
Asymmetries, co-current flow and

interaction of Taylor drops rising in

vertical tubes

A thesis submitted in part fulfilment of the requirement for the degree of Doctor,

Doctoral Program in Chemical and Biological Engineering, Faculty of Engineering,

Universidade do Porto, by
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Abstract

There is an increasing interest in multiphase flow patterns due to their relevance in several operations

in industrial processes. The aim of the present work was to improve the knowledge of an important

multiphase flow pattern: slug flow in liquid-liquid vertical tubes. The strategy defined was based on three

pillars: tools, design of testing conditions and assessment of the elementary flow characteristics. Regarding

the tools, Computational Fluid Dynamics (CFD) was chosen due to its flexibility and ease of use. Some

lab experiments were also conducted, but only to validate the numerical results. The design of testing

conditions followed a dimensional analysis that yielded relevant dimensionless numbers representing the

forces involved in the flow. Finally, concerning the strategy to understand the phenomena, the first

simulations were conducted with the simplest element in the flow: an axisymmetric Taylor drop rising in

a tube filled with a denser stagnant liquid. Afterwards, complexity was added and the results interpreted

(drop asymmetries, flowing continuous phase and drops interaction).

For drops rising in stagnant continuous phase, the results showed that interfacial tension and viscous

forces decrease drop velocity, while buoyancy has the opposite effect. The disturbed distance in the

continuous phase below the drop depends mainly on the drop Reynolds number, being small for axisym-

metric drops. Regarding asymmetries, three different behaviors were found: an axisymmetric region, an

asymmetric region for small viscosity ratios and an asymmetric region for high viscosity ratios.

By the insertion of co-current, the balance between gravity and convective co-current effects was found

to be determinant to the drops behavior. Furthermore, the increase of the continuous phase velocity

promotes inertial effects and the appearance of closed recirculations regions below the drop. High enough

continuous phase velocity also caused the inner portion (near the tube axis) of the continuous phase to

move, in average, at the drop velocity. A pre-existing gas-liquid correlation that predicts drop velocity

was adapted according to the results of this work. Moreover, it is observed that the increase of the

viscosity ratio approximates the macro scale data to a limit defined by micro scale behavior.

Interaction of two drops in axisymmetric conditions is very limited.

Due to the difficulties presented by asymmetric behavior, it was not possible to reach a full descrip-

tive model for liquid-liquid slug flow. Hence, future work concerns overcoming challenges such as the

serpentine-like effect found in some asymmetric ranges due to its importance in petroleum industry.

More work is also required to produce enough data to develop a one-dimensional code able to easily

predict liquid-liquid slug flow behavior.

In general, the present work succeeded in producing important knowledge regarding liquid-liquid slug

flow.

Keywords: slug flow, Taylor drop, CFD, oil-water flow.





Sumário

Existe um crescente interesse em escoamentos multifásicos devido à sua importância em processos indus-

triais. O objectivo do presente trabalho foi dar um contributo no sentido do aumento do conhecimento

de um importante padrão de escoamento bifásico: o escoamento de gotas tubulares em tubos verticais. A

estratégia definida assentou em três pilares: ferramentas, desenho das condições a testar e estratégia para

avaliação das caracteŕısticas do escoamento. Relativamente às ferramentas, a dinâmica de fluidos com-

putacional (CFD) foi a escolhida devido à sua flexibilidade de utilização. O desenho das condições a testar,

seguiu uma análise dimensional da qual resultaram números adimensionais representativos das forças en-

volvidas no escoamento. Finalmente, relativamente à estratégia para compreensão dos fenómenos, as

primeiras simulações foram realizadas com o elemento mais simples do escoamento: uma gota de Taylor

axissimétrica em movimento ascendente num tubo preenchido com um ĺıquido mais denso parado. De-

pois, foi adicionada complexidade e os resultados interpretados (assimetrias nas gotas, fase cont́ınua em

escoamento e interacção entre gotas).

Para gotas em ascensão em fase cont́ınua parada, os resultados demonstraram que as forças interfa-

ciais e de viscosidade reduzem a velocidade da gota, enquanto que as forças de impulsão têm o efeito

contrário. A distância perturbada na fase cont́ınua abaixo da gota depende principalmente do número

de Reynolds da gota, sendo este pequeno para gotas axissimétricas. Relativamente a assimetrias, três

diferentes comportamentos, regiões num mapa de grupos adimensionais, foram observados: uma região

axissimétrica, uma região assimétrica para razões de viscosidade pequenas e uma zona assimétrica para

razões de viscosidade elevadas.

Adicionando o escoamento em co-corrente, o balanço entre os efeitos gravitacionais e convectivos

revelou-se determinante para o comportamento das gotas. Além disso, o aumento da velocidade da fase

cont́ınua promoveu efeitos inerciais e o surgimento de recirculações fechadas abaixo da gota, esteira. Uma

velocidade da fase cont́ınua suficientemente elevada também fez com que a porção interna de fluido (junto

ao eixo do tubo) de fase cont́ınua se mova, em média, à velocidade da gota. Uma correlação já existente

para gás-ĺıquido que prevê a velocidade da bolha tubular foi extendida para escoamento ĺıquido-ĺıquido

de acordo com os resultados deste trabalho. Adicionalmente, observou-se que o aumento da razão de

viscosidades faz aproximar a macro escala de um limite definido pelo comportamento em micro escala.

A interacção entre duas gotas axissimétricas é muito limitada.

Devido a dificuldades em lidar com comportamentos assimétricos, ainda não foi posśıvel desenvolver

um modelo geral para o escoamento de gotas tubulares. Assim, o trabalho futuro passará por superar

desafios tais como o efeito de gota em forma de serpentina observado em algumas regiões assimétricas,

pois estas regiões são importantes para a indústria do petróleo. Também será necessário produzir mais

dados de escoamento que permitam desenvolver um código unidimensional capaz de facilmente prever o

comportamento do escoamento de gotas tubulares.

Em geral, o presente trabalho conseguiu aumentar significativamente o conhecimento que existia sobre



o escoamento de gotas tubulares.

Palavras-chave: escoamento de gotas tubulares, gota de Taylor, CFD, escoamento óleo-água.
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Chapter 1 INTRODUCTION

1.1 Motivation

Multiphase flows occur in several industries, such as chemical, nuclear or petroleum (Aziz et al., 2015;

Babadagli, 2007; Bannwart et al., 2009; Bordeaux Rego et al., 2017; Clark, 1969; Omebereiyari et al.,

2008; Seyfried and Freundt, 2000). One of the foremost multiphase patterns is slug flow.

The present work deals with liquid-liquid vertical slug flow at the macro scale. Liquid-liquid slug flow

consists of long bullet-shaped drops flowing in a continuum of another liquid. The intermittent character

of slug flow can be the cause of severe operational problems. On the other hand, slug flow can be used to

transport viscous liquids and also to promote mass transfer between phases. In the particular example

of exploitation and oil transportation in the petroleum industry, the usage of enhanced oil recovery

techniques creates multiphase flows with oil and water-based phases.

Therefore, it is of major interest to understand liquid-liquid slug flow, in order to use it, or to avoid it.

However, unlike the gas-liquid case, liquid-liquid slug flow is still not yet well explored and understood.

The present work intends to fill the gap in vertical liquid-liquid slug flow knowledge. For the pursuit of

such purpose, the flow of Taylor drops rising in vertical tubes is the scope of the present work.

1.1.1 Oil-water slug flow

Despite the increase in renewable energy technologies, petroleum industry will still be a major player in

global economy for the next decades.

Oil reservoirs are typically at temperatures between 100 and 150 °C and at pressures in the 300 to

400 bar range (Verweij, 1993). Fluid motion in wells generally involves more than one phase, and the

behavior depends on the magnitude of the acting forces (inertia, buoyancy, viscous and interfacial tension)

(Brill and Mukherjee, 1999).

Total world oil reserves are estimated to be distributed by between conventional oil (30 %) and 40 %

of heavy or extra-heavy oils and 30 % of oil sands and bitumen (Alboudwarej et al., 2006). In recent

years, there is a growing interest in the exploitation of heavy oil wells (Alboudwarej et al., 2006). The

physical properties of heavy oil make it difficult to extract – it has high density and high viscosity (can be

more than as 1 kPa s – Alboudwarej et al. (2006)). Because of the operational difficulties, enhanced oil

recovery techniques (EOR) are necessary (Babadagli, 2007; Lyons and Plisga, 1999; Thomas, 2008). Those

techniques include water flooding, chemical flooding (surfactant, polymer, etc) or cyclic stream soak,

which create multiphase flows with high content in two liquid phases: water and oil (Alboudwarej et al.,

2006; Bordeaux Rego et al., 2017; Flores et al., 1999; Thomas, 2008; Sheng et al., 2015). Furthermore,

water-oil flows might also be created in order to lubricate the transport of heavy oils in pipes (Kwon

et al., 2015).

Studies on water-oil flow include that of Mandal et al. (2010) which used a 0.012 m diameter tube

to study co-current flow of water and kerosene. Slug flow was found to exist in a wide range of flow

conditions.

Yang et al. (2017) conducted co-current tests with a white oil and a polyacrylamide water solution,

observing slug flow when high polymer concentration was used.

Serapião and Bannwart (2013) performed air-water-oil tests in a vertical 2.84 cm diameter glass tube,

using an oil with a density of 971 kg m-3 and a viscosity of 5 Pa s. They found a three-phase flow of oil

in water emulsion with intermittent long oil drops and air bubbles. This occurs for high oil superficial

velocities comparing to water flow.

Deformed large drops of oil in water were found by Hasan and Kabir (1990); Bannwart et al. (2004).
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Pietrzak et al. (2017) performed a three phase flow study in a 0.03 m diameter tube. For water dominant

flow with low air superficial velocity, small drops of oil and bubbles were observed in a continuum of

water, with intermittent large plugs of oil (some deformed drops). Other three phase flow studies include

those of Spedding et al. (2000, 2005) and Woods et al. (1998).

The clear interest of understanding liquid-liquid flows in petroleum industry is often shadowed by the

difficulties in operating lab or pilot scale installations, especially concerning high pressure and temperature

conditions at oil wells and nearby tubing. Computational Fluid Dynamics (CFD) appears as an easy

and efficient solution to this problem. With CFD, it is possible to study different flow patterns at severe

operating conditions. Slug flow is one of the most important multiphase flow patterns, and the present

work is an important step to understand more about liquid-liquid slug flow.

1.2 Introduction to liquid-liquid slug flow and Taylor drops

To understand slug flow, consider a case where two immiscible liquids flow in a vertical tube. One of those

liquids, the heavier one, constitutes a continuous phase where drops of the other liquid, which constitute

the dispersed phase, are present. If the flow rate of the dispersed phase undergoes a significant increase,

very large drops occupying almost all the tube cross section, start to form – Taylor drops, by analogy

to Taylor bubbles (Davies and Taylor, 1950; Mandal et al., 2008). A flow where a continuum of a liquid

contains Taylor drops of another liquid is called liquid-liquid slug flow.

Slug flow is important due to its effects on heat and mass transfer rates in several industrial processes.

Hydrocarbon transportation in pipes is another important example where slug flow happens. In partic-

ular, due to the increasing demand in oil well extraction, there is a growing interest in liquid-liquid slug

flow occurrence in vertical pipes (Bannwart et al., 2004; Mandal et al., 2010).

The most basic element of slug flow is the Taylor drop. The present work deals with Taylor drops

(dispersed phase) rising in a vertical tube filled with a denser liquid (continuous phase).

Taylor drops are typically long bullet-shaped drops. It is expected that a rising solitary drop reaches

a constant velocity (VT), in a very short distance from its injection or formation point. The heavier liquid

that constitutes the continuous phase is forced, by the drop upward flow, to flow down in the narrow film

that is formed between the drop and the pipe wall (Mandal et al., 2008). The flow in the film becomes

fully developed and the drop velocity becomes independent of the drop length. The shape of the rear

part of the drop is closely related to the flow regime and sometimes can show oscillations. Below the

drop, depending on the regime, closed recirculations can be formed.

Another important characteristic of Taylor drops concerns the existence or non-existence of axisym-

metry.

In order to understand Taylor drops continuous flow, one must consider first the simpler case, a Taylor

drop rising in a stagnant liquid. That case is presented in the following subsection. The second subsection

extends the analysis to a Taylor drop flowing in co-current with the continuous phase.

Note that the present work deals solely with Newtonian liquids.

1.2.1 Single Taylor drop in stagnant continuous phase

Hayashi et al. (2011) performed a dimensional analysis identifying the relevant forces involved in liquid

slug flow in a stagnant liquid column: inertial, viscous, surface tension and buoyant. This is analogous

to Taylor bubbles (Goldsmith and Mason, 1962; Fabre and Line, 1992; Morgado et al., 2016). However,

in liquid-liquid, the viscosity of the dispersed phase (Taylor drop) is also relevant.

4



Chapter 1 INTRODUCTION

Five dimensionless numbers are needed to characterize liquid slug flow in a stagnant liquid column.

The Froude number relates inertia and gravity forces:

Fr =
VT√

∆ρ gD/ρC

, (1.1)

where ρ is the density, D stands for the tube diameter, g for the acceleration of gravity. Finally,

∆ρ = ρC − ρD, where the subscripts ”D” and ”C” stand for dispersed and continuous phase. The Froude

number includes the drop terminal velocity (VT), and it is the main output from studies dealing with

Taylor drop velocity.

Two other dimensionless numbers are also of foremost importance:

Eo =
∆ρ gD2

σ
, (1.2)

M =
∆ρ gµ4

C

ρ2
C σ

3
, (1.3)

where Eo is for Eötvös number (ratio between buoyancy and interfacial forces) and M the Morton number

(gravity, viscosity and surface tension forces). µ stands for viscosity and σ for the interfacial tension

between the two liquids.

The ratios between the liquids properties are the remaining dimensionless numbers required to com-

plete the dimensional analysis:

ρ∗ =
ρD

ρC
, (1.4)

µ∗ =
µD

µC
. (1.5)

The combination of Eötvös number, Morton number and viscosity ratio allow for the characterization

of the Taylor drop phenomena.

When Eötvös number is high and the viscosity ratio is low enough, the liquid-liquid isolated drop

case approaches the behavior of a Taylor gas bubble rising in a liquid contained in a macro tube. That

happens because the gravity effects are predominant due to the high density difference and/or to the low

interfacial tension force.

On the other hand, when Eötvös number is low, Morton is required to assess the importance of the

viscous forces. Low Eötvös and high Morton numbers implicate a high viscosity of the continuous phase.

On such occasions, if the viscosity ratio is high, such combination implies that, at the macroscale, both

fluids have close densities and so viscous effects are predominant. For low Eötvös, low Morton numbers

and low viscosity ratio, the flow should resemble a gas Taylor bubble flowing in a liquid contained in a

micro tube (surface tension effects are predominant).

In the present work, the continuous phase is denser than the dispersed phase (rising drops): ρ∗ < 1

Note also that the presented dimensionless numbers hold for Taylor drops because in gas liquid ρ∗ ≈ 0,

∆ρ ≈ ρC and µ∗ ≈ 0.

Furthermore, the ratio between the diameter of the drop volume-equivalent sphere and the pipe

diameter (dS/D) gives information on the drop size.

Even though the presented dimensionless numbers suffices for the description of the phenomena,

sometimes it is useful to combine them to yield other relations. As such, consider the inverse viscosity
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number,

Nf =

(
Eo3

M

)1/4

=

√
∆ρ ρCgD3

µc
. (1.6)

1.2.2 Single Taylor drop in co-current flow

When Taylor drops rise in co-current flowing liquids (laminar regime), the velocity will be the result of

the contributions of two effects: the terminal velocity and the co-current flow. Therefore, VTC is here

used for the drop velocity and UC for the continuous phase velocity.

Due to the continuous phase flow, one must always consider the Reynolds number, which gives infor-

mation on the flow regime:

ReC =
ρC UCD

µC
. (1.7)

In the present work, the regime of the continuous phase is laminar.

It is also important to consider the Reynold number based on the dispersed phase velocity:

ReD =
ρC VTCD

µC
. (1.8)

1.3 Gas-liquid slug flow literature overview

There is already an extensive knowledge on gas-liquid slug flow and Taylor bubbles. Moreover, there

is an obvious analogy between Taylor drops and Taylor bubbles. Therefore, it is important to make a

summary of gas-liquid slug flow.

Early studies include those of Davies and Taylor (1950); Dumitrescu (1943); Nicklin et al. (1962);

White and Beardmore (1962); Zukoski (1966).

White and Beardmore (1962); Collins et al. (1978) performed studies that concluded about the rel-

evant properties: gravity, continuous phase density and viscosity, surface tension and tube diameter.

Furthermore, White and Beardmore (1962) mapped Froude number as a function of Morton number and

Eötvös number.

The bubble terminal velocity rising in a stagnant liquid has been the subject of several works. Early

studies set the Taylor bubble velocity in stagnant liquids to be between 0.328
√
gD and 0.351

√
gD for

inertial dominated regime. This result has an important influence both on Taylor bubbles and Taylor

drops as it sets an upper limit for the Froude number. Later works (Viana et al., 2003; Hayashi et al.,

2011) relate the Froude number to the other dimensionless numbers and confirm the upper limit at about

0.35. Brown (1965) related bubble terminal velocity and its film thickness and velocity profile. Regarding

the wake, Campos and Carvalho (1988) performed experiments where several regimes were identified.

Araújo et al. (2012) performed a detailed numerical study on Taylor bubbles, describing velocity

profiles, film thickness and nose radius. Furthermore, bubble shapes and wake characteristics were also

studied, where closed recirculations tend to appear for low Morton number and high Eötvös number

(Araújo et al., 2012). Detailed numerical studies regarding the flow between interacting Taylor bubbles

where performed by Araújo et al. (2013b,a).

Regarding the bubble velocity in co-current flow, Nicklin et al. (1962) found that the bubble velocity

results from the sum of the terminal velocity and of the continuous phase velocity contribution. The

latter is a linear contribution which depends on the system dimensionless groups (Fabre and Line, 1992)

– a constant C multiplied by the continuous phase velocity. Collins et al. (1978) proposed C = 2.27 for
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laminar regime. In a later work, (Bendiksen, 1985) proposed a function of Eötvös number for laminar

regime with an asymptotic limit on C = 2.29.

Pinto et al. (1998) obtained similar values. They also related the liquid Reynolds number to the

wake region behavior. Nogueira et al. (2006) reported an experimental study where three types of wakes

were observed at the rear of Taylor bubbles. Lu and Prosperetti (2009) performed a numerical study

on the effect of Eötvös and Morton numbers. They reported a relationship between the distance, below

the bubble, disturbed by the bubble flow and the velocity of the continuous phase, observing very long

recirculations in some conditions. Quan (2011) studied numerically systems with a density ratio of 0.01,

reporting bubble shapes and detailed velocity profiles. They observed that an increase in the continuous

phase velocity elongates the bubble and tends to create flow separation below the bubble.

Thin protuberances on the bottom edges of the bubbles (“skirts” – (Viana et al., 2003; Ray and

Prosperetti, 2014)) were also reported on the mentioned numerical studies of Lu and Prosperetti (2009);

Quan (2011).

1.4 Taylor drops – literature overview

The earlier studies of Taylor drops rising in vertical tubes trace back to the works of Brown and Govier

(1961); Govier et al. (1961); Zukoski (1966).

Mandal et al. (2007, 2009) made a theoretical analysis to predict the terminal velocity by adopting a

viscous potential flow analysis. They obtained an equation explicit in Froude number (and on terminal

velocity, as well), which is dependent on the density of the liquids, surface tension, pipe diameter and

continuous phase viscosity. Moreover, the equation contains a drop shape parameter that depends on

the drop nose shape. Equations developed in the above works (Mandal et al., 2007, 2009) are limited to

conditions where the effect of drop viscosity is negligible.

Mandal et al. (2007, 2008) also performed experiments with values of 4 < Eo < 230 and 10−13 <

M < 10−10. Density ratios were between 0.65 and 0.88 and viscosity ratios between 0.68 and 1.2. The

interfacial tension for the pairs of liquids used lies between 0.02 and 0.06 Nm-1. They used a 1.5 m long

perspex pipe, which allows for visualization of the inside. They used water, kerosene, brine, benzine,

ciclohexane and 2-heptanona. Mandal et al. (2009) performed further experimental studies concerning

identical systems. A wake region was observed, distinguishable due to the presence of small dispersed

drops. They claim that the drop shape for their conditions was axisymmetric. In some drops, the bottom

part showed oscillations with apparently no periodic pattern (analogous behavior can be found in Taylor

bubbles).

Hayashi et al. (2011) performed lab experiments and CFD simulations to study the terminal velocity of

a rising Taylor drop. The experimental conditions consisted of a density ratio around 0.8, a viscosity ratio

between 0.1 and 20, and a surface tension between 0.02 and 0.04 Nm-1, from the usage of glycerin-water

solutions as continuous phase and several silicon oils as dispersed phase. The diameters of the tubes were

between 11 and 31 mm, the Eötvös number between 10 and 100, and the Morton number ranged between

2 × 10−5 and 0.35. They focused on drop shapes cataloging and on the development of a correlation to

predict Froude number. They claim that the density ratio does not influence Froude number and they

also observed that when the continuous phase viscosity is much higher than the dispersed phase viscosity,

Froude number approaches the known limit of 0.35. They propose an equation to predict Froude number

in the range: 4.8 < Eo < 228; 1 < Nf < 14700; 10−12 < M < 104; µ∗ < 70; 0.002 < Re < 4960.

This equation features an important difference to the previous ones: it takes into account the influence

of the dispersed phase viscosity by including µ∗. For that equation, Hayashi et al. (2011) assumed
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that the terminal velocity is independent of the drop length when dS/D < 1.6. Furthermore, Hayashi

et al. (2011) forced the known limit of 0.35 for Froude number. They adjusted their correlation to the

relation Fr = 0.01Nf (viscous force dominant regime), as well as to experimental results from White and

Beardmore (1962). They finally used simulation results to complete their correlation. That correlation

was slightly changed by Kurimoto et al. (2013):

Fr =

√
A2 ·A3

A3

0.352 + 1+1.9µ∗

1+0.31µ∗A1

, (1.9)

where A1, A2 and A3 are defined by:

A1 = Re−1
(

1− 0.05
√

Re
)
, (1.10)

A2 =
(
1 + 3.87 Eo−1.68

)−18.4
, (1.11)

A3 = 0.0025 (3 +A2) . (1.12)

Because of the presence, on both sides, of the Froude number and of the Reynolds number, the drop

terminal velocity can only be obtained from equation 1.9 by an iterative process.

Kurimoto et al. (2013) also observed non-symmetrical Taylor drops under certain operating conditions.

Quan and Lou (2011) proposed a power law equation to predict Froude number, based on an axisym-

metric numerical model.

Fr = B µ∗−0.27±0.05, (1.13)

where B depends on Nf and Eo.

1.5 Thesis objectives

The present work aimed to develop the knowledge on vertical liquid-liquid slug flow, which requires the

fulfillment of the following steps:

� development and validation of a numerical model able to simulate the phenomena;

� description of the flow of an isolated Taylor drop in stagnant liquid;

� description and understanding of the role of instabilities and deviations from the axisymmetric

behavior;

� description of the flow under co-current conditions and drops interaction.

In the near future, the objective is to collect the necessary data to develop a descriptive model (one-

dimensional) to be applied in relevant industries, in particular in the petroleum exploitation.

1.6 Thesis layout

Following the present introductory chapter, the numerical and experimental methods are presented in

Chapter 2. The results are in four chapters, each one based on a paper published or under review in

scientific journals (see Table 1.1).
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Table 1.1: Results chapters and corresponding publications

Chapter 3
Direito, F. J. N., Campos, J. B. L. M. and Miranda, J. M. (2016),
‘Rising of a single Taylor drop in a stagnant liquid – 2D laminar
flow and axisymmetry limits’, Physics of Fluids 28 (5), 057101.

Chapter 4

Direito, F. J. N., Morgado, A. O., Rocha, L. A. M., Miranda, J.
M. and Campos, J. B. L. M. (2017), ‘Experimental and numerical
3D study of a Taylor drop rising in a stagnant heavier liquid’,
Physics of Fluids 29 (3), 037109.

Chapter 5
Direito, F. J. N., Campos, J. B. L. M. and Miranda, J. M. (2017),
‘A Taylor drop rising in a liquid co-current flow’, International
Journal of Multiphase Flow 96, 134-143.

Chapter 6

Direito, F. J. N., Campos, J. B. L. M. and Miranda, J. M. (2017),
‘Interaction between two consecutive axisymmetric Taylor drops
flowing in a heavier liquid in a vertical tube’, International Journal
of Heat and Fluid Flow 68, 1-12.

The first results chapter deals with single axisymmetric Taylor drops rising in stagnant liquids (Chap-

ter 3). This is the most basic formulation of liquid-liquid slug flow (Figure 1.1). The findings in this

chapter are the starting point for all the other chapters. Furthermore, the chapter provides an extensive

description of flow fields which enables the comparison between liquid-liquid and gas-liquid slug flow

characteristics.

The second results chapter (Chapter 4) analyses isolated Taylor drops by means of a three dimensional

numerical model, allowing for the assessment of the deviations from the axisymmetric behavior, thus

expanding the studied range beyond the one studied in the preceding chapter. Moreover, it also analyses

oscillations in the drops and their relationship to continuous phase flow oscillations in the influence region

of the drop. Lab experiments were also conducted to validate the 3D model.

The complexity of the phenomena for axisymmetric drops conditions increases in the remaining two

results chapters. Features are added to the flow in order to approximate the model to real slug flow (Figure

1.1). In Chapter 5, isolated drops rising in co-current flow are studied. In particular, the relationship

between the drop velocity and the continuous phase velocity is assessed, as well as the influence of the drop

in the continuous phase flow pattern, which is of major importance for drop interaction (see succeeding

chapter).

The last results chapter (Chapter 6) deals with interaction between two axisymmetric drops in stag-

nant and co-current flowing continuous phase.

Finally, the thesis ends with a concluding chapter.
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Isolated axisymmetric drops
in stagnant liquid (Chapter 3)

Isolated drops in 3D in
stagnant liquid (Chapter 4)

Isolated drops in co-current flow 
(Chapter 5)

Interaction between drops in
stagnant and co-current
flow (Chapter 6)

+ 3D model
+ asymmetries + upflowing continuous phase

+ second drop

Figure 1.1: Results layout.
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2.1 Introduction

This work takes advantage of the powerful tools provided by Computational Fluid Dynamics (CFD). The

present chapter contains a first section where a brief introduction to CFD is presented. Following this

section, a new one provides the details regarding the numerical model used.

To validate CFD results, some laboratory experiments were performed. The last section, in this

chapter, presents the techniques employed.

2.2 Computational Fluid Dynamics

Computational continuum mechanics comprises the simulation of continua using computational methods

to implement physical laws. In particular, Computational Fluid Dynamics (CFD) is the application of a

numerical code to simulate fluid flow and interrelated phenomena, such as heat and mass transfer or/and

chemical reaction (Date, 2005).

Applications of CFD can be found in several areas such as: aerodynamics, ship building and naviga-

tion, power plants, turbomachinery, chemical processes, building ventilation, oceanography and biomed-

ical applications.

CFD has several advantages when compared to lab experiments. It allows for easy and quick step-up

changes, as well as scaling up or down. Furthermore, CFD is able to simulate operating conditions or

materials behaviour that are difficult or dangerous to deal with. Another advantage of CFD concerns the

detailed information on fluid flow field and other related parameters (Versteeg and Malalasekera, 1995).

CFD is based on the implementation of computer codes that represent physical laws (Date, 2005).

Due to the nonlinearity of most of the equations involved in CFD studies and to the non-uniformity of

the domain, the problems can only be solved employing space and time discretization of the conservative

equations (Weller and Tabor, 1998). Therefore, differential equations and other nonlinear equations are

substituted by algebraic equations, which are “understood” and solved by the computer. The most com-

mon techniques are: finite- differences, finite-elements and finite-volumes. The finite-elements subdivide

the problem into smaller parts in pre-determined locations and the residual of the whole algebraic system

are minimized (Versteeg and Malalasekera, 1995). The finite-differences approximate the equations by

means of finite differences between the values in two or more nodes of the mesh. In the finite-volumes,

the domain is divided into a set of discrete small volumes (or elements, or cells). The model equations

are volume-integrated over each one of those small volumes (Versteeg and Malalasekera, 1995). The

finite-volumes method (Figure 2.1) will be used along all the present work.

In order to solve this set of equations that define the problem, an iterative method is usually used,

and a criteria is defined to choose the moment to finish the iterative procedure (Wesseling, 2010). Three

kinds of numerical errors are inherent to a CFD simulation: discretization, convergence and rounding

(Wesseling, 2010). The latter is due to the limits of computer memory. Discretization errors arise due

to the truncation of linearized equations. The convergence error has to do with the convergence to the

correct solution of the iterative procedure used to solve the set of algebraic equations.

2.2.1 The parts of a CFD model

The most important elements of a CFD simulation are: the computational domain and its mesh, the

discretized equations that model the physical problem and the numerical methods to solve the algebraic

equations. Because of the finitude of the domain, special mathematical conditions are imposed at the
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center

Figure 2.1: A cell in finite-volume method.

boundaries: the so called boundary conditions. Furthermore, initialization values as well as fluid physical

properties are also required.

The domain and the mesh

The assembly of the numerical model starts by defining the domain, i.e., the geometry necessary to the

simulation. This can be as diverse as a simple tube (a cylinder), a ship, or the intricate system of small

tubes involved in injection molding. From the geometry, one can then construct a grid, or mesh, to

indicate the code where must perform the relevant computations. For the finite-volumes method, the

result of such step is a a structure of contiguous cells (2D or 3D). The number of cells is obviously

finite and so a fundamental issue deals with the amount of cells of a grid. Generally, the larger the

number (better mesh refinement), the more accurate the solution will be. Besides, increasing accuracy by

providing a finer discretization, the mesh will describe curved or irregular surfaces better. For instance,

with a finite number of nodes, one cannot create a “perfect” sphere, but, the more refined the mesh is,

the better will be the approximation. However, as the mesh elements constitute computation locations,

increasing the number of elements, it increases the number of computations steps and, therefore, the

computational resources required. Such increase has consequences at three levels: computer memory,

data storage due to the amount of information and time required to perform a simulation due to the

increased number of numerical procedures. Moreover, consider the Courant number (a dimensionless

number which is a consequence of the Courant-Friedrichs-Lewy condition) (Anderson, 1995),

Co = ux
∆t

∆x
≤ Comax, (2.1)

which, in a transient simulation, usually have a maximum value in order to assure a better solution

and the stability of the simulation. Hence, the increase in the number of cells implies smaller time-

steps, causing a transient simulation to be even slower. Furthermore, post-processing also gets harder.

Therefore, while simple simulations can be performed on a small laptop, simulations with several millions

of elements generally run on workstations or computer clusters. Because of the balance between accuracy

and computational resources available, meshes are sometimes constructed with non-uniform levels of

refinement: finer where large variations of the variables in study occur and coarser in the other locations.

One of the most common techniques to deal with the computations effort concerns reducing the problem

to a simpler geometry, for example, a two dimensional geometry, or the insertion of symmetry conditions.

As it is not always possible to do so, the better mesh configuration is decided by comparing the simulation

results to experimental data or theoretical solutions, the so called validation procedure.
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Another detail about meshes concerns how the nodes location is defined. In some cases the location

can be defined by equations – structured grids, while in others, every location must be explicitly defined

– unstructured grids. There are solvers (the iterative procedure to solve the pressure-velocity coupled

equations – see Section 2.2.1) created to define structured grids (which are more efficient regarding

computational resources), however, unstructured grids, have been gaining space. In the most complex

geometries, a structured grid can be almost impossible to employ (Versteeg and Malalasekera, 1995).

Discretization techniques and solvers

The finite volumes method can be summarized as a technique that approximates the derivatives of a

certain variable in a cell by means of polynomial differences (usually linear or quadratic) stated in the

neighboring of each cell.

Three main steps occur in a finite volumes method (Versteeg and Malalasekera, 1995): the first is the

integration of the governing equations over all the mesh elements; the second consists in the transformation

of the integral equations into algebraic equations by means of finite differences approximations; the

last step consists in solving the equations by an iterative method. In the finite volumes method, the

conservation of a property φ is, therefore (Versteeg and Malalasekera, 1995):

φ̇CV = φconvectionin + φdiffusionin + φcreatedCV . (2.2)

This equation indicates that, the rate of change of a property equals the net flux into the control

volume (due to convection and diffusion) plus the net rate of creation or consumption of the property

inside the control volume.

In CFD, the fluids are treated as a continuum and thus, the unknown variables are density, tem-

perature, velocity and pressure (Versteeg and Malalasekera, 1995). Velocity is usually obtained from

the momentum equations. Liquids and gases flowing at low speeds can be regarded as incompressible

(Versteeg and Malalasekera, 1995). Because of that, there is no interrelation between the energy equation

and the momentum and mass conservation equations. Therefore, if the problem does not involve heat

transfer, the energy equation is not included in the CFD model. For incompressible flows, the solvers are

usually pressure-based. Pressure-based solvers usually manipulate continuity and momentum equations

to obtain the pressure field. On the other hand, in density-based solvers (employed usually for compress-

ible flows), the continuity equation is used to obtain the density field, while the pressure field results

are from the equation of state. In this work, the model is pressure based. Due to the nonlinearity and

coupling of the equations an iterative process is required.

The iterative process for solving the pressure-velocity coupling can be segregated or coupled. In

a coupled solver, the set of governing equations are solved in simultaneous. On the other hand, a

segregated algorithm solves the governing equations sequentially. This strategy is memory-efficient but

the convergence might be harder (Ansys Fluent, 2011). In the present work, the algorithm is segregated.

Its workflow can be summarized in few steps (Ansys Fluent, 2011) (Figure 2.2). It starts by updating the

properties. Next, velocity field is computed. Then, a pressure-correction (when it is needed) is done and

continuity equations are solved. Afterwards, pressure and velocity fields are updated. Finally, equations

such as energy, turbulence and others are solved. After all these steps, convergence is checked. If the

criteria are not met, the previous steps must be repeated.
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Figure 2.2: Segregated algorithm steps.
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Boundary conditions

The determination of the flow characteristics on a cell is dependent on the fluxes between the cell and its

neighbors. A special set of cells are those lying on the boundaries of the domain (such as walls or inlets

and outlets). It is, therefore, required a special mathematical treatment for such locations.

Typical inlet boundary condition might concern the definition of the flow profile. For example, if

a fully developed laminar flow enters a rectangular domain in a direction x orthogonal to y, then the

velocity profile might be described by:

u(y) = yx=0

(
1− y2/l2

)
. (2.3)

Another common inlet and outlet boundary condition consists in setting that a field φ attains a fully

developed state, and so the derivative of that specific property is null alongside the flow direction at the

boundary in consideration. As such, if n is the coordinate orthogonal to the boundary:

∂φ

∂n
= 0. (2.4)

This condition of normal zero gradient is most of the times used as wall boundary condition (Anderson,

1995).

Concerning the velocity on the wall of a solid surface, the most common condition is the no-slip

condition, which specifies that the fluid velocity in the wall matches the velocity of the wall itself (in

magnitude and direction).

The pressure field is solved in terms of relative pressure and a reference pressure value and location

is normally set (Patankar, 1980). In problems consisting of inlet and outlet of the control volume, it is

common to set the pressure at one side, and the velocity at the other side (Versteeg and Malalasekera,

1995).

Simulation post-processing

The post-processing of a CFD simulation is required in order to interpret the results and analyze the

flow parameters. The most recent post-processing tools allow for complex data manipulation and image

generation. Depending on the field, it might be of interest to present concentration, velocity, pressure,

shear stress or simply the viscosity field. One can observe 3D effects or observe planes and cuts.

Some of the most common results concern the representation of the velocity field as arrows (vectors)

(Figure 2.3). Such representation is useful because it provides information on both direction and mag-

nitude of the velocity. The introduction of a color to the arrows can add further information to the

representation.

Concerning the velocity field, one can draw also streamlines (Figure 2.3), which are curves tangent to

the velocity vectors that provide an instantaneous path of the elements of fluids. With streamlines, one

can analyze which regions have higher flow rates or those where there are dead volumes or recirculations.

Concerning particle tracking, streaklines and pathlines can be used. Unlike streamlines which, as said,

are instantaneous, and thus, correspond to a snapshot of the flow field, streaklines and pathlines depend

on the flow history (time). Streaklines correspond to the path that fluid particles with the same origin

have undergone. This is analogous to inject a dye in a fixed point and observe the path or several paths

the dye undergoes. A pathline correspond to follow a fluid particle along the time. It is equivalent of

following a fluid particle by analyzing the streamlines in every moment. Therefore, on steady flows,

pathlines and streamlines are coincident. Moreover, because there is no reason, in steady flow, for two
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Figure 2.3: Streamlines (left) and velocity vectors (right).

Figure 2.4: Example of colored contours (for the normalized axial velocity component).

particles coming from the same location to follow different paths, the streaklines are also coincident with

the pathlines and streamlines. An important characteristic of the streamlines is that they are dependent

on the reference frame, as they depend on the velocity field.

For scalars, the representation of colored contours (Figure 2.4), usually provides a fast way of data

analyses. Scalar values along a line are also common, as well as their representation as a function of time.

2.3 Numerical model

In the present work, the rise of Taylor drops in another liquid in vertical tubes was simulated. The

present section discusses some details regarding the numerical model used.

The simulations were run using the software package Ansys Fluent, versions 14, 15 and 16 (no differ-

ences between them concerning the physical phenomena in study). After the domain and grid are created,

a field initialization was performed, which includes the establishment of the drop flow. The Ansys Fluent

implementation of the Volume of Fluid method (VOF) was used with a pressure-based solver. In the

model, there is not any imposition of temperature, heat transfer, mass transfer or reaction. The flow is

laminar and the fluids are incompressible and immiscible.

Even though the goal is to find a steady-like state concerning the drop and the flowing continuous

phase, the simulations were run in transient conditions. Transient conditions were used because the
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Table 2.1: Summary of numerical method options.

time discretization first order implicit
section 2.3.1, Discretization and

other algorithms

pressure-velocity coupling PISO
section 2.3.1, The VOF solver

and interface reconstruction

volume fraction and interface geometric reconstruction
section 2.3.1, The VOF solver

and interface reconstruction

scalar gradients Green-Gauss node based
section 2.3.1, Discretization and

other algorithms

pressure pressure staggering option
section 2.3.1, Discretization and

other algorithms

momentum QUICK
section 2.3.1, Discretization and

other algorithms

numerical procedure initiates with a drop with a virtual shape (as explained further in the text) and also,

in some conditions, the drop oscillates, even when the terminal velocity is reached.

For some conditions, a two dimensional model (2D) symmetric in respect to the tube axis (axisym-

metry) was used. In comparison to the three dimensional model (3D), this provides a much lower weight

simulation. However, it was found that, for some conditions, a 3D model was required. The first subsec-

tion of the numerical model presentation, concerns the 2D axisymmetric model (Figure 2.5). Afterwards,

the 3D model is presented by pointing out the differences to the 2D model.

2D and 3D numerical models follow the validated gas-liquid models already in usage in the research

group (Araújo et al., 2012, 2013, 2015). Table 2.1 summarizes the solvers and methods used in this work.

2.3.1 The two dimensional axisymmetric model

The axisymmetric 2D model considers that there is symmetry in the flow. In order to understand the

concept suppose that, in the tube, several longitudinal wall to center cuts are done (similar to slicing a

cake – Figure 2.6). When the velocity and scalar fields are the same in all the slices (rectangular shape),

then it is axisymmetric. On such occasions, there is no need to simulate the whole tube, but just one of

the slices. This provides an efficient route for the simulations. In the axisymmetric model, the flow has

only axial (in this work vertical) and radial directions (Lewis et al., 2004). At the axis, the symmetry

condition imposes for any field φ:

∂φ

∂r
= 0. (2.5)

The model validation is discussed in Chapter 3.
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I

II

film

z

r

Figure 2.5: Axisymmetric domain with drop.

Figure 2.6: Axisymmetric domain vs three dimensional domain.
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Figure 2.7: Mesh 52× 1144, mesh 52× 1720 and zoomed in detail of mesh.

Domain and mesh

Axial symmetry (around the cylinder axis) was used to minimize computational effort. The domain

consisted of a rectangle with a width D/2 and 11D long (16.5D for two drop cases). The domain needs

to be long enough to ensure a continuous undisturbed phase at the entrance and at the exit. The mesh

consisted of a 52 × 1144 (52 × 1720 for two drop cases) grid of quadrilateral and uniformly distributed

cells. The number of cells in the film flow region between the drop and the wall had between 10 and 15

cells. A finer grid (7.8 times more cells) was also used in preliminary tests, but showed identical results

and it was dropped due to computation time.

For coalescence (Chapter 6), a longer domain was used. In order to keep the same refinement, the

number of elements in the axis direction was increased from 1144 to 1720. The meshes used are shown

in Figure 2.7.

Governing equations

The conservation of momentum is modeled by the incompressible Navier-Stokes equation:

∂ (ρa~v)

∂t
+∇ · (ρa~v~v) = −∇p+ ρa~g +∇ · µa

(
∇~v + (∇~v)

T
)

+ ~fσ, (2.6)

where p is the pressure, ρa the density, v the velocity and µa the viscosity. It contains four force

terms: pressure, gravity, viscosity and interfacial tension ( ~fσ). The interfacial tension determines the

relationship between the pressure difference in the two sides of the interface and the local curvature:

∆p = σ

(
1

R1
+

1

R2

)
, (2.7)

where R1 and R2 are the curvature radii.

The continuity equation (Munson et al., 2005; Campos, 2013) states:

∂ρa
∂t

+∇ · (ρa~v) = 0. (2.8)
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For axisymmetric flow, no flow normal to the zr-plane exists and the scalar momentum equations can

be written as (Feng et al., 2016):

∂ρavr
∂t

+
1

r

∂rρav
2
r

∂r
+
∂ρavrvz
∂z

=− ∂p

∂r
+ 2

(
∂

∂r

(
µa
∂vr
∂r

)
+

∂

∂r

(
µa
vr
r

))
+

∂

∂z

(
µa

(
∂vz
∂r

+
∂vr
∂z

))
+ fσ,r,

(2.9)

where fσ,r is the radial component of the surface tension force term, and

∂ρavz
∂t

+
1

r

∂rρavrvz
∂r

+
∂ρav

2
z

∂z
=− ∂p

∂z
+

1

r

∂

∂r

(
µar

(
∂vz
∂r

+
∂vr
∂z

))
+ 2

∂

∂z

(
µa
∂vz
∂z

)
− ρag + fσ,z,

(2.10)

where fσ,z is the axial component of the surface tension term.

The VOF solver and interface reconstruction

The Volume of Fluid method (VOF) was conceived to treat free surfaces in incompressible problems by

solving the momentum equations and tracking the volume fraction of each species in all the domain (Hirt

and Nichols, 1981).

In order to deal with the two-phase flow through VOF, a variable αi is defined to track the position

of the interface, in this work liquid-liquid interface. The value of αi is 1 at any point occupied exclusively

by the fluid i, 0 if no i exists there, or a number between 0 and 1, if both fluids exist in the same mesh

volume. Notice that a number between 0 and 1 does not mean that the two liquids are mixed (immiscible

materials). In any cell:

αC + αD = 1, (2.11)

where “C” stands for continuous phase and “D” for dispersed phase.

The tracking of the interface is done by solving the continuity equation for the dispersed phase (Hirt

and Nichols, 1981):

∂

∂t
(αD) +∇ · (αD~v) = 0. (2.12)

In the present work, an explicit scheme was used for solving the VOF method. The advantage of the

explicit scheme over the implicit one relies on the fact that the latter requires the values in the current

time step for the volume fraction values, thus requiring an iterative process. The VOF explicit scheme is

based on the following equation:

αn+1
D ρn+1

D − αnDρnD
∆t

Vcell +
∑
f

(
ρDu

n
fα

n
D,f

)
= 0, (2.13)

where “n” and “n+1” refer to two consecutive time steps (∆t), and f to the property in the cell face.

Vcell is the cell volume.

Volume fraction phase values are, in the present work, computed using a geometric reconstruction

scheme (Youngs, 1982), explained in detail below.
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In order to compute the face fluxes (in interface regions), several schemes are available. In the present

work, preliminary tests (following strategies like the ones in Deshpande et al. (2012); Hoang et al. (2013);

Magnini et al. (2016)) were conducted to choose the best one. An overview on the options is now provided.

Ansys Fluent has implemented a non-linear combination of upwind and downwind differencing schemes

and also a second order reconstruction method based on a slope limiter. It also provides a scheme based

on the method proposed by Ubbink (1997) (CICSAM in Ansys Fluent).

The previous methods showed poor results in the preliminary tests. Furthermore, upwind schemes are

unsuitable for computing the interface due to the diffusive nature (Ansys Fluent, 2011). Therefore, the

chosen method was the geometric reconstruction (Youngs, 1982). This scheme represents the interface

between two fluids using a piecewise-linear approach. It is accurate but also time-consuming. The method

starts by computing a slope for an interface within the cell, based on the volume fraction of the phases.

Afterwards, it computes the fluid transport by advection through each face by using the created linear

interface and the face velocity components. Finally, it determines the new cell volume fraction balancing

the advection fluxes.

Discretization and other algorithms

Temporal discretization is required for transient simulations. First order implicit time integration was

used in this work to perform the time discretization of the velocity and scalar fields. Let function F (φ)

represent any spatial discretization. If “n” and “n+1” represent two consecutive steps, the following

equation must converge each time-step:

φn+1 − φn

δt
= F

(
φn+1

)
. (2.14)

For spatial discretization, Fluent implements an “upwind” scheme, which stores the scalar values at

the cell centers and interpolates the values at the cell faces, taking into account the direction of the

normal velocity. The first order upwind scheme assumes that cell center values are representative of

the whole cell. Therefore, the face value is equal to the cell center value in the upstream cell. In the

second order upwind scheme, the face value is computed taking into consideration the cell center and

the face center, as well as the gradient and the scalar value in the upstream cell (Ansys Fluent, 2011).

Fluent also provides a power-law scheme. This consists in the interpolation of the face value using a

one-dimensional convection-diffusion equation. A third order method is also provided by Ansys Fluent.

The third order MUSCL Scheme mixes a central differencing scheme and a second order upwind scheme.

The QUICK (Leonard, 1979) scheme consists on a weighted average of second order upwind scheme and

central interpolations of the variable in study:

φf = θ(central second order) + (1− θ) (second order upwind), (2.15)

Traditionally, θ is set to a fixed value of 1/8 (Leonard, 1979). However, Ansys Fluent employs a

different strategy, and uses a non-constant θ.

In the present work, the momentum equation is solved with the QUICK scheme, due to its accuracy

(Versteeg and Malalasekera, 1995; Ansys Fluent, 2011; Araújo et al., 2013). Undershoots and overshoots

that can arise in QUICK scheme (Versteeg and Malalasekera, 1995) are dealt by the variable θ (Ansys

Fluent, 2011). The diffusion terms are computed by second-order central-differences.

Regarding gradients, Green-Gauss theorem is used to compute scalar gradients at the cell center as
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well as velocity derivatives. Let φ be any scalar, then, at the cell center:

∇φ =
1

Vcell

∑
f

φ̄f Āf . (2.16)

One of the options to evaluate the average scalar values in the face (φ̄f ) is the arithmetic average of

the values in the neighboring cells (cell centers) – cell-based.

A more accurate method was, though, used in this work – the Green-Gauss node-based model. The

Green-Gauss node-based model (Figure 2.8) determines φ̄f by computing the arithmetic average of the

node values (φ̄n) delimiting a face:

φ̄f =
1

number of nodes

∑
nodes

φ̄n. (2.17)

In order to compute the values at the nodes (φ̄n), weighted averages of the cell center values sur-

rounding each node are computed (Figure 2.8). Ansys Fluent solves a constrained minimization problem,

computing exact values of a linear function at a node from the neighboring cells center values (Ansys

Fluent, 2011). With this scheme, second-order spatial accuracy is preserved.

Concerning the pressure, the chosen scheme was PRESTO! (Ansys Fluent, 2011). This scheme is

analogous to the staggered grid schemes (Patankar, 1980).

For the pressure-velocity coupling, Ansys Fluent provides a coupled algorithm, as well as segregated

algorithms (SIMPLE, SIMPLEC and PISO) – refer to Figure 2.2 for a summary on the segregated

algotithms. SIMPLE and SIMPLEC enforce mass conservation by relating velocity and pressure (Ansys

Fluent, 2011). An iterative process starts by creating initial guesses for velocity and pressure fields.

Firstly, the guessed pressure field is used to solve the momentum equation. Afterwards, the continuity

equation is used to compute a pressure correction which is then used to update velocity and pressure

fields (Versteeg and Malalasekera, 1995). In the process, the face fluxes are progressively guessed and

corrected (Ansys Fluent, 2011; Versteeg and Malalasekera, 1995).

PISO scheme (Issa, 1986) (which stands for Pressure-Implicit with Splitting of Operators) can be

regarded as an improvement of the SIMPLE and SIMPLEC algorithms (Ansys Fluent, 2011). One of the

problems of these algorithms lies in the fact that, after pressure correction, the velocities and fluxes do not

satisfy momentum equation. Therefore, the calculation procedure must be repeated until the momentum

balance closes (Ansys Fluent, 2011). PISO moves the repeated calculations to the pressure-correction

step – momentum correction.

Ansys Fluent also provides an option to include a body forces corrector (“implicit body forces”) for

segregated algorithms. It acts by taking into account the partial equilibrium between pressure gradient

and body forces (Ansys Fluent, 2011). Because the solution becomes more robust and convergence is

faster, all simulations in this work were run with this option.

Interfacial forces are modeled by the Continuum Surface Force method (Brackbill et al., 1992). This

method creates the interface between both liquids as a transition region of finite thickness, where the

surface tension force is proportional to the curvature at each location. The surface tension term, ~fσ, in

momentum equation is:

~fσ = σκ
ρa∇αD

0.5 (ρC + ρD)
. (2.18)
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Figure 2.8: Green-Gauss node based representation.

The κ refers to the curvature of the interface and is computed by:

κ = −∇ · ∇αD

|~∇αD|
. (2.19)

Notice that for cells that do not contain interface, Equation 2.19 yields κ = 0, so ~fσ = ~0, the surface

tension term in Equation 2.6 falls. This model (such as the alternative Continuum Surface Stress) might

introduce parasitic currents in the interface calculation caused by the imbalance between pressure and

surface tension forces (Ansys Fluent, 2011).

Boundary conditions and fluids properties

An important design option must be now introduced: a reference frame attached to the drop nose. This

reference frame determines that the tube wall moves downward at an imposed speed, the drop speed.

Therefore, the drop is always inside the domain and the no-slip condition is assumed in the wall. This

strategy avoids the need of a very long domain (Figure 2.9).

The reference frame attached to the nose means that the continuous phase velocity is affected in the

simulation. The top of the tube is an inlet of the domain and the bottom an outlet. Regarding the outlet,

a pressure-outlet (Ansys Fluent name) boundary condition must be used. This means that the pressure

must be imposed on this location.

The inlet flow boundary condition depends on the case being modeled. In the present work, two cases

were studied: a stagnant continuous phase and a rising continuous phase (laminar flow). Because of the

reference frame, for the inlet, a uniform downward velocity (equal in magnitude to the drop terminal

velocity and wall speed) was imposed for the stagnant continuous phase. For the laminar flow case the

drop terminal velocity must be subtracted from the parabolic profile. Hence:

u(r) = −VTC + 2UC

(
1− (2r/D)

2
)
. (2.20)

The boundary condition in the tube axis was already discussed above when presenting the axisym-

metric concept.

Convergence and other simulation parameters

In certain locations of the domain, both fluids might be present, αD 6= 0∧αD 6= 1. This does not represent

mixture, but the interface between the liquids.

This interface is not abrupt. Instead, a small numerical dispersion of the volume fraction occurs

(refer to the Continuum Surface Force method in 2.3.1). In this work, it is assumed that the interface

is represented by α = 0.5. Ansys Fluent computes the momentum equation in these elements supposing
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Figure 2.9: Earth reference frame (left) and reference frame attached to the drop nose (right).

linear contributions of each phase for the density and viscosity:

ρa = αCρC + αDρD, (2.21)

µa = αCµC + αDµD. (2.22)

Some authors suggest, instead, the usage of the harmonic mean (Carlson et al., 2008; Quan, 2011;

Tuković and Jasak, 2012) to correct the continuity of viscous stresses (Patankar, 1980; Gunsing, 2004;

Hayashi et al., 2011):

1

µa
=
αC

µC
+
αD

µD
. (2.23)

Such suggestion was employed in preliminary simulations, but the results showed no significant dif-

ferences. Due to the increased time computation, this strategy was dropped.

Concerning the time-step size, a maximum Courant number of 0.25 was imposed. This value is found

in several drop-like multiphase studies (Gerlach et al., 2006; Taha and Cui, 2006; Magnini et al., 2016).

Furthermore, the Courant number of 0.25 had yielded good results in previous works within the research

group (Araújo et al., 2012, 2013).

In Ansys Fluent, continuity and velocity equations are treated differently when computing the residuals

needed to assure convergence (Ansys Fluent, 2011). For the continuity equation, Ansys Fluent sums the

rate of mass creation in each cell. The largest value in the first five iterations is stored. The continuity

residual at each iteration is then computed by the ratio between the sum of the mass creation in each

cell and the stored value.
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First VT estimate

Set inlet and wall velocities

Run simulation

Check drop nose velocity

New VT estimate
Final run with 
correct velocity

Figure 2.10: Procedure for finding drop velocity.

The velocity residuals for the x-direction are given by:

residuals =

∑
cells

|
∑
nb

(anbvx,nb + b+ apvx,nb)|∑
cells

| ap ||~v|| |
, (2.24)

where the coefficients a refer to the center coefficients “p” and “nb” of the neighbouring cells (Versteeg

and Malalasekera, 1995). The term b is related to sources and boundary conditions (Ansys Fluent, 2011).

The other directions are computed in a similar fashion.

The convergence criteria for the iterative computation of the continuity and velocity equations were

set to 10 -6 (see Equation 2.24). For each time-step a limit of 1000 iterations was imposed. Nevertheless,

this limit was never reached, which ensures that convergence criteria were met in every time-step.

The final result for each flow condition is obtained by an iterative method (Figure 2.10). Firstly, inlet

and wall velocities are imposed based on literature correlations, and a first simulation runs. After, drop

velocity in the moving reference is determined and if it is higher than a given tolerance (less than 0.01),

wall and inlet velocities are changed, and a new simulation is performed. This process repeats until drop

velocity is less than the criterion established. Then, the correct value of the terminal velocity is found.

Solution initialization

Simulations were initialized with an isolated drop consisting of the merge of two shapes: a quarter of a

circle for the drop nose region and a rectangular body, with a width matching the nose radius. Although

other initialization strategies can be found in literature, this starting shape has been found to give good
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Table 2.2: Comparison between the two dimensional and the three dimensional models.

Simulation algorithms same (refer to sections 2.3.1)

Domain and mesh different (section 2.3.1 for 2D and section 2.3.2 for 3D)

Governing equations
same but different component formulation

(section 2.3.1 for 2D and section 2.3.2 for 3D)

Simulation parameters

and initialization

different (section 2.3.1 for 2D and section 2.3.2 for 3D)

Figure 2.11: Extrusion-like method.

results (Araújo et al., 2012, 2013).

2.3.2 The three dimensional model

The three dimensional model was intended for flow conditions that do not verify the axial symmetry

condition. The similarities and differences between the 2D and 3D models are summarized in Table 2.2.

Domain and mesh

The 3D model consists in simulating the tube as a cylinder (Figure 2.6). The mesh itself is three

dimensional. In order to create the new grid, a pattern was firstly created in a 2D cross-section with

about 3800 cells. Afterwards, in an extrusion-like effect (Figures 2.11 and 2.12), the pattern was replicated

1000 times in a length of 10D. A denser grid was also tested but the results were identical (more on this

in Chapter 4).

In this domain, the inlet and outlet are now circular.

Governing equations

The momentum equation (Equation 2.6) turns into scalar equations 2.9 and 2.10 for the axisymmetric

model. In the three dimensional model, with x and y for horizontal directions and z for the vertical

direction, the momentum equation becomes:

∂ρavx
∂t

+
∂ρav

2
x

∂x
+
∂ρavxvy
∂y

+
∂ρavxvz
∂z

=− ∂p

∂x
+

∂

∂x

(
2µa

∂vx
∂x

)
+

∂

∂y

(
µa

(
∂vx
∂y

+
∂vy
∂x

))
+

∂

∂z

(
µa

(
∂vz
∂x

+
∂vx
∂z

))
+ fσ,x,

(2.25)
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Figure 2.12: 3D mesh.

where fσ,x is the surface tension force term in the x direction,

∂ρavy
∂t

+
∂ρavyvx
∂x

+ vy
∂ρav

2
y

∂y
+
∂ρavyvz
∂z

=− ∂p

∂y
+

∂

∂x

(
µa

(
∂vx
∂y

+
∂vy
∂x

))
+

∂

∂y

(
2µa

∂vy
∂y

)
+

∂

∂z

(
µa

(
∂vy
∂z

+
∂vz
∂y

))
+ fσ,y,

(2.26)

where fσ,y is the surface tension force term in the y direction, and for the vertical direction:

∂ρavz
∂t

+
∂ρavzvx
∂x

+
∂ρavzvy
∂y

+
∂ρav

2
z

∂z
=− ∂p

∂z
+

∂

∂x

(
µa

(
∂vz
∂x

+
∂vx
∂z

))
+

∂

∂y

(
µa

(
∂vy
∂z

+
∂vz
∂y

))
+

∂

∂z

(
2µa

∂vz
∂z

)
− ρag + fσ,z,

(2.27)

where fσ,z is the vertical component of the surface tension force.

Simulation

Phase indicator initialization was performed by merging two bodies: a hemisphere and a cylinder. Note

that this is analogous to revolving the initial 2D shape around the axis.

The convergence criteria in 3D simulations was 10 -4. All other simulation parameters were the same

as for the 2D model. The validation of this numerical model is discussed in Chapter 4.

2.4 Experimental methods and apparatus

Even though the work is numerical, some experiments were required to validate the numerical results

beyond the available data in literature. Chapter 4 presents the set-up and the experiments executed in

this work. The following sections present also topics concerning the experimental methods employed.
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2.4.1 Experimental apparatus

The experimental setup was specially designed for visualizing Taylor drops (Figure 2.13). The main

section (or testing column Figure 2.14) consists of a 4 m long vertical acrylic tube. The apparatus allow

for the usage of two different diameters: 21 mm and 32 mm. An open reservoir is connected to the top

end of the testing column. The column and the reservoir were filled with the continuous phase liquid.

The visualization section in the testing column is located near the top in order to ensure the drop

reaches the terminal velocity (post-processing of the visualization data can confirm that). The visualiza-

tion section consists of an acrylic box that wraps the testing column. This box has rectangular faces and

is filled with the continuous phase liquid to reduce optical distortion. In front of one of the rectangular

faces, a camera is positioned to film the rising drop. At the opposite side, a light source is positioned.

Images are taken at a rate of 25 s-1. Prior to any experiment, the distances in the captured images were

calibrated by positioning two stripes of millimetric paper in opposite sides of the visualization box.

The injection of the dispersed phase drop was made in a pre-chamber. An initial design was tested

where the drop was fed through an horizontal tube (connected to a pre-chamber filled with continuous

phase) which would drive the drop towards the basis of the testing column (configuration I in Figure 2.13

see also Figure 2.15). It was observed (due to the low density differences and the high viscosity of the

liquids) that the drop stopped in the horizontal section. Another similar try was performed feeding the

column by means of a vertical injector tube. However, this did not work either. A new configuration was

then designed (configuration II in Figure 2.13). In this new design, the pre-chamber was filled with the

dispersed phase and separated from the testing column by a spring and a level plug. The plug was then

actioned to inject the Taylor drop into the testing column.

2.4.2 Images post-processing

The video provided by the camera was firstly subject to deinterlacing yielding the 25 frames per second

of film. Secondly, the frames were separated into individual images (Figure 2.16).

The image processing was automated though a computer code. Firstly the images were converted to

a grey scale according to a luminosity equation. Secondly, the grey scale was converted to a binary image

by means of a threshold (whose value was previously defined for each pair of liquids in order to optimize

the interface tracking). At this stage, the code identified a vertical line at the center of the tube and the

tracking of the nose position was done. Hence, from the process, it was obtained the nose position as a

function of time. A linear regression was done taking such results in order to determine the drop terminal

velocity. Any deviation from a linear behavior would mean that the drop was not at its terminal velocity

(never observed in this work).

2.4.3 Liquids

An initial research was performed in order to choose pairs of liquids that would be suitable for the

numerical model validation.

Due to criteria as: cost, transparency and ease of operation (including safety), water and aqueous

solutions of glycerin were chosen for the continuous phase. Another advantage of aqueous solutions of

glycerin is their wide range of viscosities (from 1 mPa s to 1410 mPa s, at 20 ◦C).

Regarding the dispersed phase, the choice was an oil used as a car lubricant (Repsol Elite TDI

15W40). Figure 2.17 shows the results from the measurement of that oil viscosity done in a cone and

plate rheometer, from low to high shear rate values. Other options taken in consideration were silicon
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Figure 2.13: Experimental apparatus (A – top open reservoir, B – visualization box, C – light source, D –
Camera, E – injection pre-chamber in configuration I, F – tube, G – injection pre-chamber in configuration
II).
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Figure 2.14: Testing column and visuatization box.

Figure 2.15: Pre-chamber in the first tested configuration.
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Figure 2.16: Video post-processing procedure.
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Figure 2.17: Viscosity of the oil used for the liquid-liquid visualizations.

Table 2.3: Experimental conditions for the air in water tests.

air in water
ρC / kg m−3 998
µC / Pa s 0.001
σ / N m−1 0.072

ρ∗ 0.0012
µ∗ 0.018
Eo 60
M 2.66× 10−11

oils and olive oil. The low interfacial tension of the olive oil with the continuous phase liquids chosen

would lead to elevated Eötvös numbers that were beyond the scope of this work.

2.4.4 Interfacial tension measurement

In the present work, the interfacial tensions were determined by the pendant drop method using a

commercial system (Biolin Scientific Attension Theta). The system consists of a needle that slowly

(manually) introduces a small drop of one liquid into a small translucent cuvette filled with the other

liquid. A camera takes pictures and the computer software analyses the image in order to obtain the

value for the interfacial tension. Prior to the test, a calibration is required so that the distances are

measured correctly.

2.4.5 Experimental validation

Initial visualizations of air bubbles were conducted and the data compared to literature results in order

to validate the experimental procedure (Table 2.3). Figure 2.18 depicts a Taylor air bubble flowing in

a water continuous phase. Table 2.4 shows agreement with previously published results, thus validating

the procedure.

Table 2.4: Results for the air in water tests.

Fr (this work) Fr (Araújo et al., 2012; Morgado et al., 2016)
0.33 0.34
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Figure 2.18: Air Taylor bubble in water.
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Chapter 3 RISING OF A SINGLE TAYLOR DROP IN A STAGNANT LIQUID

Abstract

A numerical (CFD) study concerning the rise of individual liquid Taylor drops through

vertical columns of stagnant heavier liquids is presented in this paper. CFD simula-

tions were performed in Ansys Fluent, using its implementation of Volume of Fluid

(VOF) method, assuming the flow to be axisymmetric and laminar. Different physical

conditions were tested, corresponding to different combinations of relevant dimension-

less parameters and the numerical method was validated through experimental data

available in literature. The viscosity ratio between the lighter and the heavier liquid

was within the range 0.01 to 40 and Eötvös number was between 8 and 30. Morton

number was within the interval of 2.32 × 10−6 to 100. Froude number results were

compared to data from a literature correlation. The accordance is acceptable for the

ranges studied. Velocity profiles in significant regions are reported (drop nose, drop

bottom and continuous phase liquid film). The influence of changing one dimension-

less parameter alone was assessed. For small and large viscosity ratios, axisymmetric

behavior is not a valid assumption.

3.1 Introduction

A field of increasing interest is concerning with the behavior of the flow in a tube of two immiscible

liquids. Consider a flow in a tube where a continuous phase has dispersed drops of another fluid. If the

flow rate of the dispersed phase suffers a significant increase, the drops increase in volume and start to

coalesce, eventually forming very large drops occupying almost all the tube cross-section. The formation

of intermittent (sometimes periodic) long bullet-shaped drops – Taylor drops – as for the liquid-gas case1,2

is observed for high disperse phase flow rates.

Slug flow pattern is, sometimes, related to operating problems, drastic pressure oscillations and it can

also increase the corrosion rate in long pipe walls3,4.

Slug flow has also a huge importance due to its effects on heat and mass transfer rates in several

industrial processes: nuclear industry, chemical reactors, or geothermal power facilities. Hydrocarbon

transportation in pipes is another important example where slug flow happens5,6, sometimes in a water-

oil-gas slug flow, which, for certain conditions, resembles a liquid-liquid flow7,8. In particular, due to the

increasing demands in oil wells extraction, there is a growing interest in liquid-liquid slug flow occurrence

in vertical pipes9,10.

In spite of such interest, there is still a lack of significant knowledge on liquid-liquid slug flow.

In order to go deeper on the study of continuous slug flow, one must focus the attention in a simplified

description of such flow pattern: a Taylor drop rising in a stagnant liquid, i.e. a Taylor drop of the lighter

liquid (dispersed phase) rising in the heavier liquid (continuous phase). It is expected that a rising solitary

drop reaches, in a very short distance from the injection point, a constant terminal velocity value (VT).

By the rising of the Taylor drop, the heavier liquid is forced to flow down in the narrow space between

the drop and the wall, creating a thin annular film flow that, eventually at some point, will become

fully developed. When this fully developed film flow is reached, it is expected that the terminal velocity

becomes independent of the drop length. In liquid-liquid flow, the drop viscosity is not negligible and it

creates a non-zero shear stress in the interface between the two phases.
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Another interesting behavior is the one found in the wake of Taylor gas bubbles flowing in a liquid.

Depending on the flow conditions and liquid properties, the continuous phase is disturbed at the rear

of the bubble and sometimes a closed recirculation region traveling attached to the bubble is observed1.

Further insight is needed in order to reveal if such behavior is also found in liquid-liquid slug flow.

A dimensional analysis to the problem, as performed by Hayashi et al. 11 , yields five dimensionless

numbers, defined by:

Fr =
VT√

∆ρ gD/ρC
, (3.1)

Eo =
∆ρ gD2

σ
, (3.2)

M =
∆ρ gµ4

C

ρ2
C σ

3
, (3.3)

ρ∗ =
ρD
ρC

, (3.4)

µ∗ =
µD
µC

, (3.5)

where the subscript ”D” stands for the dispersed phase and ”C” for the continuous phase; ρ is the

fluid density and µ the viscosity, D the tube diameter, g the standard gravity and σ the surface tension.

Moreover, ∆ρ = ρC − ρD. The Froude number (Fr) relates inertial and gravity forces and includes the

terminal velocity. It is usually used as output of numerical and experimental studies about slug flow.

The Eötvös number (Eo) relates buoyancy and interfacial forces. The Morton number (M) compares

viscosity and surface tension effects12. The density ratio (3.4) and the viscosity ratio (3.5) compare the

physical properties of both liquids. For a Taylor drop rising in a stagnant liquid, ρ∗ is always less than

1. Although the dimensionless groups presented suffice, another groups cited in the literature are the

Reynolds number (Equation 3.6) and the inverse viscosity number (Equation 3.7)11,13,

Re =
ρCVTD

µC
= Fr M−1/4 Eo3/4, (3.6)

Nf =

√
∆ρ ρCgD3

µc
=

(
Eo3

M

)1/4

. (3.7)

Also relevant is the ratio between the drop volume-equivalent sphere and the pipe diameter (dS/D),

which gives information on drop size.

Brown and Govier 14 and Govier et al. 15 were the pioneers to study vertical oil-water flow, having

reported, amongst other patterns, slug flow.

There are already some attempts to describe the flow of a Taylor drop in a stagnant liquid. Mandal

et al. 16 made a theoretical analysis to predict the terminal velocity by adopting a viscous potential

flow analysis. They obtained an equation explicit in Froude number (and on terminal velocity, as well),

which is dependent on the density of the liquids, surface tension, pipe diameter and continuous phase

viscosity. The equation features also a drop shape parameter. Experiments were performed with values

of 4 < Eo < 230 and 10−13 < M < 10−10. Density ratios were between 0.65 and 0.88 and viscosity ratios

between 0.68 and 1.2. The surface tension in those liquids lies between 0.02 and 0.06 Nm-1. Mandal

et al. 17,18 performed further experimental studies concerning identical systems. A wake region was
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observed, distinguishable due to the presence of small dispersed drops. They claim that the drop shape

for their conditions was axisymmetric, even though the bottom shows oscillations with apparently no

periodic pattern. Equations developed in the above works16,18 are limited to conditions where the effect

of drop viscosity is negligible.

Hayashi et al. 11 performed lab experiments and CFD simulations to study the rise velocity of a Taylor

drop. The experimental conditions consisted of a density ratio around 0.8, a viscosity ratio between 0.1

and 20, and a surface tension between 0.02 and 0.04 Nm-1. The diameters of the tubes were between 11

and 31 mm, the Eötvös number between 10 and 100, and the Morton number ranged between 0.00002 and

0.35. They focused on drop shapes cataloging and on the development of a correlation to predict Froude

number. They claim that the density ratio does not influence the Froude number and they also observed

that when the continuous phase viscosity is much higher than the dispersed phase viscosity, the Froude

number approaches 0.35. They propose an equation to predict Froude number. This equation features

an important difference to the previous ones: it takes into account the influence of the dispersed phase

viscosity by including µ∗. That correlation was slightly changed by Kurimoto et al. 19 . Kurimoto et al. 19

also show non-symmetrical Taylor drops on certain conditions. Quan and Lou 13 proposed a power law

to predict Froude number, based on a numerical study.

The aim of the present work is to obtain data about the flow of a single Taylor drop in a stagnant

heavier liquid in a long vertical pipe. Computational Fluid Dynamics (CFD) tools were applied to

simulate flow for a large range of values of the dimensionless groups defined above. This work is also the

first step of a broader research on slug flow and on its relevance and applications in oil wells. CFD is

an attractive choice because with it, one can easily change the operating conditions, geometry or fluid

properties. Moreover, CFD is also an easy tool to obtain relevant information, such as velocity field,

streamlines and pressure gradients. The numerical data obtained were validated through experimental

data taken from Hayashi et al. 11 .

In the present work, conditions considered lie in the ranges: 0.01 < µ∗ < 40, 8 < Eo < 30, 2.32 ×
10−6 < M < 100 and ρ∗ = 0.792 for two immiscible liquids. Simulations were performed in Ansys Fluent,

in transient and axisymmetric modes, assuming laminar regime and incompressible flow.

Terminal velocity values (or its dimensionless number Fr), obtained from the simulations, were com-

pared to Kurimoto et al. 19 correlation data. The dispersed phase viscosity is one of the parameters taken

into account in the present work. The influence of Eötvös number was also assessed. Moreover, axial

and radial velocity profiles in relevant regions of the flow were also analyzed. Finally, the limitations of

axisymmetric assumption are discussed.

3.2 Theory and empirical background

Algorithm development for CFD is dependent on the differential description of the fluid flow. Momentum

equation is given by:

ρa

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ ρa~g +∇ · µa

(
∇~v + (∇~v)

T
)

+ ~fσ, (3.8)

where p is the pressure and ~fσ is the force term that represents the surface tension contribution.

Moreover, because the flow is incompressible, continuity equation states20,21:

∇ · ~v = 0. (3.9)
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In order to deal with the two-phase flow through Volume of Fluid method (VOF), a variable αi is

defined to track the position of the interface. The value of αi is 1 at any point occupied exclusively by

the fluid i, 0 if no i exists there, or a number between 0 and 1, if both fluids exist in the same mesh

volume. Notice that a number between 0 and 1 does not mean that the two liquids are mixed (we are

assuming they are immiscible). In any element of a mesh:

αC + αD = 1. (3.10)

Furthermore, the tracking of the interface between the two phases is solved by the equation:

∂αi
∂t

+∇ · (αi~vi) = 0. (3.11)

Density and viscosity are computed supposing linear contributions of each phase (Equations 3.12 and

3.13).

ρa = αCρC + αDρD, (3.12)

µa = αCµC + αDµD. (3.13)

Finally, the surface tension term ~fσ must be computed22:

~fσ = σκ
ρa∇αD

0.5 (ρC + ρD)
. (3.14)

The κ refers to the curvature of the interface and is computed by:

κ = −∇ · ∇αD
|~∇αD|

. (3.15)

Notice that, outside interface, κ = 0, so ~fσ = ~0, which eliminates the surface tension term in Equation

3.8.

3.2.1 Single Taylor drop

In the analysis of a single Taylor drop rising in a stagnant liquid, the important fluid properties are

density and viscosity. Moreover, surface and gravity forces should be considered as well. For so large

drops, the tube diameter becomes the controlling geometrical parameter23. It is expected that a single

rising drop reaches, in a very short distance from the injection point, a constant terminal velocity value

VT. When the frontal region of the drop (nose) is perfectly spherical, terminal velocity is not dependent

on the surface tension between the two fluids24,16.

Mandal et al. 16,18 proposed equations to predict the terminal velocity based on viscous potential flow

and also a semi-empirical equation. However, those equations do not take into account the dispersed

phase viscosity, which is relevant in liquid-liquid systems.

Hayashi et al. 11 showed that Froude number is not influenced by the density ratio and used numerical

and experimental data to estimate the parameters of a Froude number correlation (Equation 3.16), which,

the authors claim, is valid in the ranges: 4.8 < Eo < 228; 1 < Nf < 14700; 10−12 < M < 104; µ∗ < 70;
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0.002 < Re < 4960,

Fr =

√√√√√ 0.0089
(
1 + 41/Eo1.96

)−4.63

0.0725 + 1

Re

(
1+1.9µ∗

1+0.31µ∗

) (
1− 0.11Re0.33

) . (3.16)

For Equation 3.16, Hayashi et al. 11 assumed that the terminal velocity is independent from drop

length when dS/D < 1.6. Furthermore, in gas-liquid conditions (zero viscosity and density ratios),

Hayashi et al. 11 force the known limit of 0.35 for Froude number. They adjust their correlation to the

relation Fr = 0.01Nf (viscous force dominant regime), as well as to experimental results from White

and Beardmore 25 . They finally used simulation results to complete their correlation. The effect of the

velocity in the interface is included implicitly in the approximations described before.

Equation 3.16 has the important feature of including the drop viscosity (through µ∗). Afterwards,

the authors presented a correction to it19:

Fr =

√
A2 ·A3

A3

0.352 + 1+1.9µ∗

1+0.31µ∗A1

, (3.17)

where Ai are defined by the following equations:

A1 = Re−1
(

1− 0.05
√

Re
)
, (3.18)

A2 =
(
1 + 3.87 Eo−1.68

)−18.4
, (3.19)

A3 = 0.0025 (3 +A2) . (3.20)

Quan and Lou 13 propose the relation:

Fr = B µ−0.27±0.05, (3.21)

where B depends on Nf and Eo. Even though all presented results stay below the 0.35 Froude number

limit, some series of simulations show a trend which is likely to pass that limit. Therefore, this correlation

will not be used for comparison in the following sections.

A diagram of an axisymmetric Taylor drop is presented in Figure 3.1. Regions of interest include the

film formed around (annular) the drop and enclosed between it and the wall and the nose region (top

dotted line) because those are related to the drop velocity. Furthermore, because of interaction between

two drops, it is also of interest to assess how far on the continuous phase, the drop influence takes effect,

which is related to the behavior of the bottom part of the drop. Concerning the influence above the

drop, the procedure taken in this work evaluates where, in the axis, the velocity is no longer higher than

a certain criteria. A similar procedure is taken to evaluate the influence below the drop. In the present

work, two criteria were used: 5 % and 1 % of the drop terminal velocity.

49



Chapter 3 RISING OF A SINGLE TAYLOR DROP IN A STAGNANT LIQUID
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Figure 3.1: Axisymmetric Taylor drop.

3.3 CFD model

The simulations presented in the current work were performed with the commercial software Ansys

Fluent (releases 14 and 15), in transient mode. Multiphase laminar incompressible flow model integrated

with Volume of Fluid (VOF) method to capture the liquid-liquid interface was used26 with geometric

reconstruction27 - ”Geo-reconstruct” in the software package. Preliminary simulations showed that this

method is the best choice concerning two common problems28,29: spurious velocities and numerical

dispersion. The pressure-velocity scheme used was PISO, which provides a fast convergence. For pressure

interpolations, the choice was ”PRESTO!”. The QUICK scheme was used for solving the momentum

equation and the gradients of the scalars were computed by using the Green-Gauss node-based method.

For the surface tension effect, the Continuum Surface Force model22 was used.

The simulations were performed with a variable time-step option and a maximum Courant number

of 0.25. A limit of 1000 iterations for each time-step was imposed. Nevertheless, this limit was never

reached, which ensures that convergence criteria was met in every time-step.

Axial symmetry (around the cylinder axis) was used to minimize computational effort (3D behavior

is simulated in 2D). The domain consisted of a rectangle with a width D/2 and 11D long. The domain

needs to be long enough so that the continuous phase is undisturbed at the entrance and at the exit.

The mesh consisted of a 52× 1144 grid of quadrilateral and uniformly distributed cells. The continuous

phase film flow region thickness was usually between 10 and 15 cells. A finer grid (7.8 times more cells)

was also used in preliminary tests, but showed identical results and it was dropped due to computation

time.

Simulations were initialized with an isolated drop consisting of the merge of two shapes: a quarter of a

circle for the drop nose region and a rectangular body, with a width matching the nose radius. Although

other initialization strategies can be found in literature, this starting shape has been found to give good

results30.
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Table 3.1: Validation of numerical runs – Froude number results.

Id. Eo M µ∗
This work

(numerical)
Literature data:
experimental11

Literature data:
correlation19

Run1 76 3.2× 10−3 1.1 0.282 0.280 0.261
Run2 29 2.0× 10−5 1.1 0.301 0.290 0.266
Run3 7.2 1.3× 10−5 3.9 0.0145 0.0160 0.0139
Run4 91 0.39 1.9 0.116 0.120 0.121

A reference frame attached to the drop nose was used. This reference frame attached to the drop (to

its nose) implicates that the drop is still and the continuous phase and the tube wall move downwards

with a speed that equals the drop terminal velocity. The usage of this strategy avoids the need of a

very long domain. No-slip condition was also assumed in the wall. Furthermore, due to the relative

motion created by the reference frame, an inlet flow boundary condition, with a uniform velocity (equal

to VT) was imposed at the top of the domain. At the exit, pressure is specified (pressure-outlet boundary

condition in the software package used).

The final result for each condition is obtained by an iterative method. Firstly, inlet and wall velocities

are imposed based on literature correlations, and a first simulation runs. After, drop velocity in the

moving reference is determined and if it is higher than a given tolerance, wall and inlet velocities are

changed, and a new simulation is performed. This process repeats until drop velocity is less than the

criterion established (less than 0.01). Then, the correct value of the terminal velocity is found.

The interface between the liquids is not abrupt. Instead, a small numerical dispersion of the volume

fraction occurs. In this work, it is assumed that the interface is represented by α = 0.5. Concerning

the viscosity in the numerical interface, a linear model is used (Equation 3.13). Some authors suggest,

instead, the usage of the harmonic mean28,31. Such suggestion was employed in preliminary simulation

for the M = 2.32× 10−6 series, but showed no significant differences.

3.3.1 CFD 2D model validation

The numerical model has already been extensively used in liquid-gas systems1,30. In order to validate the

liquid-liquid numerical data, four simulations (Table 3.1) were performed according to four experimental

results available in literature11. Froude number data from numerical runs show good accordance with

literature experimental data. A further comparison can be made concerning the drops shapes (Figure

3.2). Run1 shows an elongated and straight body with a small concavity in its bottom part. Run4 show a

straight and elongated body, as well, but with a very wide continuous phase film. Run2 is fairly straight

but showing a protuberance at the end of the continuous phase liquid. Finally, Run3 is round-shaped in

the bottom, with a large body, including in the nose region. These shapes are qualitatively similar to

those reported by Hayashi et al. 11 .
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Run1 Run2 Run3 Run4

Figure 3.2: Validation of numerical model - drops, streamlines and velocity field (drop reference frame).

3.4 Results

The results section contains, firstly an overview on the Froude number results for the range of dimen-

sionless numbers for which drops can be treated as symmetric. Afterwards, relevant comparisons are

done for selected groups of simulations. Finally, limitations of axisymmetry are discussed. Because we

assume axisymmetric flow, velocity components are presented as radial, r, and axial (or vertical), z. Axial

direction is upwards, i.e. gravity is negative. All simulations share the same drop size (dS/D = 1.147).

Note that this value ensures that we obtain the physical phenomena intended without compromising time

efficiency with very long domains. Furthermore, density ratio is also the same throughout the present

work (0.792), since density ratio does not influence Froude number11. Note also that Hayashi et al. 11

use values between 0.74 and 0.81 and Mandal et al. 18 present results with values between 0.65 and 0.87.

Results on relevant regions of the flow are reported, as shown in Figure 3.1. Line I refers to the hori-

zontal profiles just above the drop and Line II to the horizontal profiles just below the drop. Furthermore,

it is also important to assess how far does the drop influence takes effect on the continuous phase. Such

influence distance above the drop is obtained by evaluating the velocity along the tube axis. A similar

procedure is taken for the influence below the drop.

Prior to further developments, though, it is important to refer that the results presented are limited

to the ranges of the parameters where Taylor drops can be assumed axisymmetric. Higher values of

Eötvös number lead to numerical issues with implausible drop rupture. Viscosity ratio values outside the

ranges presented yield flows which are not axisymmetric, even though there is no drop rupture. This is

discussed in more detail in section 3.4.3. All simulations have a Froude number value within the maximum

deviation interval of 25 % from Equation 3.17.

3.4.1 Drop terminal velocity

Firstly, Froude number (or terminal velocity) is analyzed as a function of the viscosity ratio and results

compared to data given by Equation 3.1719. In Figure 3.3, three series of data for different Eötvös

numbers are presented for a constant M = 2.32× 10−6. In this range, simulations are in good agreement
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Figure 3.3: Froude number for M = 2.32× 10−6 as a function of viscosity ratio.
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Figure 3.4: Froude number for Eo = 22 as a function of viscosity ratio.

with the correlation near 1 < µ∗ < 3, showing an acceptable, but sharper variation when progressing

apart from that range. Higher values of Eötvös number yield higher values of Froude number, while the

increase in the viscosity ratio tends to lower the Froude number. The increase of µ∗ causes a retarding

in the flow. This result is also important because it confirms the relevance of the drop viscosity in

liquid-liquid systems.

For Eo = 22, the value of Froude number increases as Morton number decreases (Figure 3.4). Another

important observation is the proximity of the series M = 1 and M = 100. Results agree fairly with

Equation 3.17, though showing a sharper variation of Froude number for the smaller Morton number

series. Simulations were also performed for Eo = 8 and higher Morton number values (Figure 3.5). Such

conditions yield low Froude number values. In this range, a decrease of two in the order of magnitude of

the viscosity ratio causes Froude number to double its value.

3.4.2 Detailed flow patterns

A summary of drop shapes, streamlines and velocity field is presented in Figure 3.6 for four different

Morton values, and three different Eötvös at µ∗ = 1 and µ∗ = 10.

The individual influences of Eötvös and Morton numbers and viscosity ratio are detailed in the

53



Chapter 3 RISING OF A SINGLE TAYLOR DROP IN A STAGNANT LIQUID

0

0.001

0.002

0.003

0.004

0.005

0.1 1 10

F
r

µ*

M = 1

M = 100

lines:
Kurimoto et al

19

Figure 3.5: Froude number for Eo = 8 as a function of viscosity ratio.

following sections.

Eötvös number effect

Figure 3.7 compares drop shape for three different values of Eötvös number for constant Morton number

and viscosity ratio. Streamlines are drawn with respect to the drop reference frame. A clear change in

the drop shape is observable. For Eo = 15.8 the drop rear has a round shape. For Eötvös number value

of 30, the drop bottom is almost horizontal. It also shows a sharper narrowing at the end of the film. On

these conditions, closed vortexes zones below the drops do not exist.

Notice that the ten streamlines are positioned taking into account that the outer the radial coordinate,

the higher the flow area (axisymmetry). Therefore, between any two streamlines flows the same continuous

phase flow rate. The reference frame attached to the drop nose was used to compute the streamlines.

No substantial differences are observed in the film velocity profile (Figure 3.8). The maximum down-

ward velocity occurs within the film. That is in contrast with liquid-gas, where the maximum lies on the

gas-liquid interface32,33. A result expected due to the significant drop viscosity. The film thickness is

also similar for the presented data. Near the wall, the velocity approaches to zero (no-slip) condition.

Figures 3.9 and 3.10 compare the velocity profiles just below the drop (Line II in Figure 3.1). The

higher the Eötvös number, the higher is the maximum downward velocity component. This is consistent

with the observed drop bottom shape, as discussed before, where the sharper narrowing yields a greater

downward velocity of the continuous phase.

The negative peaks (direction towards the center) observed in the radial component near the end of

the film are consistent with the sharper bending in Eötvös number 22 and 30. The radial profile for

Eötvös number 22 shows the highest peak. The three profiles reach the null value as they approach the

axis, as imposed by the axisymmetric condition.

The profiles at the top of the drop (Line I in Figure 3.1)are identical for the three simulations (Figure

3.11 and Figure 3.12). The axial component has the value of VTnear the axis (the nose is ”pushing” the

fluid above it) and a negative value in the region nearer the wall, consistent with the beginning of the

flow around the drop. In the same fashion, the positive values of the radial component are consistent

with the fluid being deflected due to the approach of the drop.

That is interesting to observe that, both in the nose and in the film, the three conditions yield almost

indistinguishable profiles. It is in the drop rear that the changing of the Eötvös number causes effect.
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M = 100
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Figure 3.6: Compilations of drop shapes, streamlines and velocity field (drop reference frame).
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Eo

15.8 22 30

Figure 3.7: Streamlines for M = 2.32× 10−6 and µ∗ = 2.

Table 3.2: Influence distances below the drop for M = 2.32× 10−6 and µ∗ = 2.

Eo
5 % of VT

(z − zrear) /D
1 % of VT

(z − zrear) /D
15.8 0.65 1.4
22 0.77 1.6
30 2.8 4.3

Influence distances below the drop are presented in Table 3.2. The procedure taken in this work

evaluates where, along the axis, the velocity is no longer higher than a decided criterion (0.05 or 0.01 in

relation to the drop terminal velocity).

Viscosity ratio effect

At constant Morton number of 2.32 × 10−6 and Eötvös number of 22, three simulations are compared,

changing the viscosity ratio. All three drops show a bottom slightly curved as well as a slight narrowing

at the end of the film (Figure 3.13). Between viscosity ratios of 2 and 3, no differences are clear. On

the other hand, at viscosity ratio 10 the drop is more elongated and velocity magnitude inside the drop

becomes very small in comparison to the velocity in the film (note that an increase in viscosity ratio

means an increase in the drop viscosity). On these conditions, recirculation zones below the drops do not

exist.

Concerning the velocity profile in the film (Figure 3.14), the peak is displaced from the interface, as it

is expected from a considerable viscosity ratio. It is also observable a slight increase of the film thickness

for the greater viscosity ratios, which is consistent with the shape in Figure 3.13. The profiles are similar

between the wall and the peak of velocity. After that position, the velocities diverge. With the increase

of the viscosity ratio, the magnitude of the downward velocity decreases. At µ∗ = 10, dispersed phase
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Figure 3.8: Velocity profile in the film for M = 2.32× 10−6 and µ∗ = 2.
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Figure 3.9: Axial velocity below the drop for M = 2.32× 10−6 and µ∗ = 2.
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Figure 3.10: Radial velocity below the drop for M = 2.32× 10−6 and µ∗ = 2.
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Figure 3.11: Axial velocity above the drop for M = 2.32× 10−6 and µ∗ = 2.
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Figure 3.12: Radial velocity above the drop for M = 2.32× 10−6 and µ∗ = 2.

Table 3.3: Influence distances for M = 2.32× 10−6 and Eo = 22.

µ∗
5 % of VT

(z − zrear) /D
1 % of VT

(z − zrear) /D
2 0.77 1.6
3 0.68 1.3
10 1.1 1.8

viscosity is so relevant that, at the interface, the continuous phase is slightly pulled upwards.

Just below the drop, the axial component is almost unchanged between the three viscosity ratios

(Figure 3.15). In the radial profiles (Figure 3.16) the behavior is analogous, although the magnitude

tends to be lower with the increase of the viscosity ratio.

Profiles at the top of the drop are very similar to those in the previous section and are omitted from

this discussion. For the influence distances below the drop (Table 3.3), results show a decrease from

viscosity ratio 2 to viscosity ratio 3, and an increase when viscosity ratio is changed to 10. Two effects

may be observed here. Firstly, form µ∗ = 2 to µ∗ = 3, the decrease in drop velocity causes a decrease

on the disturbance of the continuous phase. When increasing viscosity ratio to 10, another effect, the

significant change in the drop shape (in particular at the bottom – the liquid narrows increasing the film

velocity), takes effect, and causes the increase in the influence distances.

Morton number effect

In this third group, Morton number is changed for four conditions at constant Eötvös number and viscosity

ratio. In this conditions Morton number takes the values of 2.32×10−6, 10−4, 1 and 100. Eötvös number

is 22 and viscosity ratio is 10 (fourth column in Figure 3.6).

Concerning the drop shape (Figure 3.6), there is a noticeable increase in the drop length from Morton

number 2.32× 10−6 to Morton number 1. On the other hand, the increase of Morton number from 1 to

100 seems to cause little difference.

Close attention to the shape allows to disclosure a shape type change between the lower Morton

number value and the others. In the first, there is a mild, but clear, narrowing below the film. On

the others, though, there is almost no narrowing. Therefore, it is expected that such transition is also
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Figure 3.13: Streamlines for M = 2.32× 10−6 and Eo = 22.
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Figure 3.14: Axial velocity profile in the film for M = 2.32× 10−6 and Eo = 22.
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Figure 3.15: Axial velocity below the drop for M = 2.32× 10−6 and Eo = 22.
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Figure 3.16: Radial velocity below the drop for M = 2.32× 10−6 and Eo = 22.
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Figure 3.17: Velocity profile in the film for Eo = 22 and µ∗ = 10.

Table 3.4: Influence distances for Eo = 22 and µ∗ = 10.

M
5 % of VT

(z − zrear) /D
1 % of VT

(z − zrear) /D
2.32× 10−6 1.1 1.8

10−4 0.50 0.68
1 0.43 0.58

100 0.41 0.57

noticeable on the velocity profiles.

It is also important to point out that the significant increase in drop length is not accompanied by

such a drastic change in the film thickness, because in the region near the wall, the flow area is larger

than in the axis region, for an identical radius increase (recall that the domain is axisymmetric).

Concerning the continuous phase film velocity profile (Figure 3.17), the data from Morton number

2.32×10−6 show an higher vertical velocity maximum in a clear distinction from the other three cases. It

is also clear the difference between the film thickness for this Morton number and for the others. Between

Morton number 10−4, 1 and 100, there is almost no difference in the film thickness.

In the profiles below the drop (Figures 3.18 and 3.19), once again the lower Morton number simulation

shows up differences, and higher velocity magnitudes (recall the sharper narrowing and bend shown

before).

At the top of the drop nose, the axial component show no further information and it is omitted.

On the other hand, the radial profile (Figure 3.20), shows a noticeable difference between the two lower

Morton number values and the two higher, which show no difference between each other.

Finally, the magnitude of the influence lengths below and above the drop (Table 3.4) confirms the

previous statements; i.e., no difference between M = 1 and 100. Above the drop, the two higher Morton

numbers have slightly higher influence lengths.

3.4.3 Limitations of axisymmetry

Despite the non-existence of drop collapse, for some simulated drops (in the axisymmetric domain), the

terminal velocities obtained did not make physical sense. Moreover, some of them even overcome the
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Figure 3.18: Axial velocity below the drop for Eo = 22 and µ∗ = 10.
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Figure 3.19: Radial velocity below the drop for Eo = 22 and µ∗ = 10.
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Figure 3.20: Radial velocity above the drop for Eo = 22 and µ∗ = 10.

limit Froude number taken in literature to be around 0.35. In order to understand if there is a limitation

to axisymmetric two-phase flow, some 3D simulations were performed.

Figure 3.21 shows a comparison between 2D axisymmetric and 3D for three different cases (at M =

2.32×10−6). Concerning the first row (µ∗ = 0.1 and Eo = 22), drop from 2D simulation is stable but the

Froude number is much larger than 0.35 (Figure 3.22). When the same conditions were simulated in 3D,

it was found that the drop is not axisymmetric and Froude number improves to a value closer to 0.267, as

predicted by Equation 3.17. The second row (µ∗ = 3 and Eo = 30) shows similar Froude number results

between 2D and 3D. Furthermore, 3D shape is similar to 2D, confirming the flow is axisymmetric. In this

case, Froude number is, for 2D and 3D, very close to the value predicted by Equation 3.17, 0.276. For

the last case (µ∗ = 20 and Eo = 22), the simulation in 2D yielded an apparently good drop, but it did

not correspond to the behavior in 3D. For the first and third 3D simulations in Figure 3.21, it was also

observed that the drop shape was unstable. Even though we use here simulations with distinct Eötvös

numbers, that difference is not large enough to influence the current analysis.

The present results suggest that, for large differences between the viscosities of both fluids, the flow

becomes asymmetric.
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Figure 3.21: Drop shapes of 2D and 3D simulations in vertical slices through the center, at M = 2.32×10−6

(middle: Eo = 30; others: Eo = 22).
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Figure 3.22: Froude number for in 2D and 3D, at M = 2.32× 10−6 (filled: Eo = 30; unfilled: Eo = 22).

3.5 Conclusions

The importance of slug flow for several industrial processes motivated the present work.

A study concerning single liquid Taylor drops rising at constant velocity in a stagnant heavier liquid is

reported. Numerical simulations were performed assuming an axisymmetric flow. From numerical data,

it was possible to extract information on drop shape, streamlines and velocity profiles on several regions

of the flow system. The parameters studied were found to be in accordance. Four preliminary simulations

were compared to available experimental data providing validation of the numerical model.

Results were reported for ranges of Eötvös number, Morton number and viscosity ratio. Furthermore,

information on drop terminal velocity was collected and, with that, it was possible to relate Froude

number with the other dimensionless quantities.

Froude number results were compared to data of a correlation (Equation 3.17) available in literature19,

being within a limit difference of 25 %. Viscosity effects cause a decrease in the drop terminal velocity.

An increase of viscosity ratio causes a decrease in Froude number. In a similar fashion, it happened for

an increase in Morton number.

Eötvös number was shown to affect mainly the drop bottom. On the other hand, Morton number and

viscosity ratio produce changes in the continuous phase flow near the drop nose, as well as in the film

around the drop. Moreover, an increase in the viscosity ratio causes a significant decrease in the velocity

magnitude (relative to the continuous phase velocity) inside the drop.

Concerning the conditions presented in this work, there are no recirculation regions in the wake of

the drops.

The developed film of the continuous phase showed a maximum of downward velocity located some-

where in the film, according to the viscosity ratio. Moreover, when viscous effect is high enough, velocity

in the interface can point upwards. These results point out a clear difference between gas-liquid and

liquid-liquid Taylor drops.

For several conditions, it was observed a significant narrowing in the continuous phase below the

developed film, which influences the flow of the continuous phase after the passage of the drop. This

behavior is important when two drops flow consecutively interacting.

Overall, the axisymmetric methodology developed is an efficient way of simulating Taylor drops within

specific ranges. It was shown that for large and small viscosity ratios, the flow is not axisymmetric.
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Nevertheless, the results reported in this work reveal a promising methodology for more complex systems,

such as coalescence of two consecutive drops rising in laminar regime.
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Chapter 4 EXPERIMENTAL AND NUMERICAL 3D STUDY OF A TAYLOR DROP

Abstract

The present work concerns 3D numerical simulations and experiments on the rise of

individual liquid Taylor drops through vertical columns of stagnant heavier liquids.

Asymmetric effects are assessed for different conditions, following the observations

in a previous work. Furthermore, the disturbances in the continuous phase due to

the Taylor drop are studied. Experiments were performed with pairs of liquids in

ranges not studied in the literature. Simulations targeted a broad range of dimen-

sionless numbers and were done in a commercial code, using its implementation of

the Volume of Fluid (VOF) method in a three-dimensional domain. Results were

processed according to relevant dimensionless numbers. Different behaviors are found

concerning the existence or not of flow and drop shape asymmetries. Depending on

the viscosity ratio, three ranges with different characteristics were identified. Rele-

vant results are also reported concerning drop velocity when compared to literature

two-dimensional model. Drop influence in the surrounding continuous phase is also

reported.

4.1 Introduction

Multiphase flows occur in several industries, such as chemical, nuclear, or hydrocarbon transportation1,2.

Consider a particular example where two immiscible liquids flow in a vertical tube. One of those liquids,

the heavier, constitutes a continuous phase where dispersed drops of another liquid are present. If the flow

rate of the dispersed phase undergoes a significant increase, drops start to coalesce, forming very large

drops occupying almost all the tube cross-section – Taylor drops3. Such flow pattern is called slug flow4.

Depending on the geometric and flow parameters, slug flow may occur in co-current or in counter-current

and most of the times coalescence of Taylor drops is observed. Because of its intermittence, slug flow is

often related to operational problems in industry5,6. On the other hand, slug flow can be explored for

the benefit of some operations, for instance, for the ability of lubricating the flow of a very viscous and

wall-adherent dispersed phase.

Liquid-liquid slug flow has recently sparked interest for its importance in oil wells7,8. Furthermore,

some gas-water-oil flows resemble two-phase liquid-liquid slug flow9,10. Nevertheless, and as opposed to

gas-liquid slug flow, there is still a lack of knowledge on liquid-liquid slug flow. In order to gain a deeper

understanding of such phenomena, one must firstly focus attention in a simplified description: a single

Taylor drop rising in a stagnant liquid contained in a vertical column (a Taylor drop of the lighter liquid

– dispersed phase – rising in the heavier liquid – continuous phase). It is expected that a rising solitary

drop reaches, in a very short distance and from the injection point, a constant terminal velocity value

(VT). The heavier liquid is forced, by the drop upward flow, to flow down in the narrow space between

the drop and the pipe wall, creating a thin annular film.

A dimensional analysis to the problem11,12 yields five dimensionless numbers. Froude number,

Fr =
VT√

∆ρ gD/ρC

, (4.1)

relates inertial and gravity forces. It is the dimensionless number usually used to quantify the constant
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terminal velocity, thus it serves as the main output from Taylor drop studies. On that equation, ρ is the

density, D stands for the tube diameter, g for the standard acceleration of gravity. Finally, ∆ρ = ρC−ρD,

where the subscripts ”D” and ”C” stand for dispersed and continuous phase. In gas-liquid flows, Froude

number is usually defined without ∆ρ/ρ, as the gas density is much smaller than the liquid one13,14.

Furthermore:

Eo =
∆ρ gD2

σ
, (4.2)

M =
∆ρ gµ4

C

ρ2
C σ

3
, (4.3)

where Eo is for Eötvös number (involving ratio between buoyancy and interfacial forces) and M the

Morton number (gravity, viscosity and surface tension forces). µ stands for viscosity and σ for the

interfacial tension between the two liquids.

The ratios between the liquids properties are the remaining dimensionless numbers:

ρ∗ =
ρD

ρC
, (4.4)

µ∗ =
µD

µC
. (4.5)

The density ratio is always less than 1 as the present work deals with rising drops.

The combination of Eötvös number, Morton number and viscosity ratio allow for a characterization

of the phenomena.

When Eötvös number is high and the viscosity ratio is low enough, the liquid-liquid isolated drop

case approaches the behavior of a gas Taylor bubble rising in a liquid contained in a macro tube. That

happens because the density difference is high and/or the interfacial tension is low (gravity effects are

predominant).

When Eötvös number is low, Morton is required to quantify the importance of the viscous forces.

Low Eötvös and high Morton numbers implicate a high viscosity of the continuous phase. If the viscosity

ratio is high, such combination implies that, at the macro-scale, both fluids have close densities (viscous

effects are predominant). For low Eötvös and Morton numbers and low viscosity ratio, the flow should

be similar to that of a gas Taylor bubble flowing in a liquid contained in a micro tube (surface tension

effects are predominant).

Apart from the physical dimensionless numbers, the ratio between the diameter of the drop volume-

equivalent sphere and the pipe diameter (dS/D) gives information on drop size.

Brown and Govier 15 and Govier et al. 16 studied vertical oil-water flow, having reported several flow

patterns including slug flow. Zukoski 17 studied the influence of viscosity, surface tension and inclination

angle on the rise of single drops (as well as bubbles). Later, Mandal et al. 18,19,20 performed experimental

studies concerning several combinations of two liquids. A wake region was observed, distinguishable due

to the presence of small dispersed drops. They claimed that the drop shape for their conditions was ax-

isymmetric, even though the bottom showed asymmetric oscillations with apparently no periodic pattern.

Hayashi et al. 11 performed lab experiments and Computational Fluid Dynamics (CFD) simulations to

study the rise velocity of a Taylor drop. From CFD studies, they concluded that the density ratio does

not influence the Froude number. Hayashi et al. 11 observed the known upper limit of 0.3521 for that

dimensionless number.

Concerning Froude number prediction in liquid-liquid, Mandal et al. 18,20 obtained an estimation of
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the terminal velocity based on viscous potential flow and also a semi-empirical equation, not taking into

account the dispersed phase viscosity, which is relevant mostly in liquid-liquid systems. Joseph 22 , Mandal

et al. 18 claimed that when the frontal region of the drop (“nose”) is perfectly spherical, terminal velocity

is not dependent on the surface tension between the two fluids. Kurimoto et al. 23 presented a correlation

(a correction similar to the one in Hayashi et al. 11) which takes into account the drop viscosity. Quan

and Lou 24 proposed a power law to predict Froude number, based on a numerical study.

A relevant discussion concerns the symmetry effects on the rise of single Taylor drops in a stagnant

liquid. If the flow is axisymmetric, theoretical and numerical models can be simplified to two-dimensions.

However, in some conditions, two-dimensional models fail to describe the physical phenomena.

Mandal et al. 18,19 presented figures where asymmetries in the bottom part of the drop are observable,

though it is not clear how this influences the overall behavior of the drop. Mandal et al. 19 also observed

asymmetric drops for a high viscous oil drop rising in water. In this work, differences are observable in

the drop body shape. Kurimoto et al. 23 presented a snake-like behavior for Taylor drops in a region

of high Eötvös number and low Morton number, but do not perform a deeper analysis. Preliminary

CFD simulations25 also showed asymmetric behavior in a three-dimensional model, for high Eötvös

number and low Morton number. Axisymmetric behavior is still observed for intermediate viscosity

ratios. Comparison between two-dimensional and three-dimensional simulation also shows that forcing

axisymmetry (two-dimensional model) leads to wrong Froude number results25.

When asymmetric behavior happens, drop shape oscillations are observed.

The aim of the present work is to obtain data about the flow of a single Taylor drop in a stagnant

heavier liquid in a long vertical tube and analyze the occurrence of deviations to the axisymmetric

behavior. This work follows a previous one25, where asymmetries were detected. Computational Fluid

Dynamics (CFD) tools were applied to a long enough vertical tube in a three-dimensional model. CFD

is an attractive choice because with it one can easily change the operating conditions, geometry or fluid

properties. Moreover, CFD is also an easy tool to obtain relevant information, such as velocity field,

streamlines and pressure gradients. The numerical data obtained were validated through experimental

data.

In the present work, the conditions considered lie in the ranges: 0.01 < µ∗ < 100, 8 < Eo < 30,

2.32× 10−6 < M < 100 and ρ∗ = 0.792 (unless otherwise stated) for two immiscible liquids. Concerning

drop size, simulations were done using dS/D = 1.12 and 1.40. Simulations were performed in Ansys

Fluent (releases 15 and 16) in transient mode and assuming laminar regime and incompressible flow.

The present work contains firstly an overview on the theory and numerical models used, as well as

the numerical model validation with experimental data. Afterwards, simulation results are presented

concerning the influence of relevant dimensionless numbers.

4.2 Methods

4.2.1 Experimental setup and procedure

Experimental setup for determining drop terminal velocity and observing drop shape is shown in Figure

4.1. It consists of a 4 m long vertical acrylic column with an internal diameter of 21 mm. An open

reservoir is connected to the top end of the testing column. The column and the reservoir are filled with

the continuous phase.

The dispersed phase drop is injected in the column using a pre-chamber. The connection between the

pre-chamber and the column is possible through a spring and level plug.
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C D

F

B
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B

Front view Visualization Section
(Top view)

E

Figure 4.1: Experimental apparatus (A – top reservoir, B – visualization box, C – light source, D –
Camera, E – injection pre-chamber, F – tube).

The visualization section is located near the top of the column. Its location, far enough from the

injection point, ensures the drop reaches the terminal velocity (such condition is confirmed by analyzing

the captured images). This section consists of an acrylic box with rectangular faces wrapping the tube

and filled with continuous phase liquid to reduce optical distortion. A camera is positioned in front of

the box. At the other side a strong source provides light to the scene.

Drops are injected one at a time, and rise in the continuous (more dense) phase until reaching the

surface at the collection reservoir. Images are taken at a rate of 25 s−1. They are then processed by a

computer code. Prior to any experiment, the distances in the captured image are calibrated.

Three different systems were tested (Table 4.1): air bubble in water continuous phase, lubricant oil

drop in water and lubricant oil in glycerin aqueous solution (refer to the Results section for the Froude

number results). Air in water is outside the scope of the present work, but such experiment serves as

validation of the experimental procedure (Table 4.2 for comparison with literature13,26).

4.2.2 Numerical model

The numerical domain is represented in Figure 4.2. Three main regions are distinguishable in a Taylor

drop : the nose (I), the drop body (II) and the rear (III). The nose shape is closely related to the drop

velocity. Around the body of an axisymmetric drop, a thin fully developed continuous phase film is

observed. The third main region is the bottom of the drop. The drop shape and possible oscillations

have a significant influence in the continuous phase below.

In Figure 4.2, L1, L2, L3, L4 and L5 represent planes perpendicular to the tube axis, where flow data
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Table 4.1: Experimental conditions.

air in water oil in water oil in aq. glycerin solution
ρC / kg m−3 998 998 1170
µC / Pa s 0.001 0.001 0.0162
σ / N m−1 0.072 0.0192 0.0194

ρ∗ 0.0012 0.882 0.752
µ∗ 0.018 283 17.5
Eo 60 26.6 64.6
M 2.66× 10−11 1.66× 10−10 1.96× 10−5

Table 4.2: Air-water experimental result.

Fr (this work) Fr (literature13,26)
0.33 0.34

were collected for analysis.

The numerical model was described in a previous work25 and is based in Navier-Stokes equations27,28,

containing four force terms: hydrostatic pressure, gravity, viscosity and surface tension. The liquids are

incompressible and immiscible. In order to deal with the two-phase flow through Volume of Fluid method

(VOF)29, a variable αi – volume fraction – is defined. The value of αi is 1 at any point occupied exclusively

by the fluid i, 0 if no i exists there, or a number between 0 and 1, if both fluids exist in the same mesh

element:

αC + αD = 1. (4.6)

In CFD computations, cells filled with both liquids (0 < αi < 1) do not represent fluid mixture (they

are immiscible). In the present work, they represent the interface between the liquids. Density and

viscosity are computed supposing linear contributions of each phase.

Transient simulations were performed with the commercial software Ansys Fluent (releases 15 and

16). A multiphase laminar incompressible flow model integrated with Volume of Fluid (VOF) method

was used29, simultaneously with geometric reconstruction method30 – ”Geo-reconstruct” in the software

package – which determines the interface on a cell. Regarding pressure-velocity coupling, PISO31 was

used, a non-iterative algorithm which splits the solution into predictor and corrector steps. For pressure

interpolations, a pressure staggering scheme was chosen32 – “Presto!” in the software package. The

QUICK33 scheme was used for solving the momentum equation and the gradients of the scalars were

computed by the Green-Gauss node-based method. The Continuum Surface Force model34 was also

employed. The interface between the two liquids was represented as a transition region of finite thickness

where the surface tension force term is proportional to the curvature in each location. Outside the

interface, this force term is zero.

The simulations were performed with a maximum Courant number of 0.25 and 10−4 as convergence

criteria for the solution of continuity and velocity equations.

The domain consisted of a cylinder with a diameter D and height 10D. The walls are solid and verify

the no-slip condition. The two cylinder bases are inlet and outlet of continuous phase. The mesh was

created in two steps. Firstly, a pattern with about 3800 elements was created in a 2D cross-section of the

cylinder. Then, that pattern was replicated 1000 times by extrusion. A denser grid (increased element

density in the base cross-section) was also tested, but the results were the same (Table 4.3).

Simulations were initialized with an isolated drop consisting of the merge of two shapes: a hemisphere

77



Chapter 4 EXPERIMENTAL AND NUMERICAL 3D STUDY OF A TAYLOR DROP

I

II

III

z

r

L1

L2

L3

L4

L5

FRONT VIEW TOP VIEW

L1 L5

L2 L3 L4

Figure 4.2: Representation of the numerical domain.

Table 4.3: Grid independence tests (base: 3.8 million elements, denser: 5.3 million elements).

Eo log M µ∗ Grid Fr

15.8 -5.6 0.041
base 0.225

denser 0.220

22 -5.6 20
base 0.164

denser 0.162
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for the drop nose region and a cylinder (with a diameter matching the one of the hemisphere). This

initialization method is the three-dimensional analogous to the one described by Araújo et al. 35 . Note

that during the simulation, the velocity field was analyzed to ensure the distance between the inlet and

the drop was big enough to have undisturbed flow near the tube inlet.

A reference frame attached to the drop nose was used, following the procedure reported in a previous

work25. In this reference frame, the drop is still and the continuous phase and the tube wall move

downwards with a speed that equals the drop terminal velocity. Moreover, due to the relative motion

created by the reference frame, an inlet flow boundary condition, with a downward uniform velocity

(equal to |VT|) was imposed at the top of the domain. At the tube exit, pressure is set to zero gauge.

The final result for each condition is obtained by an iterative procedure. Firstly, a proper guess

for inlet and wall velocities is imposed, and a first simulation is run. Afterwards, the drop velocity is

determined, and imposed velocities in wall and inlet regions are adjusted. This process repeats until the

drop stands still. Simulation is, then, run again in order to obtain the relevant flow data. At the end of

the simulation, drop volume is checked to ensure it was not affected by any numerical error.

4.2.3 Symmetry parameter

In the present work, asymmetry assessment is one of the main goals. Quantification of asymmetries is

not straightforward though. An intuitive choice is to investigate how the film thickness changes when

analyzing a plane cut perpendicular to the tube axis. However, this choice does not provide coherence

because when studying the region above the drop, it makes no sense to talk about “film”. Thus another

procedure was chosen. Consider an hypothetical horizontal slice of the domain. On that slice, one can

draw two perpendicular lines (refer to Figure 4.2) corresponding to two diameters (or four radii). Velocity

profile can then be analyzed along each one of the four segments. On each one, the maximum vertical

velocity component (vpi) is registered and the mean maximum velocity (vp) is computed. The parameter

of symmetry that arises from this procedure is then defined as:

Svp =

4∑
i=1

(
vpi − vp

vp

)2

. (4.7)

A case where Svp = 0 is perfectly symmetrical.

4.3 Results

An example of a simulated drop is presented in Figure 4.3, showing shape and flow asymmetry. Closer

to the drop nose, the flow velocity is increased in the downwards near the wall and upwards near the

center. Around an axisymmetric drop a stabilized film of continuous phase is observed. Unlike gas-

liquid, in liquid-liquid the maximum velocity is located in the film, not in the interface. If drop viscosity

is high enough, upward velocities can be observed near the interface25. With asymmetric effects (such as

Figure 4.3), such stable film cannot be observed and oscillations in continuous phase thickness appear.

An oscillation along the drop body also causes a change in the velocity profile of the continuous phase.

The flow close to the drop rear will also be disturbed by the drop. At locations far below the drop, the

continuous phase flow is uniform.

The following subsections discuss the behavior above and below the drop, and the drop region itself.

Relevant comparisons are done for selected groups of simulations (0.01 < µ∗ < 100, 8 < Eo < 30,

2.32 × 10−6 < M < 100), concerning drop shapes and behavior in the continuous phase. The need for
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Figure 4.3: Drop and velocity field (drop nose reference frame) for Eo = 22, M = 100 and µ∗ = 10.

three-dimensional simulations as opposed to axisymmetric 2D is discussed. Thus, the first subsection

discusses the terminal velocity. It is followed by the analysis on the region above the drop, then the

region around the drop and, finally, the region bellow the drop.

Unless otherwise stated, density ratio should be considered as 0.792. Note that Hayashi et al. 11

showed that the density ratio does not influence Froude number (as discussed earlier). Nevertheless,

Hayashi et al. 11 used values between 0.74 and 0.81 in their experiments and Mandal et al. 20 values

between 0.65 and 0.87. A density ratio of 0.792 is thus inside the typical values for this kind of studies.

Concerning dS/D = 1.12, a summary of drop shapes is presented in Figure 4.4. Contours on the image

correspond to a vertical plane containing the tube axis. Two images at different instants are provided

for the cases where shape asymmetries are observed. For the ranges presented, low Eötvös number has

a stabilization effect. Drops are symmetrical showing similar shapes, and are distinguishable for their

rounded bulky rear region – high surface tension forces. At Eötvös number equal to 22, drops are more

elongated. Furthermore, at Eötvös number equal to 22 asymmetry starts to appear. Notice however
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M = 
2.32 × 10-6

M = 100

μ* = 0.1

Eo = 8 Eo = 22

μ* = 10

Eo = 8 Eo = 22

Figure 4.4: Summary of drop shapes.

that two different kinds of effects are observable. For Morton number equal to 2.32× 10−6, in the range

presented, asymmetric effects appear for low viscosity ratios and consist mainly of oscillations in the lower

part of the drop. This oscillation is associated with slow transport of momentum by diffusion both in the

dispersed and continuous phases, which is a characteristic of low Monton numbers, low viscosity ratios

and high Eötvös numbers. On the other hand, for Morton number equal to 100, asymmetry happens for

high viscosity ratios. Here, a serpentine movement along the whole drop body is observed. The serpentine

movement is associated with fast transport of momentum by diffusion inside the drop and slow transport

of momentum by diffusion outside the drop characteristic of high viscosity ratios.

Figure 4.5 presents the vertical velocity (normalized) for three simulations. Locations L1, L2, L4 and

L5 correspond to slices perpendicular to the tube axis (refer to Figure 4.2). Two columns at different

instants are provided for the cases where shape asymmetries are observed (low and high viscosity ratio).

For the simulation with µ∗ = 3, the slices show perfect symmetry in the velocity. Above the drop (L1),

velocity is smaller than in the other locations. Continuous phase velocity is higher in the drop region

(L2 and L4) as the area is smaller. Below the drop (L5), a disturbance in the flow is observed as well.

A different representation of the same simulations in L2 location is presented in Figure 4.6. Velocity

vectors are projected into the tube cross section (vhorizontal) and are represented as vector arrows. The

color refers to the ratio between the magnitude of this projection and the velocity. These examples are,

once more, representative of the three main behaviors observed. On the left, the drop for low viscosity (a

drop with a small asymmetric behavior) shows relevant fluid circulations inside the drop. In the middle,

the symmetric case has irrelevant horizontal velocities. For the higher viscosity ratio (right column), the

drop has relevant shape oscillations. Because of that, two different instants can have large differences. In

the first, there is some observable horizontal flow, while in the other, preceding the oscillation, a strong

horizontal flow, in the direction of the fluids interface, is observable.

Low interfacial forces is the main driving for the appearance of asymmetries.

In conditions of high viscosity of both liquids (large viscosity ratio and large Morton number), and

hence high shear stresses at the interface, and low surface tension (higher Eötvös number), small per-

turbations cause an imbalance of forces at the interface (particularly in the cylindrical body where the

interface has a high radius of curvature). This imbalance can only be restored at the expense of an

increase in the pressure difference between both sides of the interface. This increase must be done at

the expense of a decrease in the radius of curvature. This decrease causes distortion and the undulating

shape of the drop in the region of the cylindrical body. Since the surface tension is small, the time to

restore the perturbations is too high and the interface undulates permanently.
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Figure 4.5: Velocity magnitude (normalized) for three simulations with M = 2.32 × 10−6 and Eo = 30
(A – µ∗ = 0.3, B – µ∗ = 3, C – µ∗ = 41).

In conditions of low viscosity of both liquids (low viscosity ratio and low Morton number implies low

viscosity of both fluids and high Froude number), the drop has an elongated shape and a flat bottom with

a large radius of curvature. A low surface tension combined with a flat surface leads to a small pressure

difference between both sides of the interface. This situation is unstable since small perturbations lead to

a significant increase of the pressure difference. Under low viscosity conditions (slow momentum diffusion

and large velocities in both phases) equilibrium can only be restored through changes in the shape of the

drop bottom. Periodic oscillations of the drop bottom imply a periodic change in the direction of the

forces at the interface inclusive of the shear stress forces.

Figure 4.7 shows snapshots of two experiments conducted in the present work (refer to Table 4.1 for

experimental conditions). Images of the corresponding simulations are provided as well. In the examples

provided, drop size in experiments and simulations is different. This does not influence the terminal

velocity nor the oscillating phenomena.

Concerning the oil in water experiment, an elongated drop with an oscillating nose and a wave-like

effect was observed. A similar pattern was obtained in the simulation. Note also a slightly bulkier bottom

region observable in the simulation image as well as in the 0.4 s and 0.8 s images obtained experimentally.

In the first image, such shape is not clear due to a large oscillation at that instant.

A serpentine effect is clearly obtained with the oil in glycerin solution (see Table 4.1 for details on the

glycerin solution). Note the detail of shadow in the middle of the drop which appears in both simulation

and experiment (0.16 s).

Highly asymmetric behavior in such experiments (high viscosity ratios) supports the trends observable

in Figures 4.4 and 4.5.
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0 1
|vhorizontal|  / |v|

Figure 4.6: Cross-cut 1D below the drop nose for three simulations with M = 2.32× 10−6 and Eo = 30
(left – µ∗ = 0.3, middle – µ∗ = 3, right – µ∗ = 41) – vectors for velocity horizontal component and color
contours for the ratio of magnitudes between horizontal component and velocity vector.
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Table 4.4: Numerical and experimental Froude number (D – this work, H – Hayashi et al. 11).

Eo M µ∗ source Fr exp. Fr num.
30 2.0× 10−5 1.1 H 0.29 0.30

13.3 4.0× 10−1 0.017 H 0.027 0.024
92.6 3.5× 10−1 0.11 H 0.24 0.25
9.4 1.3× 10−5 0.37 H 0.075 0.082
26.6 1.7× 10−10 283 D 0.25 0.25
64.4 2.0× 10−5 17.5 D 0.24 0.21

Table 4.5: Influence of drop size in Froude number.

Eo log M µ∗ dS/D Fr Deviation

8 -5.6 10
1.12 0.0254 6.7 %
1.40 0.0238

15.8 -5.6 0.041
1.12 0.225 2.3 %
1.40 0.220

22 -5.6 0.01
1.12 0.262 0 %
1.40 0.262

22 -5.6 0.1
1.12 0.277 2.6 %
1.40 0.270

22 -5.6 20
1.12 0.164 1.2 %
1.40 0.162

22 2 10
1.12 0.00350 -4.1 %
1.40 0.00365

30 2 0.3
1.12 0.321 -1.8 %
1.40 0.327

These experiments as well as literature data20,11 were used as validation of the numerical method by

comparing Froude number results. Table 4.4 presents conditions and Froude number values for simulations

and experiments – in the “source” column, “D” stands for this work and “H” for Hayashi et al. 11 . The

present numerical model shows good agreement in a wide range of dimensionless numbers.

4.3.1 Terminal velocity

The present study starts by evaluating the drop size influence on the terminal velocity (Table 4.5). Under

the studied conditions, drop size does not appear to be an important parameter. Density ratio was also

studied. Table 4.6 presents no significant differences, as already reported in literature11.

Figure 4.8 presents the terminal velocity results, through the corresponding dimensionless entity, the

Froude number (equation 4.1). These results follow the trends already published in the literature25,11.

Froude number increases with increasing Eötvös number, corresponding to a decreased influence of surface

tension forces and/or an increase of the gravity effects (large difference between the density of both

liquids). If the increase of the Eötvös number is accomplished by a decrease of the Morton number, i.e. a

decrease of the viscosity of the continuous phase, and by a decrease of the viscosity ratio, i.e. a very low

Table 4.6: Influence of density ratio in Froude number.

Eo log M µ∗ ρ∗ Fr Deviation

8 -5.6 10
0.792 0.0254 -15 %
0.0792 0.0301

15.8 -5.6 0.041
0.792 0.225 2.2 %
0.001 0.230
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oil in water

0 s 0.4 s 0.8 s

oil in glycerin sol.

0 s 0.16 s 0.32 s

Figure 4.7: Experimental snapshots and corresponding simulations (oil in water – µ∗ = 283, Eo = 26.6,
M = 1.66× 10−10; oil in glycerin – µ∗ = 17.5, Eo = 64.6, M = 1.96× 10−5).
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viscosity of the dispersed phase, the Froude number reaches the highest values. These results are close

to the known Froude number limit of 0.35 for a gas Taylor bubble rising in a low viscous fluid.

On the other hand, Froude number decreases with decreasing Eötvös number. This decrease can be

attained by decreasing the difference between the density of both fluids (liquid drop rising in another

liquid) or by increasing the capillary effects (gas-liquid flow in a capillary). So, in the limit, and for

defined values of Morton number and viscosity ratio, the flow characteristics of a drop in a continuous

liquid, here in study, should be comparable to those of the flow of a Taylor gas bubble in a liquid in a

capillary.

Figure 4.9 presents the relative deviation between Froude number from a 2D axisymmetric model

(Fr2D) and that obtained with the 3D model (Fr3D) developed in the present work. For the comparison,

2D results were obtained by the numerical model explained by Direito et al. 25 . Simulations were also

performed for lower viscosity ratios in the Eötvös 22 and Eötvös 30 series, but the 2D model was not

able to reproduce stable drops and the results are not shown. Significant differences in Froude number

between 2D and 3D occur for lower viscosity ratios, except for Eötvös number of 8, whose deviations are

always less than 10 %. For Eötvös number of 22, Figure 4.9, results show again higher deviations for

lower viscosity ratios. Taking into account these observations and the results presented in Figure 4.8,

axisymmetric model fails to predict drop terminal velocity when Froude number value goes above about

0.25.

Interestingly, the drops in the 10-100 viscosity ratio range tend to show asymmetric behavior (both in

shape and in the continuous phase velocity), while still being able to yield a correct drop velocity (Froude

similar to the corresponding simulations in 3D).

4.3.2 Region above the drop

At the drop nose, the continuous phase assumes a velocity that equals VT: it is being pushed by the

drop. Going farther from the nose, velocity will decrease until the continuous phase is stagnant, without

any influence from the drop presence. One strategy to evaluate such influence is to measure the distance

needed for the vertical velocity component in the tube axis to be below a defined criterion. Figure 4.10

shows the influence distance divided by the diameter (“ZI”, where “I” refers to the label in Figure 4.2) in

the axis above the drop, measured when the vertical component in continuous phase has dropped below

5 % of VT. The time average value is presented. Interestingly, even though a wide range of conditions is

presented, the influence distance stays bounded between 0.4D and 0.6D. Influence distance shows little

sensitivity to Eötvös and Morton numbers. Viscosity ratio appears to have the most relevant effect on

this parameter.

Following these results and in order to analyze how the different conditions cause asymmetries in the

flow above the drop, a distance of 0.25D was set to apply the analysis based on equation 4.7, as explained

before (L1 in Figure 4.2). Figure 4.11 presents such results with time-averaged values (lines are taken at

constant angular location). Figure 4.11 also presents the drop shapes from some simulations. Two images

are provided for the conditions where shape is time dependent. Low Eötvös number simulations show no

significant asymmetric effects. In other ranges of Eötvös number, simulations seem to have three distinct

behaviors. For low viscosity ratios, they show mild asymmetric behavior. For medium viscosity ratios,

the drops are axisymmetric. Finally, for higher viscosity ratios, significant asymmetric effects occur. In

coherence with Figure 4.4, it is possible to distinguish an axisymmetric behavior for medium viscosity

ratios, rear asymmetric behavior for low viscosity ratios and a serpentine movement for high viscosity

ratios. The asymmetry magnitude and the shape behavior are closely related. Almost null asymmetry
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Figure 4.8: Froude number as function of viscosity ratio (A – M = 2.32×10−6, B – Eo = 22, C – Eo = 8).
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Figure 4.9: Deviation of 2D Froude results as function of viscosity ratio (A – M = 2.32 × 10−6, B –
Eo = 22, C – Eo = 8).
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Table 4.7: Drop size and the symmetry parameter above the drop.

Eo log M µ∗ dS/D Svp

15.8 -5.6 0.041
1.12 0.71
1.40 0.26

22 -5.6 0.1
1.12 1.1
1.40 0.26

22 -5.6 20
1.12 1.7
1.40 0.22

22 2 10
1.12 3.4
1.40 0.36

30 -5.6 0.3
1.12 1.1
1.40 0.40

magnitude corresponds to axisymmetric behavior. Strong asymmetric effects are observed, both in shape

and in the flow above the drop, for high viscosity ratios. In fact, taking continuity into account, it is

no surprise that the serpentine effect causes high asymmetries in the continuous phase velocity profiles.

For the low viscosity ratio region, a mild value for the symmetry parameter corresponds to milder shape

effects, mainly in the drop rear, when compared to the high viscosity ratio region.

Increasing the drop size (Table 4.7), the symmetry parameter tends to a lower value (less asymmet-

ric effects). Interestingly, the influence distance does not have significant changes (and the results are

omitted).

4.3.3 Region around the drop

Consider the plane cut perpendicular to the tube axis at a distance of 1D below the drop nose (L2 in

Figure 4.2). The analysis based on equation 4.7 was applied here as well (Figure 4.12). For low Eötvös

number, almost no asymmetry is found. Concerning low Morton and high Eötvös, asymmetric effects

related to the serpentine movement of the drops are observed. The mild asymmetries found in the flow

above the drop for low viscosity ratios do not show up here.

At a distance of 1.5D below the drop nose (L3 in Figure 4.2), similar trends are found, though with

higher values of the symmetry parameter (Figure 4.13).

4.3.4 Region below the drop

Following the same strategy, Figure 4.14 shows the influence distances below the drops (“ZIII”). Higher

Eötvös show in general influence distances of at least 0.5D and up to 4D. Interestingly, it is not possible

to perceive a trend of increase or decrease in such results. For lower Eötvös, the distance seems bounded

between 0.3 and 0.5D. Following these results, at lower Eötvös number, coalescence of two drop is

unlikely to happen unless they are close to each other. Conversely, at Eötvös numbers as high as 30,

influence distances show that the drops are more prone to coalescence.
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Figure 4.12: Symmetry parameter in 1D below the drop nose (A – M = 2.32× 10−6, B – Eo = 22, C –
Eo = 8).
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Figure 4.13: Symmetry parameter in 1.5D below the drop nose (A – M = 2.32× 10−6, B – Eo = 22, C
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4.4 Conclusions

The importance of individual Taylor drops rising in a stagnant heavier liquid and the 3D effects on some

drops motivated the present work.

A numerical study concerning single liquid Taylor drops rising at constant velocity in a stagnant

heavier liquid is reported. CFD simulations were performed in a three-dimensional domain using Ansys

Fluent (releases 15 and 16). From simulation data, it was possible to extract information on drop shape

and velocity. The numerical model was validated by lab experiments for an extensive range.

Information on drop terminal velocity was collected and, therefore, it was possible to relate the

Froude number with other dimensionless parameters. The general trends concerning the influence of

Eötvös number, Morton number and viscosity ratio in the Froude number are consistent with previous

works published in the literature. Furthermore, for the range studied, no violation of the 0.35 Froude

limit was observed.

The influence distance for the continuous phase above the drop (concerning the 5 % of VT criteria) is

only slightly sensible to dimensionless number changes, staying bounded between 0.4 and 0.6 diameters.

For the distance below the drop, an analogous behavior is found, though with more dispersed results.

High influence of interfacial tension forces (low Eötvös number) causes low Froude numbers. In such

conditions, drops are symmetric and consistent in shape (rounded in the rear region). Higher Eötvös

numbers tend to elongate the drops, as well as increase the Froude number. Asymmetries also start to

be observed.

Concerning shape asymmetries (occuring when interfacial tension forces are not determinant), three

ranges of viscosity ratio are distinguishable. Lower viscosity ratios lead to oscillating drop rears and low

asymmetries in the flow above the drop, while showing significant horizontal flow inside the drop. For

an intermediate range, drops show axisymmetric behavior. Finally, for the higher viscosity ratio region,

drops show a significant asymmetric serpentine like movement.

The combination of low interfacial force and high viscosity of both liquids leads to oscillations in

the drop body. These are related to the imbalance caused by small perturbations at the interface. An

analogous behavior happens in the drop bottom due to the decreased interfacial tension forces combined,

this time, with low viscosity of the liquids.

Froude number results are compared to data of a 2D axisymmetric model showing that this model

cannot predict well higher Froude number cases (corresponding to low viscosity ratio and Morton number

and high Eötvös number). The aforementioned horizontal flow inside the drop further supports these

results. For drops with high viscosity ratio, the 2D model is able to output a correct Froude number,

even though the drops, in 3D, are not axisymmetric.

The present work provides important data for a deeper understanding of Taylor drops and its asym-

metries. It is, thus, an important step for a more general knowledge on liquid-liquid slug flow.
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Chapter 5 A TAYLOR DROP RISING IN A LIQUID CO-CURRENT FLOW

Abstract

The present work presents a numerical study on the behavior of isolated liquid Taylor

drops rising in vertical tubes with co-current heavier continuous phase. Numerical

simulations were performed with a previously validated model, implementing Volume

of Fluid method in an axisymmetric geometry. Detailed flow patterns and drop shapes

are provided and discussed for several conditions. The balance between gravity effect

and velocity of the continuous phase flow was found to have a great influence in the

flow patterns observed. The increase of inertial effects, due to the increase of Eo

number and the co-current velocity, leads to the occurrence of closed recirculations

below the drops. Furthermore, the continuous phase stabilization distance below

the drop is a function of the drop Reynolds number. Drop and continuous phase

velocities relationship was studied. A viscosity ratio related term was appended to a

pre-existing correlation. The flow in the absence of gravity was also studied. Results

demonstrate that micro-scale flow is a lower limit to the cases studied in the present

work and suggest that the viscosity ratio affects mainly the inertial part of the drop

velocity.

5.1 Introduction

The study of different kinds of multiphase flows is of high value due to their occurrence in chemical,

nuclear or hydrocarbon industries, among others (Aziz et al., 2015, Bannwart et al., 2009, Babadagli,

2007, Omebereiyari et al., 2008, Seyfried and Freundt, 2000). One of the foremost multiphase patterns

is slug flow. An example of this pattern can be observed when two immiscible liquids flow in a vertical

tube, with the lighter one forming long bullet shaped drops (dispersed phase) surrounded by the heavier

liquid that constitutes the continuous phase.

Earlier studies on slug flow concern gas-liquid systems Davies and Taylor (1950), Moissis and Griffith

(1962), Nicklin et al. (1962), White and Beardmore (1962), Morgado et al. (2016). This can occur, for

example, when the dispersed phase flow rate is increased at a point when small bubbles start to coalesce

into those long bullet shaped (Araújo et al., 2012). Such bubbles are known as Taylor bubbles Davies

and Taylor (1950). Because of the intermittent behavior of this flow pattern, operational problems can

occur (Lyons and Plisga, 1999, Villarreal et al., 2006).

By analogy, drops in liquid-liquid slug flow are known as Taylor drops (Mandal et al., 2008). Liquid-

liquid slug flow can be used, for instance, for the ability of lubricating the flow of a very viscous and

wall-adherent dispersed phase. Liquid-liquid slug flow has recently sparked interest for its importance in

oil wells (Bannwart et al., 2004, Mandal et al., 2010). Moreover, even three phase flow (gas-water-oil)

can sometimes resemble two phase slug flow (Serapião and Bannwart, 2013, Spedding et al., 2000).

The aim of the present work is to obtain data about the flow of a single Taylor drop in a long

vertical tube where a heavier liquid is flowing upwards. The data is obtained by conducting a series of

Computational Fluid Dynamics (CFD) simulations, based on a validated two-dimensional axisymmetric

model (Direito et al., 2016), using Ansys Fluent. Furthermore, the present study intends to find a

relationship between the drop velocity and other flow parameters.
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5.2 Theory and methods

Despite its importance, liquid-liquid slug flow is not well studied yet. In order to gain a deeper un-

derstanding, one must study all phenomena step by step. The simpler approach is to consider a single

Taylor drop rising in a stagnant heavier liquid in a vertical tube. It is expected that a rising single Taylor

drop reaches a constant terminal velocity (VT). Some of the earlier studies include those of Brown and

Govier (1961), Govier et al. (1961) and Zukoski (1966). Mandal et al. (2007, 2008, 2009) studied the

shape and velocity of a drop rising in a quiescent liquid. Hayashi et al. (2011) presented experimental

shapes and performed numerical simulations, evaluating the influence of several dimensionless numbers.

A correlation to guess the terminal velocity was presented by Hayashi et al. (2011), Kurimoto et al.

(2013). Direito et al. (2016) performed a numerical study to analyze velocity, shape and velocity profiles

in the continuous phase and discussed, as well, the applicability of axisymmetry to such phenomena.

In real applications though, slug flow is more complex. The next step is, so, to study a single Taylor

drop rising in a tube with a flowing upward continuous phase (co-current).

In order to design experiments to study the co-current case, one must consider relevant dimensionless

groups influencing the flow (Hayashi et al., 2011, Direito et al., 2016). The Eötvös number relates

buoyancy and interfacial forces and is defined as:

Eo =
∆ρ gD2

σ
, (5.1)

where ρ is the density, D stands for the tube diameter, g for the standard acceleration of gravity and σ is

the surface tension. ∆ρ = ρC−ρD, where the subscripts ”D” and ”C” stand for dispersed and continuous

phase. Furthermore, the Morton number relates viscosity and surface tension forces:

M =
∆ρ gµ4

C

ρ2
C σ

3
, (5.2)

where µ stands for viscosity.

Additionally, it is necessary to consider the ratios of density and viscosity:

ρ∗ =
ρD

ρC
, (5.3)

µ∗ =
µD

µC
. (5.4)

Notice that, for drops rising in a heavier liquid, the density ratio is always less than 1.

When Eötvös number is high and the viscosity ratio is low enough, the liquid-liquid isolated drop

case should approach the behavior of a gas Taylor bubble rising in a liquid flowing in a macro tube.

That happens because the density difference is high and/or the interfacial tension is low (gravity effects

are predominant). On the other hand, for low Eötvös, Morton is required to quantify the importance of

the viscous forces. Low Eötvös and high Morton numbers implicate a high viscosity of the continuous

phase. If the viscosity ratio is high, such combination should be observed when, at the macro-scale, both

fluids have close densities (viscous effects are predominant). For low Eötvös and Morton numbers and

low viscosity ratio, the flow should be similar to that of a gas Taylor bubble flowing in a liquid contained

in a micro tube (surface tension effects are predominant).

In the present work, though, one must also account for the motion of the continuous phase. The

ratio between the continuous phase average velocity and the drop terminal velocity in stagnant liquid
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was chosen to design the simulations:

u∗ =
UC

VT
. (5.5)

The Reynolds number of the continuous phase gives information on the continuous phase flow regime:

ReC =
ρC UCD

µC
. (5.6)

The Reynold number based on the dispersed phase velocity is defined as:

ReD =
ρC VTCD

µC
, (5.7)

where VTCis the drop velocity in co-current.

In gas-liquid, the relationship between the bubble velocity and the continuous phase velocity has been

the scope of several studies (Morgado et al., 2016). Nicklin et al. (1962) proposed the following law:

VTC = VT + CUC, (5.8)

or, dividing by VT:

VTC/VT = 1 + Cu∗, (5.9)

where C is a constant, which depends on the system dimensionless groups (Fabre and Line, 1992). Nicklin

et al. (1962) also found that bubbles are faster in laminar flow than in turbulent regime. Collins et al.

(1978) proposed C = 2.27 for laminar regime. In a later work (Bendiksen, 1985, Fabre and Line, 1992)

a function of Eötvös number was proposed for laminar regime:

C = 2.29

(
1− 20

Eo

(
1− e−0.0125 Eo

))
. (5.10)

Pinto et al. (1998) obtained similar values and reported results for the transition region, as well. They

also related the liquid Reynolds number to the wake region behavior. Nogueira et al. (2006) reported an

experimental study where three types of wakes were observed at the rear of Taylor bubbles. Moreover, they

also observed that longer bubbles are required for the liquid film flowing around the bubble to become fully

developed, in co-current operation. Lu and Prosperetti (2009) studied numerically the effect of Eötvös

and Morton numbers. They reported a relationship between the distance below the bubble disturbed

by the bubble flow and the velocity of the continuous phase, observing very long circulations in some

conditions. Quan (2011) studied numerically systems with a density ratio of 0.01, reporting bubble shapes

and detailed velocity profiles. They observed that an increase in continuous phase velocity elongates the

bubble and tends to create flow separation below the bubble. The existence of thin protuberances on the

bottom edges of the drops (“skirts” – (Viana et al., 2003, Ray and Prosperetti, 2014)) were reported on

both numerical studies (Lu and Prosperetti, 2009, Quan, 2011).

Gas-liquid co-current flow is also important at the micro-scale (Liu et al., 2005, Abiev and Lavretsov,

2012). In order to evaluate when the present study approaches the conditions of the micro-scale, the

capillary number is defined:

CaC =
UC µC

σ
= ReC

√
M Eo−1 (5.11)

In such conditions, the ratio between the velocity acquired by a Taylor bubble/drop and the continuous
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phase co-current velocity can be described by just one dimensionless number (Liu et al., 2005):

VTC

UC
=

1

1− 0.61CaC
0.33 . (5.12)

To account for the terminal velocity (which is null in micro tubes), the equation can be re-written as:

VTC − VT

UC
=

1

1− 0.61CaC
0.33 . (5.13)

This equation represents the limit of (VTC − VT) /UC when effects of gravity vanish.

In slug flow, two drops might coalesce because the flow in the wake of the leading drop causes an

increase in the trailing drop velocity (Araújo et al., 2013). Hence, the interaction between two drops is

of foremost importance. It is highly dependent on the disturbance that the leading drop causes in the

continuous phase flow below it. To evaluate that disturbance, consider, in the tube axis, the distance from

the drop bottom needed for the vertical velocity component to fulfill a defined criterion – a of deviation

of less than 5 % from the undisturbed value (Direito et al., 2016). The normalized stabilization distance

is given by:

ZIII =
stabilization distance

D
. (5.14)

The present work concerns numerical simulations designed to assess the influence of the relevant forces

in the flow, namely the Taylor drop rising velocity, by studying the dimensionless numbers in the ranges

0.01 ≤ µ∗ ≤ 10, 8 ≤ Eo ≤ 30 and 2.32× 10−6 ≤ M ≤ 100.

5.2.1 Numerical model

The present work was develped using the commercial package Ansys Fluent. A multiphase laminar

incompressible flow model integrated with Volume of Fluid (VOF) method was used (Hirt and Nichols,

1981) with geometric reconstruction (Youngs, 1982). The scalar gradients were computed by the Green-

Gauss node-based method. Regarding pressure-velocity coupling, PISO (Issa, 1986) was used, a non-

iterative algorithm which splits the solution into predictor and corrector steps. For pressure interpolations,

a pressure staggering option scheme was chosen (Patankar, 1980) – “Presto!” in the software package.

The QUICK (Leonard, 1979) scheme was used for solving the momentum equation. To account for the

interfacial forces, the Continuum Surface Force model (Brackbill et al., 1992) was used. It creates the

interface between the two liquids as a transition region of finite thickness where the surface tension force

term is proportional to the curvature in each location. Outside the interface, this force term is zero.

In order to deal with the two-phase flow, a variable αi was defined. The value of αi is 1 at any point

occupied exclusively by the fluid i, 0 if no i exists there, or a number between 0 and 1, if both fluids exist

in the same mesh element:

αC + αD = 1. (5.15)

Note that cells with αD 6= 0 ∧ αD 6= 1 represent the interface between the two liquids. On such cells,

density and viscosity are computed supposing linear contributions of each phase.

All simulations were transient and performed with a maximum Courant number of 0.25.

The domain is represented in Figure 5.1. Axial symmetry (around the cylinder axis) – axisymmetry –

was used to minimize computational effort. When concerning Taylor bubbles and drops, this approach has

been widely used and observed, both in theoretical (Collins et al., 1978, Mandal et al., 2007), experimental

(Davies and Taylor, 1950, White and Beardmore, 1962, Mandal et al., 2008, Araújo et al., 2012) or

numerical studies (Hayashi et al., 2011, Kurimoto et al., 2013). The domain consisted of a rectangle
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Table 5.1: Mesh test conditions and difference in drop velocity between the two meshes.

Eo M µ∗ ρ∗ dS/D u∗ dif. in Vb

8 2.32× 10−6 10 0.792 1.12 2 3 %
22 10−4 10 0.792 1.12 2 < 1 %
22 100 10 0.792 1.12 2 < 1 %
22 100 0.1 0.792 1.12 2 < 1 %

with a width D/2 and 11D long. The mesh consisted of a 52× 1144 grid of quadrilateral and uniformly

distributed cells. This mesh allows for a correct flow description. For example, in the narrowest part of

the continuous phase film in the stagnant Eo = 8, M = 100 and µ∗ = 10 simulation, there are six cells in

the radial direction.

Simulations were initialized using the drop shape and velocity field from the corresponding stagnant

case(Direito et al., 2016).

A reference frame attached to the drop nose was used (Direito et al., 2016). In this reference frame,

the drop is still and the continuous phase and the tube wall move downwards. The wall velocity boundary

condition is set to the value of the drop velocity. Moreover, an inlet flow boundary condition (at the

top of the domain) was imposed. The velocity profile in this boundary consists of the parabolic profile

subtracted by the drop velocity:

u(r) = −VTC + 2UC

(
1− (2r/D)

2
)
, (5.16)

where r is the radial coordinate. It was implemented through an “User defined function” in Ansys Fluent.

At the tube exit, pressure is set to zero gauge.

The final result for each condition is obtained by an iterative method. A first simulation is run for a

drop velocity estimated by Eq. 5.9 with C calculated by Eq. 5.10. The new drop velocity obtained in

this simulation is used as input in the next simulation by adjusting boundary conditions in the wall and

at the inlet. This process repeats until the drop velocity converges (corresponding to a < 1 % variation

in velocity). Simulation is, then, run again (at least 2000 time-steps) in order to obtain the relevant flow

data.

A finer grid (about 8 times more cells, without any change in the domain geometry and dimensions)

was also tested, but showed identical results (same drop velocity and shape and same velocity field for the

conditions in Table 5.1 – see also example in Figure 5.2) and it was dropped due to its high computation

time.
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Figure 5.1: Axisymmetric domain with drop. Velocity profiles: earth reference frame (left), drop nose
reference frame for drops faster than undisturbed continuous phase (middle) and drop nose reference
frame for drops slower than portions of undisturbed continuous phase (right). Marked region above the
drop (I), continuous phase film (II) and wake (III).

Figure 5.2: Flow fields with the chosen mesh (left) and finer mesh (right) for Eo = 8, M = 2.32× 10−6,
µ∗ = 10 and u∗ = 2.
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5.3 Results

A numerical study was designed using the dimensionless groups relevant in the stagnant case as the

starting point. As shown previously (Direito et al., 2016), a study like this should take into account

the Eötvös number, the Morton number and the viscosity ratio. In order to ensure the validity of the

axisymmetric model, the dimensionless numbers were ranged this way: 0.01 ≤ µ∗ ≤ 10, 8 ≤ Eo ≤ 30 and

2.32 × 10−6 ≤ M ≤ 100. Concerning the density ratio, the value 0.792 was used. In the stagnant case,

Hayashi et al. (2011) showed that the density ratio does not influence the flow. Nevertheless, test with a

lower density ratio was performed, but no significant changes were found. Furthermore, dS/D = 1.12 is

the drop size (the ratio between the diameter of the drop volume-equivalent sphere and the pipe diameter).

In a similar fashion, a test was run for 1.4, also with no significant differences. Details on these runs are

provided in Table 5.2, showing no influence of these parameters on the velocity drop results. These results

hint that any possible difference between gas-liquid and liquid-liquid should be driven by the viscosity

ratio.

For each set of stagnant dimensionless numbers, co-current simulations were performed at u∗ = 0.5,

2 and 5.

5.3.1 Flow patterns

Figure 5.3 presents simulation results where Eötvös and u∗ are changed. Firstly it is important to make

a distinction between observable flow patterns.

Generally, for low values of Eötvös number (strong influence of interfacial forces), drops tend to be

bulkier and show a rounded lower part. As Eötvös increases, drops tend to be more elongated and their

bottom flattens. These observations agree with the behavior already described in literature for drops

rising in stagnant liquid (Direito et al., 2016).

When u∗ is low, the effect of gravity dominates. Notice that very few differences in drop shape exist

between u∗ = 0 and u∗ = 0.5. Furthermore, and according to the streamlines, the drop velocity is faster

than the velocity of all the continuous phase and so all the liquid is overtaken by the drop.

With the increase in u∗, the influence of the convective effect of the continuous phase flow grows.

Concerning the case for Eo = 8 at u∗ = 5, semi-infinite circulation lines appear in the drop reference

frame representation (ahead and below the drop). Inside these regions, the continuous phase moves at

an average velocity that is equal to the drop velocity. The liquid flowing ahead, inside the circulation

region, is never overtaken by the drop. Similar flow behavior can be found, for example, in the work of

Lu and Prosperetti (2009).

Closed recirculations at the bottom of the drop start to appear for the higher Eötvös values, when

the continuous phase velocity is high enough. Furthermore, in cases such as Eo = 22 and u∗ = 5, closed

recirculations and semi-infinite circulations occur simultaneously. Hence, an overlap of both is observable

below the drop. An interesting behavior concerns the location of the closed recirculations. In gas-liquid

Table 5.2: Influence of density ratio and drop size.

Eo log M µ∗ ρ∗ dS/D C

8 -5.6 10
0.792 1.12 1.36
0.0792 1.12 1.35

22 2 0.041
0.792 1.12 1.65
0.792 1.40 1.64
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co-current flow, one can find closed recirculations attached to the bubble bottom (Nogueira et al., 2006).

On the other hand, the current results show a gap between the closed recirculation region and the drop

(Eo = 30 and u∗ = 0.5 in Figure 5.3).

5.3.2 Drop shape

An important characteristic in some Taylor drops is the bottom oscillation. Concerning stagnant con-

tinuous phase in the range studied, one will only find an oscillating drop at high Morton and Eötvös

numbers (Figure 5.4). An interesting effect of the co-current flow is the appearance of those effects at

lower Morton number values. At Eo = 22, µ∗ = 10 and M = 10−4, high enough continuous phase velocity

causes oscillations to occur (Figure 5.4).

At M = 100, Eo = 22 and µ∗ = 0.1 (Figure 5.5, first row), the film velocity profile tends to stagnation

with the increase of u∗. Despite the continuous phase velocity being high, there are not semi-infinite

circulations. This happens because of the bypass flow in non-gravity conditions (Thulasidas et al., 1997,

Abiev, 2009).

Regarding variations in continuous phase velocity at M = 100, Eo = 8 and µ∗ = 10 (Figure 5.5,

second row), it is still possible to detect a small drop elongation with the increase of the continuous phase

velocity. The increase in u∗ promotes the existence of semi-infinite circulation lines. At u∗ = 2, the radial

velocity in the region exiting the drop bottom is still relevant, causing an almost quiescent gap region

(MRF) between the drop bottom and the portion of continuous phase that moves at the drop velocity.

For changes in viscosity ratio (Figure 5.6), drop shape and continuous phase flow show little differences

in the flow patterns. However, a mild effect of drop dimensions is observable. The film at higher viscosities

is less thick. Furthermore, an increase in viscosity ratio causes the arising of the aforementioned semi-

infinite circulation lines (µ∗ = 10). Below this drop, the semi-infinite circulation is not attached to the

drop bottom. Instead, there is some fluid flowing at the drop velocity (stagnant relatively to the drop)

between the drop and the semi-infinite region.

5.3.3 Further effects on continuous phase

After a qualitatively overview, more information on the continuous phase flow can be obtained by ana-

lyzing relevant parameters on the film region and in the wake of the drop.

The velocity profile in the film (Figure 5.7) is greatly affected by the continuous phase velocity. With

the increase in the importance of the continuous phase flow, vP, the maximum downward velocity (in

earth reference frame, normalized by the drop velocity), reduces significantly (Figure 5.8). Furthermore,

on such conditions, the inner portion of the film moves upwards.

For high viscosity ratios (Figure 5.7, A and B), the maximum velocity appears far from the interface

(analogous result in stagnant continuous phase can be seen in Direito et al. (2016)).

Regarding Figure 5.7 – D, the velocity profile presented for u*=5 corresponds to the previously

mentioned conditions where the film is almost stagnant (Figure 5.5).

The interaction between two drops is highly dependent on the disturbance that the leading drop causes

in the continuous phase flow below it (region III in Figure 5.1) – Eq. 5.14. In Figure 5.9, the results are

separated in three series: the stagnant cases (which do not have closed recirculations), the co-current cases

without closed recirculations and the ones with closed recirculations below. The stabilization distance

was found to be a fairly good function of the dispersed phase Reynolds number. For low Reynolds, viscous

forces are dominant and the continuous phase flow is not greatly affected. Moreover, coalescence of two

drops in these conditions is unlikely to happen due to the such short disturbed flow. With the increase
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Eo = 8 

Eo = 15.8

Eo = 22 

Eo = 30 

Figure 5.3: Drops for constant M = 2.32× 10−6 and µ∗ = 10 in drop nose reference frame – from left to
right: u∗ = 0 (Direito et al., 2016), u∗ = 0.5, u∗ = 2, u∗ = 5 .
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M = 10-4 M = 100

u* = 0 u* = 0.5 u* = 2 u* = 0

Figure 5.4: Drop shape and velocity field (drop reference frame) at Eo = 22 and µ∗ = 10 (two instants
are shown – left and right).

M = 100
Eo = 8
μ* = 10

M = 100
Eo = 22
μ* = 0.1

Figure 5.5: Two different drops in drop nose reference frame, with two snapshots when shape oscillation
occurs – from left to right: u∗ = 0 (Direito et al., 2016), u∗ = 0.5, u∗ = 2, u∗ = 5.

Figure 5.6: Drops for constant M = 100, Eo = 8 and u∗ = 2 in drop nose reference frame – from left to
right: µ∗ = 0.01, 0.1, 1 and 10.
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in Reynolds, the stabilization distance increases and closed recirculations start to appear (ReD > 100).

5.3.4 Drop velocity

As mentioned previously, for each set of stagnant dimensionless numbers, co-current simulations were

performed at u∗ = 0.5, 2 and 5. In order to obtain the slope C in Eq. 5.8), terminal velocity of stagnant

simulations (Direito et al., 2016) are also used.

Applying the Eq. 5.8, it is possible to obtain the parameter C. Figure 5.11 shows that parameter as

a function of the relevant dimensionless numbers. In order to obtain the line parameters, the sum of the

squares of the relative deviations was minimized (three examples are presented in Figure 5.10).

The parameter C shows a small sensitivity to Eötvös. Regarding the influence of Morton number

(Figure 5.11 – middle), a small change in C is observed, being something higher for higher Morton

numbers.

Simulations were performed for different viscosity ratios at constant Eötvös number and Morton

number (Eo = 8 and M = 100 – Figure 5.11). For the higher viscosity ratio, C takes approximately the

value of 1.4. However, with the decrease of µ∗, and thus the approximation to gas-liquid, the parameter

increases. At µ∗ = 0.01, it is already very close to the value 1.75 predicted by Eq. 5.10(Bendiksen, 1985).

In order to cope with the effect of viscosity ratio (Figure 5.11, bottom), an additional factor was

introduced to Eq. 5.10, and adjusted to the results of the present work:

C = 2.29

(
1− 20

Eo

(
1− e−0.0125 Eo

))
×
(

1− 0.128

1/µ∗

(
1− e−1.42 (1/µ∗)

))
,

(5.17)

for a range 8 ≤ Eo ≤ 30, 2.32 × 10−6 ≤ M ≤ 100 and 0.01 ≤ µ∗ ≤ 10, constrained by the validity of

axisymmetry (Direito et al., 2016, 2017) – roughly for µ∗ ≤ 1 when Eo ≥ 15.8 and M < 1 the drops are

not symmetric.

Figure 5.12 shows a good match between the correlation and the numerical results (a total of 14 points

with standard deviation σ2 = 0.0228). Note that, for gas-liquid, the viscosity ratio tend to zero and Eq.

5.17 becomes Eq. 5.10.

5.3.5 Drop velocity limits

Lower limit

The drop velocity has two important contributions: the terminal velocity rendering the gravity effect

and the continuous phase co-current flow. In order to understand how the two effects influence the drop

velocity, consider Figure 5.13, where VTC−VT

UC
is presented as a function of the capillary number (CaC) for

all the simulations in the present work. Futhermore, Eq. 5.13 is also presented as a line, corresponding

to the region of no gravity. As Eq. 5.13 is an adaptation of a correlation developed for capillaries (Liu

et al., 2005), a set of six new simulations were run without gravity (Table 5.3), in order to confirm the

validity of such adaptation. The correlation stands as a lower limit for the results of the present work.

The values obtained with gravity that are closest to the lower limit are those obtained with high

viscosity ratios (already seen in Figure 5.11), in particular those corresponding to high continuous phase

velocities (capillary number higher than 0.1). These results are consistent, since the terminal velocity

of the drop decreases by increasing the ratio between the viscosities of the phases (Direito et al., 2016).
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Figure 5.7: Axial velocity profile in the film – earth reference frame (A: M = 2.32× 10−6, Eo = 15.8 and
µ∗ = 10; B: M = 2.32 × 10−6, Eo = 22 and µ∗ = 10, C: M = 2.32 × 10−6, Eo = 8 and µ∗ = 0.1; D:
M = 100, Eo = 22 and µ∗ = 10).
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Figure 5.8: Velocity maximum in the film – earth reference frame (A: M = 2.32 × 10−6, Eo = 15.8 and
µ∗ = 10; B: M = 2.32 × 10−6, Eo = 22 and µ∗ = 10, C: M = 2.32 × 10−6, Eo = 8 and µ∗ = 0.1; D:
M = 100, Eo = 22 and µ∗ = 10).
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Figure 5.9: Stabilization distance below the drop (stagnant simulations, co-current simulations without
closed recirculation and co-current with closed recirculations).
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Figure 5.10: Examples of determination of slope C.
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Table 5.3: Simulations without gravity.

Eo log M µ∗ u∗

8 -5.6 0.1 2
8 100 0.01 5
22 0 10 5
22 2 0.1 0.5
22 2 0.1 5
30 -5.6 10 2

These results also suggest that the viscosity ratio influences mainly the gravitational component of the

drop velocity.

As expected, for low values of capillary number the drop velocity in non-gravity flow tends to the

velocity of the continuous phase. In the opposite direction, VTC−VT

UC
increases with the increase of CaC

(more influence of continuous phase viscous effects in relation to the interfacial tension forces).

The results that past the value of 2 for VTC−VT

UC
correspond to the existence of bypass flow (in non-

gravity conditions), as discussed earlier (Figure 5.5).

Upper limit

According to Eq. 5.17 the drop velocity increases with the increase of the Eötvös number. The upper

limit of VTC−VT

UC
is, according to Eq. 5.17, 2.29, a typical value of a gas Taylor bubble rising, in a macro

tube, in the viscous regime in a liquid with no interfacial tension. According to Figure 5.13 this upper

limit is achieved for low values of the ratio of viscosities, high velocities of the continuous phase. Moreover,

observe that this upper limit appears when viscosity forces are more important than interfacial tension

forces.
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Figure 5.13: Drop velocity and capillarity.

5.4 Conclusions

Taking into consideration the importance of multiphase flow patterns, the present work studied Taylor

drops rising in co-current fully developed laminar flow in a vertical tube. A series of Computational

Fluid Dynamic results were generated consisting of drop velocities, velocity field, drop shapes, employing

a two-dimensional axisymmetric model validated in previous works.

The results reported were obtained for 0.01 ≤ µ∗ ≤ 10, 8 ≤ Eo ≤ 30 and 2.32 × 10−6 ≤ M ≤
100. Information on drop velocity was collected obtaining the slope value for the linear relationship

between drop terminal velocity and continuous phase velocity. Furthermore, the influence of dimensionless

numbers on drop shapes and velocity profiles was assessed.

The balance between gravity effects and convective co-current effects was found to be crucial to

understand the phenomena.

The increase in the continuous phase velocity makes the co-current effects more important in relation

to gravity. It promotes inertial effects, causing closed recirculations to appear at lower Eötvös numbers.

Some closed recirculations are separated from the drop bottom by a small portion of non-circulatory fluid

flowing at the drop velocity. At high Eötvös number, continuous phase velocity may also anticipate the

occurrence of shape oscillations to lower Morton number values. High enough continuous phase velocity

also causes the inner portion of the flow to move, in average, at the drop velocity, above and below the

drop. These regions are seen through semi-infinite recirculation streamlines when analyzing the flow in a

drop reference frame.

At high values of Eötvös number and low values of Morton number, similarities between the liquid-

liquid system and the gas-liquid system arise. At low values of Eötvös number and low gravity effects,

the flow approaches the flow behavior in micro-channels.

The velocity profile in the film around the drop depends highly on the viscosity ratio. For low

viscosity ratios, it approaches the behavior in gas-liquid, while greater values of the viscosity ratio cause

the maximum downward velocity to relocate to a middle position in the film flow. For low viscosity

ratios, a stagnant film can be observed for conditions where bypass flow happens.

The stabilization distance below the drop presents a baseline for low drop Reynolds number and starts
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to increase around Reynolds 10. The cases where closed recirculations are observed appear in the higher

Reynolds number range (hence, corresponding to the higher stabilization distances).

A linear relationship between the drop terminal velocity and the continuous phase velocity was found

and the values for different conditions were reported. An adaptation of the data to an existing correlation

to preview the drop velocity was done with success. It takes into account that, in liquid-liquid, the

viscosity ratio is the major driving force. Comparison between these results and those obtained in non-

gravity conditions suggests that the viscosity ratio acts mainly in the gravitational component of the

drop velocity.

Both, viscous flow in gas-liquid and micro-channel flow constitute two bounds for the present set of

studied conditions.

The present work presents important data for Taylor drop in co-current flow and it is, thus, an

important step for a more general knowledge on liquid-liquid slug flow.

Acknowledgements

This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors

COMPETE and National Funds through FCT (Fundação para a Ciência e a Tecnologia) under the

project PEst-OE/EME/UI0532. Filipe Direito gratefully acknowledge the financial support from the

FCT through Ph.D. Grant SFRH/BD/79264/2011.

118



Chapter 5 A TAYLOR DROP RISING IN A LIQUID CO-CURRENT FLOW

References

Abiev, R. and Lavretsov, I. (2012), ‘Intensification of mass transfer from liquid to capillary wall by Taylor

vortices in minichannels, bubble velocity and pressure drop’, Chemical Engineering Science 74, 59–68.

Abiev, R. S. (2009), ‘Circulation and bypass modes of the slug flow of a gas-liquid mixture in capillaries’,

Theoretical Foundations of Chemical Engineering 43(3), 298–306.
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Chapter 6 INTERACTION BETWEEN TWO CONSECUTIVE AXISYMMETRIC TAYLOR DROPS

Abstract

A study regarding the interaction between two consecutive Taylor drops flowing in

a heavier liquid in a vertical tube is reported. Under certain conditions, due to the

wake of the leading drop, the trailing drop accelerates, leading to coalescence of the

two drops. This study was developed using a numerical model based in the Volume of

Fluid method in an axisymmetric geometry. The simulations reported in the present

work had to fulfill two conditions: axisymmetry (due to the numerical model) and

a high enough drop Reynolds number (which is related to the disturbances in the

wake of an isolated drop, and thus to the tendency to drop interaction). Relevant

dimensionless numbers are used to assess the effect of the acting forces. Detailed

flow patterns and drop shapes are provided. Furthermore, the approaching velocity

acquired by the trailing drop is analyzed and velocity profiles between the leading and

the trailing drop are also reported. In general, the trailing drop shows an accelerating

region, followed by a deceleration near the leading drop. The increase of Eotvos

number promotes higher accelerations, while the increase in Morton number and

viscosity ratio has the opposite effect. By comparison to literature gas-liquid studies,

it was also found that interfacial forces promote the shape stability of the drops.

6.1 Introduction

One of the foremost multiphase flow patterns is slug flow. Slug flow can be summarized as a flow pattern

in which the dispersed phase forms long and large bullet-shaped drops or bubbles (Taylor bubbles or

drops (Davies and Taylor, 1950, Govier and Aziz, 1972, Mandal et al., 2008)), flowing surrounded by the

continuous phase (Fabre and Line, 1992). Earlier studies on slug flow concern gas-liquid phases (Davies

and Taylor, 1950, Moissis and Griffith, 1962, Nicklin et al., 1962, White and Beardmore, 1962). Slug flow

can occur in macro (gravity effects) (Mydlarz-Gabryk et al., 2014) or in micro tubes (no gravity) (Aoki

et al., 2011, Jovanović et al., 2011). Slug flow can also appear in three phase flows, with a dominant

liquid phase, and two other phases in drops and bubbles (Oddie et al., 2003, Liu et al., 2014).

The present work deals with vertical liquid-liquid slug flow with gravity effects.

Gas-liquid slug flow (Davies and Taylor, 1950, Nicklin et al., 1962, Morgado et al., 2016) is a well-

known flow pattern, impelled by its importance in industrial applications, such as: vapor liquid absorbers,

core cooling of nuclear reactors, reboilers and buoyance driven fermenters. Liquid-liquid slug flow has

been observing an increase of interest due to its potential applications for example, in the petroleum

industry (Hasan and Kabir, 1990, Bannwart et al., 2004, Mandal et al., 2010, Zhang et al., 2012).

Unlike gas-liquid though, liquid-liquid slug flow is still a pattern not well known. In order to gain a

deeper knowledge of liquid-liquid slug flow, one must study the phenomenon step by step. The simpler

approach is to analyze the flow of a single Taylor drop (dispersed phase) rising in a stagnant heavier

liquid (continuous phase) in a vertical tube (Brown and Govier, 1961, Govier et al., 1961, Zukoski, 1966,

Direito et al., 2016). The Taylor drop, in such conditions, reaches its terminal velocity (VT), while the

heavier liquid is forced, by the drop upward flow, to flow downwards (referential attached to the drop)

in the narrow space between the drop and the wall, creating a thin annular film. Three regions of the

continuous phase are of interest: the region above the drop (“I” in Figure 6.1), the film region (“II”) and
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Figure 6.1: Axisymmetric domain with two drops. Velocity profiles: earth reference frame (left), leading
drop nose reference frame for drops faster than undisturbed continuous phase (middle) and leading drop
nose reference frame for drops slower than portions of undisturbed continuous phase (right). Marked
region above the drop (I), leading drop continuous phase film (II) and leading drop wake (III).

the region below the drop (“III”).

Concerning an isolated Taylor drop rising in a stagnant liquid, Mandal et al. (2007, 2008, 2009)

studied the shape and velocity. Hayashi et al. (2011) presented experimental drop shapes as well as

a dimensional analysis and data from numerical simulations. Kurimoto et al. (2013) also presented a

correlation to predict the terminal velocity of Taylor drops rising in vertical tubes.

The aim of the present work is to analyze the flow behavior, drop shape and velocity when a trailing

drop approaches a leading one flowing at its terminal velocity. The data was obtained by conducting

numerical simulations (Computational Fluid Dynamics – CFD) using a two-dimensional axisymmetric

model (Direito et al., 2016) and using, as starting point, previous simulations and experimental data

regarding isolated Taylor drops flowing in stagnant (Direito et al., 2016) and co-current (Direito, Campos

and Miranda, 2017) heavier liquid.

6.2 Physical background

In many applications, slug flow occurs in co-current flow. The behavior of single Taylor drops in liquid-

liquid co-current flow was analyzed in a previous work (Direito, Campos and Miranda, 2017).

However in continuous liquid-liquid slug flow, consecutive Taylor drops interact with each other,
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leading to drop coalescence and the formation of longer drops. It is therefore relevant to describe the

continuous liquid-liquid slug flow reformulating the terms previously stated for single Taylor drops (Direito

et al., 2016). A dimensional analysis can be performed on the phenomena (Hayashi et al., 2011), in which

it is important to consider the density ratio

ρ∗ =
ρD

ρC
, (6.1)

as well as the viscosity ratio

µ∗ =
µD

µC
, (6.2)

where ρ is the density and µ the viscosity. The subscripts “D” and “C” refer to the dispersed and

continuous phases. The density difference, ∆ρ = ρC − ρD, also appears in some dimensionless numbers.

Note also that the density ratio is always smaller than 1, as the present work deals with rising drops.

The ratio between inertial and gravity forces is represented by the Froude number, which is the

dimensionless number usually used to quantify the drop terminal velocity:

Fr =
VT√

∆ρ gD/ρC

. (6.3)

The ratio between buoyancy and interfacial forces is of foremost importance and is represented by the

Eötvös number:

Eo =
∆ρ gD2

σ
, (6.4)

with σ standing for the interfacial tension between the continuous and the dispersed phase.

Morton number balances gravitational, viscous and surface tension forces:

M =
∆ρ gµ4

C

ρ2
C σ

3
. (6.5)

The combined analysis of Morton, Eötvös and viscosity ratio numbers is an important tool to inspect

the flow behavior. When Eötvös number is high, i.e. low interfacial tension, and the viscosity ratio is

low enough, the liquid-liquid isolated drop flow should resemble the flow of a gas Taylor bubble rising

in a liquid in a macro tube. Such behavior is explained by the predominance of the gravity effect, i.e.,

by the large density difference. For low Eötvös, Morton number is required to quantify the importance

of the viscous forces. Low Eötvös and high Morton numbers implicate a high viscosity of the continuous

phase. If the viscosity ratio is high, such combination should be observed when, at the macro-scale, both

fluids have close densities (viscous effects predominance). For low Eötvös and Morton numbers and low

viscosity ratio, the flow should resemble that of a gas Taylor bubble flowing in a liquid contained in a

micro tube (interfacial tension predominance) (Rocha et al., 2017).

In order to avoid confusion between the terminal velocity and the drop velocity in continuous co-

current flow, the terminology VTC will be used for the co-current drop velocity and VT for the terminal

velocity. Notice the following relationship between both (Fabre and Line, 1992, Nicklin et al., 1962):

VTC = VT + CUC, (6.6)

where C is a constant that depends on the flow properties (Direito, Campos and Miranda, 2017) and

UC is the superficial velocity of the continuous phase when the superficial velocity of the dispersed phase
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is zero as is the case of the present study. Furthermore, the ratio between the superficial velocity and the

drop terminal velocity can be used:

u∗ =
UC

VT
. (6.7)

If equation 6.6 is divided by VT:

VTC

VT
= 1 + Cu∗. (6.8)

Even though the presented dimensionless numbers suffice (eq. 6.1, 6.2, 6.3, 6.4 and 6.5) for the

characterization of the problem, it is also useful to consider the ratio between inertial and viscous forces

in the continuous phase regarding the disturbance caused by the drop passage in the continuous liquid

which is represented by the drop Reynolds number,

ReD =
ρC VTD

µC
, (6.9)

for stagnant continuous phase and

ReD =
ρC VTCD

µC
, (6.10)

for co-current flow. This Reynolds number is determinant on the stabilization of the continuous phase

below an isolated drop (Direito, Campos and Miranda, 2017).

However, when two drops rise close, the trailing drop achieves speeds that are higher than the corre-

sponding velocity in a stabilized flow. Thus another velocity variable VD must be introduced to account

for the trailing drop speed.

The coalescence of two Taylor bubbles (gas-liquid) has been the subject of several experimental

(Moissis and Griffith, 1962, Pinto and Campos, 1996) and numerical studies (Araújo et al., 2013b, 2015)

and, due to the lack of liquid-liquid coalescence studies, serve as comparison to the present work results.

One of the most important parameter to analyze the coalescence in slug flow is the velocity that

the trailing drop acquires when it approaches the leading one. In order to capture the essence of this

feature, one must define a reference distance between the two drops, measured in the tube axis. The

obvious choice for the trailing drop falls in the drop nose. Regarding the leading drop, Araújo et al.

(2013a) analyzed two possibilities: the nose and the tail. Because, in some conditions, the leading drop

may undergo shape changes (periodic oscillations), Araújo et al. (2013a) chose the leading drop tail to

be a more reliable option. Araújo et al. (2013a) further observed that the approaching movement can

have an accelerating period and then a decelerating one (occurring when the two drops are close to each

other). For the acceleration region, Araújo et al. (2013a) proposes for the trailing velocity an exponential

relationship with the distance between the drops (tail of the leading and nose of the trailing):

VD

VT
= 1 + aa e

−ba(−d′), (6.11)

where aa and ba are fitting parameters. The variable d′ stands for the distance between the drops:

d′ = − distance between drops

D
. (6.12)

The value of the distance between the drops is defined as negative, as it is the “lag” that the trailing

bubble has towards the leading drop. Hence d′ < 0. Note that d′ = 0 corresponds to the exact moment
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when the interfaces touch. (Araújo et al., 2013a) also suggests a correlation for the deceleration region:

VD

VT
=
√
ad + bd (−d′) + cd (−d′) (ln (−d′)− 1), (6.13)

where ad, bd and cd are the fitting parameters.

Concerning the coalescence of two Taylor drops (liquid-liquid), some important information can be

extracted from analyzing the flow below an isolated drop. Direito, Campos and Miranda (2017) related

the normalized stabilization length,

ZIII =
stabilization distance

D
, (6.14)

with the dispersed phase Reynolds number, observing that ReD can be used to predict the behavior

of the region below the drop, either in stagnant or flowing continuous phase. The stabilization length was

evaluated by considering, in the tube axis, the distance from the drop tail needed for the axial velocity

component to be less than 5 % from the undisturbed value.

Direito, Campos and Miranda (2017) showed two different regimes, regarding this feature. For low

Reynolds number values, ReD < 10 no closed recirculations are observed at the drop bottom. At such

conditions, the coalescence of two drops is unprovable because the recovery of the velocity profile below

the drop takes an extremely short distance. At ReD > 100, closed recirculations below the leading drop

start to appear and the stabilization length starts increasing dramatically. In such conditions, coalescence

of two consecutive drops is expected.

In the present work, the conditions simulated with most interest had to fulfill two conditions: axisym-

metry (due to the computational resources limitations) (Direito et al., 2016, Direito, Morgado, Rocha,

Miranda and Campos, 2017) and a sufficiently high drop Reynolds number (Direito, Campos and Mi-

randa, 2017) – Figure 6.2 (Kurimoto et al., 2013, Direito et al., 2016, Direito, Morgado, Rocha, Miranda

and Campos, 2017). Therefore, at two dimensions, coalescence will occur in the region with Eo > 20,

logM < 0 and µ∗ > 1, which is the scope of this study.

6.2.1 Numerical model

The physical model implemented in the present work follows the one already used in the research group

(Direito et al., 2016).

An Ansys Fluent multiphase laminar incompressible flow model integrated with Volume of Fluid

(VOF) method (Hirt and Nichols, 1981) was used. The interface is determined by geometric recon-

struction (Youngs, 1982) (“Geo-reconstruct” in the software package) which can be summarized in three

steps: determination of the slope for an interface within the cell based on the liquid volume fractions;

computation of the momentum transport by advection through each face by using the created linear

interface and the face velocity components; and determination of the new cell volume fractions balancing

the advection fluxes. Regarding pressure-velocity coupling, a segregated algorithm PISO (Issa, 1986) was

used, a non-iterative algorithm, which splits the solution into predictor and corrector steps. The scalar

gradients were computed by the Green-Gauss node-based method. For pressure interpolations, a pressure

staggering option scheme was chosen (Patankar, 1980) – “Presto!” in the software package. The QUICK

(Leonard, 1979) scheme was used for solving the momentum equations. To account for the interfacial

forces, the Continuum Surface Force model (Brackbill et al., 1992) was applied. It creates the interface

between the two liquids as a transition region of finite thickness where the surface tension force term is

proportional to the curvature in each location. Outside the interface, this force term is zero. A first order
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implicit scheme was used for time discretization with a maximum Courant number of 0.25.

In order to deal with the two-phase flow, a variable αi is defined. The value of αi is 1 at any point

occupied exclusively by the fluid i, 0 if no i exists there, or a number between 0 and 1, if both fluids exist

in the same mesh element:

αC + αD = 1. (6.15)

Note that cells with αD 6= 0 ∧ αD 6= 1 represent the interface between the two liquids. On such cells,

density and viscosity are computed supposing linear contributions of each phase. For the purpose of flow

analysis, the interface was located at α = 0.5.

A 2D domain is represented in Figure 6.1 since axial symmetry (around the cylinder axis) – axisym-

metry – holds for the present study. When concerning Taylor bubbles and drops, this approach has been

widely used and observed, both in theoretical (Collins et al., 1978, Mandal et al., 2007), experimental

(Davies and Taylor, 1950, White and Beardmore, 1962, Mandal et al., 2008, Araújo et al., 2012) and nu-

merical studies (Hayashi et al., 2011, Kurimoto et al., 2013, Araújo et al., 2013b). The domain consisted

of a rectangle with a width D/2 and 16.5D long. The mesh consisted of a 52× 1720 grid of quadrilateral

and uniformly distributed cells. The mesh and numerical model were validated in previous works (Direito

et al., 2016, Direito, Campos and Miranda, 2017).

A moving reference frame attached to the leading drop was used (Direito et al., 2016). In this

reference frame, the drop is at rest and the continuous phase and the tube wall are moving downwards.

The wall velocity boundary condition was set to the value of the drop terminal velocity. Moreover, an

inlet flow boundary condition (at the top of the domain) was imposed. In the present work, two velocity

boundary conditions were used. A downward uniform velocity (equal to VT) is imposed when simulating

the stagnant continuous phase. For the co-current case, the velocity profile at the inlet consists of the

laminar parabolic profile subtracted by the drop velocity:

u(r) = −VTC + 2UC

(
1− (2r/D)

2
)
, (6.16)

where r is the radial coordinate. This profile was implemented through an “user defined function” in

Ansys Fluent. At the tube exit, pressure was set to zero gauge.

Simulations were initialized using the drop shape and velocity field from the corresponding stagnant

case(Direito et al., 2016) or co-current case (Direito, Campos and Miranda, 2017). Afterwards, the drop

and velocity fields are replicated at a relevant distance below the original drop. The simulation then runs

until the two drops coalesce. Note that the phenomena analyzed concerns the approximation of the two

drops, being the contact and merge of the interfaces outside the scope of this work.

6.3 Results

A study was performed, for a set of different flow conditions, using the numerical model presented in

Section 6.2.1. The set of conditions was based on dimensionless numbers in order to identify the relative

role of the forces involved. A total of five simulations were performed using a stagnant continuous phase

(Table 6.1). Results from a previous work (Direito et al., 2016) were used as the starting conditions.

Three simulations were run with a co-current flowing continuous phase (Table 6.2), based on simulations

reported in (Direito, Campos and Miranda, 2017). The number in the simulations code refers to the

u∗ value. Following the cited works, the simulations were all run with ρ∗ = 0.792. This value of the

density ratio lies in the common range for liquid-liquid studies (Hayashi et al., 2011, Mandal et al., 2009).
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Table 6.1: Simulation conditions with stagnant continuous phase.

id. Eo M µ∗ max Re′D
A 22 2.32× 10−6 10 50
B 30 2.32× 10−6 2 129
C 30 2.32× 10−6 3 112
D 30 2.32× 10−6 10 90
E 22 1× 10−4 10 11

Table 6.2: Simulation conditions with flowing co-current continuous phase.

id. Eo M µ∗ u∗ max Re′D
A2 22 2.32× 10−6 10 2 197
A5 22 2.32× 10−6 10 5 473
F2 8 100 10 2 1.9× 10−3

Moreover, a ratio of 1.147 between the drop volume-equivalent sphere diameter and the tube diameter

was used (as reported in Direito et al. (2016) and Direito, Campos and Miranda (2017)).

Figures 6.3, 6.4 and 6.5 present the shapes and flow patterns for all the runs. Four instants are shown

for each simulation. The first one (“t1” in Figures 6.3, 6.4 and 6.5 ) is a snapshot taken at an early stage

while the second (“t2”) is taken at a midpoint of the approaching path. Literature data (Araújo et al.,

2013b,a, 2015) indicate that, in some flow conditions, there can be significant shape deformation when

the drops are very close to each other. Therefore, the last two snapshots (“t3” and “t4”) were taken just

before coalescence.

Another important feature of the flow concerns the velocity profile between the two drops. Figure 6.6

presents the axial velocity profile (normalized by the leading drop velocity) along the tube axis, in the

region between the leading drop tail and the trailing drop nose, for four different conditions.

Simulation data do not provide directly the trailing drop velocity. Instead, one must firstly track the

position of the trailing drop nose throughout time. In order to obtain this velocity, the derivative of

the position in order to time must be computed. Hence, the data were obtained using a second-order

polynomial Lagrange interpolation, adequate for unequally spaced data (Chapra and Canale, 2006).

Even though the range where drops are axisymmetric (refer to Direito et al. (2016), Direito, Morgado,

Rocha, Miranda and Campos (2017)) and, at the same time, likely to undergo coalescence is narrow

(Figure 6.2), it was still possible to study the effect of the different relevant dimensionless numbers. The

following subsections present flow data isolating the effect of each relevant dimensionless number.

6.3.1 No coalescence

In conditions with a small drop Reynolds number, two consecutive drops do not interact and, hence, do

not approach each other and coalesce. An example of such behavior regards a simulation preformed at

M = 100, Eo = 8, µ∗ = 10 and u∗ = 2. In these conditions, the drop Reynolds number is 1.9 × 10−3.

Figure 6.7 presents the flow regarding those conditions. In this example, even an initial positioning of

the trailing drop at Z ′/D = 0.2 does not cause the two drops to coalesce.

6.3.2 Co-current effect

In order to evaluate how the continuous phase velocity can influence the coalescence, take into consider-

ation simulations run under M = 2.32 × 10−6, Eo = 22 and µ∗ = 10 conditions. Figure 6.8 shows the

relative velocity of the trailing drop as it approaches the tail of the leading one.
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t1 t2 t3 t4

Figure 6.3: Viscosity ratio effect on velocity field and streamlines (leading drop reference frame) for
Eo = 30 and M = 2.32× 10−6: µ∗ = 2 (top), µ∗ = 3 (middle), µ∗ = 10 (bottom), .
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t1 t2 t3 t4

Figure 6.4: Morton number effect on velocity field and streamlines (leading drop reference frame) for
Eo = 22 and µ∗ = 10, M = 2.32× 10−6 (top) and M = 10−4 (bottom).
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t1 t2 t3 t4

Figure 6.5: Velocity field and streamlines (leadind drop reference frame) with Eo = 22, M = 2.32× 10−6

and µ∗ = 10 . Top: u∗ = 2. Bottom: u∗ = 5.
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Figure 6.6: Axial velocity profile along the axis between the two drops for M = 2.32× 10−6.
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Figure 6.7: Velocity field and streamlines (leadind drop reference frame) for M = 100, Eo = 8, µ∗ = 10
and u∗ = 2.

In the stagnant case (u∗ = 0), the trailing drop velocity increases linearly with distance. Near the

leading drop, the trailing drop undergoes a small and short deceleration. The small acceleration is

consistent with the behavior that Araújo et al. (2013a) reported for small Morton and Eötvös numbers.

The small relative velocity observed during the acceleration period (notice that VD/VT < 1.05 all the

time) is consistent with the almost undetectable drop shape deformation observable in Figure 6.4.

An overview on the continuous phase streamlines and velocity field (Figure 6.4) further supports the

idea of almost undisturbed flow. Detail on the continuous phase flow near the trailing drop can give

further information. Following the previous observations, it is not surprising that the velocity profile

in the film (which is related to drop shape and velocity) keeps unchanged through the entire approach.

Figure 6.9 shows the profiles in the film which are almost overlapped. As reported in Direito et al. (2016),

the present profile shows, near the interface, an upward flow. This is due to the high shear forces related

to the high viscosity of the dispersed phase. Moreover, the maximum downward velocity is not located

at the interface, as it happens in gas-liquid flows.

Differences appear, though, for the velocity profile in a radial line passing the trailing drop nose (Figure

6.10). In an overview, the profile is consistent with a downwards flow near the wall, corresponding to

fluid that is being pushed to give room for the trailing drop flowing upwards. Far from the wall, the

effect of the drop pushing upwards liquid close to it gains preponderance. At r/D = 0 the velocity of

the continuous phase matches the drop velocity. The general trend of these profiles is consistent with all

the previous gas-liquid and liquid-liquid knowledge on the subject (Brown and Govier, 1961, Fabre and

Line, 1992, Mandal et al., 2007, Direito et al., 2016, Morgado et al., 2016). The profile configurations

found for the instants “t3” and “t4” (drops near each other) are related to the effect of the small jets in

the tail of the leading drop promoted by the narrow passage of the liquid film flowing around. Because

of that, there is a visible increase in the downward flow velocity near the wall. In order to compensate

this downwards flow, at about r/D = 0.35 the axial velocity acquires an upward value which is higher

than the observed in “t1” and “t2”. The radial component data are consistent with the behavior of the

axial data. When the drops are far from each other (“t1” and “t2”), the radial component point towards

the wall due to the drainage of the continuous phase occurring between the drops. At instants “t3” and

“t4”, the leading drop jet forces the portions of continuous phase closer to the wall to have an inward

direction. Closer to the tube axis, it is observable a region where the radial component points apart from

the axis, corresponding to the drainage of the fluid that is between the drops. Increasing the continuous
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Figure 6.8: Trailing drop velocity for different co-current velocities for M = 2.32 × 10−6, Eo = 22 and
µ∗ = 10 and fitting curves (black lines).

phase velocity (Figure 6.8), the fluid passing in the film has a higher velocity than the portions of liquid

below the leading drop, and the jet exiting the film causes increasingly longer perturbations on the flow

below.

At u∗ = 2, the velocity curve (Figure 6.8) has an acceleration region followed by a small deceleration

region. Such behavior is similar to that reported by Araújo et al. (2013a). At u∗ = 5, the acceleration

region is longer. Note that, at u∗ = 5, both drops show shape deformations during the instants imme-

diately before coalescence (Figure 6.5 – middle). Because of that, when drops are close to each other,

drops distance, d′, oscillates as seen in Figure 6.8.

In order to physically understand the interaction behavior for continuous liquid flow, recall the top

and middle simulations presented in Figure 6.5. At u∗ = 2, two flow patterns occur in the continuous

phase (reported in Direito, Campos and Miranda (2017)): semi-infinite circulation streamlines ahead the

leading drop and a closed recirculation behind, i.e., ahead the trailing drop. The presence of the closed

recirculation accelerates, both the fluid coming from the film of the leading bubble (in the downwards

direction in a referential attached the trailing bubble) and, by continuity, the liquid flowing near the tube

wall ahead the trailing bubble (in the upwards direction). This accelerated liquid near the tube axis is

responsible for the acceleration of the trailing drop. This acceleration only stops when the nose of the

trailing drop is well inside the close wake of the leading one. The volume of this wake diminishes with

the approximation of the trailing drop (Figure 6.5). From then on, the trailing drop decelerates and in a

short period the drops coalesce.

This effect of the close recirculation below the leading drop can be further observed by analyzing

the data regarding the axial velocity profile along the axis between the two drops (Figure 6.6). For the

stagnant case (M = 2.32 × 10−6, Eo = 22 and µ∗ = 10), the axial velocity decreases below the leading

drop tail, and increases again near the trailing drop. On the other hand, at u∗ = 2, due to the closed

recirculation in the flow the axial velocity between the two drops is higher than the velocity of the leading

drop.
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Figure 6.9: Axial velocity profile in the developed film around the trailing drop for stagnant continuous
phase (M = 2.32× 10−6, Eo = 22 and µ∗ = 10)

6.3.3 Morton number effect

The influence of the Morton number on the coalescence can be assessed by comparing the stagnant

simulation at M = 2.32× 10−6, Eo = 22 and µ∗ = 10, analyzed in Section 6.3.2, with that at M = 10−4,

Eo = 22 and µ∗ = 10. The resulting trailing drop velocities are compared in Figure 6.11. Like it was

observed before for the M = 2.32 × 10−6 simulation, the M = 10−4 profile shows an accelerating region

but this starts at a much shorter distance from the tail of the leading drop, because of the shorter length

required for the stabilization of the velocity in the fluid coming from the leading drop film. This effect of

Morton number is consistent with the literature for gas-liquid (Araújo et al., 2013a).

Regarding M = 10−4 (Figure 6.4) the trailing drop shape, is much more elongated due to the increased

Morton and the liquid film flowing around the leading drop much more thicker. Moreover, the leading

drop shape does not undergo visible deformation in the proximity of the trailing drop.

The elongation of the drop due to the increase in the Morton number reduces the jet-like effect due to

the narrowing at the bottom of the leading drop (observe in Figure 6.4 the lessen of the bell-shaped drop

bottom). Hence, the velocity profile in the horizontal line passing the trailing drop nose is less disturbed

(Figure 6.12). The approaching of the two drops (in instant “t3”) affects slightly the radial profile, but

it is only in the most close state (“t4”) that the inversion of the radial component closer to the wall

takes place. Near the axis, the effect of the drainage of the continuous phase between the drops is still

observed. Regarding the axial component, at the instant “t4” the influence of the leading drop film exit

is small, with a slightly increased downward velocity near the wall, and a compensation (in the upwards

direction) for radii below 0.35.

6.3.4 Eötvös number effect

The Eötvös number balances buoyancy and interfacial forces and has a strong influence in slug flow

(Morgado et al., 2016). Figure 6.13 compares the trailing drop velocity for two cases with different

Eötvös number values and constant M = 2.32 × 10−6 and µ∗ = 10. The increase of Eötvös number

(decrease of interfacial forces in relation to buoyancy) causes an increase in the normalized trailing drop
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Figure 6.10: Velocity profile along radial direction from the trailing drop nose for stagnant continuous
phase (M = 2.32× 10−6, Eo = 22 and µ∗ = 10)
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Figure 6.11: Trailing drop velocity for different Morton number values at Eo = 22 and µ∗ = 10 (stagnant)
and fitting curves (black lines).

velocity (VD/VT). Furthermore, while at Eo = 22 the curve is almost a straight line with low slope, at

Eo = 30 the acceleration region undergoes a significant increase at d′ = −0.5 and has a deceleration

region near the leading drop.

Velocity field and streamlines for the Eo = 30 case (Figure 6.3, bottom), show that at locations near

the leading drop (“t3” and “t4”), a closed recirculation starts to appear in the wake of the trailing drop

(see Table 6.1 for maximum drop Reynolds number, 90). As it was observed in liquid-liquid systems, the

closed recirculations are “detached” from the drop, which keeps a slightly flatted rear.

Even though there are not any significant deformations on the trailing and leading drops body, unlike

the Eo = 22 case, for Eo = 30 it is possible to observe a small change in the trailing drop length and

radius (Figure 6.13). This implicates that a small effect should be observable in the film profile, which is

confirmed by Figure 6.14.

6.3.5 Viscosity ratio effect

Using simulation Eo = 30, M = 2.32×10−6 and µ∗ = 10 as a starting point, one can analyze the influence

of the viscosity ratio (Figure 6.3). The decrease in the viscosity ratio strengthens the effect of the closed

recirculations. Hence, for the same continuous phase conditions, when the viscosity ratio is lower, the

trailing drop velocity achieves a higher peak (Figure 6.16).

A small shape change is also observable at µ∗ = 2 (Figure 6.17). Figure 6.18 presents the Axial

velocity profile in the developed film.

Regarding the velocity in a horizontal line passing in the trailing drop nose, the case µ∗ = 2 (Figure

6.19), shows greater axial velocity and smaller radial velocity than the µ∗ = 10 case. At “t4”, the radial

velocity component has a peak near the tube center which points into the wall direction.

6.3.6 Further considerations

According to the conclusions in the previous sections, by increasing Eötvös number and decreasing Morton

number, the trailing drop velocity achieves higher values (Figure 6.20).
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Figure 6.12: Velocity profile along radial direction from the trailing drop nose for stagnant continuous
phase (M = 10−4, Eo = 22 and µ∗ = 10)
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Figure 6.14: Axial velocity profile in the developed film around the trailing drop for stagnant continuous
phase (M = 2.32× 10−6, Eo = 30 and µ∗ = 10)
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Figure 6.15: Velocity profile along radial direction from the trailing drop nose for stagnant continuous
phase (M = 2.32× 10−6, Eo = 30 and µ∗ = 10)
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Figure 6.18: Axial velocity profile in the developed film around the trailing drop for stagnant continuous
phase (M = 2.32× 10−6, Eo = 30 and µ∗ = 2)
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Figure 6.19: Velocity profile along radial direction from the trailing drop nose for stagnant continuous
phase (M = 2.32× 10−6, Eo = 30 and µ∗ = 2)
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Table 6.3: Accelerating region coefficients with stagnant continuous phase.

id. Eo log M µ∗ aa ba
A 22 2.32× 10−6 10 0.0554 2.55
B 30 2.32× 10−6 2 0.657 2.75
C 30 2.32× 10−6 3 0.312 1.95
D 30 2.32× 10−6 10 0.352 3.58
E 22 1× 10−4 10 0.0425 7.68

Table 6.4: Accelerating region coefficients with flowing co-current continuous phase.

id. Eo log M µ∗ u∗ aa ba
A2 22 2.32× 10−6 10 2 0.123 2.25
A5 22 2.32× 10−6 10 5 0.448 2.45

The trailing drop velocity results can be fitted by equation 6.11. Values for the coefficients are

presented in Tables 6.3 (see also Figure 6.11, 6.13 and 6.16 ) and 6.4 (see also Figure 6.8).

At the conditions studied in the present work, small drop deformations were observed. In fact, in a

previous study in gas-liquid (Araújo et al., 2013a), the gas bubble deformations were also very small for

lower Eötvös number values (such as 34).
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Figure 6.20: Coalescence and non-coalescence regions, with axisymmetric regions (A for ReD < 10 and
B for ReD > 10), and maximum normalized trailing drop velocity.

6.4 Conclusions

The present study was conducted due to the increasing interest in multiphase flow. In particular, liquid-

liquid slug flow is not yet fully understood. Therefore, a series of computer simulations were conducted

to analyze the interaction of two Taylor drops near each other. On such occasions, the trailing drop is

accelerated by the leading drop wake, leading to the coalescence of the two drops. The employment of a

numerical model is of great interest due to the difficulties of analyzing the interaction experimentally.

The numerical model employed in the present work was based on a previously validated two-dimensio-

nal axisymmetric model for isolated Taylor drops. Previously studied stagnant and co-current systems

with isolated Taylor drops served as the starting point for the simulations in the present work. The

coalescence is highly influence by the wake of the leading drop. Within the valid range of the axisymmetric

assumption, only a small region can undergo coalescence. Nevertheless, it was still possible to analyze

the influence of the relevant dimensionless numbers: Eötvös number, Morton number and viscosity ratio.

Furthermore, comparisons between stagnant and co-current continuous phase were also reported.

Detailed descriptions regarding the velocity field in the continuous phase were reported, as well as

trailing drop velocity. This data includes instants when the drops are close to each other, which constitutes

a significant success when compared to the limitations of the experimental techniques.

The velocity of the trailing drop (in respect to the leading drop velocity) was one of the flow features

studied. An increase of Eötvös number (less interfacial forces, more buoyancy forces) causes an increase

of the trailing drop velocity, while the increase in Morton number yields a decrease in the trailing drop

velocity. These trends are in agreement to the gas-liquid trends reported in literature. Furthermore,
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the trailing drop velocity is increased by the decrease of the viscosity ratio and by the increase in the

continuous phase velocity. The existence of closed recirculations below the leading drop has an important

effect in accelerating the trailing drop.

The low trailing drop velocities achieved in most of the simulations performed (at most more 30 %

than the isolated drop) and the limited Eötvös number (low when compared to gas-liquid – i.e. increased

interfacial forces) yield leading and trailing drops that undergo only very small shape deformations when

the drops coalesce.

The increase in the trailing drop velocity leads, in some conditions, to the formation or reinforcing of

closed recirculations in the trailing drop wake.
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Morgado, A., Miranda, J., Araújo, J. and Campos, J. B. (2016), ‘Review on vertical gas-liquid slug flow’,

International Journal of Multiphase Flow 85, 348–368.

Mydlarz-Gabryk, K., Pietrzak, M. and Troniewski, L. (2014), ‘Study on oilwater two-phase upflow in

vertical pipes’, Journal of Petroleum Science and Engineering 117, 28–36.

Nicklin, D., Wilkes, J. and Davidson, J. (1962), ‘Two-Phase Flow in Verical Tubes’, Trans. Inst. Chem.

Eng 40.

150



Chapter 6 INTERACTION BETWEEN TWO CONSECUTIVE AXISYMMETRIC TAYLOR DROPS

Oddie, G., Shi, H., Durlofsky, L. J., Aziz, K., Pfeffer, B. and Holmes, J. A. (2003), ‘Experimental study of

two and three phase flows in large diameter inclined pipes’, International Journal of Multiphase Flow

29(4), 527–558.

Patankar, S. V. (1980), Numerical Heat Transfer And Fluid Flow, Hemisphere.

Pinto, A. and Campos, J. (1996), ‘Coalescence of two gas slugs rising in a vertical column of liquid’,

Chemical engineering science 51(1), 45–54.

Rocha, L. A. M., Miranda, M. and Campos, J. B. L. M. (2017), ‘Wide Range Simulation Study of Taylor

Bubbles in Circular Milli and Microchannels’, Micromachines 8(5), 154.

White, E. and Beardmore, R. (1962), ‘The velocity of rise of single cylindrical air bubbles through liquids

contained in vertical tubes’, Chemical Engineering Science 17(5), 351–361.

Youngs, D. L. (1982), Time-Dependent Multi-Material Flow with large Fluid Distorsion., in K. W. Morton

and M. J. Baines, eds, ‘Numerical Methods in Fluid Dynamics’, Academic Press.

Zhang, H.-Q., Sarica, C. and Pereyra, E. (2012), ‘Review of High-Viscosity Oil Multiphase Pipe Flow’,

Energy & Fuels 26(7), 3979–3985.

Zukoski, E. E. (1966), ‘Influence of viscosity, surface tension, and inclination angle on motion of long

bubbles in closed tubes’, Journal of Fluid Mechanics 25(04), 821.

151





7

Conclusions





Chapter 7 CONCLUSIONS

7.1 Research conclusions

The importance of multiphase flows in industry in general, with a particular focus on petroleum ex-

ploitation and transport, justifies the pursuit of a deeper knowledge of a very relevant flow pattern, slug

flow. While gas-liquid slug flow is already widely understood, liquid-liquid slug flow knowledge is still

incomplete, albeit being extremely relevant. This motivated the present work.

The pursuit of that knowledge must start by observing its most basic characteristics and, afterwards,

adding new complexities in order to reach a full description. Hence, the present work focused firstly on

understanding the flow of an axisymmetric isolated Taylor drop in a stagnant liquid in a vertical tube.

Afterwards, features such as asymmetries, co-current flow and drop interaction were added to the already

studied scenarios.

In order to fulfill the objectives, the strategy employed was to use numerical tools. Using such tools, it

is possible to easily create different, but relevant, operating conditions, as well as collecting a significant

amount of data, such as drop shapes and velocity fields. The phenomena were modeled both in two

dimensions (with axisymmetry) and three dimensions. The former is faster but limited in range due to

the axisymmetry limits. The 3D model is of broader applicability, but extremely heavy for computation.

Both models were validated through literature and in-house lab results. The numerical simulations were

performed with a reference frame attached to the drop nose in order to reduce computational efforts.

The numerical simulations were planned in order to highlight the relevant forces (buoyancy, viscous,

interfacial tension and inertia) through representative dimensionless numbers, following the practice of

gas-liquid and liquid-liquid slug flow literature studies. Hence, drop shape, velocity field and drop velocity

(through Froude number for stagnant continuous phase) were presented as functions of Morton and Eötvös

numbers, as well as viscosity ratio, which is relevant in liquid-liquid flows. Hence, 2D model was found to

be valid in the range 0.01 < µ∗ < 40, 8 < Eo < 30 and 2.32× 10−6 < M < 100, with Eötvös number and

Morton number ranges limited for the lower viscosity ratio values. Outside this range, it was necessary

to used the 3D model. The 3D model was applied to the range: 0.01 < µ∗ < 100, 8 < Eo < 30 and

2.32× 10−6 < M < 100, and was not limited in the lower viscosity ratio values.

For drops rising in stagnant continuous phase, Froude number was found to decrease with increasing

viscosity ratio. Furthermore, high influence of interfacial tension (low Eötvös number values) also lowered

Froude number. Froude also decreases with increasing Morton number values. Eötvös number greatly

affects the drop shape, especially the drop bottom. Low Eötvös number correspond to a bulky and

rounded shaped bottom, while an increase in Eötvös tends to flatten the bottom and elongate the drop.

The disturbed distance below the drop depends mainly on the drop Reynolds number (which can be

computed by combining the aforementioned dimensionless numbers). It stays in fairly constant and low

values until starting to increase in the region between drop Reynolds number 10 and 100. The drops in

the studied range do not show closed recirculations.

Due to the increased stresses in liquid-liquid flows, the maximum downward velocity in the film along

the radial direction can be located, unlike gas-liquid flows, in the middle of the film and not at the

liquid-liquid interface.

Regarding the drop shape asymmetries, three ranges of viscosity ratio are relevant. For an intermediate

range, drops are axisymmetric. Asymmetries appear for low viscosity ratio values. For high viscosity

ratios, drops body tends to show a serpentine like movement. Comparison between 2D and 3D data

show that the 2D model cannot predict well higher Froude number cases (low viscosity ratio, high Eötvös

number and low Morton number).

The combination of low interfacial force and high viscosity of both liquids leads to oscillations in
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the drop body. These are related to the imbalance caused by small perturbations at the interface. An

analogous behavior happens in the drop bottom due to the decrease of the interfacial force when combined

with low viscosity of the liquids.

When co-current is introduced, the balance between gravity and convective co-current effects was

found to be determinant to the drop behavior. The increase in the continuous phase velocity promotes

inertial effects, causing closed recirculations to appear, at the drop bottom, for low Eötvös. Some closed

recirculations are separated from the drop bottom by a small portion of non-circulatory fluid, flowing

at the drop velocity. For high Eötvös number, the velocity increase of the continuous phase may also

anticipate the occurrence of shape oscillations, particularly at low Morton number values. High enough

continuous phase velocity also causes the inner (around the tube axis) portion of the flow to move, in

average, at the drop velocity.

In co-current, the flow stabilization distance below the drop was found to follow a similar trend to

the Taylor drop flowing in stagnant continuous phase.

Regarding the drop velocity in co-current, a linear dependence on the continuous phase velocity

was found, confirming for liquid-liquid flow the observations pre-existing for gas-liquid. Furthermore,

a pre-existing gas-liquid correlation that predicts drop velocity in co-current was adapted to cover the

liquid-liquid results.

A most interesting result concerns the fact that micro scale was found to be a lower limit for the

macro scale drop velocity. The increase of the viscosity ratio approximates the macro scale results to

that limit.

The interactions between two drops was also studied, both in stagnant and flowing continuous phase.

As predicted by the low influence distances of the isolated drops, coalescence in axisymmetric conditions

is very limited.

Overall, the present study succeeded in describing relevant phenomena regarding liquid-liquid slug

flow. Further studies are, though, necessary for a full understanding.

7.2 Other considerations

The present work was motivated mainly by the oil water slug flow due to its importance on petroleum

industry. However, it soon became clear that this specific application would lay in the non-symmetric

part of the range (in the region of serpentine-like drops), which was difficult to study due to the high

computational effort required. This fact does not diminish, in any way, the usefulness of what was done

in this study, but represents, clearly, a challenge that is still to be overcome. Hence, one of the next steps

should focus on studying this range, both through numerical simulation and in lab/pilot experiments

(which provide validation to the simulations)

Further work regarding co-current flow and coalescence (in particular, for the non-symmetric ranges)

is also required for the complete understanding of liquid-liquid slug flow and, eventually, to produce a one-

dimensional algorithm that would easily be used in industry to deal with or create slug flow, depending

on each ones requirements.

The usefulness and interest in this work is proven by the publication in relevant journals. It is however

important to point the limitations of the present work. They are mainly caused by the difficulties of

working with liquid-liquid systems both in lab and in computational simulations. In the lab, the liquid-

liquid systems are extremely sensible to the drop injection method and the storage of dispersed phase

at the top of the installation is a challenge that does not exist in gas-liquid flows. Moreover, with the

need of using 3D simulations, which are extremely costly in terms of computational resources, it is more
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difficult to study the full range of liquid-liquid flows.

Despite the limitations and the work that has still to be done, the present thesis successfully advanced

in slug flow knowledge.
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