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Abstract. The Rural Postman Problem (RPP) is a particular Arc Routing Problem (ARP) which consists 
of determining a minimum cost circuit on a graph so that a given subset of required edges is traversed. The 
RPP is an NP-hard problem with significant real-life applications. This paper introduces an original 
approach based on Memetic Algorithms - the MARP algorithm - to solve the RPP and, also deals with an 
interesting Industrial Application, which focuses on the path optimization for component cutting 
operations. Memetic Algorithms are a class of Metaheuristics which may be seen as a population strategy 
that involves cooperation and competition processes between population elements and integrates “social 
knowledge”, using a local search procedure. The MARP algorithm is tested with different groups of 
instances and the results are compared with those gathered from other publications. MARP is also used in 
the context of various real-life applications. 

Keywords: Cutting Path Application, Rural Postman Problem, Memetic Algorithms. 

 
 

1 Introduction 
 

Many industries need to determine good layouts and path planning to cut pieces using various cutting tools and procedures that 
are appropriate for the materials in use. This work is motivated by specific continuous process path-cutting applications, 
meaning that the cutting tool never leaves the cutting surface, and there are no restrictions with regard to completely cutting a 
piece after initiation. These applications are modeled as Rural Postman Problems (RPP) and solved as such. Furthermore, an 
original method based on Memetic Algorithms (MA) - MARP algorithm - is introduced and used to solve the RPP. Therefore, 
the paper is twofold: 

1. A new algorithm for the RPP is presented and tested; 
2. Potential applications to path cutting planning are illustrated. 

 
The RPP is more general than the Chinese Postman Problem (CPP), a well-known Arc Routing Problems (ARP), which consists 
of finding the shortest circuit that traverses each edge of a graph at least once. These edges can be directed, undirected or both. 
In the case of RPP, not all of the edges have to be traversed by the circuit, only those included in a specified subset of required 
edges. The RPP is applied to a variety of practical contexts which include mail delivery, garbage collection (Ghiani et al. [1] 
present a case study modeled as a particular ARP), street cleaning, road gritting, meter reading and laser plotter applications [2, 
3,4]. 
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Undirected, directed and mixed RPP are NP-hard [5,6] which helps to explain the existence of dedicated heuristics and the 
research on new approaches that may be based on Metaheuristics. MA were selected to be used in this paper in order to obtain 
high quality solutions in a short period of time and bearing in mind its industrial applications. Furthermore, it is the first time 
that MA have been employed in such a context and thus represents a good opportunity to evaluate their efficacy. MA are 
population-based Metaheuristic which combines local search heuristics with crossover operators. They aim to integrate 
“knowledge”, using the local search procedure, in order to complement the “genetic information” acquired by the crossover 
operators. Consequently, there is an expectation for an improvement in its performance for difficult combinatorial optimization 
problems or problems with large instances. 
 
The industrial cutting path applications, modeled as an RPP, are presented in Subsection 2.1.  In Subsection 2.2, the RPP is 
defined in connection with other ARP. MA and MARP are explained in Section 3. Section 4 contains the computational results 
and the evaluation of the MARP algorithm, both for solving RPP and its applications to path cutting. Finally, some conclusions 
are drawn in the last section, Section 5. 
 

2 Cutting path as Rural Postman Problem 
 

Industrial applications dealing with the path optimization for component cutting operations are presented next. As 
these applications may be modeled as RPP and solved as such, the Subsection 2.2 is dedicated to a description of these 
problems. 
 
2.1 Cutting path planning application 
 
The need to cut materials using different tools, such as flame or electrified cutters, artificial diamonds or water pressure is 
frequent in various different industries. Specific publications related to this subject can be highlighted: Manber and Israni [7] 
developed three algorithms for a manufacturing situation related to the generation of a sequence of torch paths, given a nesting 
of parts on a stock sheet and the bridges to connect them. Various practical constraints are considered and the objective is to 
minimize the number of pierce points. Ghiani and Improta [8] presented a model to solve a laser-plotter beam routing problem 
as a constrained arc routing problem; Moreira et al. [9] provided two heuristics based on node routing for a complex cutting 
application in the metallomechanical industry, after devising the Dynamic RPP; Imahori et al. [10] also dealt with the generation 
of path cutting for hard materials - a geometrical heuristic approach is presented which facilitates the representation of 
complicated conditions resulting from the specific application; Huang et al. [11] present a two-stage methodology for flame 
cutting rectangular pieces - the pieces are grouped into larger rectangles  to minimize the distance travelled within blocks and a 
genetic algorithm determines multiple starting points for each block. Usberti et al. [12] present the Open Capacitated Arc 
Routing Problem, where tours are not constrained to form circles, and they also present some applications, such as path cutting 
determination problem. 
 
Each industrial application has its own specific characteristics and restrictions. This work is motivated, as mentioned previously, 
by specific path planning applications involving a continuous cutting procedure. The diameter of the cutting tool is not 
significant and so pieces can touch each other, which is important to minimize waste and reduce the cutting path. Furthermore, 
the cut out pieces should not be allowed to fall, instead they should remain in position, or be removed from the cutting surface. 
This last facet is a fundamental difference in relation to the problem tackled in Moreira et al. [9], also meaning that there is no 
advantage in using the concept of dynamic graphs. 
 
To illustrate the situation, Fig. 1 depicts a practical example consisting of a circular plate with 28 components that must be cut 
out using a cutting tool that does not leave the cutting surface until all the pieces have been completely cut out. The example is 
solved by the MARP algorithm (http://www.inescporto.pt/amr). 
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Fig. 1. Circular plate and cutting tool. 
 

The whole problem is frequently separated into two stages: packing/nesting and cutting. Another intermediate phase to define 
arbitrary connections between the pieces will also be included in this paper (a requirement of the continuous cutting process): 
 

1. Nesting - this process involves the layout of the small pieces over the plate while trying to minimize waste; 
2. Bridges - bridges must be launched between the pieces, so that the cutting tool can move from one piece to another, 

without cutting the interior of any piece (see Fig. 2); 
3. Cutting - this process involves cutting all of the pieces using the shortest path (a consequence is the minimization of the 

cutting time, which is an important goal). 
 

 
 

Fig. 2. Nesting and Bridges launching. 
 
There is no special difference for planning purposes between cutting one edge of a piece, one bridge or, potentially, a plate 
portion that does not correspond to one effective cut. What is most important is the reduction of the distance/time travelled by 
the cutting tool. There are no restrictions in terms of completely cutting a piece after initiation - it can be abandoned and 
revisited later on to finish the cut. 
 
This paper will only refer to the cutting phase. References to the other phases include, Moreira et al.  [9] for bridges launching 
and shape representation, and Gomes and Oliveira [13], Oliveira et al. [14], Burke et al. [15] and Bennell and Oliveira [16] for 
manipulation. 
 
Fig. 3 illustrates the proposal of modeling these cutting problem as a Rural Postman Problem (RPP), which is defined in the next 
section. These ARP are specific because they include both required and non-required edges - required edges must be crossed at 
least once. The edges of the pieces (P1 and P2) that will be cut will act as the required edges, while the three segments between 
the pieces (launched bridges) are the non required or facultative edges (some will be chosen to move between the pieces). 
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This last step is not necessary for the envisaged industrial applications, because their correspondent graphs should only have one 
connected component; the graph with only the required edges is connected. 
 
 

   (a)                     (b)       
 

Fig. 3. Cutting Problem (a) modeled as an RPP (b). 
 
2.2 Rural Postman Problem 
 
An ARP consists of determining a traversal of the lowest cost of the set (or subset) of edges on a graph, G=(V,E), V is the set of 
vertices and E is the set of edges. The edges can be directed, undirected or both. This paper is only concerned with undirected 
edges. 
 
There are plenty of applications of this kind to problems in many different areas. Perhaps the first reference to an ARP is the 
famous Königsberg bridge problem [17]. Nowadays this problem appears in a large variety of practical contexts such as: mail 
delivery, delivery of telephone books, garbage collection, street sweepers, road gritting, inspection of streets for maintenance, 
meter reading, snow removal, school bus route, planning internet routing and manufacturing printed circuit boards. 
 
The Chinese Postman Problem (CPP) is an ARP where the aim is to find a minimum cost closed path traversing every edge 
e∈E of the graph G with a set of vertices V, at least once. A cost c: E → IR0

+ is associated with each edge. The undirected case 
can be solved in polynomial time. However, there are some extensions of the CPP which are NP-hard problems, such as the 
Windy Postman Problem, the Capacitated Chinese Postman Problem and the Hierarchical Postman Problem, see Laporte and 
Osman [18]. One of these extensions is the Rural Postman Problem (RPP), originally presented in Orloff [19] and described as 
follows. The RPP consists of finding the minimum closed path of G so that every edge in ER is traversed at least once given a set 
of required edges ER ⊆ E. If ER=E, the RPP is reduced to the CPP. 

 
Integer linear programming formulations have been proposed for the undirected RPP, the first formulation, suggested by 
Christofides et al. [20]. Exact methods are proposed in articles such as Christofides et al. [20], Corberán and Sanchis [21], 
Ghiani and Laporte [22] or Fernández et al. [23]. Constructive heuristics are also frequent, such as those presented in 
Frederickson [24] and Pearn and Wu [25]. Metaheuristics such as Ant Colony Optimization are proposed in Laganà et al. [26]. 
Significant results were obtained in Hertz et al. [27] with heuristics, in Ghiani and Laporte [22] using branch and cut and also in 
Fernández et al. [23], where the formulation introduced in [28] was modified to improve its computational viability. The 
heuristic for the Undirected RPP presented in Frederickson [24] is classified by different researchers as the best known 
constructive heuristic. More references in this field are related to the Monte Carlo Method in Córdoba et al. [29] that was used to 
simulate a vehicle in a graph randomly traveling and to simulate the Tabu Search implementation in Corberán et al. [30]. A 
Tabu Search method, in conjunction with Frederickson's heuristic (for solving the RPP), is also used in Groves et al. [31] to 
solve a problem that involves routing and scheduling at the same time. The RPP is addressed in generic publications on ARP, 
such as Dror [32], Eiselt et al. [4] and, more recently, the relevant survey and annotated bibliography of Corberán and Prins [33] 
and Rodrigues and Ferreira [34]. There are many applications for the RPP [18], as highlighted in the Introduction and in the 
previous Subsection. 
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3 MARP – a Memetic Algorithm for the RPP 
 

MA are a class of Metaheuristics which has been evolving since the end of the 1980s. They can be interpreted as a cooperative-
competitive strategy to optimize agents [35]. Their implementations are supported by a population-based search which aims to 
use all available knowledge on the problem under study. Following some form of recombination, to exchange information on 
the solutions, the general aim is to improve these solutions. This may be achieved through the combination of local searches as 
implemented in this paper, for instance. 
 
Some authors have found connections between MA and Genetic Algorithms (GA). GA began being researched in the 1970's by 
John Holland and they constitute a computational model of biological evolution [36]. Norways, the basis of these algorithms is 
well-known. A reproductive process selects solutions (parents) within a population of solutions in order to produce other 
solutions (children) which have some of the characteristics of each progenitor [37]. In nature, the strongest individuals survive 
and the same occurs in GA. In fact, the strongest solutions are preserved. The success of GA essentially comes from its 
simplicity and efficacy in finding good solutions in short computational times and also from new developments such as ‘hybrid 
genetic algorithms’. MA may also be seen as a class of population-based algorithms that generalize the hybrid genetic 
algorithms. The latter combine GA strength and local search processes [38]. 
 
The term ‘Memetic Algorithm’ was introduced to suggest that ‘Cultural Evolution’ could be a better working metaphor to 
escape from biologically constrained thinking (see Norman and Moscato [35]). ‘Memetic’ is derived from the word ‘meme’ 
from R. Dawkins and its relationship with MA is the same as the relationship between ‘genes’ and GA. This means that the 
‘meme’ is a ‘gene’ in the field of cultural evolution. 
 
MA could thus be understood as strategies between agents (individuals of the population) that consist of competition and 
cooperation processes [35]. 
 
The implementation of MA in this paper (MARP algorithm) will follow the common scheme of adding a local optimizer. Just as 
when applying GA, new solutions emerge after recombination and mutation although, sometimes, these solutions-children are 
not as good as their progenitors. That is why a local search could help a child improve their fitness before becoming part of the 
population. The idea is to have a population of individuals where each one of them is an element of the local optima space. 
Some features of a good MA implementation are presented in Buriol et al. [39]: 
 

1. suitable recombination and mutation operators, such as in any GA; 
2. an effective and fast local search algorithm, which is crucial in MA; 
3. hierarchically structured population - some studies show that results are good when the implementation is within a 

hierarchical structure (See Berreta and Moscato [40]); 
4. advanced data structures and intelligent codification mechanisms. 

 
Several population structures have been explored by different authors. Pablo Moscato [41] presents a complete ternary tree with 
13 nodes (also with 40, 121, etc.) that is applied to parallel machine scheduling problems. Other authors, such as Berretta and 
Rodrigues [42], use this tree structure of 13 nodes for a multistage capacitated lot-sizing problem. Ring structures have also 
been used in Moscato and Norman [43] where individuals are arranged on a ring, competing and cooperating. MA has appeared 
in other applications, such as Knapsack Problems [44], the Travelling Salesperson Problem [43] or the Periodic Capacitated Arc 
Routing Problem [45]. Cotta [46] gives an overview of generic Memetic Algorithms, and Moscato and Cotta [47] present an 
overview of MA with historical notes, applications and current developments in this area. 

 
Before proceeding to the idea and explanation of MARP (next section), the necessary operations and graph transformations must 
be mentioned in order to obtain initial solutions: 
 

1. Changing the graph by eliminating vertices that only support facultative edges, facultative edges that exceed the 
minimum cost between those vertices and repeated edges with the same cost (a graph simplification); 

2. Transforming the vertices into even degree vertices (pairs of vertices with odd degree are randomly chosen and a 
shortest path between each pair is added); 

3. Creating the minimum spanning tree. 
 
Step 3 is not necessary for the envisaged industrial applications, because their correspondent graphs should only have one 
connected component, as mentioned in the previous section. Its inclusion was made to generalize the algorithm (for more than 
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one connected component) and to make the computational tests possible. In order to create the minimum spanning tree, an 
algorithm was used that selects the best choice for each step to find an optimal solution, instead of considering all of the 
sequences of steps: a Greedy Algorithm with some adaptations in order to maintain the solutions' feasibility. 
 
3.1 Population Structure 

 
A ternary tree with three levels was chosen to structure the population, see Fig.4. This structure has been used before, for 
instance in Buriol et al. [39]. 

 

 
 

 Fig. 4. Population Structure. 
 

The population P is set up by 13 individuals hereinafter referred to as ‘agents’. P is divided into 4 sub-populations, Pop[i], 
i=1,2,3,4, each one consisting of one leader and three supporters. There are agents that simultaneously belong to 2 sub-
populations, at the same time. The leader is always one level above its supporters. For instance, agent 3 is the leader of agents 8, 
9 and 10 and belongs to Pop[1] and Pop[3] (see Fig. 4). Each agent of the population will handle two feasible solutions 
simultaneously. One is the best solution that the agent has found until that moment, Pocket Solution (PS), while the other one is 
the current solution, Current Solution (CS). 
 
Before describing MARP, it is important to mention that Disjkstra's algorithm was used every time a minimum distance between 
two vertices needed to be calculated. 
 

 
3.2 Structure Operation – Keeping Tree Structure 
 
MARP´s good results can be due to the organization of the population - a ternary tree. Each of the population´s 13 agents, say i, 
owns 2 solutions, at each moment: PS(i) and CS(i), with costs PC(i) and CC(i), respectively. As explained before, the population 
is divided into four sub-populations and each sub-population (Pop[i], i=1, 2, 3, 4) is set up by one leader and three supporters. 
In order to keep the hierarchical structure there are three crucial operations that must be taken into account [39]: 

 
1. UpdatePocket - whenever CC(i)<PC(i), for any i (i=1, 2,...,13), the solutions are switched; 
2. OrderChildren - the supporters of one leader i, (i=1, 2, 3, 4) are in an ascending order of their Pocket Costs:    

PC(i) ≤ PC(3i-1) ≤ PC(3i) ≤ PC(3i+1), ∀  i ∈{1, 2, 3, 4}, where i is the leader of sub-population Pop[i]; 
3. PocketPropagation - if the Pocket Cost of a supporter is better than the Pocket Cost of its leader, they exchange 

solutions. 
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3.3 Crossover Operation 
 
Crossover is the process used to generate new individuals in the population. Each child presents the features that are common in 
both progenitors. The new solution (current solution) for the agent is found using Crossover between culturally related agents. In 
each iteration, the choice of the parents is carried out as follows: 
 
CS(1)= Crossover(PS(2), PS(3)); 
CS(i)= Crossover(PS(3i), PS(3i+1)), for i=2, 3, 4; 
CS(3i-1)= Crossover(PS(i), CS(3i)), for i=2, 3, 4; 
CS(3i)= Crossover(PS(3i-1), CS(3i+1)), for i=2, 3, 4; 
CS(3i+1)= Crossover(PS(3i), CS(3i-1)), for i=2, 3, 4. 
 
Therefore, this guarantees the adequacy of the new solution. 
 
3.4 Mutation Operation 
 
Mutation's main goal is to prevent all of the members of the population becoming similar following some iterations. The 
computational experiments actually provided this evidence and so this operation has only been employed in order to introduce 
diversity among the agents. 
 
Two parameters are related to Mutation: 
 

1. k (operation frequency): the Mutation process begins following the k iterations without any improvement on the PS of 
an agent; 

2. d-opt (the level of the Mutation): d edges, non-required or required and repeated edges are removed from the solution. 
 
All agents can be mutated, except for Agent 1. This procedure guarantees that the best solutions obtained thus far will never be 
lost. 

 
3.5 Local Search 
 
Local search is an important phase of MA. Although the inspiration for the Crossover and Mutation operations comes from 
other MA implementations - but not the RPP - the Local Search procedure presented here is completely new. In this 
implementation, each agent attempts to find, a better solution individually. The explanation for this implementation is combined 
with an example described in Fig. 5 to Fig. 9. The graph G*=(V*,E*) (see Fig. 5) represents a solution (an Eulerian Graph with 
cost y) and G=(V,E) (see Fig. 6) is the initial graph (with all edges): 

 

 
 Fig. 5. An Eulerian Graph G*=(V*,E*), with cost y = 42. 
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Fig. 6. The original graph G=(V,E). 

 
1. Randomly choose an edge (vi,vj) of G, with cost cij, as a possible edge to enter the graph; 
2. Find the shortest path, dij, between vi and vj in G* excluding edge (vi,vj) (if that is not possible, go to 1.), dij=(vi, w1), 

(w1, w2), (w2, w3),..., (wn,vj), with cost d; 
 

3. Create G' adding to G* to all the edges of dij (see Fig. 7); 
 
 

 
Fig. 7. Graph G'=G* ∪ dij, after choosing edge (f,j). 

 
4. Calculate ∆ , in G': 

∑∑
∈∈

×−×−+=∆
Bmvnv

nm
Fmvnv

nmij ccdc
),(),(

22 ; 

 (where F represents the set of facultative edges that become doubles with the introduction of dij; B is the set of edges 
of any type that have more than 2 copies while cnm represents the cost associated to edge (vn,vm)). 

a. If ∆  ≥0, back to 1; 
b. If ∆ <0 go to 5; 

 
5. Remove from G' all the facultative edges that became doubles with the introduction of dij, remove also 2 copies of 

edges, of any type, that have more than 2 copies; 
 



Rodrigues and Soeiro Ferreira / Cutting path as a Rural Postman Problem: solutions by Memetic Algorithms. 
IJCOPI Vol. 3, No. 1, Jan-April 2012, pp. 22-37. EDITADA. ISSN: 2007-1558. 
 

30 
 

 
Fig. 8. New G' (after determination of ∆  = -3); G' is not connected. 

 
6. Is G' connected (see Fig. 8)? 

a. YES, G' is the new solution (with cost = y+ ∆ ); 
b. NO, go to 7.; 

 
7. Choose and duplicate an edge epq (from the set of facultative edges of G) of minimum cost, cpq, among those that join 

two connected components p and q. Thus, a new graph G'' is obtained. Calculate ∆ 1= Δ +2 × cpq; 
a. If ∆ 1 ≥ 0 go to 1. ((vi, vj) is not a good choice). 
b. If ∆ 1 < 0 then; 

i. If G'' is not connected, go back to 7. and do ∆  := ∆ 1; 
ii. If G'' is connected, return solution (with cost = y + ∆ 1, see Fig. 9); 

 

 
Fig. 9. G'' is created, with cost = y + ∆ 1 = 42+ (-3) + 2 × 1 = 41. 

 
3.6 Euler’s Circuit 
 
Euler's Circuit is only created at the end of the application of MARP. G=(V,E) becomes an Eulerian Graph. 
 
3.7 Pseudo Code 
 
The pseudo code concerning the implementation of MARP: 
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BEGIN 
Input (Vertices; Required Edges; Facultative Edges)     
Begin Population 
    Evaluate fitness of Agents 
    LOCAL SEARCH 
    STRUCTURE 
    Repeat 
        CROSSOVER, LOCAL SEARCH, STRUCTURE 
        Count “No changes on a pocket” 
        For i=1 to 13 (agents) 
            If “No changes on a pocket [i]=k”; 
                Do MUTATION, LOCAL SEARCH; 
            End If 
        End For 
        STRUCTURE 
    Until stop criterion = FALSO 
Output best EULER CIRCUIT 
END 

 
 

4 Computational Results 
 

This section presents an important selection of computational experiments to evaluate MARP. 
 
The relevance of MARP should be observed in the twofold context: 

1. as a procedure to solve some industrial path cutting problems and 
2. as a method to solve the RPP. 

 
 
4.1 Cutting Path Applications 
 
Four path cutting applications are illustrated below. The non required path is called the ‘Empty Path’ (EP) and the objective is to 
minimize the EP. The first three applications are illustrated in Fig. 10. The first three applications, Ex1, Ex2 and Ex3 are 
illustrated in Fig. 10 and the data (vertices, required and facultative edges and pieces) may be found at 
http://www.inescporto.pt/~amr/. The data include the identification of vertices, required and facultative edges and pieces (see 
http://www.inescporto.pt/~amr/Read me.txt ). 
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Fig. 10. (a) Nesting: Pieces to cut (required edges); (b) Bridges launching (non-required edges (—)); 

(c) Solution (Eulerian graph with simple (—) and double (—) edges). 
 
The last application (348 vertices, 439 required edges and 286 facultative edges), presented in Fig. 11, is based on a problem 
described at http://paginas.fe.up.pt/~esicup/tiki-nesting_layout.php?sol=1&file=shapes0.xml [13]. The data relating to the 
solution with MARP may be found at http://www.inescporto.pt/~amr/Topos.txt.  

a) Required edges b) Required (—) and facultative edges (—) 
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(c) Solution: EP = 31% (Eulerian graph with simple (—) and double (—) edges). 

Fig. 11. Application with 348 vertices, 439 required edges and 286 facultative edges 
 

4.2 RPP solutions 
 
The computational experiments and results reported are based on a series of instances that cover the most common examples in 
the literature and in particular the most cited ones. The aim is to prove that MARP could be a good choice when solving the 
RPP, due to its simplicity and the relative quality of the solutions. The results obtained are compared with different authors' 
methods/implementations. 
 
They are divided into 2 sets 

1. Instances of small size , including Group 1 (P_i) and Group 2 (Albaida_x), presented in Table 1 and 
2. Instances of medium/big size, including Group 3 (GRP_i), Group 4 (Alba_i_j) and Group 5 (Madr_i_j), presented in 

Table 2. 
 
Each table has 10 columns. The first column identifies the problem while the other columns refer to: 

• # Comp: number of components connected in the graph, only considering the required edges; 
• # Vert: number of vertices of the initial graph; 
• # RE: number of required edges; 
• # NE: number of non-required edges; 

• ∑ RE : the sum of the costs for all of the required edges; 

• OV*: the optimal value; 
• MARP: the result obtained using the MARP algorithm; 
• OV*/MARP: ratio between the optimal value and the result of MARP; 
• Time (sec): computational time in seconds. 
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Table 1. Characteristics and results of the 24 instances P_i and the 2 instances Albaida_x (Group 1 and Group 2) 

 #Comp #Vert #RE #NE ∑ RE  OV* MARP OV*/MARP Time(sec) 

P01 4 11 7 6 25 76 76 1,00 <1 
P02 4 14 12 21 80 152 152 1,00 8 
P03 4 28 26 31 73 102 102 1,00 10 
P04 3 17 22 13 55 84 84 1,00 4 
P05 
P06 
P07 
P08 
P09 
P10 
P11 
P12 
P13 
P14 
P15 
P16 
P17 
P18 
P19 
P20 
P21 
P22 
P23 
P24 

Albaida_a 
Albaida_b 

5 
7 
3 
2 
3 
4 
3 
3 
3 
6 
8 
7 
5 
8 
7 
7 
6 
6 
6 
7 

10 
11 

20 
24 
23 
17 
14 
12 
9 
7 
7 

28 
26 
31 
19 
23 
33 
50 
49 
50 
50 
41 
102 
90 

16 
20 
24 
24 
14 
10 
7 
5 
4 

31 
19 
34 
17 
16 
29 
63 
67 
74 
78 
55 
99 
88 

19 
26 
23 
16 
12 
10 
7 
13 
6 
48 
18 
60 
27 
21 
25 
35 
43 
110 
80 
70 
61 
56 

69 
70 
93 
93 
57 
45 
14 
13 
12 
145 
180 
139 
63 
61 
141 
282 
288 
499 
380 
292 

7295 
5803 

124 
102 
130 
122 
83 
80 
23 
19 
35 
202 
441 
203 
112 
146 
257 
398 
366 
621 
475 
405 

10599 
8629 

124 
124 
130 
122 
83 
80 
23 
19 
35 
202 
441 
203 
112 
146 
257 
398 
366 
621 
475 
405 

11189 
8853 

1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
1,00 
0,95 
0,98 

5 
10 
6 
5 
3 
10 
5 
2 
1 
15 
25 
28 
16 
23 
32 
70 
62 
60 
62 
76 
145 
100 

 
The next three groups of instances have more vertices and edges. Fernández et al. [23] present a set of heuristics that show a 
good practical performance with these instances. They are the result of an interesting combination of ideas and developments 
from different authors and incorporating, in particular, tight bounds. Lower bounds are obtained when a linear programming 
relaxation is solved, based on a new formulation presented in Ghiani and Laporte [22]; in a second phase, an upper bound is 
created based on a heuristic with three steps, this is a variation of the well-known technique of Frederickson [24]. 
 
The results obtained with MARP are compared with optimal solutions, whenever possible. Otherwise, upper bound solutions are 
used. 
 
In terms of the quality of the solutions, MARP succeeded in obtaining optimal solutions every time for all of the instances of 
Group 1 and showed very good results for Group 2. Less positive results were obtained in Groups 3 and 4 and the worst results 
were shown in Group 5. 
 
It appears that MARP works better for problems with fewer connected components; this might be the reason for the results for 
Group 5, the group with the higher number of connected components. This may be observed when the 3 sub-groups Madr_x_y, 
for x = 3; 5; 7, each one with 5 instances (y = 1; 2; …; 5) are considered: they have the same number of vertices and edges 
(required plus facultative) but a very different numbers of connected components. The average number of connected 
components of sub-groups Madr_3_y, Madr_5_y and Madr_7_y are 38, 23 and 4, respectively. This conclusion was expected 
and is supported by Orloff [48], who considered that the complexity of this type of problem depends, not only on the number of 
odd vertices and required vertices, but more importantly on the number of disconnected components. 
 
The fact that MARP works better for instances with fewer connected components may be an advantage for the application 
described in Section 2. The algorithm is also being evaluated in this context. Indeed in that cutting application, the problems 
only have one connected component, since the pieces that will be cut are joined in order to minimize the waste. 
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Finally, and as a conclusion of the computational experiments, it must be noted that MARP may be used to handle the Industrial 
Application portrayed in the paper. Furthermore, a procedure based on MARP constitutes a new and successful method based on 
MA, that can deal with the RPP. 
 

Table 2. Characteristics and results for the 10 instances GRP_i, 15 instances ALBA_x_y and 15 instances MADR_x_y 
(Groups 3,4 and 5). A bold value represents an upper bound 

 #Comp #Vert #RE #NE ∑ RE  OV* MARP OV*/MARP Time(sec) 

GRP1 34 116 61 113 4034 8248 9240 0,89 120 
GRP 2 30 116 64 110 4708 8592 9154 0,94 120 
GRP 3 34 116 61 113 3848 8047 9066 0,89 120 
GRP 4 17 116 88 86 6234 8951 9220 0,98 120 
GRP 5 
GRP 6 
GRP 7 
GRP 8 
GRP 9 

GRP 10 
ALBA-3-1 
ALBA-3-2 
ALBA-3-3 
ALBA-3-4 
ALBA-3-5 
ALBA-5-1 
ALBA-5-2 
ALBA-5-3 
ALBA-5-4 
ALBA-5-5 
ALBA-7-1 
ALBA-7-2 
ALBA-7-3 
ALBA-7-4 
ALBA-7-5 
MADR-3-1 
MADR-3-2 
MADR-3-3 
MADR-3-4 
MADR-3-5 
MADR-5-1 
MADR-5-2 
MADR-5-3 
MADR-5-4 
MADR-5-5 
MADR-7-1 
MADR-7-2 
MADR-7-3 
MADR-7-4 
MADR-7-5 

21 
4 

26 
20 
8 

17 
22 
23 
15 
21 
19 
18 
14 
11 
8 

16 
6 
2 
9 
4 
7 

42 
34 
36 
39 
38 
21 
25 
22 
23 
26 
7 
2 
6 
3 
3 

116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
116 
196 
196 
196 
196 
196 
196 
196 
196 
196 
196 
196 
196 
196 
196 
196 

72 
126 
52 
81 
59 
87 
51 
46 
44 
49 
57 
88 
92 
92 
88 
91 
118 
122 
113 
119 
116 
86 
108 
102 
101 
95 
163 
156 
148 
152 
147 
211 
238 
219 
225 
223 

102 
48 
122 
93 
115 
87 
123 
128 
130 
125 
117 
86 
82 
82 
86 
83 
56 
52 
61 
55 
58 
230 
208 
214 
215 
221 
153 
160 
168 
164 
169 
105 
78 
97 
91 
93 

5299 
8893 
3367 
2860 
7602 
6138 
4098 
3096 
3899 
3632 
4177 
6796 
6940 
6175 
6015 
6579 
8240 
8567 
8492 
8635 
7981 
6965 
7870 
7465 
7695 
7145 
11320 
11935 
11030 
11660 
10755 
15805 
17605 
16280 
17000 
16625 

8583 
11595 
7049 
7176 
9894 
8849 
7640 
6706 
7475 
7276 
7490 
11085 
10760 
9301 
9002 
9775 
11521 
11147 
11731 
11761 
11414 
11871 
13310 
12803 
13090 
12073 
15470 
16865 
15200 
16300 
15515 
20460 
22220 
24105 
22280 
21150 

9451 
11967 
7667 
7734 
10890 
9126 
7738 
7013 
7627 
7496 
8184 
11414 
11232 
9549 
9275 
10535 
12034 
11577 
12230 
12315 
11715 
16420 
16980 
16640 
17745 
16930 
18575 
20365 
18445 
20170 
19410 
23460 
25040 
24105 
22280 
23360 

0,91 
0,97 
0,92 
0,93 
0,91 
0,97 
0,99 
0,96 
0,98 
0,97 
0,92 
0,97 
0,96 
0,97 
0,97 
0,93 
0,96 
0,96 
0,96 
0,96 
0,97 
0,72 
0,78 
0,77 
0,74 
0,71 
0,83 
0,83 
0,82 
0,81 
0,80 
0,88 
0,89 
0,86 
0,91 
0,91 

120 
120 
120 
120 
120 
120 
109 
110 
105 
110 
110 
110 
106 
105 
100 
105 
100 
100 
100 
100 
100 
220 
220 
220 
220 
220 
200 
200 
200 
200 
200 
180 
180 
180 
180 
180 
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5 Conclusions 
 
The Rural Postman Problem (RPP) is a particular Arc Routing Problem which consists of finding the minimum circuit on a 
graph so that a given set of required edges is traversed. It is an NP-hard problem. The paper's main contribution is a new method 
that solves the RPP - the MARP algorithm - based on Memetic Algorithms (MA), in connection with a new Industrial 
Application. As far as the authors are aware, this is the first time MA have been used to solve the RPP and path cutting 
applications. MA can be interpreted as a cooperative-competitive strategy to optimize agents, with the unique characteristic of 
attempting to integrate social knowledge using a local search procedure and, therefore, complementing the information 
transmitted through crossover operations. MARP, based on a ternary structure of the population, was described in detail, after 
introducing the necessary graph transformations. The industrial application, linked with path cutting optimization in the 
manufacturing of expensive woodworking tools, which was modeled as an RPP, was portrayed. The computational experiments 
included many instances that were tested and compared with other known approaches. According to the results and the 
evaluation that was conducted, it may be said that it behaved very well in general, except for some specific instances, which had 
relatively more connected components. However, this is not a drawback for the cutting path applications, because the graphs 
only have one connected component. The MARP algorithm can easily be understood and it constitutes a new method, based on 
MA that can deal with the RPP. Furthermore, a procedure based on MARP may be used to handle the industrial application 
presented in the paper. 
 

Acknowledgements 
 
Finantial support by FCT – Fundação para a Ciência e a Tecnologia (Project PTDC/GES/73801/2006) 
 

References 
 
1. Ghiani, G., Guerriero, G., Improta, G., Musmanno, R.: Waste collection in southern Italy: Solution of a real-life arc routing problem. 

International Transactions in Operational Research, 12, 135-144 (2005) 
2. Ghiani, G., Laganà, D., Musmanno, R.: A constructive heuristic for the undirected rural postman problem. Computers & Operations 

Research, 33, 3450-3457 (2006) 
3. Christofides, N., Campos, V., Corberán, A., Mota, E.: An algorithm for the rural postman problem on a direct graph. Mathematical 

Programming Study, 26, 155-166 (1986) 
4. Eiselt, H. A., Gendreau, M., Laporte, G.: Arc routing problems (Part II): The rural postman problem. Operations Research, 43 (3), 399-

414 (1995) 
5. Lenstra, J., Rinnooy Kan, A. H. G.: On general routing problems. Networks, 6, 273-280 (1976) 
6. Frederickson, G. N., Hecht, M. S., Kim, C. E.: Approximation algorithms for some routing problems. SIAM J Comput., 7, 178-193 

(1978) 
7. Manber, U., Israni,S.: Pierce point minimization and optimal torch determination in flame cutting. Journal of Manufacturing Systems, 3 

(1), 81-89 (1984) 
8.  Ghiani, G., Improta, G.: The laser-plotter beam routing problem. Journal of the Operational Research Society, 52, 945-951 (2001) 
9. Moreira, L. M., Oliveira, J. F., Gomes, A. M., Soeiro Ferreira, J.: Heuristics for a dynamic rural postman problem. Computers & 

Operations Research, 34 (11), 3281-3294 (2007) 
10. Imahori, S., Kushiya, M., Nakashima, T., Sugihara, K.: Generation of cutter paths for hard material in wire edm. Journal of Materials 

Processing Technology, 206, 543-461 (2008) 
11. Huang, X., Xi, F., Li, J., Zhong, Z.: Optimal layout and path planning for flame cutting of sheets metals. International Journal of 

Computer Integrated Manufacturing, 22 (1), 30-41 (2009) 
12. Usberti, F. L., França, P. M., França, A. L. M.:  The open capacitated arc routing problem. Computers & Operations Research, 38, 1543-

1555 (2011) 
13. Gomes, A. M., Oliveira, J. F.: Solving irregular strip packing problems by hybridising simulated annealing and linear programming. 

European Journal of Operational Research, 171 (3), 811-829 (2006) 
14. Oliveira, J. F., Gomes, A. M., Ferreira, J. S.: Topos a new constructive algorithm for nesting problems. OR Spectrum, 22, 263-284 (2000) 
15. Burke, E., Hellier, R., Kendall, G., Whitwell, G.: A new bottom-left-fill heuristic algorithm for the two-dimensional irregular packing 

problem. Operations Research, 54 (3), 587-601 (2006) 
16. Bennell, J. A., Oliveira, J. F.: The geometry of nesting problems: A tutorial. European Journal of Operational Research, 184 (2), 397-415 

(2008) 
17. Eiselt, H. A., Gendreau, M., Laporte, G.: Arc routing problems (Part I): The chinese postman problem. Operations Research, 43 (2), 231-

242 (1995) 
18. Laporte, G., Osman, I. H.: Routing problems: A bibliography. Annals of Operations Research, 61, 227-262 (1995) 
19. Orloff, C. S.: A fundamental problem in vehicle routing. Networks, 4, 35-64 (1974) 
20. Christofides, N., Campos, V., Corberán, A., Mota, E.: An algorithm for the rural postman problem. Technical Report IC.OR. 81.5, 

Imperial College Report (1981) 



Rodrigues and Soeiro Ferreira / Cutting path as a Rural Postman Problem: solutions by Memetic Algorithms. 
IJCOPI Vol. 3, No. 1, Jan-April 2012, pp. 22-37. EDITADA. ISSN: 2007-1558. 
 

37 
 

21. Corberán, A., Sanchis, J. M.: A polyhedral approach for the rural postman problem, European Journal of Operational Research, 79, 95-
114 (1994) 

22. Ghiani, G., Laporte, G.: Branch-and-cut algorithm for the undirect rural postman problem. Mathematical Programming, 87 (3), 467-481 
(2000) 

23. Fernández, E., Meza, O., Garfinkel, R., Ortega, M.: On the undirected rural postman problem: Tight bouns based on a new formulation. 
Operations Research, 51 (2), 281-291 (2003) 

24. Frederickson, G. N.: Approximation algorithms for some postman problems. Journal of the ACM, 26 (3), 538-554 (1979) 
25. Pearn, W. L., Wu, T. C.: Algorithms for the rural postman problem. Computers & Operations Research, 22 (8), 818-828 (1995) 
26. Laganà, D., Laporte, G., Mari, F., Musmanno, R., Pisacane, O.: An ant colony optimization metaheuristic for the undirected rural 

postman problem. Les Cahiers du GERAD, G-2007-106 (2007) 
27. Hertz, A., Laporte, G., Hugo, P. N.: Improvement procedures for the undirect rural postman problem. INFORMS Journal on Computing, 

11 (1), 53-52 (1999) 
28. Garfinkel, R. S., Webb, I. R.: On crossings, the crossing problem postman problem, and the rural postman problem. Networks, 34, 173-

180 (1999) 
29. Córdoba, P. F., Raffi, L. M. G., Sanchis, J. M.: A heuristic algorithm based on Monte Carlo methods for the rural postman problem. 

Computers & Operations Research, 25 (12), 1097-1106 (1998) 
30. Corberán, A., Martí, R., Romero, A.: Heuristics for the mixed rural postman problem. Computers & Operations Research, 27, 183-203 

(2000) 
31. Groves, G., Roux, J. L., Vuuren, J. H. V.: Network service scheduling and routing. International Transactions in Operational Research, 

11, 613-643 (2004) 
32. Dror, M.: Arc Routing: Theory, Solutions and Applications. Kluwer Academic Publishers, Boston (2000) 
33. Corberán, A., Prins, C.: Recent results on arc routing problems: An annotated bibliography. Networks, 56 (1), 50-69 (2010) 
34. Rodrigues, A. M., Ferreira, J. S.: Rural postman and related arc routing problems. Technical Report, INESC Porto (2010) 
35. Norman, M., Moscato, P.: A competitive-cooperative approach to complex combinatorial search. Technical Report 790, Caltech 

Concurrent Computational Program, California Institute of Technology, Pasadena, California, USA (1989)  
36. Forrest, S.: Genetic algorithms. ACM Computing Surveys (CSUR), 28 (1), 77-80 (1996) 
37. Baker, B. M., Ayechew, M. A.: A genetic algorithm for the vehicle routing problem. Computers & Operations Research, 30, 787-800 

(2003) 
38. França, P., Mendes, A., Moscato, P.: Memetic algorithms to minimize tardiness on a single machine with sequence-dependent setup 

times. In Proceedings of the DSI’99 – 5th International Conference of the Decision Sciences Institute, 1708-1710 (1999) 
39. Buriol, L., França, P. M., Moscato, P.: A new memetic algorithm for the asymetric traveling salesman problem. Journal of Heuristics, 10, 

483-506 (2004) 
40. Berreta, R., Moscato, P.: The number partitioning problem: An open challenge for Evolutionary Computation. In: Corne, D., Dorigo, M. 

Glover, F. (eds) New Ideas in Optimization, pp., 261-278, McGraw-Hill (1999) 
41. Mendes, S. M., Muller, F. M., França, P. M., Moscato, P.: Comparing Meta-Heuristics Approaches for Parallel Machine Scheduling 

Problems with Sequence Dependent Setup Times. In Proceedings of the 15th International Conference on CAD/CAM, Robotics & 
Factories of the Future (1999) 

42. Berretta, R., Rodrigues, L. F.: A memetic algorithm for a multistage capacitated lot-sizing problem. International Journal of Production 
Economics 87, 67-81 (2004) 

43. Moscato, P., Norman, M. G.: A “memetic” approach for the traveling salesman problem implementation of a computational ecology for 
combinatorial optimization on message-passing systems. Parallel Computing and Transputer Applications, 187-194 (1992) 

44. Runggeratigul, S.: Local search and memetic algorithms for knapsack problems. The 5th Metaheuristics International Conference, 25-28 
(2003) 

45. Lacomme, P., Prins, C., Ramdane-Chérif, W.: Evolutionary algorithms for periodic arc routing problems. European Journal of 
Operational Research, 165, 535-553 (2005) 

46. Cotta, C.: Una vision general de los algoritmos meméticos, Rect@, 3, 139-166 (2007) 
47. Moscato, P., Cotta, C.: A modern introduction to memetic algorithm. Handbook of Metaheuristics, vol. 146, International Series in 

Operations Research Management Science, 141-183 (2010) 
48. Orloff, C. S.: On general routing problems: Comments. Networks, 6, 281-284 (1976) 


