

“BALL AND BEAM” VIRTUAL LABORATORY:
A TEACHING AID IN AUTOMATIC CONTROL COURSES�

�
�

José L. Lima, José C. Gonçalves, Paulo G. Costa, A. Paulo Moreira�
�
�

Department of Electrical Engineering
Faculty of Engineering of University of Porto

jllima@ipb.pt, goncalves@ipb.pt, paco@fe.up.pt, amoreira@fe.up.pt
�
�
�

�
Abstract: This paper describes an interactive learning tool that can be used in control
systems lectures to a better understanding of some control methods and to improve
control systems design. The Virtual Laboratory was built as a teaching aid during
automatic control lectures and also to be used by students for problem solving and
individual learning of different control methods. A 3D scene with a friendly appearance
shows a simulation where a ball is placed on a beam being allowed to roll along its
length. The Virtual Laboratory experiment goal is to stabilize the ball in a desired
position changing the beam angle.
�
Keywords: Control education, Interactive programs, Laboratory education, Modelling,
Automatic control.

�
�
�
�

�
1. INTRODUCTION

�
This paper describes a tool that supports a 3D scene
simulation of the “ball and beam experiment”. The
ball and beam system is one of the most enduringly
popular and important laboratory models for teaching
control systems theory, usually used to demonstrate
the dynamics of unstable systems (Wellstead, 1990).
A Virtual Laboratory is composed by a PC
application, reducing some hardware problems and
allowing an attractive visualization (Foley, et al.,
2000).
The objective of this project is to provide a powerful
tool that can be used in automatic control lectures to
support a better understanding of some control
methods and also to improve control systems design.
The simulated world behaviour and graphics are
based on open source platforms. The final result is an
interactive 3D scene allowing the user to move
around the world, as shown in Fig. 1, where a
graphic shows the interest variables. Another
developed Virtual Laboratory (Fig. 2), based on the
same system is also presented, allowing users to
make their own control programs in Pascal language.�
This is the main improvement since inverted

pendulum virtual control laboratory was presented
(Lima, 2006).

Fig. 1. First Virtual Laboratory screenshot.

This paper is organized as follows: Initially, the ball
and beam overview, where the system is introduced,
modelled and the world is built, is presented. Then
section 3 presents the manual, PID and state-space
closed loop methods where real-time interactive
graphs are shown with simulation results. This
section also describes both applications and its

414

CONTROLO 2008
8th Portuguese Conference on Automatic Control
University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
July 21-23, 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143414894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

interfaces such as user script language. Finally,
section 4 rounds up with conclusions.

�
Fig. 2. Second Virtual Laboratory screenshot.
�

2. BALL AND BEAM OVERVIEW

The ball and beam system is widely used because it
is very simple to understand as a system, and yet the
control techniques that can be applied cover many
important classical and modern design methods. It
has a very important property: it is open loop
unstable (Wellstead, 2007).
A ball is placed on a beam where it is allowed to roll
with one degree of freedom along the length of the
beam. A lever arm is attached to the beam at one end
and a servo gear at the other. As the servo gear turns,
the lever changes the angle of the beam (�). When �
angle is different from zero, gravity causes the ball to
roll along the beam. Furthermore, the beam and the
controller should be able to receive a ball in any
position and hold it there, or to move it according to
a specification.

2.1 Open Dynamics Engine World Construction
�
Design a realistic behaviour without real hardware is
possible due to a physics-based simulator
implementation (Browning, 2003). The physics
engine is the key to make simulation useful without
model knowledge. Model can be calculated but just
for controller achieve. The dynamic engine ODE,
Open Dynamics Engine (Smith, 2000), is a powerful
tool that allows programmers to create a physic
world composed by objects and simulate them. It is
essentially a simulation library that provides support
for rigid body motion, rotational inertia and
collisions treatment, where the world to be simulated
is built. It also allows to use Open GL routines to
render the 3D simulated environment. The Open GL
routines are based on GLScene library. It provides
visual components and objects allowing description
and rendering of 3D scenes in an easy, no-hassle, yet
powerful manner. It has grown to become a set of
founding classes for a generic 3D engine with Rapid
Application Development in mind (GLScene, 2000).
The ODE developed dynamic world is composed by
a sphere, a beam fixed in one end (allowing the ball
to roll) and a servo motor (whose angular position
can be controlled).
The world construction is based on objects. Each
object has properties like size, position, colour,

texture and behaviour. Physical connections between
different objects can be achieved by resorting to the
joint capability. Joints, in this system, are slider and
hinges. Slider does not mean that friction is despised,
but means that an object just moves along a direction,
like the ball placed on the beam. A hinge that works
like a folding allows one or two objects to move
through an axle.

2.2 System Modelling

Several controllers will be designed for this system
so that the ball's position can be manipulated,
through beam angle or beam torque, even with a
collision disturbance. For controllers design, the
system model is required. The modelled system
scheme is shown in Fig. 3. For this problem, let’s
assume that the ball rolls without slipping.

Fig. 3. Ball and Beam schematic.

The constants and variables for this case study are
defined as follows; however, user can change the
mass of the ball M and its radius r.

M - mass of the ball 0.125 kg
r - radius of the ball 0.5 m
g - gravitational acceleration 9.8 m.s-2
J - ball's moment of inertia J=2/5.M.r2
� - beam angle coordinate
R - Reaction Force� - ball position coordinate �� - Ball speed�� - Ball acceleration
Meq - Equivalent mass (ball rolls)

The well known Newton's second law of motion,
equation 1, allows to write the Lagrangian equation
for the described system (Michigan, 1997), where F
is the force applied to the body and a is its
acceleration. Equation 2 describes the motion for the
ball.

F=Ma (1)

��� �	
�� � �� �

�� � ���� (2)

Small angles (Hauser, 1992), where sin(�)��, allow
to linearize the equation 2 about ��0º resulting in

415

equation 5 where equation 4 represents the
equivalent mass because the ball rolls and the
moment of inertia cannot be despised (Márquez,
2003). Let u be the system input (motor angle
control) in equation 3.

 � � �� (3)

��� � �
�� � � (4)

 �� � ��
��� � (5)

The linearized system equations can also be
represented in state-space form (Ribeiro, 2002), done
by selecting the ball's position � and velocity �� as the
state variables and the gear angle u as the input. The
state-space representation is shown in equation 6 and
equation 7 where Y is the system output (ball
position).

 ����� � � � ! � �
��� � � " ��

���
(6)

$ � %! & ���� � (7)

It is possible to use the constants (M, g and Meq
previously presented), that results in the state-space
numerical representation, as shown equation 8.

 ����� � � � ! � �
��� � � � '� � (8)

Linearization is used for controller achieves while
simulation is based on real model with all its
nonlinearities.

3. REAL TIME INTERACTIVE SIMULATION

The control of unstable systems is critically
important to many of the most difficult control
problems and must be studied in the laboratory
(Wellstead, 2007).
The control job is to automatically regulate the ball
position by changing the angle of the beam. This is a
difficult control task because the ball does not stay in
one place on the beam, but moves with an
acceleration that is proportional to the tilt of the
beam. In control theory this system is open loop
unstable because its output (ball position) increases
without limit for a fixed input (angle deviation)
(Iqbal, et al., 2005). Feedback control must be used
to keep the ball in a desired position.
Assuming that simulation time step is much faster
than dynamics, it is possible to assure continuous
modeling to simulate this system. A time step of 20

ms is enough to validate this approach (much faster
than system dynamics). Both presented laboratories
have the same 50 Hz frequency.
There are three embedded closed-loop control
methods and a script program possibility, presented
in next subsections, which are used in this project:
The manual control, where user can control the beam
angle with a slider, the PID control where user can
introduce proportional, integral and derivative gains
and the state-space feedback control where user can
apply pole placement. The embedded script gives
user the freedom to create any controller.
A graphical time evolution shows the ball position,
speed and the desired control angle where a zoom
feature is also implemented in order to highlight
some details. The control system simulation starts
running at zero seconds for the ball placed still at x=0
and zero degrees for beam angle. System remains in
its initial conditions until a disturbance (ball
collision) or a slope occurrence.

3.1 Manual control

This control “method” allows users to change a slide
bar position with mouse that slopes the beam
controlling the ball position.

 Fig. 4. Manual Control method data graph.

It is a difficult task and result depends on the user’s
sensibility. Figure 4 presents an example where a
disturbance in ball position happens at t=36s and the
user reaction is shown. A collision with another ball
is used to disturb the system.

3.2 PID controller

The PID control method has been successfully used
in many industrial control systems for over half a
century. The basic principle of the PID control
scheme is to act on the variable to be manipulated
through a proper combination of three control gains:
proportional (KPr), integral (Ki) and derivative (Kd)
as presented in equation 9. In its most simple form,
PID involves three mathematical control functions
working together as a function of error signal, e(t),
(desired and actual output deviation).

416

��(�)*�+�(�), - +�(.(�)/ /��0
/0 (9)

As a proportional controller does not make the
system stable, a PD closed loop controller was
chosen as an example and can be designed as
presented in Fig. 5, where KP is the plant gain
described in equation 10, KC is the controller
proportional gain and Td the derivative gain.

)* � ���
�� (10)

Fig. 5. PD closed loop system.

The closed loop transfer function is shown in
equation 11, where Ref(s) is the desired ball position.

1�2
345�2 � 67�89:2;6<

2�;67:89:2;6<:67 (11)

Gains Td and Kc can be found by equations 12 and
13, as a second order system response, where � is the
damping coefficient and �= is the natural frequency
for the desired conditions (Carvalho, 1993): time
settling (Ts) and percentage overshoot (PO)
presented in equations 14 and 15.

>/ � ?:@:AB
67 (12)

)C � DE�
67 (13)

FGH � +
IJK

LMIK� (14)

>2 � N
@FAB (15)

Fig. 6. PID control method data graph.

The presented equations can be used to find Kp and Ti
for an example of a 10% of PO and a Ts of 10
seconds that gives Kc=3.204 and Kd=5.598 gains.
User can manually chose PID gains, comparing

different performances. The data acquisition of the
closed loop system example of a unitary step is
shown in Fig. 6 and ball position result accordance
with desired conditions allows to validate the
proposed simulator.
Another procedure for choosing closed-loop pole
locations for an nth-order plant is based on Bessel
prototype. The first step is to choose the desired
settling time of the closed loop system based on
performance specifications, taking in account the
limitations of the system hardware. Then, the roots of
the nth-order normalized Bessel polynomial must be
divided by Ts to obtain the desired closed loop
locations. The poles -4.0530 ± j2.3400 are the roots
of a second order normalized polynomial
corresponding to a settling time of one second
(Vaccaro, 1995).

3.3 State-space controller

Having the system model described in state-space,
the K values (closed loop gains) can be found by:
A-BK eigenvalues (Ogata, 2002).
The desired closed loop poles are presented in
equation 16 and as result the state-space feedback
vector is given by equations 17 and 18.

 OPQ+� � R S 	T (16)

UV � ?
W R (17)

U? � X�;Y�
W (18)

The closed loop diagram system is shown in Fig. 7
where Ref. is the desired ball position, u is the system
input, Y the system output (ball position) and X the
state.

Fig. 7. State-space schematic.

As an example, let’s suppose the same conditions of
the PD previously presented example, a Ts of 10
seconds and a PO of 10%. The system transfer
function, presented in equation 19, allows to find the
Ts and PO, presented in equations 14 and 15, like in
previous example.

1�2
345�2 � DE�

2�;?ZDE2;DE� (19)

For the desired Ts and PO, the state-space controller
data is shown in Fig. 8 where, in this example, a=0.4
and b=0.5416, being the state vector represented by
equation 20.

417

Fig. 8. Fast state-space controller data graph.

) � % [\] [!!^& (20)

This is a fast controller forcing the ball to lose
contact with the beam, as shown in Fig. 9, due to the
fast lever arm movements, as shown in Fig. 10,
where a detailed scale data graph shows this
nonlinear issue from 0.3 to 0.8 seconds.

Fig. 9. Ball detached from the beam.

While ball is detached from the beam, the controller
actions are useless, reducing its performance. When
ball touches the beam, controller recovers its
handling.

Fig. 10. Detailed data graph during ball detached

from the beam phenomena.

As another example, a slower controller, for a TS of
15 seconds and an PO of 20%, presented in Fig. 11,
is implemented where, in this example, a=0.2667
and b=0.3638, being the state vector represented by
equation 21.

) � % [_` ['\& (21)

The ball never loses touch with the beam, but for the
same input reference step, the ball is stabilized
slower. As it can be observed in Fig. 8 and 11, the
slower system takes at least 5 more seconds to
stabilize the ball in the desired position.

Fig. 11. Slow state-space controller data graph.

3.4 Noise disturbance feature

Some problems arise in physical systems data
acquisition such as signal noise, cumulative errors,
electromagnetic interference and temperature drift.
Noise addition in ball positioning measurement
allows to illustrate this problem. Gaussian noise can
be added in ball position and speed measure with
desired amplitude.
The data acquisition graph, where a noise disturbance
is introduced between 16.5 and 19.5 seconds, is
presented in Fig. 12 showing the controller response
(poles a=0.4 and b=0.5416) for the desired
conditions presented in the previous faster example.

Fig. 12. Noise addition data graph.

3.5 Script language control method

In order to allow users to create their own control
programs, a script window that accepts Pascal
language code was developed. Users can try several
no predefined controllers where real-time results are
presented.

418

The developed control procedure can be applied to a
real system, based on a microcontroller. There are
some Pascal compilers to embedded systems such as
Embedded Pascal (2004) and E-Lab (2003).
The simulator provides to the user the following
information:

y1[k] - Beam actual angle (rad)
y2[k] - Ball position x axle (m)
r1[k] - Beam reference angle (introduced by user)
r2[k] - Ball reference position (introduced by user)
u[k] - Torque control signal (N.m)

There are also the last seventh recorded samples as
presented:

� y1[k], y1[k-1], ..., y1[k-7]
� y2[k], y2[k-1], ..., y2[k-7]
� r1[k], r1[k-1], ..., r1[k-7]
� r2[k], r2[k-1], ..., r2[k-7]
� u[k], u[k-1], ..., u[k-7]

The fourth order system state composed by y1[k],
y2[k] and their derivatives are recorded too.
As an example, a proportional controller Pascal
procedure is presented on the lower side of Fig. 13
for the beam angle regulation.

Fig. 13. Pascal Script program example.

The e[k] variable is actualized each sampling time
(50 Hz rate) as the error between reference and beam
angle. The applied torque to the beam is Kp times
e[k].
As a complex example, user can develop an auto
tune controller (Yu, 2006).

4. CONCLUSIONS

This paper has introduced an interactive learning tool
for automatic control courses, where it is desired to
control a ball position on a beam in a Virtual
Laboratory.
The 3D scene visualization and animation effects are
an advantage for students, giving them a better

understanding of the physical systems.
The real time graphics, where ball speed, ball
position and controller angle are shown, present data
in a way that can be easily decoded by students. The
Pascal script code can be programmed by user
allowing the freedom of control method choice.

REFERENCES

Browing, B. and E. Tryzelaar (2003). Übersim: A
Multi-Robot Simulator for Robot Soccer
Conference on Autonomous Agents and Multi-
Agent Systems, Australia.

Carvalho, J. L. Martins (1993). Dynamical Systems
and Automatic Control, Prentice Hall.

Embedded Pascal (2004).
http://users.iafrica.com/r/ra/rainier/pbody.htm.

E-LAB Computers (2003).
 http://www.elab-pascal.de/index_en.html.
Foley, J. D., A. Van Dam, S. K. Feiner and J. F.

Hughes (2000). Computer Graphics:
Principles and Practice in C, Addison-Wesley,
United States of America.

GLScene (2000). http://glscene.sourceforge.net.
Hauser J., S. Sastry and P. Kokotovic (1992).

Nonlinear control via approximate input-output
linearization: the ball and beam example, IEEE
Transactions on Automatic Control, pp. 392-
398.

Iqbal, J., M. A. Khan, S. Tarar and Z. Sabahat
(2005). Implementing Ball Balancing Beam
Using Digital Image Processing And Fuzzy
Logic, 18th Annual Canadian Conference on
Electrical and Computer Engineering, IEEE
publishes, Saskatoon, Canada.

Lima, J., J. Gonçalves, P. Costa and A. Moreira
(2006). Inverted pendulum Virtual Control
Laboratory, 7th Portuguese Conference on
Automatic Control, Lisbon.

Márquez, H. J. (2003). Nonlinear Control Systems:
Analysis and Design, John Wiley and Sons,
Inc., New Jersey.

Michigan Regents of the University of Control
Tutorials for Matlab (1997).
http://www.engin.umich.edu/group/ctm/index.h
tml.

Ogata, K. (2002). Modern Control Engineering,
Prentice Hall.

Ribeiro, Maria Isabel (2002). Análise de Sistemas
Lineares, IST Press.

Smith R., Open Dynamics Engine (2000).
http://www.ode.org/.

Vaccaro, J. (1995). Digital Control: a State-Space
approach. McGraw-Hill International Editions.

Wellstead, P. E. (2007). Control Systems principles ,
http://www.control-systems-
principles.co.uk/whitepapers/ball-and-
beam1.pdf.

Wellstead, P. E. (1990). Teaching control with
laboratory scale models, IEEE Transactions on
Education, pp. 285-290.

Yu Cheng-Ching (2006). Autotuning of PID
Controllers: A Relay Feedback Approach,
Springer.

419

