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ABSTRACT 

Adenosine triphosphate (ATP) is the main biological phosphoryl donor required in 

many enzymes including dihydroxyacetone kinases (DHAKs) that convert 

dihydroxyacetone (Dha) into dihydroxyacetone phosphate (Dha-P), a key species with 

potential applications in synthesis. Herein we present a theoretical study of the 

molecular mechanism for the phosphoryl transfer reaction from an inorganic 

polyphosphate to Dha catalyzed by DHAK from C.freundii. This is part of a project 

devoted to modify the phosphoryl donor specificity of this enzyme avoiding the use of 

the problematic direct addition of ATP. Based on the use of hybrid QM/MM potentials, 

with the QM region described by semiempirical and DFT methods, the reaction 

mechanism of the wild type enzyme and the most active experimentally measured 

mutant (Glu526Lys) with poly-P as phosphoryl donor has been explored to elucidate the 

origin of the activity of this mutant. The similar energy barriers obtained in both 

systems confirm our previous studies on the binding step (Int. J. Mol. Sci. 2015, 16, 

27835-27849) suggesting that this mutation favours a more adequate position of the 

poly-P in the active site for the following step, the chemical reaction, to take place. 
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INTRODUCTION 

Phosphorylation, the chemical process that implies the transfer of the phosphoryl group 

from a phosphate ester or anhydride to a nucleophile,1 is essential in many procedures 

occurring in cells of living organisms such as propagation, signal transduction and 

replication of genetic material.2-4 In principle, phosphorylation reactions can occur 

through two likely mechanisms:3,5-7 associative, where nucleophilic attack is produced 

before departure of living group, and dissociative, where living group departure occurs 

previously to the nucleophilic attack. These reactions, in turn, may take place in a 

stepwise manner or by means of a single step or concerted mechanism.  

Adenosine triphosphate (ATP) is the main biological phosphoryl donor required in 

many enzymatic reactions. In fact, one of the largest protein family of enzymes, namely 

kinases,8,9 catalyses the transfer of the terminal phosphate group from ATP to a 

substrate or other proteins10. Different research works have been published about 

protein kinases where the phosphate from an ATP molecule is transferred mainly to a 

serine, threonine or a tyrosine residue.11-14 From the mechanistic point of view, some 

authors describe phosphorylation reactions where a conserved aspartate residue acts as a 

base activating the acceptor residue,15-19 while others consider that this activation is 

caused by the ATP substrate itself.20,21 The former process is categorized as asp-assisted 

mechanism and the latter is called substrate-assisted mechanism. An example for the 

first mechanism was proposed by Shi et. al,22 for the phosphoryl transfer reaction from 

ATP molecule to dihydroxyacetone (Dha) substrate in dihydroxyacetone kinase 

(DHAK) from Escherichia Coli (E.coli). Based on a crystal structure analysis, 

combined mutagenesis and enzymatic activity studies, the authors claimed that the 

aspartate residue plays the role of a basis taking the proton from Dha. However, De 

Vivo et al., based on theoretical results derived from gas-phase DFT calculations, 

classical molecular dynamics (MD) and quantum mechanics/molecular mechanics 

(QM/MM) Car-Parrinello simulations, suggested a substrate-assisted mechanism for the 

phosphorylation reaction in cyclin-dependent kinase (CDK2) where ATP was shown to 

take the proton from a serine residue.21 We have recently studied the phosphoryl 

transfer mechanism from ATP to Dha in DHAK from E.coli finding the substrate-

assisted mechanism kinetically more favorable than the asp-assisted mechanism.23 
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Scheme 1. Schematic representation of the reaction between ATP and Dha generating 

Dha-P catalysed by DHAK. 

 

DHAKs are divided into two classes, those using ATP as the phosphoryl donor in 

animals, plants and some bacteria, and those using the phosphoenol pyruvate 

carbohydrate (phosphotransferase system, PTS) to provide the phosphoryl group as 

observed in most bacteria.22,24-29 DHAKs phosphorylate Dha converting it into 

dihydroxyacetone phosphate (Dha-P), as shown in Scheme 1. Dha-P is a very important 

intermediate in nature since it is used as phosphoryl donor in several enzyme-catalyzed 

aldol reactions by Dha-P dependent aldolases.30-32 Aldolases have been recognized as an 

indispensable tool for the organic synthesis due to their efficiency to form C-C bonds. 

These reactions occur with the formation of two new stereocenters with a 

stereochemistry controlled by enzymes. Then, from two given substrates, it is possible 

to obtain the four diastereoisomers using four different aldolases which is a powerful 

synthetic advantage.33-37 Nevertheless, the major disadvantage of Dha-P dependent 

aldolases is their strict specificity for the expensive and unstable Dha-P.33-35,37 This 

molecule is overpriced to be used in large-scale synthesis and is labile at neutral and 

basic pH values causing the decrease of its effective concentration with time in the 

enzymatic reaction media.34 Therefore, an efficient method of Dha-P preparation is still 

necessary.31,35 In this sense, García-Junceda and co-workers, on the basis of the 

recombinant ATP-dependent DHAK from C. freundii, have elaborated a straightforward 

multi-enzyme system for one-pot C–C bond formation catalyzed by DhaP-dependent 

aldolases for in situ Dha-P formation. In this system the ATP is regenerated in situ by 

catalysis of acetate kinase.31,32,34,38 The fusion protein keep up both kinase and aldolase 

activity with a very high catalytic efficiency. Nevertheless, despite of the benefits of this 

multi-enzyme process, it still requires an ATP regeneration system since the direct 

addition of ATP is often problematic due to the formation of inhibitory products such as 
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ADP or AMP.39,40 ATP-regenerating systems in the reactions can be produced through 

the employment of biological agents including whole cells, organelles, and enzymes.39-

42 However, as mentioned, there are difficulties with these systems regarding the 

elevated prices of chemicals and the inaccessibility to a method for regenerating ATP 

from AMP.41  

Therefore, in order to eliminate the ATP regeneration system, it is essential to found a 

phosphoryl donor cheaper than ATP and whose final products do not inhibit the kinase 

activity. A very suitable candidate is the inorganic polyphosphate (poly-P).43,44 

Inorganic poly-P is a linear polymer of up to hundreds of orthophosphate (Pi) linked by 

high-energy phosphoanhydride bonds (see Figure 1).43,45 

 

Figure 1. Chemical structure of inorganic polyphosphate polymer (left) and a ball and 

stick representation of a polyphosphate of n=14 (right). 

 

The economic saving of the use of poly-P as phosphate donor is obvious. For instance, a 

commercial form of poly-P costing ca. $9/lb can provide ATP equivalents that would 

cost over $2,000/lb separately, while other phosphagens capable of regenerating ATP, 

such as phosphoenolpyruvate (PEP) and phosphocreatine, cost more than ATP39. In 

addition, a huge quantity of poly-P is regularly produced as sodium hexametaphosphate 

(about 13 to 18 residues) for industrial uses such as food additives which also makes 

poly-P inexpensive compared to the other phosphoryl donors.31 

The wild type DHAK from C. freundii does not show activity with poly-P but sixteen 

mutant clones were found to exhibit certain activity with poly-P as phosphoryl donor 

statistically relevant.31 The most active mutant was based on a single mutation 

Glu526Lys (E526K), which implies the change of a negative charge for a positive one. 

This mutation is located in a flexible loop close to the active site.31 Calculations based 

on molecular dynamics simulations and hybrid QM/MM optimizations of the enzyme-
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poly-P complex carried out in our laboratory indicate that the Lys526 could interact 

with poly-P stabilizing its binding with the enzyme and contributing to its correct 

disposition in the active site.31  

This paper is focused on the chemical step for the wild type enzyme and the E526K 

mutant in order to elucidate the reaction mechanism and to compare the activity in both 

systems. We present a theoretical study of the molecular mechanism for the phosphoryl 

transfer reaction from poly-P to Dha catalyzed by DHAK from C.freundii. The results 

are based on molecular dynamics (MD) simulations and the exploration of potential 

energy surfaces (PES) using hybrid QM/MM potentials. The results will make it 

possible to check whether the activity of the mutant with poly-P as phosphoryl donor is 

due merely to the more reactive enzyme-poly-P binary complex,31 or the mutation also 

implies a reduction on the energy barrier of the chemical step. 

 

COMPUTATIONAL METHODS 

DHAK from Citrobacter Freundii (C. freundii) is an ATP-dependent DHAK consisting 

of a homodimer and each subunit is formed by two domains.25,29,46,47 The Dha binding 

site is located in the DhaK-domain while the ATP binding site is in the DhaL-domain. 

In the dimer, the subunits are disposed in an anti-parallel way. Therefore, the DhaK-

domain of one subunit is faced with the DhaL-domain of the other subunit. The ATP 

binding domain is a barrel composed by eight amphipathic alpha-helix stabilized by a 

lipid (see Figure 2).31 The phosphate groups of the nucleotide are coordinated via two 

magnesium ions to the side-chain carboxyl groups of aspartates.46  

The initial coordinates of the protein and the phospholipid were taken from the X-ray 

structure of the apo form of DHAK from Citrobacter Freundii (C. freundii), with pdb 

entry 1UN8.46 The crystal structure contains two protein chains defined as chain A and 

chain B. Since the full structure is symmetric, a fragment of each chain was removed 

obtaining a two close domain structure where the chain A fragment corresponds to the 

DhaL-domain, and the Chain B to the DhaK-domain. Missing residues of the flexible 

loop of the L-domain were manually added within the help of Molden program.48 The 

coordinates of Dha and magnesium cations were taken from the PDB file 1UN9 that 

corresponds to the Dha/ANP form.46  
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Figure 2. Cartoon representation of the kinase homodimer obtained by supeposition of 

PDB code crystal structures 1UN8 and 1UN9. The DhaK-domain is colored in pink and 

red, and the DhaL-domain is colored in purple and grey. Dha, 

phosphoaminophosphonic acid-adelynate ester (ANP), magnesium ions and 

phospholipid are shown in a ball and sticks representation. 

 

 

Considering that the standard pKa values of ionizable groups can be shifted by local 

protein environments, an accurate assignment of the protonation state of all these 

residues at pH=7 was carried out. Thereby, recalculation of the pKa values of the 

titratable residues was determined using the PROPKA program of Jensen et al.49,50 

According to the results, all residues were found at their standard protonation state in 

aqueous solution, except His61 that was double protonated. Afterwards, a 16 monomers 

poly-P was docked into the active site by placing a phosphate group in a position 

equivalent to the ATP for the chemical reaction to occur. Subsequently, the poly-P was 

slightly displaced by means of geometry optimizations and short Langevin-Verlet51 MD 

(NVT) in order to avoid overlapping between the poly-P and the protein and to get an 

adequate protein-poly-P complex for the chemical steps to take place. This calculations 

were carried out at 300 K of temperature using the fDYNAMO library.52 The resulting 

structure showed a better conformation pose of the poly-P establishing reasonable 

interactions with the residues of the protein and Mg cations. The poly-P was further 

equilibrated by means of 10 ns of MD simulations fixing all the protein atoms and 

constraining the distance between Dha and the poly-P. The mutated enzyme was 

generated from this structure by replacing Glu526 with a lysine residue. Then, 29 and 
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27 counter ions Na+ were placed into optimal electrostatic positions around the wild 

type and the mutant, respectively. Afterwards, the systems were solvated with pre-

equilibrated orthorhombic boxes of water molecules with dimensions 100 x 80 x 80 Å3 

centred on the centre of mass of poly-P. Water molecules with an oxygen atom lying 

within 2.8 Å of any heavy atom of poly-P, Dha, phospholipid, ions or protein were 

removed. Later, optimizations using the conjugated gradient algorithm were performed 

within the NAMD53 parallel molecular dynamics code using the CHARMM54-56 force 

field while water molecules were described with TIP3P force field57. Cutoffs for the 

nonbonding interactions were applied using a switching function, within a radius range 

from 14.0 to 16.0 Å, employing in all the simulations periodic boundary conditions.  

The resulting systems were taken as initial structures for the study of the chemical 

reaction by means of QM/MM calculations. The Dha molecule, three phosphate groups 

from poly-P and the side chain of residues involved in the reaction mechanism (His-61, 

Asp-114 and His-220) were described quantum mechanically while the rest of the atoms 

of the system and water molecules were treated by means of OPLS-AA58,59 and TIP3P57 

force fields, respectively. The same treatment as in the previous MD simulations was 

applied for the non-bonding interactions. To saturate the valence of the QM/MM 

frontier atoms, the link atom procedure was employed.60 Thus, quantum link atoms 

where placed between the third phosphate bridge oxygen and the fourth phosphorous 

atom in the case of poly-P and between Cα and Cβ, in Asp-114 and both histidine 

residues (see Scheme 2). Therefore, the QM part involves 54 atoms with a total charge 

of -4. For all simulations, atoms belonging to molecules found at a distance less or equal 

than 25 Å from the poly-P were defined as flexible. The rest of the atoms were kept 

frozen. Before exploring the corresponding PES, series of MM and QM/MM L-BFGS-

B optimizations were applied to fully relax the systems in a reactant-like conformation. 

 

Scheme 2. Schematic representation of the active site of the DHAK. Grey region 

contains atoms treated quantum mechanically. Link atoms are represented as dots. 
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The PM3 semiempirical method,61 implemented in fDYNAMO library, was employed 

to describe the QM region during the QM/MM simulations. PM3 has been proved to 

produce a considerable stabilization in the energy of phosphorane species owing to the 

use of a minimal valence basis and being normally 3-4 orders of magnitude faster than 

DFT methods.62 Consequently, it has been employed widely to model phosphorus and 

phosphate groups successfully.63-66 In fact, the semiempirical Hamiltonian PM3 was 

already used in our group to describe the QM sub-set of atoms in our previous QM/MM 

studies of the phosphate transfer reaction between ATP and Dha in aqueous solution 

and catalysed by DHAK.4,23 In addition, the B3LYP functional, with the 6-31G(d,p) 

basis set, was also used to treat the QM region of the system combining fDYNAMO 

library with Gaussian09 program.67 B3LYP functional has been successfully employed 

by Fernandes and co-workers to study the reaction mechanism of mycobacterium 

tuberculosis glutamine synthetase (mtGS), whose first step involves the phosphate 

group transfer from ATP to a glutamine residue.68 The substrate-assisted and the asp-

assisted mechanisms for the phosphate transfer from poly-P to Dha in wild type and the 

E526K mutant of C. freundii DHAK was explored by generating the PESs 

corresponding to each chemical step scanning the appropriate combination of the 

interatomic distances (see next section for details). Stationary point structures (reactants, 

intermediates, TSs and products) were refined and characterized, guided by a micro-

macro iterations scheme.69  

 

RESULTS AND DISCUSSION 

 

PM3/MM results. Figure 3 shows the active site of the wild type and the E526K 

mutant in a reactant state conformation. As explained in previous section, these 

structures were obtained after series of MD simulations and QM/MM optimizations in 

both systems. It can be noted how the poly-P is well posed for the phosphate transfer to 

Dha, in both systems. A detailed analysis of the structures suggests that the binding of 

the poly-P to the protein in the vicinities of the active site is slightly better arranged in 

the mutant than in the wild type, in agreement with our previous study of the binding 

step.31 
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Figure 3. Active site of the wild-type (A) and the E526K mutant of C. freundii DHAK 

(B) in the reactants state conformation. Key residues (Asp114, His220, His61 and 

Glu/Lys526), Dha, poly-P, and Mg2+ ions are displayed in ball and stick representation.  

 

In the initial catalytic step of any of the two proposed mechanisms,21,22 the Dha is 

anchored to the enzyme through the formation of a covalent bond between the nitrogen 

atom NE2 of the His220 and the carbon C1 of the Dha. Then, the double protonated 

His61 transfers the HE2 proton to the oxygen atom O4 of Dha obtaining the required 

intermediate, I2. The PES of this step has been generated using as distinguished reaction 

coordinates the distance between the nitrogen atom of His220 and the carbon atom of 

Dha, d(NE2His220 – C1), and the antisymmetric combination of the bond-breaking and 

bond-forming distances that describes the proton transfer from His61 to Dha, d(NE2His61 

– HE2His61) – d(O4 – HE2His61). The corresponding PESs obtained for wild type and 

mutant are displayed in Figure 4 and a schematic representation of the reaction 

mechanism derived from these surfaces are shown in Scheme 3. 
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A 

 

B 

 

Figure 4. PM3/MM PESs of the initial catalytic step of the phosphorylation reaction 

mechanism from poly-P to Dha in C. freundii DHAK. Results are shown for the wild-

type (A) and the E526K mutant (B). Distances on axis are in Å, and values of 

isoenergetic lines in kcal·mol-1.  
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Scheme 3. Schematic representation of the concerted mechanism for the covalent bond 

formation between Dha and the enzyme; the wild type and the E526K mutant of the C. 

freundii DHAK.  

 

Figure 4 shows that the transformation from R to I2 takes place through a concerted 

mechanism in both systems within only one TS, TSR-I2. Interestingly, the energy barrier 

is slightly lower in the E526K mutant than in the wild type (32 kcal·mol-1 and 35 

kcal·mol-1 respectively), which would be in agreement with its experimentally observed 

catalytic activity, not detected in the wild type.31 

Thus, once this intermediate I2 is reached, two possible phosphorylation reaction paths 

can take place, the asp-assisted mechanism, and the substrate-assisted mechanism. In 

the former, the catalytic Asp114 acts as a basis accepting the proton transferred from 

Dha and activating it for the nucleophilic attack to the poly-P. This mechanism would 

be equivalent to that experimentally proposed by Shi and co-workers in DHAK from E. 

coli.22 In the substrate-assisted mechanism the poly-P molecule directly abstracts the 

proton from Dha. De Vivo et. al supported this mechanism in the theoretical study of 

the phosphate transfer reaction from ATP to a serine residue in CDK2,21 as well as our 

previous study of the phosphate transfer reaction from ATP to Dha on wild type 

DHAK.23 Both reaction mechanisms are explored for the phosphate transfer reaction 

from poly-P, instead of ATP, to Dha on wild type and E526K mutant in the present 

study. 
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The asp-assisted mechanism. The PESs to explore this mechanism were generated 

within two antisymmetric combinations of inter-atomic distances describing the proton 

transfer from Dha to Asp114, d(O5Dha – H5Dha) – d(H5Dha – OD1Asp114), and the 

phosphate transfer from the poly-P to Dha, d(O3poly-P – P2poly-P) – d(P2poly-P – O5Dha). 

Figure 5 shows the resulting PESs for the wild type and the E526K mutant while a 

schematic representation of the resulting mechanism is presented in the Scheme 4. 

 

 

Figure 5. PM3/MM PESs of the catalytic process of the aspartate-assisted 

phosphorylation reaction mechanism from poly-P to Dha in C. freundii DHAK. Results 

are shown for the wild-type (A) and the E526K mutant (B). Distances on axis are in Å, 

and values of isoenergetic lines are in kcal·mol-1. 
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Scheme 5. Schematic representation of the asp-assisted mechanism for the 

phosphorylation reaction from I2 to PAsp.  

 

According to the PES presented in Figure 5A, the phosphate would be transferred from 

poly-P to Dha to produce a stable intermediate in the wild-type enzyme, I3Asp. Then, the 

proton is transferred from Dha to Asp thus forming the products PAsp. This second step 

presents an energy barrier (39 kcal·mol-1) significantly higher than the one 

corresponding to the first step (32 kcal·mol-1). As shown in Figure 5B, the reaction in 

the mutant can take place through a similar mechanism where the phosphate transfer 

precedes the proton transfer through a stable intermediate, I3Asp
E526K. But the reaction 

could also proceed through a metastable intermediate I3′Asp
E526K. Nevertheless, despite the 

existence of this shallow minimum, this second path can take place in a very 
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asynchronous but concerted mechanism controlled just by the TSI3′Asp−PAsp
E526K . In any 

case, both alternative reaction pathways take place through TSs that appear at noticeable 

higher energies than those obtained in the wild type enzyme, 42 and 66 kcal·mol-1 for 

the reaction where the phosphate transfer precedes the proton transfer, and 62 kcal·mol-1 

in the alternative asynchronous concerted reaction path, by comparison with the 39 

kcal·mol-1 of the rate limiting TS in the wild-type. The analysis of the reaction 

coordinates of the TS quadratic regions indicate quite unusual values for the TS, 

especially for the phosphate transfer: +0.6 Å and +1.5 Å for the TSI2Asp−I3Asp and the 

TSI2Asp−I3Asp
E526K , respectively. Moreover, it must be noticed that the located intermediates, 

I3Asp and I3Asp
E526K, present a significantly large interatomic distances between the 

phosphate and its acceptor atom (1.92 and 2.11 Å in the wild type and mutant, 

respectively). This must be related with the fact that the transferring proton, H5Dha, is 

still bounded to the oxygen donor atom, O5Dha, in both systems. A detailed analysis of 

the interatomic distances of the stationary points listed in Table 1 confirms the 

comments on the TSs and the character of the I3Asp and I3Asp
E526K intermediates. 

 

Table 1. Key interatomic distances (in Å) of the stationary points located along the asp-

assisted mechanism of the phosphate transfer between poly-P and Dha obtained at 

PM3/MM level in the A) wild type, and B) E526K mutant. 

A) Wild type 

Atomic distances 𝐈𝟐 𝐓𝐒𝐈𝟐𝐀𝐬𝐩−𝐈𝟑𝐀𝐬𝐩 𝐈𝟑𝐀𝐬𝐩 𝐓𝐒𝐈𝟑𝐀𝐬𝐩−𝐏𝐀𝐬𝐩 𝐏𝐀𝐬𝐩 

O5Dha-H5Dha 0.99 1.00 0.98 1.15 1.93 

H5Dha-OD1Asp114 1.85 1.68 1.70 1.20 0.96 

O3poly-P-P2poly-P 1.91 3.17 3.80 3.70 3.80 

P2poly-P-O5Dha 3.92 2.56 1.92 1.90 1.89 

 

B) E526K mutant 

Atomic distances 𝐈𝟐𝑬𝟓𝟐𝟔𝑲 𝐓𝐒𝐈𝟐𝐀𝐬𝐩−𝐈𝟑𝐀𝐬𝐩
𝐄𝟓𝟐𝟔𝐊  𝐈𝟑𝐀𝐬𝐩

𝐄𝟓𝟐𝟔𝐊 𝐓𝐒𝐈𝟑𝐀𝐬𝐩−𝐏𝐀𝐬𝐩
𝐄𝟓𝟐𝟔𝐊  𝐓𝐒𝐈𝟐𝐀𝐬𝐩−𝐈𝟑′𝐀𝐬𝐩

𝐄𝟓𝟐𝟔𝐊  𝐈𝟑′𝐀𝐬𝐩
𝐄𝟓𝟐𝟔𝐊 𝐓𝐒𝐈𝟑′𝐀𝐬𝐩−𝐏𝐀𝐬𝐩

𝐄𝟓𝟐𝟔𝐊  𝐏𝐀𝐬𝐩
𝐄𝟓𝟐𝟔𝐊 

O5Dha-H5Dha 0.99 0.99 1.00 1.19 1.50 1.73 1.77 1.97 

H5Dha-OD1Asp114 1.77 1.76 1.73 1.29 1.06 0.97 0.99 1.03 

O3poly-P-P2poly-P 1.95 3.81 3.98 3.98 2.01 2.03 3.49 3.88 

P2poly-P-O5Dha 3.85 2.25 2.11 2.11 3.82 3.84 2.51 1.99 
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The substrate-assisted mechanism. The PESs to explore this mechanism were generated 

with the antisymmetric combinations of distances describing the proton and the 

phosphate transfer, d(O5Dha – H5Dha) – d(H5Dha – O5poly-P) and d(O3poly-P – P2poly-P) – 

d(P2poly-P – O5Dha), respectively. The resulting PESs are displayed in Figure 6 and the 

schematic representation of the mechanism is presented in Scheme 6. In this case, 

unlike in the case of the exploration of the asp-assisted mechanism, similar reaction 

paths were obtained for the wild-type and the mutant, as revealed by Figure 6A and 6B, 

and the interatomic distances listed in Table 2. Analysis of the surfaces suggests that in 

both systems the proton abstraction of Dha by the poly-P involving the formation of the 

intermediate I3 occurs first, and it is followed by the phosphate transfer. In this case the 

quadratic region of all the TSs located on Figure 6A and 6B describe quite synchronous 

breaking and forming bonds (the reaction coordinate are around 0 Å in all the 4 located 

TSs). This is confirmed by analysis of the interatomic distances of the stationary points 

listed in Table 2. 

 

 

Figure 6. PM3/MM PESs of the catalytic process of the substrate-assisted 

phosphorylation reaction mechanism from poly-P to Dha in C. freundii DHAK. Results 

are shown for the wild-type (A) and the E526K mutant (B). Distances on axis are in Å, 

and values of isoenergetic lines are in kcal·mol-1. 
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Scheme 6. Schematic representation of the substrate-assisted mechanism for the 

phosphorylation reaction from I2 to P for wild and mutant enzyme. 
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Table 2. Key interatomic distances (in Å) of the stationary points located along the 

substrate-assisted mechanism of the phosphate transfer between poly-P and Dha 

obtained at PM3/MM level in the A) wild type, and B) E526K mutant. 

A) Wild type 

Atomic distances 𝐈𝟐 𝐓𝐒𝐈𝟐−𝐈𝟑 𝐈𝟑 𝐓𝐒𝐈𝟑−𝐏 𝐏 

O5Dha-H5Dha 1.00 1.24 1.89 1.70 1.95 

H5Dha-O5poly-P 1.77 1.26 0.93 0.96 0.95 

O3poly-P-P2poly-P 1.85 1.89 1.76 2.56 3.33 

P2poly-P-O5Dha 4.00 3.81 4.09 2.49 1.75 

 

B) E526K mutant 

Atomic distances 𝐈𝟐𝐄𝟓𝟐𝟔𝐊 𝐓𝐒𝐈𝟐−𝐈𝟑
𝐄𝟓𝟐𝟔𝐊

 𝐈𝟑𝐄𝟓𝟐𝟔𝐊
 𝐓𝐒𝐈𝟑−𝐏

𝐄𝟓𝟐𝟔𝐊
 𝐏𝐄𝟓𝟐𝟔𝐊

 

O5Dha-H5Dha 0.98 1.19 1.69 1.73 1.85 

H5Dha-O5poly-P 1.71 1.13 0.98 0.96 0.95 

O3poly-P-P2poly-P 1.79 1.76 1.73 2.59 3.75 

P2poly-P-O5Dha 3.81 3.50 3.85 2.52 1.77 

 

Interestingly, the energy barriers are 20 and 42 kcal·mol-1 for the reaction in the wild-

type, and 20 and 40 kcal·mol-1 for the reaction in the mutant. These values are 

significantly lower than those reported for the asp-assisted mechanism in the wild type 

and in the mutated enzyme. This trend is in agreement with our previous study of the 

phosphate transfer from ATP to Dha catalyzed by DHAK that also showed the 

substrate-assisted mechanism as the most favorable one.23 

Keeping in mind the negative charge of the transferring phosphate, it is not surprising 

that the activation of nucleophile by an aspartate residue, increasing the negative charge 

on the O5Dha atom, does not favor the phosphate transfer. On the contrary, a proton 

transfer from Dha to the poly-P can favor the reaction from an electrostatic point of 

view. Therefore, the much more expensive B3LYP/MM calculations have been focused 

just on the substrate-assisted mechanism.  

 

DFT/MM Results. The stationary points corresponding to the phosphate transfer from 

poly-P to the Dha covalently bound to the enzyme (I2 intermediate), through the 
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substrate-assisted mechanism, was located and characterized at B3LYP/MM level from 

initial guess structures of the wild-type and the mutant obtained from the PM3/MM 

PESs. Key interatomic distances of the located stationary points, together with the 

relative energies to I2, are reported in Table 3. The first relevant result is that the 

reaction, either in the wild-type or the E526K mutant, takes place in a single step with 

high but similar energy barriers: 66.3 and 71.2 kcal·mol-1, respectively.  

 

Analysis of the interatomic distances of the corresponding TSs, TSI2−P and TSI2−P
E526K 

schematically presented in Figure 7, shows values of the antisymmetric combination of 

the breaking and forming bonds that are +0.58 Å and +0.53 Å for the transfer of the 

proton and phosphate in wild-type, and +0.64 Å and +0.52 Å in the mutant, 

respectively. Thus, the results at B3LYP/MM level describe the two transfers in an 

advanced stage of the process in both TSs. In both reactions, the proton is almost 

completely transferred in the TS and, according to the interatomic distances between the 

phosphorous atom and the donor and acceptor oxygen atoms (2.75 and 2.22 Å in the 

wild type, and 2.69 and 2.17 Å in the mutant), they can be considered as quite 

dissociative. It appears that the interactions with a Na+ ion, water molecules and with 

the residues Gly113 of the active site stabilize the transferring phosphate in both TSs. 

The O···P···O angle in both systems is also quite similar at the TSs (153 and 152 

degrees in the wild type and in the mutant, respectively). Charge analysis on key atoms 

of the TSs show how charge on oxygen donor atom is only slightly higher in the mutant 

(-1.049 a.u.) than in the wild-type (-1.044 a.u). The oxygen acceptor atom is less 

negatively charged in the mutant (-0.615 a.u.) than in the wild-type (-0.662 a.u.). In all, 

the sum of the charges of the protonated transferring phosphate group (adding the 

charge of the transferring proton since it is almost completely transferred to the O5poly-P 

atom in both TSs) is -0.555 and -0.568 a.u. in the wild-type and in the mutant, 

respectively. Tables containing the full list of atomic charges on the two TSs are 

deposited in the Supporting Information. 

Analysis of the structures can be also carried out by inspection of Figure 8, where the 

superposition of the I2 and TS structures in the wild-type and in the mutant are 

presented. As observed, the structure of the proteins in both states are almost coincident, 

revealing insignificant effects of the E526K mutation on the chemical step of the full 

process.  
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Table 3. Key interatomic distances (in Å) and relative potential energies (E, in 

kcal·mol-1), for the stationary points localized at B3LYP/MM level for the phosphoryl 

transfer step through the substrate-assisted mechanism in A) the wild type enzyme, and 

(B) the E526K mutant. 

A) Wild type 

 (O5Dha-H5Dha) (H5Dha-O5poly-P) (P2poly-P-O3poly-P) (P2poly-P-O5Dha) E 

𝐈𝟐 1.04 1.62 1.71 3.77 0 

𝐓𝐒𝐈𝟐−𝐏 1.59 1.01 2.75 2.22 66.3 

𝐏 2.01 0.97 3.42 1.74 57.8 

B) E526K mutant 

𝐈𝟐𝐄𝟓𝟐𝟔𝐊 1.07 1.52 1.71 3.75 0 

𝐓𝐒𝐈𝟐−𝐏
𝐄𝟓𝟐𝟔𝐊 1.64 1.00 2.69 2.17 71.17 

𝐏𝐄𝟓𝟐𝟔𝐊 1.99 0.97 3.27 1.75 64.97 
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(A) 

 

 

 

(B)  

 

 

Figure 7. B3LYP/MM optimized structure corresponding to the transition state of the 

phosphoryl transfer step for the substrate-assisted mechanism obtained (A) in the wild 

type enzyme, and (B) in the E526K mutant. 
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(A) 

 

 

(B) 

 

 

Figure 8. Superposition of B3LYP/MM optimized structures in the wild-type (in red 

and pink) and in the E526K mutant (in blue and grey) corresponding to I2 intermediate 

(A) and the transition state (B) of the phosphoryl transfer step for the substrate-assisted 

mechanism.  
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CONCLUSIONS 

In this paper we present a computational study of the molecular mechanism of the 

phosphoryl transfer reaction from an inorganic polyphosphate to Dha catalyzed by wild 

type DHAK from C. freundii, and by a mutant, Glu526Lys, that has shown activity with 

poly-P as phosphoryl donor.31 The study is first based on MD simulations to equilibrate 

both systems. Then, PESs corresponding to every single step of the process were 

explored for two different reaction mechanisms, an asp-assisted mechanism and a 

substrate-assisted mechanism, using hybrid QM/MM potentials, with the QM region 

described at the PM3 semiempirical level. The comparison of the obtained PESs for the 

central catalytic step of the reaction (i.e. the phosphate transfer from the inorganic poly-

P to the Dha molecule from the structure where Dha is covalently bound to His220 

residue of the protein, namely I2) shows that the substrate-assisted mechanism is 

kinetically more favorable than the asp-assisted mechanism, in both the wild-type and 

the mutant. It appears that the transfer of the proton from Dha to Asp114 does not really 

activate its oxygen acceptor atom since it becomes more negative. In contrast, the 

transfer of the proton to the phosphate group reduces its negative charge and, 

consequently, facilitates the approach to the acceptor oxygen atom of the Dha. Then, the 

key stationary points of the substrate-assisted mechanism were localized with the 

B3LYP functional to describe the QM sub-set of atoms. The DFT/MM calculations 

clearly indicate that the phosphate transfer can take place in a single step, with quite 

dissociative TSs. Nevertheless, the energy barriers appear to be quite high. A note of 

caution must be introduced at this point due to size of the systems and the fact that the 

study is based on explorations of PESs. In general, the analysis of energies derived from 

PESs for systems with a huge number of degrees of freedom has to be considered with 

caution. As observed in our pioneering QM/MM studies of enzyme catalyzed reactions, 

and in agreement with single molecule kinetic experiments,70 the differences between 

the (potential energy barriers) rate constant of single molecules71,72 can oscillate in 

several orders of magnitude around. A much more computationally demanding 

sampling of the conformational space through, for example, the use of hybrid DFT/MM 

molecular dynamics, can render more robust energetics. Lower energy TS 

conformations could be localized within this protocol thus providing much lower energy 

barriers. Moreover, as already observed in our previous study of the phosphoryl transfer 

reaction from ATP to Dha catalyzed by DhaK from Escherichia coli,23 there must be a 

lack of overlapping between the B3LYP and PM3 conformational space. Then, since 
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the starting structures used to locate and optimize the B3LYP/MM stationary point 

structures were those derived from the PM3/MM calculations, they are not necessary 

the lowest energy ones, specially for the TSs structures. A proper sampling of the 

conformations on the involved states at high level of theory, i.e. the calculation of free 

energy barriers from statistical simulations, should be explore in future studies. 

Anyway, analysis of the TS structures located at DFT/MM level suggest that the 

substrate-assisted mechanism, that a priori could not be considered as a catalytic 

process since it could also take place in a reference reaction in solution, is favored by 

the interactions with the residues of the active site that stabilize the negatively charged 

phosphate group in the TS. Superposition of the reactants (the state where the Dha is 

anchored to the protein through His220) and TS structures in the wild-type and in the 

mutant shows that the structure of the proteins in both states are almost coincident, 

suggesting insignificant effects of the E526K mutation on the chemical step of the full 

process. Thus, this geometrical analysis together with the similar energy barriers 

obtained in both systems, confirm that this mutation does not have an effect on the 

chemical reaction step of the process.  

The present results, that are part of a project devoted to modify the phosphoryl donor 

specificity of this enzyme from ATP to a poly-P, complement and confirm the 

conclusions obtained in our previous study of the binding of poly-P to wild-type and 

E526K DHAK from C.freundii.31 The measured activity of some mutants as the one 

tested in this computational study where the replacement of residues are done on 

positions far from the active site, can be associated to an improvement of the formation 

of the protein-substrate complex. Further studies could be done in order to check 

whether this long distance mutation can be combined with other mutations on the 

proximity of the active site. In this regard, the present study of the active centre during 

the chemical reaction will be of great interest to select the appropriate residues to be 

replaced.  

 

SUPORTING INFORMATION 

Cartesian coordinates of the QM atoms of the TSs localized at B3LYP/MM level, list of 

atomic charges on key atoms of TSs located at B3LYP/MM level. 
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Herein we present a QM/MM theoretical study of the molecular mechanism for the 

phosphoryl transfer reaction from an inorganic polyphosphate to Dha catalyzed by 

DHAK from C.freundii (wild-type and an active experimentally measured mutant), as 

part of a project devoted to modify the phosphoryl donor specificity of this enzyme. The 

similar energy barriers obtained in both systems confirm our previous studies that this 

mutation improve the binding step of the process. 
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