for the development of individual or collaborative multiagent (and not necessarily mobile)
systems, offering frameworks for policy creation, means of assessing these and simulations
of the systems they have designed. One of their most interesting products in this field is
the SAGE (Sense, Abduce, Gather, Execute) environment control and monitoring system
presented in Broda et al. (2009), which provides a flexible, distributed, open and component-
based approach to environmental monitoring and control. Its computational processes reflect
natural, multi-stage, collaborative human reasoning: when events are detected it forms and
tests hypotheses about these before reacting appropriately, using a TR policy. Its multi-agent
and multi-threaded architecture allows it to form and act upon different hypotheses concur-
rently. At the time of writing this paper work on SAGE is at the specification stage, and no
further information about the implementation has been found. Obviously the Teleo-Reac-
tive paradigm makes it possible to create reactive systems, but not necessarily mobile ones.
Examples of these systems can be found in De Paola et al. (2004) and Di Fatta et al. (2003),
who have used TR agents in a multiagent environment for network management tasks, or
in Marinovic et al. (2010a), who propose the use of TR-programs in the field of medical
workflows. In this sphere, the intervention of human agents (doctors, nurses, patients, etc.)
generally produces unpredictable reactions. TR-programs offer flexible means of dealing
with such unforeseen changes not found in traditional methods of workflow specification,
such as Petri nets or structured languages like BPEL.

From a more general viewpoint, Sánchez et al. (2011) presents a systematic method for
deriving architectural models with structural and behaviour descriptions using TR-programs,
combining two approaches: on the one hand the Teleo-Reactive approach, oriented towards
describing the system in terms of goals and the state of the environment; and on the other hand
an architectural approach oriented towards component-based design. This method is part of
an environment in which code can be generated by means of model-model transformations,
paving the way for an integrated approach to the development of reactive systems. The article
also reports an experiment carried out with students which demonstrates the simplicity and
efficiency of the method.

The Teleo-Reactive paradigm has served as inspiration in environments other than the
ones for which it was originally conceived. In Payne (2008), for example, we find the bases
of a specification language for dynamic reconfiguration policies in in component-based sys-
tems. This language has a syntax very like that of TR-programs. In Marinovic et al. (2010b)
it is asserted that the flexibility provided by the TR paradigm can be very useful in specifying
policies for human agents given the unpredictability of their behaviour. Twidle et al. (2010)
implemented these policies using Ponder2, the policy environment developed at Imperial
College (London). Gamble and Riddle (2011) analysed the characteristics that a good policy
definition language ought to have, taking as example, among others, the TR-program defini-
tion language. Hawthorne and Anthony (2009) proposed using the TR paradigm as a basis for
the creation of self-correcting applications. Based on the properties of TRPs and the way in
which they deal with unexpected situations, they assert that designing applications following
this paradigm can greatly facilitate the correction of errors, including errors not foreseen at
the time of designing. And we should not forget the work done on T-REX at the Monterey Bay
Aquarium Research Institute (McGann et al. 2007, 2008) which consists of an architecture
that makes it possible to create object-oriented agents with embedded automatic planning
and adaptive execution. Although it does not apply the TR paradigm in the strictest sense,
the paradigm has obviously had a profound influence on this architecture. Likewise, neither
the TLPs (TeleoReactive logic programs) used in Choi and Langley (2005), Salomaki et al.
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(2005), Langley and Choi (2006), Li et al. (2007), Könik et al. (2009), Ali et al. (2009)) nor the
ALP (Abductive Logic Programming) agents mentioned in Kowalski and Sadri (2011) can
be considered direct applications of the TR paradigm, but rather adaptations to environments
that are more oriented towards logical formalisms.

5.4 What are the main challenges and difficulties that have to be overcome
for successful adoption of the approach? What areas of research around the approach
should be encouraged?

The works referenced here clearly highlight the significant progress that has been achieved
in the fields of AI and Robotics. One token of this is the abundance of works in these fields
and the large growth in numbers of publications in the last four years. The foregoing survey
suggests a number of challenges or fields of study that we believe need to be resolved or
promoted to usefully extend the Teleo-Reactive approach:

1. Code generation. More proposals are needed to achieve generation of executable code
that can be reused as part of systems development. Most of the solutions we found fur-
nish a TR-program interpreter which in no case can be reused in a more general software
development context. In the same vein, it would be desirable to have TR-program vali-
dation tools to provide designers with a rapid means of emulating the conditions of the
environment and the simulation results. The work that comes closest in this sense is the
one published in Soto et al. (2011).

2. TR-program catalogue. TR-program catalogues should be supplied that can be reused
by applying the subgoal concept. A modular breakdown of TR-goals would facilitate the
development of TR-programs through reuse, so as to be able to take advantage of prior
experience in TR-program validation.

3. Synergies with Software Engineering. More progress is needed in integrating the
TR-approach into the field of Software Engineering. A systematic approach where
architectural models with structural descriptions and behaviour could be derived from
TR-programs would be particularly useful. In Sánchez et al. (2011) the authors dem-
onstrate that the development of reactive systems can derive very significant benefits if
the Teleo-Reactive approach could be made compatible with the architectural approach,
which is oriented towards the design of component-based software. Integration of this
work into a development environment that allows code to be generated via model-to-
model transformations would open up new possibilities in the development of this type
of systems.

In short, the focus should be on the adoption of Software Engineering tools, techniques and
methods to improve the development of reactive systems using the Teleo-Reactive approach.
Within this focus the most promising area may be synergies with model driven software devel-
opment (MDSD) (Selic 2003) and with component based software development (CBSD)
(Szyperski 2002). The first of these furnishes techniques for modelling and code genera-
tion from TR-programs. The second provides architectural mechanisms to promote reuse
and integration with existing frameworks for the development of real-time systems. Con-
sequently, it will favour “design for reuse” since it is possible to guide the cataloguing of
components by using the specification provided in the TR-programs; and it will also favour
“design from reuse” since it is more direct for the developer to use the catalogue to identify
which components can be adapted to the desired behaviour.
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6 Conclusions

The studies reviewed in this survey show that the Teleo-Reactive approach is an important
technological breakthrough for developing reactive systems. From this survey it is fair to
conclude that the Teleo-Reactive approach can be tackled from different points of view given
the number of areas of research in which it can be used, from the more formal oriented
towards the demonstration of properties, to the more practical applied to the implementation
of robotic systems. With the systematic approach we have been able to assess and aggregate
research outcomes to achieve an objective summary of research results for the Teleo-Reactive
approach. The results indicate that nowadays Teleo-Reactive implementations for reactive
system development are still a highly promising subject of study. Although research on the
systematic use of this formalism is still in its infancy, it points to several exciting chal-
lenges which require further interdisciplinary collaboration, particularly with the Software
Engineering area. As a well-defined and methodological way of summarizing evidence con-
cerning the Teleo-Reactive paradigm, this literature review offers comprehensive background
that will allow readers to identify new research challenges.
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50 

A CONTROLLED EXPERIMENT TO EVALUATE THE UNDERSTANDABILITY OF KAOS 

AND I* FOR MODELING TELEO-REACTIVE SYSTEMS 

 

RESUMEN 
 

Las especificaciones Teleo-Reactivas permiten a los ingenieros definir el comportamiento de 

sistemas reactivos teniendo además en cuenta sus objetivos y los cambios que se producen en el 

estado del entorno. Este artículo evalúa dos notaciones de ingeniería de requisitos orientada a 

objetivos, i* y KAOS, para determinar su nivel de comprensibilidad a la hora de especificar sistemas 

Teleo-Reactivos. Para ello se llevó a cabo un experimento controlado en el que participaron dos 

grupos de estudiantes de grado. Cada uno de esos grupos analizó en primer lugar el modelo de 

requisitos de un robot móvil especificado mediante uno de los lenguajes a evaluar, rellenando a 

continuación un cuestionario para evaluar su comprensibilidad. Después, cada grupo procedió de 

forma análoga con el modelo de otro sistema especificado con el otro lenguaje evaluado. El análisis 

estadístico de los datos obtenidos por medio de este experimento mostró que la comprensibilidad 

de i* es mayor que la de KAOS cuando se modelan sistemas Teleo-Reactivos. El estudio demuestra 

que ambos lenguajes pueden ser usados para especificar sistemas Teleo-Reactivos, aunque los 

resultados sugieren que las notaciones deberían ser especializadas para maximizar la 

comprensibilidad de las especificaciones. i* supera a KAOS en términos de comprensibilidad debido 

a dos razones principales:  

1. Los modelos i* representan dependencias entre agentes y objetivos o tareas. 

2. Las diferencias notacionales entre tareas y objetivos en i* son más evidentes que las que 

hay entre objetivos y requisitos en KAOS. 
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utonomously in non-structured environments. The reuse of exist-
ng solutions in current robotic systems is mostly focused on
lgorithms, and has not usually taken place at a higher abstraction
evel. The growing sophistication of robotic applications has led
o the need for more sophisticated languages and platforms with
hich to specify, implement and validate them. To overcome this

ituation, we introduced a Model-Driven Software Development
pproach (Atkinson and Kühne, 2003; Bézivin, 2005) that sepa-
ated the component-based description of real-time applications
rom their possible implementations on different platforms. This
eparation of concerns was supported by the automatic integration
f the code obtained from the input architectural models (basi-
ally, UML  component diagrams) into executable object-oriented
rameworks. More recently, we introduced a systematic approach
Sánchez et al., 2012) that made it possible to automatically derive
rchitectural models (including both structural and behavioral
escriptions) from TR specifications. Thus, the development of
eactive systems benefited significantly from the integration of the
R and architectural approaches for the design of component-based
oftware. This integration was demonstrated with a development
nvironment that supports the generation of code via model trans-
ormations, opening up new possibilities in the development of
eactive systems.

In spite of the suitability of the TR formalism for specifying
eactive systems, and more specifically robotic systems, developers
erceive the system mainly as a set of prioritized condition/action
ules. The development of these rules is an error prone task because
t relies on mostly the expertise of the developers and their under-
tanding of the requirements. When constructing TR specifications,
he main causes of errors are the following: (1) minimal changes
n the specification of the priorities produce huge execution errors,
2) it is not straightforward to ensure that each condition of a rule
s a regression of some higher (priority) condition, that will ulti-

ately lead the system to achieve its goal, and (3) it is difficult to
bserve the system encapsulating details or subgoals because the
extual representation of the specification cannot be easily frag-

ented. Other inherent limitations of the TR formalism is that reuse
annot be easily achieved, since the paradigm does not offer clear
esources for supporting both ‘design for reuse’ (for example, by
eans of catalogs of goals defined at different levels of abstraction),

nd ‘design from reuse’ (by using the previous catalog to identify
hich goals can be adapted to the behavior of the software-to-be),

loser to the problem domain. All these limitations lead us to con-
lude that an approach that facilitates a Requirements Engineering
RE) approach for eliciting, specifying, and analyzing goals for TR
pecifications, i.e., that provides mechanisms for reasoning about
he specifications, is needed. It is also needed for facilitating the pro-
ess of evaluating alternatives of the system-to-be (Navarro et al.,
007; Chung et al., 2000).

Considering the definition of the TR formalism, it is evident that
he most adequate RE technique for modeling TR systems is the
oal-Oriented approach (Hawthorne et al., 2011). Goal-oriented
pproaches mainly focus on the question “why” of the system-
o-be. They do not only consider the deterministic aspects of the
ystem-to-be, but also the non-deterministic aspects, such as non-
unctional requirements or evaluation of different alternatives for
chieving a goal. In this article, we focus on the deterministic part
f GORE approaches, leaving the non-deterministic part for future
ork.

Different modeling languages and methodologies have been
efined for eliciting, specifying, and analyzing goals (see Kavakli
nd Loucopoulos, 2005; Pohl, 2010 for exhaustive surveys),

lthough they all share concepts such as goal, agent and many
efinement relationships (AND, OR, XOR, etc.). KAOS (Lamsweerde,
001) and i* (Yu, 1997) are the two most well known proposals

n the field. KAOS comprises six complementary submodels (goal,
s and Software 100 (2015) 1–14

obstacle, object, agent, operation, and behavior model), interrelated
via traceability links. i* defines a software development process that
guides developers throughout several phases from early require-
ments to detailed design.

The objective of this work is to evaluate which of the considered
requirements languages, KAOS or i*, has a better understandabil-
ity level when modeling requirements for TR-based systems. This
evaluation has been performed by means of a family of experi-
ments conducted according to Kitchenham et al.’s (2002) guidelines
(Kitchenham et al., 2002), as a controlled experiment with a 2 × 2
factorial design, involving students of Industrial Engineering and
Telecommunications Engineering from the Technical University of
Cartagena (Spain). The students were asked to fill in two  under-
standability questionnaires just after analyzing the requirements
models of two mobile robotic systems, similarly to the approach
followed by Teruel et al. (2012, 2011a). Both requirements models
were specified using KAOS and i*.

Understandability has been the criteria analyzed in the con-
trolled experiment because several international standards have
recognized its importance in the software development process.
The International Organization for Standardization (ISO) defines
understandability as “the capability of the software product to
enable the user understand whether the software is suitable,
and how it can be used for particular tasks and conditions of
use” (ISO/IEC, 2001). Besides, the IEEE830-1998 standard (IEEE
Computer Society, 1998) considers an understandable specification
as one of the means to decrease later redesign, recoding, retesting,
etc., being one of the five quality characteristics that a requirements
model must have. Therefore, in the context of TRs, we are evaluat-
ing which language, KAOS or i*, offers higher capability to enable
engineers understand (i) which inputs (either sensory or coming
from a model of the world) are inputs for the TR system, and (ii)
which actions are to be executed to achieve the goals of the TR
system. Consequently, a TR specification that is easily understand-
able by all stakeholders will help in developing the right software
and the software right. As a side effect of the experiment we have
identified some additional concepts that should be considered for
extending both KAOS and i* in order to better specify TR programs.

This article is structured as follows. Section 2 presents several
works related to TR systems development and Software Engineer-
ing techniques. Next, Section 3 introduces the TR paradigm along
with an illustrative example. In Section 4, KAOS and i* are briefly
introduced and some directives for using them to specify TR sys-
tems are given. Section 5 describes how the controlled experiment
has been carried out as well as the main results, while the threats
to the validity of the experiment are analyzed in Section 6. Finally,
our main conclusions and future work are described in Section 7.

2. Related work

The Teleo-Reactive paradigm has produced highly interesting
results, particularly in the domain of robotics. Teleo means to
bring to an end or to achieve a goal. Since the TR formalism was
first defined by Nilsson (Nilsson, 1993, 1992), it has been further
enriched by various extensions endowing it with greater expressive
and semantic power. In Morales et al. (2012), the authors review
several works related to this paradigm in order to evaluate the
progress and the outlook for further research on the development
of reactive systems.

The most immediate field of application of TR paradigm is
Robotics and Artificial Intelligence. Lee and Durfee wrote the
first work referencing the Nilsson formalism (Lee and Durfee,

1994), from a conference on Artificial Intelligence, where a new
circuit semantics (entitled “Structured Circuit Semantics”) was
introduced. The first study to produce tangible results on the orig-
inal definition of the TR formalism was presented by Zelek (Zelek,
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995) in 1995. This work (called “TR+ formalism”) extended the
asic syntax of TR programs while providing an interpreter imple-
ented on a parallel virtual machine. As the author demonstrated

n several case studies of mobile robotic systems, by means of this
mplementation TR+ programs could be run on distributed and het-
rogeneous computers.

In 2001, Nilsson published the next representative article for the
R formalism (Nilsson, 2001), where he introduced an architecture
or linking perception and action in robots. The use of TR programs
s allocated to an “action tower”, perceptual rules are used in a “per-
eption tower”, and the predicates are kept faithful to the current
nvironmental situation in a “model tower”. A Java-based program
as also provided to implement this triple-tower.

Mousavi and Broda (2003) presented an algorithm for sim-
lifying TR programs providing smaller but semantically equal
rograms. The resulting TR program requires less storage, is more
eadable, and, hence, it can be processed faster. This work validated
he approach with various significant case studies, for all of which
t indicated the percentage of simplification, showing highly pos-
tive results. Another significant contribution to the TR-formalism
s the possibility of carrying out concurrent actions, as described
n Gubisch et al. (2008). Thanks to the grammar they developed,
t is possible to associate a single condition with several actions,

hich are executed concurrently when the associated condition
s fulfilled. A more recent contribution in this field (Dongol et al.,
010) is a temporal logic over continuous intervals called “dura-
ive temporal logic” introduced to formalize the semantics of TR
rograms.

Not much work has been published on the creation or use of
R program validation or simulation platforms. Nilsson used LISP
o simulate TR programs (Nilsson, 1992), but very few publica-
ions mention platforms of this kind. Among all the references
onsidered, Gubisch et al. presented in Gubisch et al. (2008) a TR
rogram compiler (available from Weighofer, 2007) for the C++
rogramming language. In the field of educational applications
oto et al. (2011) presented a novel HW/SW platform useful for
tudents to both implement and validate the design of reactive
ystems using the TR approach. This platform explores the possibil-
ty of implementing TR programs through electrical circuits using
econfigurable hardware, mainly Field Programmable Gate Arrays
FPGAs).

There are several studies reviewing methodological aspects for
he definition of TR programs. Particularly significant is that pre-
ented in Kochenderfer (2003), where genetic algorithms are used
o create TR programs. The formal framework for mobile agents
eveloped by Broda and Hogger (2004) has also proven to be very
ffective in the development of TR policies for mobile agents. Using

 graph (where nodes represent states and the node intersections
re actions possible in a given state) it is possible to define such
olicies by evaluating these graphs using discounted reward tech-
iques.

With regards to Software Engineering solutions, some works,
uch as (Hawthorne et al., 2011; Hawthorne and Anthony, 2010),
ontain a number of basic guidelines and practices for writing
R programs. Besides, Sánchez et al. (2012) present a system-
tic method for deriving architectural models with structural and
ehavior descriptions using TR-programs. This method is part of a
ool chain in which code can be generated by means of model-to-

odel transformations, paving the way for an integrated approach
o the development of reactive systems.

As a summary, it can be concluded that the TR formalism has
ostly contributed in the field of Artificial Intelligence, being com-
utational learning undoubtedly the field most benefited from its
se (e.g., Choi and Langley, 2005; Langley and Choi, 2006). It can also
e concluded from the large growth of number of publications dur-

ng the last years, that the TR formalism is an active research area
s and Software 100 (2015) 1–14 3

in the software community. Despite these achievements, a num-
ber of challenges still remain to be solved in order to extend the
TR approach such as code generation or TR program cataloging, as
well as identifying synergies with the Software Engineering field.

With regards to code generation, most of the solutions (Gubisch
et al., 2008; Nilsson, 1992; Weighofer, 2007) provide a TR pro-
gram interpreter, which in no case can be reused in a more general
software development context. Thus, further proposals are needed
to achieve generation of executable code that could be reused as
part of systems development. As regards design by reuse, TR pro-
gram catalogs should be supplied. A modular breakdown of TR goals
would facilitate the development of TR programs through reuse, so
as to be able to take advantage of prior experience in TR program
validation. Furthermore, additional progress is needed in order to
get a better integration of the TR approach into the field of Software
Engineering. The integration of the TR paradigm into a development
environment that allows code to be generated via model-to-model
transformations opens up new possibilities in the development of
reactive systems. The state of the art indicates that nowadays the
definition of methods and techniques for the specification of TR
systems are a highly promising subject of study. Literature points
to several exciting challenges which require further collaboration
with other research areas, particularly with Software Engineering,
and more specifically with Requirements Engineering.

Sommerville et al. (1998) defines Requirements Engineering
(RE) as the process of establishing the services that customers want
software systems to offer and the constraints for the development
and operation of these systems. An RE approach that favors “design
for reuse” (by guiding the cataloging of components) and “design
from reuse” (by using catalogs to identify reusable goals) can defi-
nitely bring benefits to the Teleo-Reactive field.

There are many approaches to RE, such as Goal-Oriented
RE (GORE) (Lamsweerde, 2009), Viewpoint-Oriented RE (VORE)
(Sommerville et al., 1998), and Aspect-Oriented RE (AORE)
(Chernak, 2009). Among them, GORE approach has proven its
usefulness for the RE process (Lamsweerde, 2001). GORE is straight-
forward for developing TR systems since they share the concept of
goal. GORE proposals (see Kavakli and Loucopoulos, 2005 for an
exhaustive introduction) focus on the why of the system-to-be by
specifying the motivation and rationale that justify the require-
ments specification. They also share the concepts of goal, agent
and the refinement relationship. A Goal-Oriented (GO) model can
be specified using different techniques but for all of them, the GO
model is built using directed graphs by iterative refinement of goals.

GORE has proven successful for different RE phases
(Loucopoulos, 2005), such as eliciting, elaborating, specifying,
analyzing, documenting, etc. For instance, it has been used during
the elicitation phase to describe the current organizational behav-
ior (e.g., Goal-based Workflow (Ellis and Wainer, 1994), i* (Pohl,
2010), among others). GORE has also been used to describe how
organizational changes can be implemented by relating business
goals to functional and non-functional system specifications (e.g.,
KAOS (Lamsweerde, 2001), the NFR framework (Mylopoulos et al.,
1992), and the Goal-scenario coupling framework (Rolland et al.,
1998) among others). Moreover, different goal analysis techniques
have been also described for requirements validation (e.g., GSN
(Wilson et al., 1995) and GQM (Basili and Rombach, 1988)).

As evidenced by the previous research works, GORE has been
widely used for different purposes. Among all the proposals, i* and
KAOS are the most referenced ones in the literature. Each one has its
own strengths and weaknesses, providing support for representing
different aspects related to the RE process (Teruel et al., 2011b). For

illustrative purposes, i* does not provide support to specify when a
task is carried out by several roles; i* has more modeling elements
for the sake of expressiveness; KAOS provides better support to
traceability than i*; neither KAOS nor i* are able to represent the
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Table 3
Example of TR program for data packets sending.

Condition Action

AllPacketsSent → Nil
EveryOneHundredPackagesSent → adjustPacketSize
EveryTenPackagesSent → adjustCommunicationSpeed
ConnectionOpened → sendNewPackage
True → waitNewConnection

Table 4
Example of a hierarchical TR program for data packets sending.

Server:
AllPacketsSent → nil
ConnectionOpened → Send
True → waitNewConnection

Send:
EveryOneHundredPackagesSent → adjustPacketSize
 J.M. Morales et al. / The Journal of

riority of requirements (Teruel et al., 2012); KAOS is better for the
ierarchical representation; etc.

In this article, the authors limit the study of the understand-
bility for the specification of Teleo-Reactive systems to two  of the
ost well-known GO approaches, i.e., i* and KAOS, leaving other
ethods and notations for further research.

. An introduction to the Teleo-Reactive paradigm

A TR program can be informally defined as an agent that robustly
ontrols a system toward its goal by continuously taking into
ccount the observed perceptions when executing in a dynamic
nvironment (Nilsson, 1993). TR programs facilitate goal-oriented
escriptions of systems following a very intuitive approach. TR pro-
rams are usually specified as a set of rules that continuously sense
he environment and fire the execution of actions whose continu-
us execution eventually leads the system to satisfy its goal. Table 1
hows the basic syntax of a TR program. For each rule, Ki is the con-
ition (formulated over a belief store that includes both sensory

nputs and computed beliefs using inference rules), and ai is the
orresponding action, which will eventually change the state of the
nvironment.

The rules of a TR procedure are continuously evaluated from the
op for the first rule whose condition is true (higher priority), and
hen its corresponding action is then executed. The effects of an
ction on the environment occur as a consequence of the interac-
ion with the system. Two  kinds of primitive actions are considered:
urative and discrete (aka ballistic). Durative actions continue indef-
nitely executing as long as its condition is true and they can be
rematurely terminated. For example pick up action for a robot
uilding a block tower, or move 5 m forward. Discrete actions ter-
inate after a short time, for example open for grippers of a robot,

r beep in a horn, and they cannot be prematurely aborted once
tarted. As an example, Table 2 shows the TR program of a robot
hat moves forward until an obstacle is detected (sensor input) and
hen starts to execute rotate until the obstacle is not in front of it
further examples can be seen in Sánchez et al., 2012, with a more
etailed definition of TR programs including hierarchies of goals).

Following the definition of a TR program, rule #1 has higher pri-
rity than rule #2. Thus, when an obstacle is detected the execution
f the durative action move forward is interrupted. Once the condi-
ion of rule #1 becomes false (because the robot does not detect the
bstacle anymore) rule #2 gains again the control and move forward
s re-started.

The possibility of including hierarchies for the definition of TR
rograms is also very interesting because it favors modularity, fos-
ers reuse, eases refinement and tests, etc. In a hierarchical TR

rogram, actions can also be basic TR programs. Each TR program
hat is referenced in a rule is called a subgoal. The root of the
ierarchy of a TR program is called the goal of the system-to-be.

able 1
R program structure.

Priority Rule (condition → action)

The highest K1 → a1

K2 → a2

· · ·
The lowest Km → an

able 2
xample of a TR program.

id Rule

rule #1: obstacle detected → rotate
rule #2: True → move forward
EveryTenPackagesSent → adjustCommunicationSpeed
True → sendNewPackage

A TR program continues to constantly evaluate its set of condi-
tions even when a subgoal has been called. Consequently, if another
rule condition that has higher priority becomes true, the subgoal is
immediately terminated.

As an example, we consider a modified and enriched version
of a TR program for sending data packets from the server per-
spective (shown in Table 3). It simulates a file download from a
FTP-like service. The server sends a file in packets once the con-
nection has been established. The server dynamically adjusts both
the communication speed and packet size accordingly to the com-
munication robustness and network latency. This adjustment is
performed every ten and one hundred sent packets, respectively.

The service is started when a client opens the connection. If
both ConnectionOpened and EveryTenPackagesSent are true, then the
action adjustCommunicationsSpeed will be executed since EveryTen-
PackagesSent is located higher in the TR program hierarchy. When a
multiple of one hundred packages has been sent, the system adjusts
packet size. The program has been conceived to show how the TR-
based system can recover from unexpected events. For instance, if
the connection gets lost the system will wait until a new connection
is established, resetting the initial values relative to packet size and
communication speed. The equivalence between hierarchical and
plain specification of a TR program is straightforward. A possible
hierarchical version of the TR program for the file server is shown
in Table 4.

4. Goal-oriented requirements engineering and
Teleo-Reactive systems

The GORE approach (Langley and Choi, 2006) has proven to be
useful in eliciting and defining requirements, as it does not only
establish the features (i.e., activities and entities) that a system will
support, but also why the system is being constructed. Although dif-
ferent proposals, such as KAOS and i* (see Kavakli and Loucopoulos,
2005 for an exhaustive survey) have been presented in the liter-
ature, all of them have some commonalities. One of them is the
specification of a Goal Model as a directed graph that is used to
refine the system goals. These goals are further refined until they
can be assigned to the agent that is responsible for the achievement
of that refined goal. Other concepts shared by these proposals are:
– Goal: it describes why the stakeholders want to develop a system.
Goals may  be functional goals (expected services), or soft-goals
that determine non-functional goals such as those related to
Quality of Service (QoS) issues or constraints on the design.
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why the percept is obtained. Since the Teleo-Reactive approach
Fig. 1. Elements of the i* framework model.
aken from Yu (1997).

 Agent: it is an active component whose cooperation is needed to
achieve the goals of the system. These components can be either
from the system itself or from the environment.

 Refinement relationships: goals in the model are refined as a
directed graph using AND/OR/XOR relationships. A goal is refined
into some other goals using AND relationships when all refined
goals are needed to achieve the parent goal. OR relationships are
used for optional goals where at least one of them is needed to
achieve the parent goal. If a goal is refined using a XOR rela-
tionship, exactly one of the refined goals is required to achieve
the parent goal. Refined goals are also refined until they can be
assigned to a specific agent.

One of the main advantages of the GORE approach is that it
llows reasoning about the system specification, facilitating the
rocess of evaluating designs or alternative specifications of the
ystem-to-be (Navarro et al., 2007). As mentioned above, two  of the
ost widely GORE proposals are KAOS and i*. Both of them offer

raphical representations for goal modeling that can be easily used
or specifying TR systems, as will be shown in sections 4.1 and 4.2.
iven the deterministic nature of TR programs, in those sections
e propose a mapping of the deterministic part of both languages

o TR programs. The non-deterministic part of KAOS and i* does not
ave a direct mapping although it can be of interest for its use to
hoose among different options to operationalize the requirements
r to specify the non-functional requirements of the system-to-be.

.1. i* for TR system requirements specifications

The i* framework guides the stakeholders throughout the dif-
erent phases of the software development process, namely from
arly requirements analysis until detailed design. The graphical
epresentations of the main i* modeling elements are shown in
ig. 1.

Most of them have been already described in the previous
ection, such as goal or softgoal. However, others need further
xplanation to facilitate the understanding of the following work
refer to Yu, 1997 for a detailed explanation):

 An actor is a person or a system that is related to the system-to-be.
An actor has a boundary to indicate which elements it explicitly
desires.

 Task specifies what an actor wants to do, typically by means of a

number of steps (or sub-tasks).

 Resource is an entity, either physical or informational, needed by
an actor to achieve a goal or execute a task.
s and Software 100 (2015) 1–14 5

– Dependency is a relationship specifying that a depender (an actor)
depends on a dependee (an actor) because of a dependum (a
goal/softgoal to achieve, a task to execute or a resource to use).

– Means-ends link is a relationship from a task (mean) to a goal
(end) that it attains.

– Task decomposition link relates a task to its different sub-
components, which can be sub-goals, sub-tasks, resources, or
softgoals.

– Contribution links can be used to link an element (goal, task or
softgoal) of the model to a softgoal to specify how it positively or
negatively contributes to the satisfaction of that softgoal.

As the main aim of this work is to provide a way for specifying
the requirements of robotic systems that facilitates their automatic
transformation into TR programs, it is necessary to establish the
mappings from i* to TR concepts. Taking into account this need, the
following mappings have been identified:

In order to build TR programs capable of achieving the objectives
represented by an i* Goal Model, the following construction rules
have been defined:

– The main i* agent is transformed into the TR system-to-be. The
main i* agent is the one that has the goal that the final system
wants to achieve in its boundary.

– The rest of i* agents are transformed into sensors of the system-
to-be.

– i* goals become TR goals.
– i* tasks are specified as TR atomic actions.
– i* resources are transformed into percepts provided by the sen-

sors.
– Provided that a TR rule can be defined as condition → goal/action,

every i* resource whose depender is an agent and having a task or
goal as a dependee is translated into a TR rule having as condition
the resource and as action the task or goal. An i* task or goal not
depending on any resource is directly translated into a rule of the
form True → goal/action.

– Since a TR goal can be defined as a set of prioritized TR rules,
an i* goal being refined into goals and tasks through task-
decomposition links is transformed into a TR goal containing as
many rules as i* tasks and goals are refining the original i* goal. It
is worth noting that the advices of the i*-based GORE Language,
part of the ITU Recommendation named User Requirements Nota-
tion, have been followed. This recommendation allows, for the
sake of simplicity, goal decomposition using task-decomposition
links (ITU-T, 2008).

– i* does not provide a way to represent priority among the tasks
or subgoals needed to achieve a higher-level goal. Therefore, we
decided that priority would be specified in the Goal Model by
using the relative position on the diagram of the tasks or goals
refining the original goal. Thus, the tasks or goals situated on the
right end of the Goal Model will be translated into the highest
priority rules in the TR program. This alternative allows us to ana-
lyze i* without modifying its notation, although as future work
an alternative representation for task priority shall be proposed.

The first four mappings shown in Table 5 are obvious since
the definitions of those elements are similar in both i* and
Teleo-Reactive. Regarding the last two, accepting that a sensor is
represented as an agent, we  have three i* elements that could be
mapped to TR percepts: (1) resources, if the interest is in the new
data received through the percept; (2) tasks, when the focus is on
how the percept is obtained; and (3) goals, when the focus is on
is only concerned about the incoming data, the first option is the
most adequate (resources mapped to percepts). Besides, a condi-
tion relates changes in the environment (that is, percepts) with the
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Table 5
Mapping concepts between TR and i*.

i* TR

Main agent System-to-be
Agent Sensor
Goal Goal
Task Action
Resource Percept
Resource dependency Condition
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Fig. 2. Tin collector specification using i*.

R actions or goals. As a consequence of the previous mapping, i*
esource dependencies seem to be the most reasonable element
o be mapped to TR conditions in order to state which percept is
nvolved in the activation of which task (or subgoal). The rest of
he i* elements shown in Fig. 1 do not have a direct mapping to
R programs as they are not needed to specify a deterministic TR
rogram, and thus they have not been considered in this work, but
hey can nevertheless be used in other stages of the RE process.

The following example shows how the previous guidelines have
een applied. It is an excerpt of one of the examples used in the
ontrolled experiment (as detailed in Section 5.2). Fig. 2 shows the
* specification of a robot which delivers tins into a depot. Table 6
hows the TR program implementing such specification.

 According to the guidelines, every i* goal in Fig. 2 is mapped to
a TR goal (highlighted in bold text in Table 6, as for instance,
tin delivered or robot beside depot).

 Every i* agent (except for the main agent) is mapped to a sensor
or device, such as camera or gripper.

 Every i* resource that has a dependency relationship with an
agent is mapped to a condition monitored by the correspond-
ing sensor, such as holding monitored by the gripper or at depot
monitored by the GPS. It can be noticed that i* goals or tasks that
have no dependency relationship, such as robot beside depot or
rotate, are mapped to TR goals and actions with a True condition.
 Every i* task, such as ungrasp, is mapped to an action.
 i* tasks and goals linked by a task-decomposition link to an i* goal
are mapped to rules of the same TR goal. For instance, the goal
tin delivered is decomposed into the goal robot beside depot and

able 6
in collector TR program.

robot:
holding → tin delivered
tin delivered:
at depot → ungrasp
True → robot beside depot
robot beside depot:
see depot → forward
True → rotate
Fig. 3. Basic elements of KAOS.
Taken from Respect – IT (2007).

the task ungrasp. Then, a TR goal named tin delivered is created
with two  rules whose respective actions are robot beside depot
and ungrasp, as can be seen in Table 6.

– Finally, as can be observed, the priority established in the i* spec-
ification by using the location of the elements is also kept in the
TR specification. For instance, as ungrasp has a higher priority
than robot beside depot, it has been specified on the right hand of
the diagram (see Fig. 2). As can be seen in Table 6, the rule with
action ungrasp is over the rule with action robot beside depot.

4.2. KAOS for TR Systems requirements specifications

KAOS framework (Lamsweerde, 2001) has been defined for elic-
iting, specifying, and analyzing goals and requirements. A KAOS
model is made up by six sub-models, namely Goal model,  Obsta-
cle model,  Object model,  Agent model,  Operation model and Behavior
model, which are related among them via traceability links. Fig. 3
illustrates the basic elements provided by the KAOS framework.

KAOS has the following main elements (see Respect – IT, 2007
for a detailed explanation):

– A Goal describes an objective to be achieved by the system-to-be.
– An Agent is an active component of the system-to-be, which can

be a human agent, a device or a software component, that acts to
satisfy a goal.

– A requirement is a low-level type of goal that has an agent respon-
sible for its achievement.

– An operation is a binary relation over system states. This is the
way an agent may  achieve its goals.

– An event is a conceptual item referenced in a goal specification
whose instances may  exist in a single state only.

– An AND/OR-decomposition is a relationship from a set of subgoals
to a goal that specifies that all/at least one sub-goal must be
satisfied for the goal to be satisfied.

– A responsibility assignment  is a relationship from an agent to the
goal it is responsible for.

– A concerns link is a relationship used to link a goal to the objects
that it needs to be satisfied. Identifying those objects shall further
restrict the space of solutions that can be proposed by the system-
to-be.

Table 7 summarizes the mappings proposed between KAOS and

TR programs concepts to model reactive systems.

In order to guide the definition of KAOS models, the follow-
ing guidelines have been defined by using the previously defined
mappings:
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Table  7
Mapping concepts between KAOS and TR.

KAOS TR

Goal OR requirement Goal

–

–

–

–

d
l
a
b

t

i

–
–

Operation Action
Event Condition

 Every KAOS goal is mapped to a TR goal with as many rules as
subgoals or requirements the original goal has. For every sub-
goal refining a KAOS goal, the corresponding TR rule has a TR
goal as its action. In case the item refining the goal is a require-
ment, the TR rule has an atomic action given by the operation
that operationalizes the requirement.

 As TR rules are mandatory to achieve a goal and there are no
optional rules, AND-decomposition links are always used when
refining goals.

 A KAOS event with a concerns link to a goal or requirement is
translated into the condition of the rule obtained from the map-
ping of that goal or requirement. A KAOS goal or requirement not
linked to any event is translated into a rule with a True condition.

 Like i*, KAOS does not provide a way to represent priorities among
the tasks or subgoals needed to achieve a higher-level goal. A
similar decision to that already proposed for i* is adopted in this
case. Priorities given by the order of the rules in TR programs are
being specified in KAOS by using the order in which the subgoals
or requirements refining the original goal are presented. There-
fore, the subgoals or requirements situated on the right end of the
Goal Model are translated into the highest rule in the TR program.
As a future work, an alternative representation for task priority
shall be proposed.

The first two mappings of Table 7 are evident according to the
efinitions of the KAOS and Teleo-Reactive elements. Regarding the

ast one, since we have accepted the mapping of actions to oper-
tions it is obvious that events should be mapped to conditions
ecause they are responsible for triggering operations.

Fig. 4 shows the KAOS specification for the tin collector example
hat leads to the TR program in Table 6.

The description of how the previous guidelines are being applied
s the following:

 Every KAOS goal (such as tin delivered) is mapped to a TR goal.
 Every KAOS goal refined into several subgoals or requirements is
mapped to a TR goal with a rule per subgoal or requirement of the
input KAOS model. For instance, tin delivered is decomposed by

using an AND decomposition link into the goal robot beside depot,
and the requirement tin dropped, which in turn is operationalized
by ungrasp. Table 6 shows the TR goal robot beside depot with two
rules.

Fig. 4. Tin collector specification using KAOS.
s and Software 100 (2015) 1–14 7

– KAOS events are represented as TR conditions. For instance, the
goal tin delivered, related by means of a concerns relationship to
the event holding is mapped to the TR rule holding → tin delivered.

– KAOS operations are mapped to TR atomic actions. For instance,
the KAOS operation ungrasp, which operationalizes the require-
ment tin dropped and has a concerns relationship with the KAOS
event at depot, is translated into the rule at depot → ungrasp.

– Finally, the priority established in the KAOS specification by using
the location of the elements is also kept in the TR program. For
instance, as ungrasp has a higher priority than robot beside depot,
it is placed on the right hand of the diagram (see Fig. 4). As can be
seen in Table 6, the rule whose action is ungrasp is over the rule
whose action is robot beside depot.

Next section describes the experiment performed in order to
identify which of these languages has better understandability for
this purpose.

5. A controlled experiment

In order to assess the understandability of KAOS and i* to model
the software requirements of TR systems, a controlled experiment
to compare both of them has been performed based on the guide-
lines described by Kitchenham et al. (2002). In this section we
describe the context, the design and how the experiment was  con-
ducted. At the end of the section the results are deeply analyzed.

5.1. Experimental context

The Goal Question Metric template (Basili et al., 1994) has
been used to define the main goal of the controlled experiment as
follows: analyze i* and KAOS requirements specifications for TR sys-
tems with the purpose of evaluating their understandability from the
viewpoint of requirements engineering researchers and in the con-
text of undergraduate students. To address this goal the following
null hypothesis has been defined:

– H0: i* has the same average score for understandability than
KAOS when modeling TR requirements specifications. H1: ¬H0

It is worth remembering that the objective of this work is
to evaluate which one, KAOS or i*, has a better understandabil-
ity when modeling requirements for TR-based systems. We  have
adopted each of the languages without altering their original syn-
tax/semantics. When evaluating the understandability of KAOS/i*
for representing Teleo-Reactive concepts we  are implicitly evaluat-
ing the acceptance of the defined mapping since a wrong mapping
between KAOS/i* and Teleo-Reactive concepts would have given a
non-acceptable understandability of the representations obtained
in KAOS/i* for the domain with much worse results in the survey.

5.2. Experimental design

The variable understandability (Und) of i* requirements models
related to KAOS models is used in this study. For this aim, the abil-
ity of the undergraduate students to understand the experimental
material correctly is evaluated by means of True/False question-
naires about two  TR systems specified with both i* and KAOS (see
Appendix 1).

The subjects in this experiment were 38 university students,
being 16 students from the third year of the Bachelor in Telecom-

munication Systems, and the remaining 22 students from the third
year of the Bachelor in Industrial Electronics and Automation Engi-
neering. Both groups already had some background about reactive
systems, as they were enrolled in different subjects related to this
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Table 8
Experiment main characteristics.

Null-hypotheses H0A: i* has the same understandability average score
than KAOS when specifying TR requirements. H1A:
¬H0A

H0B: The understandability average score is the same
regardless the system used in the experiment. H1B:
¬H0B

H0AB: i* has the same understandability average
score than KAOS when specifying TR systems
requirements, regardless the system used in the
experiment and vice versa. H1AB: ¬H0AB

Location Technical University of Cartagena (Cartagena, Spain)
Date June 6th 2013 (Group 1); June 10th 2013 (Group 2)
Subjects Group 1: 16 students from 3rd year of Bachelor in

Telecommunication Systems
Group 2: 22 students from 3rd year of Bachelor in
Industrial Electronics and Automation Engineering

Dependent variable Understandability of requirements modeling
notations, measured by Und

Independent variable The system (football player or tin collector) to which
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some of the criteria stated in Section 5.2. Then, a descriptive statistic
analysis of the experiment was  made. As Table 11 shows, the mean
the  diagrams were related to and the language (i* or
KAOS) used for specifying them

opic. Moreover, because the subjects were not required to carry
ut tasks with high levels of industrial experience, their expertise is
onsidered as appropriate for this experiment as other authors sug-
est (Höst et al., 2000; Basili et al., 1999). The main characteristics
f this controlled experiment are illustrated in Table 8.

This experiment studied the understandability level of the
equirements specification of two different TR systems specified
y using both i* and KAOS. The first system was a robot devel-
ped to clear tins from the floor by moving them to a depot. The
obot is able to rotate, to scan the environment looking for tins or

 depot, to move forward, and to open/close its gripper. The robot
ncludes sensors that evaluate whether the robot is holding, see-
ng, and touching a tin. For example, if the robot sees a tin, then
t moves forward while it can see the tin. Provided that the envi-
onment does not move the tin, the robot will eventually touch it.
sing its current location, the robot is able to see the depot and to
now whether it is at the depot.

The second system was another robot developed for playing
ootball in defensive positions. The robot can detect the ball and
s able to tell if the ball is being controlled by itself or by an oppo-
ent. In addition, it can recognize other robots of its own team.

ts main goal is to keep the ball under control of any of its team-
ates. To achieve this, the robot is able to rotate, move forward,

ribble and kick the ball. This system is inspired by TRSoccerbots
Kochenderfer et al., 2004), a free educational program that uses
R programming to expose the fundamental ideas involved in the
reation of autonomous agents to high school and college students.

In order to assign the requirements specifications of the two
ystems to the students, they were distributed into two differ-
nt groups, G1 and G2. It was decided that G1 would perform the
xperiment using the i* specification for the football player and the
AOS specification for the tin collector, while G2 will use the KAOS
pecification for the football player and the i* diagram for the tin
ollector. These decisions are summarized in Table 9.
The distribution of the subjects into 4 different treatments, car-
ied out by combining the two dependent variables (System and
anguage), is a 2 × 2 factorial design with confounded interaction

able 9
xperiment design.

System

Tin collector Football player

Language KAOS Group 1 Group 2
i* Group 2 Group 1
s and Software 100 (2015) 1–14

(Winer et al., 1991). Therefore, within a system, the variable lan-
guage changes along with the group of subjects canceling out the
learning effect.

It was also decided to filter out those students that satisfied any
of the following criteria:

– The student was at least five years older than the class mean age.
– The student had a RE background.
– The student had previous experience with i*, KAOS or other Goal-

Oriented techniques.

Finally, it was also decided that those students who  wanted to
leave the experiment would be interviewed recording this fact in
the experiment results, as well as any other possible interruption.
No time restrictions were imposed. Questions were answered per-
sonally and recorded in order to know if any other subject had the
same doubt. All questions were recorded for further analysis.

5.3. Conducting the experiment

The experiment was carried out in two different sessions, the
first with G1 and the second with G2. The first session was held
at the Escuela Técnica Superior de Ingeniería en Telecomunicación of
the Technical University of Cartagena, and the second one at the
Escuela Técnica Superior de Ingeniería Industrial of the same uni-
versity. Both sessions were performed in a similar way. First, the
subjects were given an introductory session to TR-Systems, KAOS
and i*. Then, considerations about representing TR systems require-
ments in both notations were also explained. Afterwards, both
examples, the tin collector and the football player, where shown.
All these explanations took about 15 min  in each session.

Before providing the students with the specifications, the fol-
lowing information about them was  collected:

– Gender (Male/Female)
– Age
– Qualification
– Average score
– Have you had any previous experience of working with goal-

oriented requirements engineering?
– Have you had any previous experience of working with any other

requirements engineering technique?

In the same way, the subjects were told to write the exact start
and end time in the spaces reserved for that purpose. In order to
have the same time reference for all the subjects, an online clock
was projected on a screen. Table 10 summarizes the results of the
experiment by showing the maximum time (max), minimum time
(min) and average time (avg) spent by each group.

5.4. Results analysis

Once the experiment concluded, all the data were analyzed
using the SPSS tool. First of all, it was  determined that 6 observa-
tions of the group G2 had to be discarded as these subjects satisfied
understandability of the i* specifications for both the tin collector
and the football player is better than the one for KAOS. Therefore,

Table 10
Time (mm:ss) spent on the experiment.

Group-language N Max  Min  Avg

G1-KAOS 16 14:10 07:14 09:59
G2-i*  16 15:19 08:24 11:40
G1-i*  16 12:05 07:35 09:32
G2-KAOS 16 09:06 05:50 07:04
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Table  11
Descriptive statistic for dependent variable understandability.

Language System Mean Std. Deviation N

i* collector 0.706250 0.1181454 16
football 0.700000 0.1211060 16
Total 0.703125 0.1177323 32

KAOS collector 0.668750 0.1302242 16
football 0.637500 0.1087811 16
Total 0.653125 0.1190944 32

Global collector 0.687500 0.1237844 32
football 0.668750 0.1176038 32
Total 0.678125 0.1201438 64
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Fig. 5. Summary of results.

his initial analysis could indicate that the used system did not have
ny kind of influence on the results. When we analyzed the results
rouped by the modeling language (see rows Total in Table 11 for
AOS and i*), i* exhibits positive differences with regard to KAOS.
his difference between both languages is also shown in Fig. 5.

After filtering out the subjects that satisfied the criteria stated in
ection 5.2, an ANOVA test (Table 12) was carried out. The result of
he test was a p-value of 0.100 for the independent variable “Lan-
uage”. Then, the null hypothesis H0A can be rejected with  ̨ = 0.10,
herefore a statistically significant difference exists between the
esults of KAOS and i*. This difference between both results is
raphically illustrated in Fig. 5. Although this result is acceptable,
e would have expected a higher power of the test (  ̨ ≤ 0, 05) so

hat the results were more conclusive. Moreover, the obtained p-
alues were much higher than  ̨ for “System” and “Language *

ystem”, thus null hypotheses H0B and H0AB cannot be rejected. This
eans that the system had no effect on the results of the experi-
ent and there was no interaction between language and system

able 12
NOVA results (dependent variable: understandability a. R-squared = 0.053)

adjusted R-squared = 0.006).

Source Type III sum
of squares

df Mean square F Sig.

Corrected Model 0.048 3 0.016 1.118 0.349
Intercept 29.431 1 29.431 2050.319 0
Language 0.040 1 0.040 2.787 0.100
System 0.006 1 0.006 0.392 0.534
Language*System 0.003 1 0.003 0.174 0.678
Error 0.861 60 0.014
Total 30.340 64
Corrected Total 1.473 75
Fig. 6. Estimated marginal means for Understandability.

as Fig. 6 shows. Therefore, if we observe the descriptive statistic
shown in Table 11, we  can state that the Understandability of i*
is higher than KAOS when modeling TR systems. This difference is
graphically illustrated in Fig. 5.

5.4.1. Questions analysis
Next, it is analyzed, question by question, when KAOS obtains

better scores than i* and vice versa, in order to determine which
factors contribute to these differences. Fig. 7 shows graphically the
average scores of understandability grouped by question for each
system.

When observing the results for each system, several differences
can be noticed. Firstly, it is remarkable that i* obtains higher or
similar scores for most of the questions of both systems. This is
an expected result regarding the descriptive statistic shown in
Table 11. This means that i* satisfies most of the expressive needs
for this kind of systems. However, it does not only exhibit some
problems when compared to KAOS in some questions but also
because of the low scores it gets. In the following these questions
are analyzed:

– Despite questions 5 and 6 of the Tin Collector get very high
scores for both languages, it is slightly higher for KAOS. The
only explanation was  the location of the conditions in the i* and
KAOS models because, when the subjects were interviewed, they
expressed that they had thought the priority was  also denoted by
the location of the conditions. This problem is also applicable to
questions 4 and 5 of the football player.

– Question 9 of the Tin Collector gets a very high score for both
KAOS and i*. This question is related to a condition that must be
satisfied for a goal to be achieved. Only two subjects failed this
question when they analyzed the i* specification and one when
analyzed the KAOS specification.

– Question 10 of the Tin Collector obtains a very low score, no mat-
ter whether the KAOS or i* specification is used. This question is
related to priority, a critical issue in TR systems specifications.
Other two questions are also related to priority: question 3 does
not get a high score either but question 6 does get it. What dif-
ferentiates question 6 from 3 and 10 is that no information about

conditions needed to be analyzed to answer it. Subjects had to
pay attention to two different concepts, what could be misleading
especially because the priority is not specified by any graphical
notation but by using the location of the elements in the diagram.
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Fig. 7. Summary of results with regard

This conclusion is also applicable to question 6 of the football
player. Therefore, it is a clear indication that an alternative solu-
tion must be defined to specify the priority.

 Question 10 for the football player obtains a slightly higher score
for KAOS. It is worth noting that tasks in i* cannot be dupli-
cated and their location states the priority. These restrictions may
result in diagrams hard to understand because a task refining two
different goals can be very distant from one of those goals. In this
case, task rotate is far away from goal friend found.  This limitation
should be solved by proposing alternative notations too.

The students asked a number of questions during the perfor-
ance of the experiment that may  point out why i* got better

cores than KAOS. Some of these questions where related to the
ifferences between goals and requirements in KAOS. The graph-

cal representation of both concepts is very similar and may  be a
ource of errors. One of the students even asked if the priority of

 requirement was higher than that of a goal or vice versa. On the
ther hand, nobody asked questions about tasks and goals in i*, so
e can deduce that these concepts were clearer in i*.
There were also some other questions with regards to the condi-
ions that may  fire the reactions of the system. Most of these kinds
f questions were asked about the KAOS models. This fact leads us
o the conclusion that the lack of agent representations in the KAOS

able 13
evene’s test for language.

Levene’s test
for equality of
variances

t-Test for equali

F Sig. t df 

Understandability
Equal variances
assumed

0.008 0.929 −1.352 66 

Equal variances
not assumed

−1.352 65.9

able 14
evene’s test for system.

Levene’s test
for equality of
variances

t-Test for e

F Sig. t d

Understandability
Equal variances
assumed

0.191 0.664 0.252 6

Equal variances not
assumed

0.253 6
 systems and the modeling languages.

models does not help to understand the specification. The presence
of the agents in the i* models and their dependency relationships
with goals and tasks through the conditions makes these models
easier to understand.

6. Threats to the validity of the experiment

In the following some issues that could have threatened the
validity of the experiment are analyzed following the recommen-
dations presented by Wohlin et al. (2000).

6.1. Conclusion validity

In the experiment, although the statistical power was not as
high as we expected, it is high enough to reject the null hypothesis.
Moreover, we  were able to avoid the “fishing for the result” effect.
The test was not performed to demonstrate that i* was better than
KAOS, but to identify really which language provided better support
for the specification of TR systems.
6.2. Internal validity

The number of subjects that participated in the experiment was
large enough, according to the central limit theory (Grinstead and

ty of means

Sig.
(2-tailed)

Mean
difference

Std. error
difference

95% confidence interval
of  the difference

Lower Upper

0.181 −0.04118 0.03045 −0.10196 0.01961

43 0.181 −0.04118 0.03045 −0.10196 0.01961

quality of means

f Sig.
(2-tailed)

Mean
difference

Std. error
difference

95% confidence
interval of the
difference

Lower Upper

6 0.801 0.00779 0.03086 −0.05383 0.06941

5.975 0.801 0.00779 0.03083 −0.05375 0.06934
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nell, 2006). This number was slightly higher than 30 (actually, it
as 32 once the subjects that met  any of the criterion stated in Sec-

ion 5.2 were filtered out). Moreover, ANOVA needs homogeneity
f variances for each combination of the groups of the two indepen-
ent variables, language and systems. This assumption was  checked
y using a Levene’s test. From its results, shown in Tables 13 and
4, we can conclude that the null hypothesis can be rejected and,
hus, the assumption is satisfied.

Finally, the learning and fatigue effects were canceled out
ecause a 2 × 2 factorial design was carried out, changing both lan-
uage and system, and having a break between the two sessions
arried out by each group.

.3. Construct validity

As construct validity is mainly related to the method used to
valuate the outcome of the task of the experiment, the threats
ere avoided by using a questionnaire, similarly to other stud-

es such as (Teruel et al., 2012, 2011a). The understandability
f the specifications was measured dividing the number of cor-
ect answers by the total number of answers. Furthermore, the
pecification of the systems and the questionnaires used in the
xperiment were reviewed by several external experts in KAOS,
* and/or TR systems in order to avoid a possible source of bias.

.4. External validity

According to Höst et al. (2000), the subjects can be considered
ppropriate because the tasks they had to carry out did not require

 high level of industrial experience. It allowed us to avoid the
nteraction between subject selection and treatment. Moreover, the
tudents had carried out several courses on reactive systems, so that
hey were mature enough to participate in the experiment.

Finally, the material used in the experiment was  realist due to
he fact that it was part of several industrial studies developed
y the Systems and Electronic Engineering Division (DSIE) at the
echnical University of Cartagena.
. Conclusions and further works

We  have introduced two alternative methods to model the soft-
are requirements for implementing goal-based reactive systems,
s and Software 100 (2015) 1–14 11

one of them using i* and the other using KAOS. A controlled exper-
iment to compare the understandability of both languages has been
performed. The results show that the understandability of i* is
higher than KAOS when modeling reactive systems, although the
statistical power is not as high as we had expected.

The representation in i* of the dependency relationships
between goals and the agents, responsible for the conditions which
cause the reactions of the system, increases the understandability
of the models. Besides, i* tasks and goals are much easier to dis-
tinguish than KAOS goals and requirements. Moreover, during the
results analysis of the experiment two main weaknesses were iden-
tified in i* for modeling software requirements for TR systems. One
of them is related to the graphical representation of the priority
of the requirements. The other has to do with the restriction of
duplicating tasks or goals in order to improve the readability of the
diagrams.

Finally, the non-deterministic aspects of i*, such as non-
functional requirements, should be taken into account although
they do not have a direct mapping to TR programs. For instance,
they may  be useful for the specification and analysis of the system-
to-be. However, all these aspects are left out of this work, as they
do not have a direct mapping to TR rules, but to other stages of the
development process of TR systems.

Further research is needed to compare other quality attributes
of both languages apart from understandability such as suitabil-
ity, accuracy, learnability or operability, as shown in Bertoa and
Vallecillo (2010). In addition, we are working on new i* exten-
sions that can help to mitigate the weaknesses found during the
experiment and all other problems that may  appear. Further empir-
ical studies will be done to provide valuable answers in terms of
understandability. An experiment making a comparison between
the original i* specification and the extended version shall be per-
formed in order to determine whether the proposed extensions are
useful or not.
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ppendix 1. Experimental material – an example of an understanding task (test for group 2)
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A FAMILY OF EXPERIMENTS TO EVALUATE THE UNDERSTANDABILITY OF TRISTAR 

AND I* FOR MODELING TELEO-REACTIVE SYSTEMS 

 

RESUMEN 
 

El enfoque Teleo-Reactivo facilita el desarrollo de sistemas reactivos sin perder de vista los 

objetivos del sistema. Este artículo presenta TRiStar, una extensión a la notación i* para especificar 

sistemas Teleo-Reactivos y trata de evaluar si esta extensión supone una mejora en términos de 

eficacia y eficiencia sobre la notación original cuando se usa para especificar sistemas Teleo-

Reactivos. Con tal fin se llevó a cabo una familia de experimentos con estudiantes de último año de 

ingeniería y con desarrolladores de software experimentados en la que los participantes tenían que 

rellenar un formulario especialmente diseñado al efecto. Tanto el análisis estadístico de cada uno 

de los experimentos de la familia por separado como el meta-análisis de la familia de experimentos 

como un todo permiten determinar que TRiStar es más efectivo y más eficiente que i* como 

lenguaje de especificación de requisitos para modelar sistemas Teleo-Reactivos. 
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4. Reuse: as a result of the above, the creation of reusable com-

ponents has not been a key issue in the evolution of the

TR paradigm. The most remarkable exception can be found in

Sánchez et al. (2012), in which the authors propose a model-

driven approach to obtain architectural components starting

from a TR specification.

With the aim of overcoming these difficulties, it would be use-

ul to find a Software Engineering approach to specify the require-

ents of TR systems. Morales et al. (2015) argue that the most

uitable Requirements Engineering technique for modeling TR sys-

ems is the Goal-Oriented approach, as both systems share the

ame foundations (goals). In the study cited, two techniques are

roposed that use goal-oriented requirements languages to demon-

trate that i∗ (Yu, 1997) gives better results in terms of understand-

bility. Starting from these results and going deeper into the study

f the technique based on i∗, we detected a sort of weaknesses

hat, if fixed, would improve the understandability, efficiency and

ffectiveness of i∗ as a specification language for TR systems. For

his reason, and following the path used in other approaches, such

s (Teruel et al., 2011), we propose here an i∗ extension that over-

omes the limitations mentioned above. This extension, named

RiStar, was first presented in Morales et al. (2015). In the present

aper we delve deeper into the definition of TRiStar and analyze

he results by means of a family of experiments carried out to

ompare the efficiency and effectiveness of the original notation

sing i∗ with the TRiStar extension. It is important to clarify that

RiStar extends the i∗ notation but does not limit it in any way.

hus, all the expressiveness of the original language is available to

eal with topics from the early stages of requirements engineering,

uch as uncertainty, conflicts among multiple agents or alternative

ays of achieving the same goal. All these topics may be very use-

ul when specifying complex TR systems in which several agents

ollaborate or compete with each other to achieve the goals in an

pplication (see (Clark and Robinson, 2014) for examples of such

ystems).

The Oxford English Dictionary defines the word “understand-

ble” as “that can be understood; intelligible” (underˈstandable,

dj, 2015). The understandability of a given notation is therefore

omething inherently subjective and linked to the modeler’s capac-

ty to understand such notation. In this vein, many studies, besides

easuring what can be called “subjective understandability”, have

ooked for other more objective ways of evaluating understandabil-

ty by means of performance-based measures. For instance Genero

t al. (2008) define the concepts used throughout this document

s follows:

• Understandability Time (UT): The time needed to understand a

TR diagram (expressed in minutes).
• Understandability Effectiveness (UEffec): The number of correct

answers reflects how well the participants performed the re-

quired understandability tasks.
• Understandability Efficiency (UEffic): The number of correct an-

swers divided by UT relates the understanding performance of

the participants to their effort (in terms of time spent).

In this paper we introduce a family of experiments in which

he above concepts have been evaluated for each of the notations

ntroduced: i∗ and TRiStar. The rest of the paper is organized

s follows: Section 2 gives an overview of related works on

he development of TR systems and goal-oriented requirements

ngineering techniques needed to understand the contents of

his paper. Section 3 gives a brief introduction to i∗ and its use

or defining TR systems. Section 4 describes in detail the TRiStar

xtension, starting from the limitations detected in i∗ notation.

ection 5 details the family of experiments carried out, while

ection 6 describes possible threats to the validity of the exper-
ments. Finally, Section 7 summarizes our conclusions and some

orthwhile future lines of research.

. Related work

The TR paradigm has obtained many important results in dis-

inct fields of research, perhaps with the most valuable outcomes

n the Robotics and Artificial Intelligence domain. In Morales et

l. (2012) a detailed summary of the existing literature on the TR

aradigm is given, including several contributions to TR formal-

sm, platforms for TR program simulation and validation purposes,

s well as methodologic and engineering concerns for creating TR

rograms or generating executable code.

Among the existing Requirements Engineering approaches

Sommerville et al., 1998, Chernak, 2009), Goal Oriented Re-

uirements Engineering (GORE) has been shown to be particu-

arly helpful in many stages of the system development process

Lamsweerde, 2009). In addition, Yu and Mylopoulos state in (Yu

nd Mylopoulos, 1998, June) that “some researchers have consid-

red goals to be an important construct in a number of different ar-

as of RE.”. Those areas include, among others, requirements ac-

uisition, clarifying requirements or driving design, which are very

seful in the latter stages of requirements specification in TR sys-

ems. Morales et al. (2015) state that GORE is the most straightfor-

ard choice for developing TR systems, as both paradigms share

he same fundamental concept: ‘goal’. The choice of the GORE

aradigm to specify TR systems is not only based on this coinci-

ence. The search for a graphical notation to help stakeholders to

nderstand the specification of a TR system and avoid wrong in-

erpretations was motivated by the desire to increase the abstrac-

ion level. TR systems need a notation which allows the concept of

goal’ to be represented in the most natural possible way and at

he same time specifies the rules with the appropriate level of de-

ail. GORE offers both these advantages. Other approaches, such as

he rule-based approach (Tsalgatidou et al., 1990), are not suitable

s they stay at the same abstraction level as that of the TR pro-

ram. In addition, the mapping between TRiStar and TR programs

eans that the corresponding code can be obtained directly, which

bviously makes the work of the developers easier. The study in

orales et al. (2015) compares the most common GORE languages

i∗ (Yu, 1997) with KAOS (Lamsweerde, 2001)) and concludes that
∗ is the best GORE language to specify TR systems. In spite of the

dvantages of using i∗, the notation has some weaknesses when

t comes to specifying TR systems, and this is why we decided to

reate an extension that would overcome these limitations.

There are many examples in the literature of extensions to

ell known languages with the aim of adapting them to specific

omains. In this context, CSRML (Teruel et al., 2011) (Collaborative

ystems Requirements Modeling Language) is a representative

xtension for i∗, targeting collaborative systems to create the

ell-known Computer Supported Cooperative Work (CSCW). These

ystems allow users to do collaborative tasks, communication and

oordination, besides other tasks, on common software applica-

ions. However, the specification of such systems using traditional

equirements Engineering techniques is rather complicated, while

n i∗ extension provides the expressiveness needed to specify

SCW more simply.

In Ayala et al. (2005), the authors make a comparative analysis

f the original i∗ language with its two most widespread variants:

oal-oriented Requirement Language (GRL) (Amyot and Muss-

acher, 2003) and the language used in the TROPOS methodology

Bresciani et al., 2004). It also analyzes the following three i∗

xtensions:

• The REDEPEND tool (Lockerbie and Maiden, 2008), which

extends i∗ and allows new types of Means-End relationships
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Table 1

Mapping concepts between i∗ and TR.

i∗ TR

Main Agent System-to-be

Agent Sensor

Goal Goal

Task Action

Resource Percept

Resource Dependency Condition
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Code 1

TR program for Fig. 1

DronAtOrigin:
overOrigin → Land
NOT(height > hMax) AND NOT(height < hMin) → followGPS
height > hMax OR height < hMin → MaintainHeightOK
MaintainHeightOK:
height < hMin → go_up
height > hMax → ReduceHeight
ReduceHeight:
True → go_down
Land:
ground → nil
True → go_down
using satisfaction arguments, Contribution relationships, and

other minor differences. It provides systems engineers with

i∗ modeling and analysis functions, coupled with additional

functionality and the reliability of Microsoft Visio. It provides

a graphical palette from which systems engineers can drag-

and-drop i∗ concepts to develop Strategic Dependency and

Rationale models.
• The Formal TROPOS Language. Formal Tropos adds to i∗ tem-

poral specification primitives (Fuxman et al., 2004). It allows

specifying cardinality constraints in the dependencies among

intentional elements and also allows a new dependency type

(prior-to) to be defined to specify temporal order between

intentional elements.
• In Sutcliffe and Minocha (1999) the authors propose new types

of dependencies among actors and intentional elements: re-

sponsibility dependencies between an agent and a goal or a

task; authority dependencies between two agents; audit depen-

dencies between an agent and a goal or a task; and capability

dependencies of an agent with respect to a goal or task.

On the other hand, controlled experiments to determine the un-

derstandability of a given notation or language is a widely accepted

practice. Jamison and Teng (1993) carried out an experiment to de-

termine the perceived ease of use of several types of textual and

graphical database representations. They concluded that graphical

notations were more easily and efficiently accessed and the partic-

ipants declared that graphical representations were much easier to

understand.

Lee and Choi (1998) compared a set of conceptual data-

modeling languages to determine which gave more accurate and

understandable models in the shortest time. The best results

were obtained by the Extended Entity-Relationship Model (ERM)

and the Object Modeling Technique. Bajaj (2004) studied the

influence of the number of metamodel concepts on the readability

of schemes created using such metamodels. They carried out an

experiment using many variants of the original ERM, each one

with a different number of concepts in order to evaluate efficiency,

effectiveness and learnability (defined as an improvement in

efficiency and effectiveness over time). The results led the authors

to conclude that the variants with most concepts allowed higher

precision in the domain conceptualization and at the same time

were easier to learn, although the time needed to process the

schemes was increased significantly.

Many other approaches are based on ERM: in Genero et al.

(2008) a set of objective metrics were defined on ER diagrams

and an experiment was performed to determine whether these

metrics had any correlation with the “subjective understandabil-

ity”, efficiency and effectiveness of ER diagrams. Three of the

proposed metrics (number of entity attributes, number of 1:1

relationships, and number of 1:N relationships) were significantly

correlated with scheme understandability: the more attributes and

relationships a diagram had, the less understandable it turned out

to be.

A family of experiments was carried out in Teruel et al. (2012)

to compare the understandability of i∗ and CSRML when spec-

ifying Collaborative Systems in which the users could perform

collaborative, communication and coordination tasks. Similarly

to the system used in the present study, they used two replicas

in which the subjects answered a set of questions related to the

understandability of the two notations. The statistical analysis

showed that the specifications made by CSRML scored higher than

i∗, especially in collaboration aspects. The study concluded that

in terms of understandability CSRML outdid i∗ as a specification

language for collaborative systems.

More recently, a controlled experiment was performed in

Morales et al. (2015) to determine the understandability of i∗ ver-
us KAOS as a language for specifying TR systems. The results

howed that both languages obtained similar scores in terms of

nderstandability, although i∗ notation stood out slightly. The sta-

istical analysis of the results led to the conclusion that i∗ notation

as more understandable than KAOS as a specification language

or TR systems.

Following the strategy defined in Morales et al. (2015), the aim

f the present study is to statistically validate whether or not the

otational extensions are an improvement of the original i∗ nota-

ion by means of a family of experiments

. Previous background: i∗ for TR system requirements

pecifications

The i∗ framework guides the stakeholders through the differ-

nt phases of the software development process, namely from the

arly requirements analysis up to the detailed design. As already

entioned, i∗ can also be employed to specify the requirements of

R systems.

The work by Morales et al. (2015) introduces the language and

ives a detailed description of the technique developed for speci-

ying TR systems. Table 1 briefly summarizes the mapping from i∗

oncepts to TR concepts, which constitutes the kernel of the tech-

ique described in the work.

Fig. 1 shows the application of this approach by using a sim-

lified version of the i∗ specification of one of the examples used

n the family of experiments described in Section 5.2. The example

onsists of a drone that always goes back to its origin, no matter

here it has taken off from.

The details of the application of the technique described in

orales et al. (2015) to the i∗ specification shown in Fig. 1 are

iven below. The resulting TR program is shown in Code 1:

• Every i∗ goal in Fig. 1 becomes a TR goal (in bold text in Code

1, as for instance, Land or MaintainHeightOK).
• Every i∗ agent becomes a sensor or device, such as GPS or al-

timeter.
• Every i∗ resource that has a dependency relationship with an

agent becomes a condition monitored by the homologous sen-

sor, such as ground with the altimeter. i∗ goals or tasks that lack
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Fig. 1. Drone application specification using i∗.
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Code 2

A TR program fitting the specification in Fig. 2

DronAtOrigin:
overOrigin → Land
NOT(height > hMax) AND NOT(height < hMin) → followGPS
height > hMax OR height < hMin → MaintainHeightOK
MaintainHeightOK:
height < hMin → go_up
height > hMax → go_down
Land:
ground → nil
height > hMax → go_down
dependency relationships, such as go_down, are mapped to TR

rules whose condition is always true (True → goal/action).
• Every i∗ task, such as followGPS, becomes an action.
• i∗ tasks and goals linked by a task-decomposition link to an i∗

goal become rules of the same TR goal. For example, the Land

goal is decomposed into the tasks go_down and nil. Therefore,

two rules are created for the TR goal named Land: one whose

action is go_down and another whose action is nil, as shown in

Code 1.
• The relative position of the items in the i∗ specification states

the priority of the rules in the TR program. For example, Land is

drawn farther to the right than followGPS (see Fig. 1). As can be

seen in Code 1, the rule whose action is Land is over the rule

whose action is followGPS because it has higher priority.

.1. Shortcomings of i∗ for TR systems

As shown in the previous section, it is possible to specify the

equirements of a TR system using i∗. Although the validity of the

roposed mapping between i∗ and TR programs has been estab-

ished in previous works (Morales et al., 2015, Morales et al., 2015),

n this last paper the authors pointed out some limitations found

n applying such a technique and briefly presented an extension to
∗ named TRiStar, which aims to overcome them. We firstly sum-

arize these limitations by an illustrative example, while the fol-

owing section describes the enhancements provided by TRiStar for

pecifying TR systems employing i∗.

• S1. Setting the priority by using the order in which tasks or

goals refining a goal are positioned in the diagram constrains

the likely position of subtasks or subgoals in it. Occasionally,

this may result in messy diagrams hard to interpret. In addi-

tion, it is difficult to automatically process a diagram in which

the relative position of two items has an important meaning.
The example shown in Fig. 2, a variation of Fig. 1, will help

us to explain this shortcoming. Task go_down must be placed

far away from the Land goal because it needs to be on the left

of go_up, as the priority of go_down when refining Maintain-

HeightOK is lower than that of go_up.
• S2. If the same task is involved in two or more goals, it may

then depend on different resources when refining one of the

goals. This may cause ambiguity when obtaining the conditions

of the associated TR rule. Considering the i∗ specification of the

drone shown in Fig. 2, it can be seen that it is very similar to

that of Fig. 1. In this case we introduced a goal named Reduce-

Height to avoid the ambiguity around the go_down task. If this

artificial goal is not used (note that there is no goal Increase-

Height, as there is no possible ambiguity with the go_up task),

it is not possible to say whether go_down depends on height >

hMax when refining MaintainHeightOK or when refining Land,

or in both cases. Code 2 shows a TR program that fits this spec-

ification. Note the condition of the lowest rule in the subgoal

Land; a drone programmed with Code 2 would crash when it

flew over its origin. When overOrigin became true, the subgoal
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Fig. 2. Ambiguous i∗ specification.

notation.
Land would take control, but as none of the conditions of the

rules in Land are actually true, the drone would do nothing and

thus would fall to the ground.

We got around this problem in the i∗ version shown in Fig. 1 by

using the additional subgoal ReduceHeight. The resource height

> hMax depends on this new subgoal, which is decomposed

into only one task, freeing this task (go_down) from dependen-

cies. With this alternative specification a correct TR program

can be generated, but the extra item needed reduces the dia-

gram’s readability.
• S3. The conditions of TR rules are usually composed of logical

combinations of percepts given by the sensors. In i∗ there is no

way to graphically represent a Boolean combination of some of

the percepts provided by sensors. Retaking the example shown

in Fig. 1, in i∗ there is no symbol to represent a dependency on

height > hMax OR height < hMin, for instance. We got around

this limitation by adding resources that are labeled with the

Boolean expression we wanted to represent inside the bound-

ary of the system. These expressions may become difficult to

read in systems with a certain degree of complexity.

4. TRiStar enhancements

To overcome the limitations identified in the previous section,

an extension to i∗ is proposed. The following three main new fea-

tures compose this extension, named TRiStar:

• E1: Prioritized decomposition links.
• E2: Dependent decomposition links.
• E3: Logical resources.

In this section these new features are described in depth.
• E1: Prioritized decomposition links. To avoid relying on the

relative position of the diagram elements when information

about their priority is needed (shortcoming S1), a new decom-

position link has been defined. This new type of decomposi-

tion link provides the priority of the rule whose subgoal or task

is at the end of the link by changing its own representation.

The standard i∗ decomposition link has a short perpendicular

line at the end that is closer to the goal being decomposed.

The new decomposition links have as many of these short lines

as needed to show the priority of the subgoal or subtask. One

line means the lowest priority. The more lines a decomposition

link has, the higher priority its related subgoal or subtask has.

Now, the position of these lines on the diagram does not have

any intended meaning. Fig. 3 shows a diagram in which these

new decomposition links can be seen. Note that although the

highest_priority_subgoal is in the middle of the subgoals, it has

the highest priority as its decomposition link has three short

perpendicular lines. In the TR program corresponding to this

specification, the rule containing highest_priority_subgoal would

be the uppermost rule in Goal, then medium_priority_subgoal

would be next, and finally lowest_priority_subgoal.

In order to avoid scalability problems when a goal is refined

into many tasks or subgoals, the short perpendicular lines

can be substituted by a circle with the priority specified in

its interior, with ‘1’ being the lowest priority. Although this

notation facilitates the insertion of new subtasks or subgoals

and avoids the excessive cluttering that can be generated by

the addition of many perpendicular lines, we recommend the

use of short lines to maintain the similarity with the original i∗
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Fig. 3. Prioritized decomposition links.

Code 4

TR program for Fig. 5

Goal:
resource1 OR resource2 → Subgoal
True → task

v

a

• E2. Dependent decomposition links have been introduced to

avoid linking dependencies directly to subgoals or tasks (limita-

tion S2). It is worth remembering that the condition of a rule in

a TR program cannot be generated from a dependency on a task

or subgoal alone, but the relationship between the task and the

goal it refines is also needed. This relationship is obviously rep-

resented by the decomposition link that connects them and ex-

plains why a dependency link between the decomposition link

and the resource has been introduced. For example, as Fig. 4

shows, the decomposition link between Goal and Subgoal de-

pends on resource1, which is in Sensor1’s boundary. Similarly,

the decomposition link between Goal and Task depends on re-

source2, which is in Sensor2’s boundary.

Note that the new prioritized decomposition link has been used

in the example. As the link between Goal and Subgoal has a

higher priority than the other, the first rule in the TR program

is the one whose condition is resource2. Code 3 shows the TR

program generated from this specification.
• E3. To overcome limitation S3, we introduced a specialization

of i∗ resources to represent the logical combinations of per-

cepts. These specialized resources are related to all the percepts
Code 3

TR program for Fig. 4

Goal:
resource1 → Subgoal
resource2 → task

Fig. 4. Dependent deco
they involve by using directed dependency links. In addition,

the logical resource is given a name, which acts as an alias for

such combinations of percepts. A table is provided to link ev-

ery name with its logical expression. Fig. 5 shows an example

of this new kind of resource.

The decomposition between Goal and Subgoal depends on a log-

ical resource which is the result of an OR operation between re-

source1 and resource2. As the logical resource uses the percepts

resource1 and resource2 as operands, dependency links are es-

tablished from the logical resource to its two operands. The ex-

pression represented by LogicalResource can be seen in the ta-

ble just under System’s boundary. Code 4 shows the TR program

that corresponds to this specification:

Lastly, although it cannot be considered an extension to i∗, the

dependencies between a percept and the sensor that generates

it are represented by inserting the resource inside the agent’s

boundary, as already shown in Figs. 4 and 5. In this way, only a

dependency link is needed to represent the condition of a rule,

unlike plain i∗ specifications, which require two such links.

The mapping from a TRiStar specification to a TR program is

ery similar to that of i∗. In fact, Table 1 still remains valid. There

re however some differences:

1. The main TRiStar agent is transformed into the TR system-to-

be. The main TRiStar agent is the one that has the goal that the

final system wants to achieve in its boundary.

2. TRiStar goals become TR goals.

3. TRiStar tasks are specified as TR atomic actions.

4. TRiStar resources (except logical resources) become percepts

generated by sensors.

5. A logical resource will be translated into the expressions found

in the table associated to its alias.

6. Considering that a TR rule is defined as condition → goal/action,

every TRiStar resource having a decomposition link as a de-

pendee is transformed into a TR rule whose condition is that

resource and its action is the task or goal that is at the end

of the decomposition link. A decomposition link not depending

on any resource is transformed into a rule of the form True →
goal/action.

7. Since a TR goal is defined as a set of prioritized TR rules, a

TRiStar goal being refined into goals and tasks through task-

decomposition links is transformed into a TR goal formed by

as many rules as TRiStar tasks or goals refine the original i∗

goal.
mposition links.
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Fig. 5. Use of logical resources.
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m

8. Rule priority, given by the order of the rules in TR programs, is

specified in TriStar diagrams by using prioritized decomposition

links. So, the tasks or goals placed at the end of the highest

priority decomposition link will be translated into the action of

the highest priority rule in the TR program. The resource on

which the highest priority decomposition link depends will be

transformed into the condition of that rule.

Fig. 6 shows the specification of the same drone as that in

Fig. 1 but using TRiStar.

All the proposed extensions have been employed in this

example:

• Prioritized decomposition links allow positioning go_down near

both MaintainHeightOK and Land, which helps keep the diagram

organized and uncluttered, with no crossing lines.
• Dependent decomposition links enable the artificially created

subgoal ReduceHeight to be removed. The resource height >

hMax depends on the link between MaintainHeightOK and

go_down and not on the link from Land, so that the ambiguity

of the rule condition is eliminated.
• Two logical resources have been introduced: HeightOK and

HeightKO, whose expressions can be found in the table in

Fig. 6. The aliases make it easier to understand the conditions

that apply to the rules involved.

Code 5 shows the TR program obtained by applying the map-

ping rules described in Section 4 to the TRiStar specification de-

picted in Fig. 6:

• Every TRiStar goal in Fig. 6 becomes a TR goal (in bold text in

Code 5, as for instance, Land or MaintainHeightOK).
• Every TRiStar agent becomes a sensor or device, such as GPS

or altimeter. The resources within their boundary are mapped

to the percepts provided by each of them. See ground inside

Altimeter’s boundary, for example.
Code 5

TR program for Fig. 6

DronAtOrigin:
atOrigin → Land
NOT(height > hMax) AND NOT(height < hMin) → followGPS
height > hMax OR height < hMin → MaintainHeightOK
MaintainHeightOK:
height < hMin → go_up
height > hMax → go_down
Land:
ground → nil
True → go_down

f

b

c

t

s

5

r

a

t

B

• A decomposition link depending on a resource, logical or not,

becomes a rule whose condition is the percept represented by

the resource and its action is the goal or task at the end of the

decomposition link. See for example in Fig. 6 the link between

DronAtOrigin and Land, which depends on atOrigin. It is mapped

to the first rule in goal DronAtOrigin as can be seen in Code 5.
• Logical resources are mapped to the conditions corresponding

to their aliases in the table. For instance, HeightKO is mapped

to height > hMax OR height < hMin.
• Decomposition links that lack dependency relationships, such

as that between Land and go_down, are mapped to TR rules

whose condition is always true (True → goal/action).
• Just as in the i∗ case, every TRiStar task, such as followGPS, be-

comes an action.
• TRiStar tasks and goals linked by a task-decomposition link to

a TRiStar goal become rules of the same TR goal. For example,

the goal Land is decomposed into the tasks go_down and nil.

Then, a TR goal named Land appears with two rules: one whose

action is go_down and another whose action is nil, as shown in

Code 5.
• The number of short perpendicular lines in the decomposition

links states the priority of the rules in the TR program. For ex-

ample, the decomposition link from DronAtOrigin to Land has

three of these perpendicular lines, while the decomposition link

between DronAtOrigin and followGPS has only two (see Fig. 6).

As can be seen in Code 5, the rule whose action is Land appears

before the rule whose action is followGPS.

. The family of experiments

In order to assess the understandability of both the newly cre-

ted TRiStar extension and i∗ when modeling the software require-

ents of TR systems, a family of experiments (see Fig. 7) per-

ormed to compare both of them based on the guidelines described

y Kitchenham et al. (2002). In this section we will describe the

ontext, the design and how the experiments were conducted. All

he three members of the family were designed in a similar way,

o that only one description is given.

.1. Experimental context

The main goal of this family of experiments was to study the

equirements specifications of TR systems using both i∗ and TRiStar

nd evaluate their effectiveness and efficiency from the perspec-

ive of requirements engineering researchers, using undergraduate

. Sc. students and experimented software developers as subjects.
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Fig. 6. Drone specification using TRiStar.

Fig. 7. Chronology of the family of experiments.
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o achieve this goal, the null hypotheses shown in Table 2 were de-

ned using the Goal Question Metric template (Basili et al., 1994).

As Table 2 shows, the subjects in the experiments were engi-

eering students and software development professionals. All were

amiliar with requirements engineering but none had previously

sed either i∗ or any other GORE language and none had any pre-

ious experience of TR systems.

The Sociedad Anónima de Electrónica Submarina (SAES) collabo-

ated in this study and allowed almost all their software engineers

o be subjects for the second replication. SAES is a Spanish com-

any specializing in underwater acoustics and develops undersea

ecurity and environmental protection systems. The company has

ore than 25 years of experience in developing advanced technol-

gy in the fields of Sonar, Acoustic Signal Processing, Underwater
 d
ignature Measurement and Management, Simulation and Training.

ighly skilled and experienced engineers and scientists in various

isciplines make SAES an innovative and competitive company in

oth national and international markets.

.2. Experimental design

All the experiments in this family were aimed at evaluating the

nderstandability of the requirements specification of two differ-

nt TR systems specified by both i∗ and TRiStar. The first system

onsisted of a drone which was able of deliver a package to a des-

ination and go back to its origin, always keeping at a safe height.

PS informs the drone when it is flying over its origin, over the

estination and gives it directions to reach both places. Weight is
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Table 2

Main features of the family of experiments.

Null-Hypotheses HUEffee0A: i∗ has the same average score for understandability effectiveness as TRiStar when specifying TR requirements. HUEffec1A: HUEffec0A

HUEffec0B: The understandability effectiveness average score is the same regardless of the domain used in the experiment. HUEffec1B: HUEffec0B

HUEffec0AB: i∗ has the same understandability effectiveness average score as TRiStar when specifying TR systems requirements, regardless of

the domain used in the experiment and viceversa. HUEffec1AB: HUEffec0AB

HUEffic0A: i∗ has the same average score for understandability efficiency as TRiStar when specifying TR requirements. HUEffic1A: HUEffic0A

HUEffic0B: The understandability efficiency average score is the same regardless of the domain used in the experiment. HUEffic1B: HUEffic0B

HUEffic0AB: i∗ has the same understandability efficiency average score as TRiStar when specifying TR systems requirements, regardless of the

domain used in the experiment and viceversa. HUEffic1AB: HUEffic0AB

Dependent variables Understandability effectiveness of requirements modeling languages, measured by UEffec

Understandability efficiency of requirements modeling languages, measured by UEffic

Independent variables The system the models specify and the language used to specify these models

Location ETSII at UPCT (Cartagena, Spain) ETSIT at UPCT (Cartagena, Spain) SAES Facilities (Cartagena, Spain)

Date February 2015 February 2015 February 2015

Subjects 31 undergraduates of the B.Sc. in Industrial

Electronics and Automation Engineering

(16 Group 1; 15 Group 2)

25 undergraduates of the B.Sc. in

Telecommunication Systems Engineering

(13 Group 1; 12 Group 2)

13 experienced software development

professionals (6 Group 1; 7 Group 2)

Table 3

Experimental design.

System

Drone Football player

Language TRiStar Group 1 Group 2

i∗ Group 2 Group 1 q

5

t

t

C

F

S

s

t

t

f

p

s

t

monitored so that the drone knows whether it is loaded or not

and an altimeter is in charge of updating height information. The

actions the drone is able to carry out are limited to going up, going

down, following GPS directions and releasing the load.

The second system was a variation of one of the systems used

in Morales et al. (2015), which was a soccer robot which plays in

defensive positions. When the robot considers the danger is over,

it goes back to its own goal. The robot can find the ball and knows

who is controlling the ball: i.e. himself, an opponent or a team-

mate. The robot can identify other members of its own team, in

fact, its main goal is to keep the ball in his team’s possession.

To do this, the robot can turn, move forward, dribble and kick

the ball.

The subjects in all the tests were divided into two groups,

Group 1 and Group 2, each group using one of the languages.

Table 3 summarizes these decisions:

Dividing the subjects into 4 different groups starting from

the combination of the two independent variables makes up a

2 × 2 factorial design with confounded interaction (Winer et al.,

1991) and thanks to this combination system-language among the

groups, the learning effect is cancelled. Every subject answered a

brief questionnaire on both models. The questionnaire (see Ap-

pendix) consisted of some TR program fragments from the pre-

sented models using the appropriate mapping. In every fragment

there was an element missing and the subject was asked to fill

in the blanks. They were also asked to record the time they need

to answer the questions. With this information, effectivenes (UEf-

fec) was calculated as the number of correct answers divided by

the total number of questions. Efficiency (UEffic) was calculated as

UEffec divided by the number of minutes required to fill in the

questionnaire. In the final question the subjects were also asked

which language they thought was most understandable in specify-

ing TR systems.

Since all the participants had previous experience in require-

ments engineering but not in GORE or TR systems some filtering

criteria were laid down to eliminate any subjects whose previous

experience would give them an advantage that could adulterate

the results. Those that matched any of the following criteria were

discarded:
• Those more than 5 years older than the group’s average age.
• Previous experience in GORE languages.
• NO previous experience in requirements engineering
• Previous experience in TR systems.

Finally, each subject was interviewed on his opinion of the

uestions and the answers were recorded for subsequent analysis.

.3. Test procedure

The tests were carried out in three different sessions: one for

he original test and two more for the replicas. The first session

ook place in the Industrial Engineering School of the University of

artagena and the second in the Telecommunications Engineering

aculty of the same university. The third session took place in the

AES facility in Cartagena.

The same procedure was used for all three sessions. An in-

tructor initially briefed the subjects on TR systems, i∗ and TRiS-

ar, and how to represent TR systems requirements in both no-

ations. The examples used in the experiment, the drone and the

ootball player, were also described. The time needed for the com-

lete briefing was about 20 min. Before giving the models to the

ubjects, the following information was obtained:

• For subjects in groups G1 and G2:
• Gender (Male/Female)
• Age
• Qualifications
• Average score
• Have you had any previous experience of working with goal-

oriented requirements engineering?
• Have you had any previous experience of working with any

other requirements engineering technique?
• Have you had any previous experience of working with

teleo-reactive systems?
• For subjects in group G3:

• Gender (Male/Female)
• Age
• Years of experience in software development
• Have you had any previous experience of working with goal-

oriented requirements engineering?
• Have you had any previous experience of working with any

other requirements engineering technique?
• Have you had any previous experience of working with

teleo-reactive systems?

The subjects were asked to record their exact start and end

imes from an online clock projected on a screen.
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Fig. 8. Subjective Understandability.

Table 4

Levene’s test for UEffec in E1.

F df1 df2 Sig.

0.814 3 58 0.493
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Table 6

Levene’s test for UEffic in E1.

F df1 df2 Sig.

0.238 3 58 0.869
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.4. Analysis of the results

Fig. 8 shows the participants’ subjective preference in the form

f the combined answers for the three experiments to the question

In your opinion, which language is more understandable?”.

As can be seen in Fig. 8, the answers show that TRiStar is more

nderstandable than i∗. 45 subjects declared that they found TRiS-

ar more understandable, vs less than 15 who preferred i∗ or the

0 people who did not give a clear answer (Don’t Know). As re-

ards the effictiveness and efficiency aspects; the factorial design

f the experiments in this family makes them particularly appro-

riate for a two way ANOVA test in order to analyze the results.

he three main assumptions for this test are the following:

• Independence of observations.
• The distribution of the residuals must be normal.
• Homocedasticity: homogeneity of variances.

In the following subsections the original experiment and its

eplications will be analyzed to check firstly whether these as-

umptions are achieved or not. In those cases in which the as-

umptions are achieved, the results of the ANOVA tests will be

resented and anlyzed. The way in which the data was obtained

uarantees the independence of the observations, so that only nor-

al distribution and homocedasticity need be proven. The results

ere analyzed by IBM SPS Statistics v. 22.

.4.1. Original experiment (E1)

The answers of 5 participants in this test were discarded from

he sample either because they did not comply with one of the cri-

eria in Section 5.2 or they had not completed the questionnaires.

he total number of remaining subjects in the sample was 31. Ac-
Table 5

ANOVA results for UEffec in E1.

Source Type III sum of squares

Model 33.907a

Language 0.085

System 0.016

Language∗ system 0.012

Error 0.980

Total 34.887

a R Squared = 0.972 (Adjusted R Squared = 0.97
ording to the central limit theory (Grinstead and Snell, 2006), the

ormality of the sample may be assumed.

UEffec: as can be seen in column “Sig.” in Table 4, Levene’s test

Levene, 1960) for homogeneity of variances provides a p-value of

.493, allowing us to assume the homocedasticity of the sample.

his test was designed to fit the two-way ANOVA test to be per-

ormed: language + system + language ∗ system, each of these el-

ments corresponding to one of the three null hypotheses to be

valuated (HUEffec0A, HUEffec0B and HUEffec0AB).

The results provided by the ANOVA test are shown in Table 5.

As the p-value obtained for language is 0.047 (see column

Sig.”) and therefore less than α = 0.05 HUEffee0A can be rejected

nd it can be concluded that there is a statistically significant dif-

erence between the UEffec results obtained from i∗ and those ob-

ained from TRiStar. On the other hand, as the p-values for system

nd language∗system are much bigger than α, neither HUEffee0B nor

UEffee0AB can be rejected. We can thus be sure that language influ-

nces UEffec, but neither the system nor the combination of lan-

uage and system does so.

To calculate the confidence interval of the mean differences be-

ween i∗ and TRiStar: [−0.15986, −0.00168], as all the values in

he interval are less than 0, we can say with a 95% confidence

evel that the effectiveness of TRiStar is higher than that of i∗ when

odeling TR systems.

Table 6 shows the homocedasticity of the sample for UEffic as

t provides a p-value of 0.869.

Table 7 shows the results of the ANOVA test. As with UEf-

ec, HUEffie0A may be rejected but HUEffie0B or HUEffie0AB may not,

iven the p-values obtained for language (0.029), system (0.309)

nd language∗system (0.091). Then, as in the case of effectiveness,

e can conclude that the language used does affect the efficiency,

ut the system or the combination of language and system does

ot.

Once we know that language does affect UEffic, we will obtain

he confidence interval of the mean differences between i∗ and

RiStar in order to determine which language obtains the best re-

ults. The calculated interval is [−0.09175, −0.00373] and we can

onclude at a 95% confidence level that TRiStar is more efficient

han i∗ when specifying TR systems requirements.

.4.2. First replication (R1)

For the first replication of the experiment, after discarding 6

tudents that did not comply with the criteria in Section 5.2, we

ad a sample of 25 subjects, whose normality had to be shown

s the sample size was less than 30. As the ANOVA test is robust

efore moderated normality deviations, a graphical proof of the
df Mean square F Sig.

4 8.477 415.250 0.000

1 0.085 4.154 0.047

1 0.016 0.797 0.376

1 0.012 0.573 0.453

58 0.020

62

0).
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Table 7

ANOVA results for UEffic in E1.

Source Type III sum of squares df Mean square F Sig.

Model 1.388a 4 0.347 47.809 0.000

Language 0.036 1 0.036 5.008 0.029

System 0.008 1 0.008 1.052 0.309

Language ∗ system 0.021 1 0.021 2.953 0.091

Error 0.421 58 0.007

Total 1.809 62

a R Squared = 0.767 (Adjusted R Squared = 0.751).

Fig. 9. Normal distribution of UEffec in R1.

Table 8

Levene’s test for UEffec in R1.

F df1 df2 Sig.

0.16 3 46 0.922

Fig. 10. Normal distribution of UEffic in R1.

Table 10

Levene test for UEffic in R1.

F df1 df2 Sig.

2.336 3 46 0.086
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distribution was enough. Fig. 9 contains a box graph showing the

normality of the UEffec distribution:

As in the case of E1, a Levene’s test was performed to check

the homocedasticity of the samples. This test is also designed to

ensure the homogeneity of variances for language, system and the

combination of both (language ∗ system). The results are shown

in Table 8 in which a p-value of 0.922 can be seen to prove the

homogeneity of the error variances.

After checking the assumptions, the ANOVA test was performed

and the results are shown in Table 9. In this case, the p-values dis-

played in column “Sig.” for language (0.017), system (0.437) and

language∗system (0.101) support the same conclusions as in E1:

only language affects the effectiveness of the specification.
Table 9

ANOVA results for UEffec in R1.

Source Type III sum of squares

Model 29.151a

Language 0.177

System 0.018

Language ∗ system 0.080

Error 1.316

Total 30.467

a R Squared = 0.957 (Adjusted R Squared = 0.95
To show that TRiStar provided a better UEffec value, the confi-

ence interval of the mean differences between i∗ and TRiStar was

alculated: [−0.2152, −0.02]. As all the values in the interval were

ower than 0, TRiStar obtained the best language effectiveness val-

es. In other words, TRiStar is more effective when specifying TR

ystems requirements.

Fig. 10 shows the normality of the UEffic samples:

Homocedasticity was proven again using Levene’s test (see

able 10). The small p-value (0.086) obtained was still higher than

.05 and therefore the null hypothesis of the homogeneity of vari-

nces could be assumed.

Table 11 summarizes the results of the ANOVA test to analyze

Effic in this experiment:
df Mean square F Sig.

4 7.288 254.738 0.000

1 0.177 6.188 0.017

1 0.018 0.616 0.437

1 0.080 2.801 0.101

46 0.029

50

3).
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Table 11

ANOVA results for UEffic in R1.

Source Type III sum of squares df Mean Square F Sig.

Model 0.789a 4 0.197 230.751 0.000

Language 0.084 1 0.084 98.500 5.17 × 10−13

System 0.000 1 0.000 0.198 0.658

Language ∗ system 0.002 1 0.002 1.933 0.171

Error 0.039 46 0.001

Total 0.829 50

a R Squared = 0.953 (Adjusted R Squared = 0.948).

Table 12

Results for UEffec in R2.

Levene’s test Kruskal–Wallis

Language 0.079 0.046

System 0.359 0.217

Table 13

Levene’s test for UEffic in R2.

F df1 df2 Sig.

1.616 3 22 0.214
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Fig. 11. Distribution of UEffec in R2.

Fig. 12. Normal distribution of UEffic in R2.
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The p-value for language is 5.17 × 10−13 so that HUEffie0A can

e rejected. The p-values for system (0.658) and language∗system

0.171) do not allow us to reject HUEffie0B or HUEffie0AB thus reaching

he same conclusion as in E1: language affects the efficiency of the

pecifications but system or the combination of both do not.

As in the previous cases, the confidence interval of the mean

ifferences was calculated, giving [−0.09878, −0.06522]. As the

hole interval was formed by negative values, we could conclude

hat TRiStar was more efficient than i∗ in specifying TR systems.

.4.3. Second replication (R2)

The small sample of the second replication (13 subjects) forced

s to check the normality of the distribution. This was not possi-

le for effictiveness because the sample hugely deviated from nor-

ality, so we could not use an ANOVA test. As the use of non-

arametric tests is recommended for this type of sample, we chose

he Kruskal–Wallis test to check the equality of the distributions

mong the categories of the samples. As this test only allows one

actor to be checked at a time, two tests were necessary: one for

anguage and one for system.

Kruskal–Wallis does not need the normality assumption but it

oes need the homocedasticity condition. To prove this, we per-

ormed a Levene’s test for language that provided a p-value of

.079 and another for system, giving a p-value of 0.359. These re-

ults are summarized in Table 12.

The Kruskal–Wallis test provided a p-value for language of

.046 with a significance level of 0.05, which indicated that lan-

uage did affect the UEffec distribution. We obtained a p-value of

.217 for system, which prevented us from concluding that UEffec

as affected by the system. Therefore, if only language affects the

Effec distribution and taking into account the distribution shown

n Fig. 11, we can state that TRiStar is more effective at specifying

R systems.

Fig. 12 shows the normality of the UEffec distribution. Homo-

edasticity was checked by Levene’s test and the result is shown

n Table 13. As its p-value is 0.214, the homogeneity of variances

an be assumed.

After checking all the conditions, the two-way ANOVA test was

erformed. The results are shown in Table 14:

Language obtained a p-value of 0.009 so we could reject

. System and language∗system obtained p-values well over
UEffic0A
.05, preventing us from rejecting HUEffie0B or HUEffie0AB. From these

esults ir can be concluded that, as in the previous cases, language

oes affect efficiency when specifying TR systems but the selected

ystem or the combination of language and system do not.

In order to determine the language which obtains the best re-

ults in terms of UEffic, the confidence interval at 95% of the

ean differences was calculated and the result was [−0.17945,

0.03132]. As all the values in the interval were less than 0,

e could assume that TRiStar is more efficient at specifying TR

ystems.
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Table 14

ANOVA results for UEffic in R2.

Source Type III sum of squares df Mean square F Sig.

Model 1.398a 4 0.349 39.589 0.000

Language 0.072 1 0.072 8.181 0.009

System 0.000 1 0.000 0.013 0.909

Language ∗ system 0.000 1 0.000 0.017 0.899

Error 0.194 22 0.009

Total 1.592 26

a R Squared = 0.878 (Adjusted R Squared = 0.856).

Table 15

Levene’s test for global UEffec.

F df1 df2 Sig.

0.088 3 134 0.966

Table 16

Levene’s test for global UEffic.

F df1 df2 Sig.

0.838 3 134 0.475
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5.5. Meta-analysis

After analyzing the isolated results of every experiment in the

family, we performed a global analysis of all the experiments. First,

we performed a similar study to those performed for every iso-

lated experiment but using all the data from the original experi-

ment and the two replications. This meant performing a two-way

ANOVA test both for UEffec and UEffic, keeping the null hypotheses

given in Table 2.

The sample size (31 + 25 + 13 = 69) was big enough to

satisfy the normality assumption. A similar Levene’s test to those

described in the previous section (language + system + language
∗ system) was applied to the data to prove homocedasticity.

Table 15 shows the results of the test for UEffec and Table 16 for

UEffic.

In both cases homogeneity of variances could be assumed, as

the calculated p-values were well over 0.05.

After checking the assumptions, a two-way ANOVA test for all

the samples used was performed. Table 17 summarizes the results

for UEffec and Table 18 for UEffic:

With these results HUEffce0A could be rejected, thanks to the cal-

culated p-value of 4.61 × 10−4 for language. However, HUEffee0B and

HUEffee0AB could not be rejected as the obtained p-values for system

and language∗system were much higher than 0.05. The calculated

confidence interval was [−0.14303, −0.04102], which proved that

there was enough statistical evidence to affirm that TRiStar is more

effective than i∗ when specifying the requirements of TR systems.

The results for efficiency were similar to those for effective-

ness: HUEffie0A could be rejected but HUEffie0B and HUEffce0AB must

be accepted. The p-value for language was 8.73 × 10−7 but those
Table 17

ANOVA results for global UEffec.

Source Type III sum of squares df

Model 90.900a

Language 0.296

Domain 0.047

Language ∗ domain 0.003

Error 3.071 13

Total 93.971 13

a R Squared = 0.967 (Adjusted R Squared = 0.966).
f systems and language∗system were well over 0.05. The confi-

ence interval for the mean differences between i∗ and TRiStar was

−0.09844, −0.04359]. Therefore, taking into account the aggregate

esults for the family of experiments, we had enough statistical ev-

dence to state that TRiStar is more efficient than i∗ when specify-

ng requirements for TR systems.

We used BioStat’s Comprehensive Meta-Analysis (Biostat Inc,

omprehensive Meta-Analysis 2006) for the meta-analysis. We first

btained the Global Effect Size of the family of experiments and

hen used it to decide the specific meta-analysis method to use.

he Global Effect Sizes for UEffec and UEffic are shown in Table 19

nd Table 20, respectively.

With these values and following Dieste’s directions (Dieste

t al., 2011) Weighted Mean Difference (WMD) method was cho-

en, as it gets the best score in reliability and statistical power for

oth UEffec and UEffic. Figs. 13 and 14 summarize the WMD re-

ults for both variables.

Calculated p-values (0.00016 for UEffec and < 1 × 10−5 for

Effic) allow us to reject the null hypothesis and say that both ef-

ectiveness and efficiency of TRiStar and i∗ are different. In addi-

ion, the cell in the “Overall” row and “Std. diff. in means” column

f both tables show the WMD values for effectiveness (−0.66455)

nd efficiency (−1.18097). As both values are less than 0 we can

tate that TRiStar provides better effectiveness and efficiency when

pecifying TR systems requirements.

.6. Observational findings

This section deals with the conclusions extracted from the ob-

ervations made during the experiments. Most questions asked by

he participants were related to the representation of priority in
∗. They could all remember how priority was represented in TRiS-

ar but some had forgotten how thus was done in i∗, although both

echniques had been explained at the same time. This suggests that

he participants found the prioritized decomposition links in TRiS-

ar more intuitive and when they saw an i∗ diagram with no pri-

ritized decomposition links they could not figure out a way of

epresenting priority without them.

The results obtained in the second replication, with a sample

f experienced software developers, were better for effectiveness

nd efficiency than those obtained from the students. However,

he relationship between both languages is similar: effectiveness
Mean square F Sig.

4 22.725 991.645 0.000

1 0.296 12.896 4.61 × 10−4

1 0.047 2.044 0.155

1 0.003 0.151 0.699

4 0.023

8
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Table 18

ANOVA results for global UEffic.

Source Type III sum of squares df Mean square F Sig.

Model 3.350a 4 0.838 127.574 0.000

Language 0.175 1 0.175 26.617 8.73 × 10−7

Domain 0.004 1 0.004 0.656 0.419

Language ∗ domain 0.019 1 0.019 2.834 0.095

Error 0.880 134 0.007

Total 4.230 138

a R Squared = 0.792 (Adjusted R Squared = 0.786).

Table 19

Global effect size for UEffec.

i∗ TRiStar

Study System Mean SD N Mean SD N Hedges’ g Std. Err. Effect size

E1 Drone 0.7653 0.10895 15 0.8075 0.14201 16 −0.3232 0.3524 Small

E1 Football 0.7575 0.13685 16 0.8767 0.13162 15 −0.8640 0.3668 Medium

R1 Drone 0.64 0.16657 12 0.8392 0.17168 13 −1.1381 0.4192 Large

R1 Football 0.7577 0.15996 13 0.7967 0.17839 12 −0.2231 0.3884 Small

R2 Drone 0.8586 0.1224 7 0.945 0.06025 6 −0.8109 0.5414 Medium

R2 Football 0.93 0.07668 6 0.98 0.05292 7 −0.7176 0.5363 Medium

Global effect size −0.6411 0.1697 Medium

Table 20

Global effect size for UEffic.

i∗ TRiStar

Study System Mean SD N Mean SD N Hedges’ g Std. Err. Effect size

E1 Drone 0.13 0.08341 15 0.1413 0.07429 16 −0.1396 0.3504 Small

E1 Football 0.115 0.07607 16 0.2007 0.10491 15 −0.9157 0.3688 Medium

R1 Drone 0.0817 0.01642 12 0.1523 0.03898 13 −2.2488 0.5010 Large

R1 Football 0.0738 0.02256 13 0.1675 0.03306 12 −3.2273 0.5984 Large

R2 Drone 0.1729 0.06473 7 0.2833 0.10053 6 −1.2382 0.5716 Large

R2 Football 0.1733 0.06055 6 0.2743 0.12921 7 −0.9052 0.5471 Medium

Global effect size −1.1389 0.1867 Large

Fig. 13. UEffec WMD meta-analysis.

Fig. 14. UEffic WMD meta-analysis.
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and efficiency are better in TRiStar. The experience of the software

developers probably helped them to learn new notations. In addi-

tion, SAES developers are used to dealing with much more com-

plex problems than those given in the experiment. Most of them

stated that they preferred using graphical notations instead of di-

rectly reading TR program rules.

TRiStar obtained better results in effectiveness but the effi-

ciency results were much better than those for i∗. This suggests

that although i∗ is still an appropriate language for representing

TR systems, TRiStar does the job better and faster.

The question in the questionnaire which obtained most incor-

rect answers in every experiment was one included in the drone

example. In fact, none of the subjects who specified the drone with

i∗ answered this question correctly. Those who specified the drone

with TRiStar had better results, but there were still a lot of wrong

answers. This question was related to representing rules whose

condition is always true. These results suggest that dependent de-

compostion links help to link conditions to rules, even though

the representation of unconditioned rules in TRiStar could be im-

proved.

6. Threats to the validity of the family of experiments

In order to reduce research and publication bias, as recom-

mended in Jørgensen et al. (2015), the raw experimental data

can be consulted in http://xurl.es/RawData. This section deals with

some issues that could have threatened the validity of the experi-

ment, in line with the recommendations of Wohlin et al. (2000).

6.1. Validity of the conclusions

The statistical indicators obtained from both the individual ex-

periments and the meta-analysis are well above a 95% confidence

level, which allows us to reject the initial null hypotheses.

6.2. Internal validity

As detailed in the previous section, we showed that all the re-

sults of the individual experiments satisfied the requirements of

the selected statistical methods (ANOVA and Kruskal–Wallis tests).

The questionnaires were reviewed by several experts in the devel-

opment of TR systems and the use of i∗ to minimize the risk of

incorrect questions.

None of the experiments lasted more than one hour, including

the initial briefing by the instructor, to avoid the subjects becoming

fatigued. Besides, the students that participated in the experiments

were given an extra half point towards their final exam, while in

the second replication, the professionalism of the subjects ensured

their motivation.

6.3. Construct validity

The method employed to obtain the data from the experiments

was a questionnaire similar to those used in other studies, e.g.

(Morales et al., 2015) and (Teruel et al., 2012), which reduced the

threats to the construct validity. Understandability efficiency and

effectiveness were also measured in a similar way to the above-

cited studies: efficiency was obtained by dividing the number of

correct answers by the total number of answers, while effective-

ness was calculated as efficiency divided by the time in minutes

taken by each participant to complete the questionnaire, as de-

scribed in ISO/IEC 25000:2014.

6.4. External validity

According to Höst et al. (2000), the differences between final-

year students and software professionals when performing rela-

tively small judgement tasks are minor. Since the questions in the
uestionnaire for both students and software professionals were

ot excessively complex, the mixture of students and profession-

ls in the experiment did not involve a threat to it. This view is

upported by the the good results obtained for the efficiency pa-

ameter, as well as the few questions raised by the participants on

he experiments.

Regarding the nature of the proposed problems, we can af-

rm that the examples employed in the experiments were realistic,

ince both are part of already existing systems.

. Conclusions and further work

In Morales et al. (2015) we showed that the understandability

f i∗ notation was better than that of KAOS for specifying the re-

uirements of teleo-reactive systems. From these results we de-

eloped TRiStar, an extension designed to overcome some short-

omings we identified in i∗, which is briefly introduced in Morales

t al. (2015) and fully described in the present paper. With the aim

f validating the proposal, we conducted a family of experiments

o compare the efficiency and effectiveness of the understandabil-

ty of i∗ versus TRiStar for specifying the requirements of teleo-

eactive systems.

Subjectively, the vast majority of the participants stated that

hey found the TRiStar specifications more understandable than

hose of i∗. Regarding efficiency and effectiveness, the statistical re-

ults are conclusive; on one hand, the results of the analysis of the

riginal experiment and the two replicas, and on the other, the re-

ults of the meta-analysis of the aggregate data considered as a

ingle experiment, provide enough statistical certainty to reach the

ollowing conclusion: both the efficiency and effectiveness of TRiS-

ar are higher than that of i∗ diagrams for specifying the require-

ents of teleo-reactive systems.

In future research work we plan to extend TRiStar in order to

ope with the new extensions proposed by Prof. Keith Clark in

eleoR (Clark and Robinson, 2014). We would also like to complete

he requirements specification process for teleo-reactive systems

y defining a method of guiding the process, starting from natu-

al language specifications.

In the sequel to this research, we intend to make a study of the

dvantages of TRiStar for the requirements specification of TR sys-

ems as compared with a direct approach to TR programs. Starting

rom a textual description of a reactive system, the results obtained

ith TRiStar will be compared to those obtained by writing the

R programs directly. Among other objectives, this study will focus

n detecting coupling problems among agents, detecting cohesion

roblems among goals, implementation effectiveness and early er-

or detection.

Lastly, we would also like to develop a graphical tool to help

evelopers depict TRiStar diagrams. This tool would include func-

ionalities such as subgoal expand/collapse, which would be help-

ul in improving the scalability of the models. This tool will also

llow the generation of the TR program which corresponds to the

pecified diagram.
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A nding task (Test for group 2)

ented requirements engineering?

er requirements engineering technique?

active systems?

r understandability?

he one that would be obtained from the previous specification.
ppendix A. Experimental material - an example of an understa

Gender (Male/Female)

Age

Qualification

Average score

Have you had any previous experience of working with goal-ori

Have you had any previous experience of working with any oth

Have you had any previous experience of working with teleo-re

[FILL IN AT THE END] In your opinion, which notation has bette

STARTING TIME:

Fill in the blanks so that the obtained TR program agrees with t

1. - DealShipment:

__________ → Land

__________ → DispatchShipment

__________ → MaintainHeightOK

2. - Land:

Ground → ______

___________ → go_down

3. - Choose the correct (a) or (b):

(a) DispatchShipment:

Loaded → DeliverShipment

NOT(Loaded) → followGPSToOrigin

(b) - DispatchShipment:

NOT(Loaded) → followGPSToOrigin

Loaded → DeliverShipment
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the one that would be obtained from the previous specification.
4. - DeliverShipment:

_______ → release

true → followGPSToDestination

5. - MaintainHeightOK:

height > hMax -> _______

________________ -> go_up

ENDING TIME:

STARTING TIME:

Fill in the blanks so that the obtained TR program agrees with

1. - RobotNextToBall:

BallAhead → ___________

True → rotate

2. - OwnGoalSafe:

_______________________________________ → RobotAtOwnGoal

True → _________________________

3. - RobotAtOwnGoal:

____________________ → nil

OwnGoalAhead → __________________

True → rotate

4. - BallPassedToFriend:

FriendAhead → kick

_________________ → rotate
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5. - Choose the correct (a) or (b):

(a) - BallUnderTeamControl:

BallUnderControl → BallPassedToFriend

OppControlsBall → BallRecovered

(a) - BallUnderTeamControl:

OppControlsBall → BallRecovered

BallUnderControl → BallPassedToFriend

ENDING TIME:
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CONCLUSIONES 
 

Uno de los principales objetivos de este trabajo es extender los recursos disponibles para el 

desarrollo de sistemas reactivos siguiendo el enfoque Teleo-Reactivo. Este objetivo global abarca 

sub-objetivos que tienen que ver con aspectos de ingeniería de requisitos, metodológicos, de diseño 

orientado a objetivos y de implementación en plataformas ejecutables utilizando tecnología de 

componentes. 

Con esa intención realizamos un experimento controlado para comparar la comprensibilidad de 

KAOS e i*, los dos lenguajes GORE más extendidos en la actualidad. La descripción y los resultados 

obtenidos con este experimento están cuidadosamente detallados en el artículo “A controlled 

experiment to evaluate the understandability of KAOS and i* for modeling Teleo-Reactive systems” 

que forma parte de este compendio. Tras la realización de este estudio decidimos usar i* como base 

de nuestro lenguaje ya que obtuvo unos resultados ligeramente mejores a los de KAOS. No 

obstante, i* también demostró tener algunas debilidades a la hora de especificar sistemas Teleo-

Reactivos. 

Para intentar mitigar las debilidades detectadas en i* propusimos una serie de extensiones al 

lenguaje que denominamos TRiStar. La validación de la propuesta vino gracias a la familia de 

experimentos que realizamos para comparar nuestra propuesta con el lenguaje original y que 

detallamos en profundidad en el artículo “A family of experiments to evaluate the understandability 

of TRiStar and i* for modeling Teleo-Reactive systems”, que también forma parte de este compendio. 

Los resultados demostraron holgadamente que TRiStar mejoraba la eficacia y la eficiencia de 

TRiStar cuando eran usados para especificar sistemas Teleo-Reactivos. 

Un diagrama TRiStar puede ser transformado sistemáticamente a un programa Teleo-Reactivo 

gracias al mapping descrito en el artículo en el que se presentaba el lenguaje. A partir de ese 

programa, es posible obtener la arquitectura de componentes de un sistema que lo implemente. 

Además, también puede obtenerse el comportamiento de dichos componentes en forma de 

máquinas de estados. Esta transformación se describe en el artículo “From Teleo-Reactive 

specifications to architectural components: A model-driven approach”, que cronológicamente fue el 

primero en publicarse de este compendio. Estos componentes pueden integrarse en el framework 

de desarrollo creado por el grupo de investigación DSIE [Iborra09]. 

A todo lo anterior le añadimos las posibilidades abiertas por TeleoR [Clark14] y TRiStar+ 

[Sánchez16] para introducir restricciones temporales en la especificación de requisitos de sistemas 

Teleo-Reactivos. Aunque TeleoR se ha mostrado capaz de soportar el tipo de restricciones 

temporales necesarias para desarrollar sistemas en tiempo real, también es cierto que existen 

algunas limitaciones que hacen que sea necesario seguir trabajando en el lenguaje y en su 

implementación. 

Gracias a esto, disponemos de un mecanismo que nos permite partir de un diagrama en TRiStar+  y 

obtener una arquitectura de componentes con un comportamiento que se corresponde con la 

especificación del diagrama inicial y que además pueden integrarse en un framework de desarrollo 

ampliamente probado.  

Entre los trabajos futuros queda pendiente proponer una metodología que permita obtener lo más 

sistemáticamente posible un diagrama TRiStar+ a partir de una descripción textual de un sistema 

Teleo-Reactivo y un caso de estudio que cubra todo el ciclo de desarrollo. Asimismo, tal y como 

hemos mencionado más arriba, queda pendiente la profundización en el lenguaje TeleoR y en su 

implementación para poder superar las limitaciones identificadas.  
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