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Introduction: Genome-wide association studies (GWAS) have allowed the discovery of 

novel and impacting findings concerning the association of single nucleotide polymorphisms 

(SNPs) with the susceptibility and clinical outcome of complex traits, namely in the field of 

oncology.  

Ovarian cancer (OC) is the seventh most incidence cancer in woman worldwide. 

Despite the achieved improvements in diagnosis and treatment, OC is considered the 

deadliest gynecological cancer in the developed world. However, the identification of 

predictive biomarkers for OC first-line treatment remains a challenge and the results from 

candidate-gene studies have not reached the desired clinical implementation. In 

agreement, the research on this field might benefit from the accomplishment of genome-

wide strategies. Since 2009, 15 OC GWAS have been performed, with the discovery of 49 

SNPs associated with disease susceptibility and 46 with impact in the clinical outcome 

(P<5.00x10-2). Despite the achieved results, they present limited implication and further 

validation is mandatory. So far, five validation studies have been conducted which could 

confirm the association of 12 OC susceptibility SNPs, although no clinical outcome 

associated variant was able to be validated.  

Thereby, the purpose of this study was to select and validate the influence of GWAS-

associated variants in an independent cohort of Epithelial Ovarian Cancer (EOC) patients 

from the North region of Portugal.  

 

Methods: Upon the collection of all OC GWAS-identified variants, we submitted all the 

clinical outcome associated polymorphisms to the SNP Prioritization Online Tool (SPOT) 

software, in order to select the most suitable variants to be studied, according to specific 

criteria. Moreover, we conducted a retrospective hospital-based cohort study gathering 339 

EOC patients submitted to first-line treatment. Polymorphisms genotyping was performed 

by TaqMan® Allelic Discrimination methodology, using validated assays. Overall survival 

(OS) and disease-free survival (DFS) were the two clinical endpoints established in this 

study. All statistical tests were two-sided and a 5% level of significance was considered.  

 

Results: Based on the prioritization rankings provided by the SPOT software, we select 

Neuregulin 3 (NRG3) rs1649942 and Brain and reproductive organ-expressed (BRE) 

rs7572644 as two of the most top prioritized clinical outcome associated SNPs. Patients 

carrying the NRG3 rs1649942 A allele presented a significantly longer OS when compared 

to GG genotype patients (log-rank test, P=0.011) in the FIGO IV stage subgroup. No impact 

was observed for early disease stage patients or considering DFS as outcome. We 

hypothesized that NRG3 rs1649942 GG genotype might be associated with the expression 

of peripheral genes that promote the acquisition of an aggressive phenotype, namely with 

a pro-oncogenic role in the metastatic niche. 
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Regarding the BRE rs7572644 polymorphism, we observed that C allele carriers 

exhibit a decreased OS (P=0.014) and DFS (P=0.032), when compared to TT homozygous 

patients, in the subgroup of early stage disease patients (FIGO I/II). Moreover, multivariate 

Cox regression analysis revealed a three-fold increased risk of death (HR, 3.09; 95% CI, 

1.25-7.66; P=0.015) and recurrence (HR, 3.33; 95% CI, 1.35-8.23; P=0.009) for FIGO I/II C 

allele carriers, after adjustment for hormonal status, histology, surgery extension and tumor 

grade. No significant impact was observed for late stage patients. For early disease stage 

patients submitted to first-line treatment, the presence of BRE rs7572644 C allele could 

lead to an improved ability to repair platinum-induced damages and the anti-apoptotic 

activity of EOC cells.  

 

Conclusion: GWAS development will aid to rethink OC genomics much beyond the obvious 

and direct analysis, namely, through the identification of variants lying in regulatory regions 

of the genome with influence on complex genetic networks. Therefore, it is essential to 

analyze GWAS data to address the possible role of associated markers which, ultimately, 

could translate in clinical implementation. The BRE rs7572644 and NRG3 rs1649942 

GWAS-identified variants were validated in an independent cohort of EOC Portuguese 

patients, particularly in specific EOC subgroups considering FIGO staging. Further 

functional post-GWAS analyses are indispensable to understand the biological 

mechanisms underlying the observed results.  

 

 

Keywords: Single nucleotide polymorphisms, GWAS, epithelial ovarian cancer, validation 

study, clinical outcome, Brain and reproductive organ-expressed, Neuregulin 3 
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Introdução: Os genome-wide association studies (GWAS) têm permitido a descoberta de 

novos e importantes resultados no que diz respeito à associação de polimorfismos de 

nucleótido único (SNPs) com a suscetibilidade e desfecho clínico de doenças complexas, 

nomeadamente na área da oncologia.  

 O cancro do ovário (CO) é o sétimo cancro mais incidente na mulher a nível mundial. 

Apesar das melhorias alcançadas no diagnóstico e tratamento, é considerado o cancro 

ginecológico mais letal nos países desenvolvidos. Contudo, a identificação de 

biomarcadores preditivos à primeira linha de tratamento continua a ser um desafio, e os 

resultados obtidos por estudos de genes candidatos não têm alcançado a implementação 

clínica desejada. Desta forma, a investigação nesta área poderá beneficiar da realização 

de estratégias genome-wide. Desde 2009, foram realizados 15 GWAS em CO, levando à 

identificação de 49 SNPs associados com a suscetibilidade para esta doença e 46 com 

impacto no desfecho clinico (P<5.00x10-2). Apesar dos resultados obtidos, eles apresentam 

uma implicação limitada, sendo obrigatória a sua posterior validação. Até à data, cinco 

estudos de validação foram conduzidos, confirmando a associação de 12 SNPs com a 

suscetibilidade para CO, contudo nenhuma variante associada com o desfecho clínico foi 

alvo de validação. 

  Desta forma, o presente estudo tem como objetivo selecionar e validar a influência 

de duas variantes genéticas reportadas por GWAS numa coorte independente de doentes 

com cancro epitelial do ovário (CEO) da região Norte de Portugal. 

 

Métodos: Após a compilação de todas as variantes genéticas reportadas por GWAS 

realizados em CO, submetemos todos os polimorfismos associados com desfecho clínico 

ao software SNP Prioritization Online Tool (SPOT), de modo a selecionar as variantes 

genéticas a ser estudadas, de acordo com critérios específicos. Adicionalmente, 

conduzimos um estudo retrospetivo de base hospitalar do tipo coorte, envolvendo 339 

doentes com CEO submetidas a tratamento de primeira linha. A genotipagem dos 

polimorfismos foi realizada recorrendo à metodologia de discriminação alélica TaqMan®, 

usando assays validados. Os dois desfechos clínicos estabelecidos neste estudo foram a 

sobrevivência global (SG) e a sobrevivência livre de doença (SLD). Todos os testes 

estatísticos foram bilaterais e um nível de significância de 5% foi considerado. 

 

Resultados: Com base nos rankings de priorização fornecidos pelo software SPOT, 

selecionamos duas variantes de elevada priorização associadas com o desfecho clínico de 

doentes com CO, Neuregulin 3 (NRG3) rs1649942 e Brain and reproductive organ-

expressed (BRE) rs7572644. Doentes portadoras do alelo A do polimorfismo NRG3 

rs1649942 apresentaram uma SG significativamente superior quando comparadas com 
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doentes portadoras do genótipo GG (teste log-rank, P=0.011), no subgrupo de doentes em 

estadio FIGO IV. Nenhum impacto foi observado para doentes em estadios precoces da 

doença ou quando considerada a SLD como desfecho clínico. Assim, foi colocada a 

hipótese que o genótipo GG do polimorfismo NRG3 rs1649942 poderá estar associado 

com a expressão de genes periféricos que promovem a aquisição de um fenótipo 

agressivo, nomeadamente com um papel pró-oncogénico no nicho metastático. 

 No que diz respeito ao polimorfismo BRE rs7572644, observamos que portadoras 

do alelo C exibiam uma menor SG (P=0.014) e SLD (P=0.032), quando comparadas com 

doentes homozigóticas para o alelo T, no subgrupo de doentes em estadios iniciais da 

doença (FIGO I/II). Ademais, a análise multivariada de regressão de Cox revelou um risco 

aumentado de morte (HR, 3.09; 95% CI, 1.25-7.66; P=0.015) e recorrência (HR, 3.33; 95% 

CI, 1.35-8.23; P=0.009) em cerca de três vezes, para doentes portadoras do alelo C em 

estadio FIGO I/II, após ajuste para o status hormonal, histologia, extensão da cirurgia e 

grau de diferenciação tumoral. Nenhum impacto significativo foi observado nas doentes em 

estadio avançado da doença. Em doentes em estadios precoces submetidos a tratamento 

de primeira linha, a presença do alelo C do polimorfismo BRE rs7572644 poderá conduzir 

a uma capacidade aumentada de reparação de danos induzidos pela quimioterapia e da 

capacidade anti-apoptótica das células de CEO. 

 

Conclusão: O desenvolvimento de GWAS irá auxiliar no entendimento da genómica do 

CO muito além da análise óbvia e direta, nomeadamente, através da identificação de 

variantes localizadas em regiões regulatórias do genoma com influência em complexas 

interações genéticas. Consequentemente, é essencial analisar os dados obtidos por estes 

estudos de forma a compreender o possível papel dos marcadores associados, o que, em 

última instância, poderá resultar numa possível implementação clínica. As variantes 

previamente identificadas por GWAS BRE rs7572644 e NRG3 rs1649942 foram validadas 

numa coorte independente de doentes portuguesas com CEO, particularmente em 

subgrupos específicos considerando o estadiamento FIGO. Análises funcionais pós-GWAS 

são indispensáveis de modo a perceber os mecanismos biológicos subjacentes aos 

resultados observados.  
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1.1. Genome-wide association studies: a revolutionary tool in genetics research  

 

With the scientific advances achieved in the last decades, it became clear that the 

human genetic variability is considerably higher than the initially expected. Despite some 

genetic variations present low impact in human health, it is considered that a fraction of 

these alterations is able to introduce phenotypic variations that, in a particular context, might 

have an impact in the development of a specific feature or in response to endo/exogenous 

stimulus [1, 2].  

One of the most common genetic alterations are polymorphisms, i.e., DNA 

sequence variations where the minor allele is present at least in one percent of the 

population [3]. The simplest form of this variation corresponds to a single nucleotide 

substitution in DNA sequence, known as single nucleotide polymorphism (SNP) [3, 4]. This 

type of genetic alteration, which is expected to occur every 100-300 base pairs in the 

genome, represents almost 90% of all nucleotide variations. As SNPs are distributed 

throughout the entire genome, their biological effect depends upon their location, ranging 

from silent to gene expression or protein alterations [5]. 

The commonly occurring SNPs contrast with rare genetic variants (mutations), 

usually involved in monogenic disorders, as they introduce detrimental functional changes 

that ultimately lead to the pathological condition. Thus, the common disease/common 

variant hypothesis states that common disorders are possibly prompted by genetic 

variations that are also common in the general population. Consequently, common SNPs 

have low penetrance and the total genetic risk due to common genetic variants might be 

spread across numerous genetic factors [6]. 

Although family-based studies and genetic linkage analysis are successful 

approaches in the discovery of genes (and gene variants) associated with Mendelian traits, 

they present a limited impact in the mapping of common disease associated loci [7]. Thus, 

the development of population-based studies, allied to the advent of sequencing techniques 

and genome research methods, have allowed the discovery of important and impacting 

findings regarding the association of genetic markers with disease susceptibility and clinical 

outcome [8]. Accordingly, since 2005, a new era in genome mapping started with the 

accomplishment of the first genome-wide association study (GWAS) [9]. GWAS allow to 

test, in a cost-effective manner, the association of thousands of SNPs with a particular trait 

simultaneously in thousands of samples, which has revolutionized molecular and genetic 

research [10, 11]. GWAS are considered non-candidate gene studies that use a whole-

genome approach to unravel traits such as anthropometries, pathologies or even response 

to drugs [12-14]. Despite its typical design based on observational studies, other methods 
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including lymphoblastoid cell lines (LCLs) and pooled DNA can be used, as untypical 

strategies.  

It is estimated that nearly 10 million SNPs are inherited in haplotype blocks, meaning 

that a set of them (tagSNPs) are representative of the most SNPs present in each block 

[15]. Thereby, GWAS are based in the principle of linkage disequilibrium (LD), which 

represents the non-random association between alleles at different loci. Generally, loci 

close to each other show a stronger LD than loci distant in the chromosome. Thus, LD 

allows the determination of genetic markers necessary to identify a haplotype, being the 

number of such markers considerably lower than the total number of variants present in the 

population [7]. LD is generally reported in terms of r2, a statistical measure of correlation. 

The higher the r2 value, the greater the information shared by two SNPs, i.e., one allele of 

the first SNP is often carried together with one allele of the second SNP. In practice, it 

implies that there is the need to genotype only one of the two SNPs to detect the complete 

allelic spectrum. Consequently, the LD creates two alternative analyses as the functional 

SNP could be directly associated and correlated with the trait in opposite to the association 

of a tagSNP in high LD with the functional SNP, following an indirect approach [6] (Figure 

1). 

  

 

 

Figure 1 -  Challenges beyond the use of tagSNPs in GWAS. (A): The direct correlation of a variant with a trait could 

occur if the causal variant is found to be associated in the GWAS analysis. On opposite, the causal variant might be in 

high LD with an associated tagSNP, and further analyses are needed to correlate it with a trait of interest. (B): If the 

causal variant is in low LD with the tagSNP, it might not be covered by GWAS analysis. 
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occur if the causal variant is found to be associated in the GWAS analysis. On opposite, the causal variant might be in 
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causal variant is in low LD with the tagSNP, it might not be covered by GWAS analysis. 
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A consensus presupposes that an r2 ≥ 0.8 is sufficient for tagSNP mapping to reach 

a good coverage of untyped SNPs [16]. By the existence of these two approaches, a GWAS 

significant SNP cannot be assumed as the causal variant and may require further studies 

to map the precise location of the causal variant. Therefore, GWAS virtually allow for the 

putative research of the entire genome [17]. 

Another significant insight from GWAS include the assignment of putative risk 

regions in or adjacent to genes not previously predicted to be involved in the manifestation 

of a trait, associated loci shared by traits not previously related and the association with 

chromosomic regions characterized with low gene content [18]. However, the development 

of GWAS is also associated with some disadvantages, as addressed in Table 1. 

 

Table 1 – Overview of the main advantages and disadvantages of GWAS. 

 

 

Despite the initial enthusiasm about GWAS, the obtained results fell short of 

expectations with the recognition that the identified loci, alone or in aggregation, typically 

explained a limited proportion of trait heritability [20, 21]. This feature, known as “missing 

heritability”, reflects the usually small effect sizes conferred by trait-associated loci (Odds 

Ratio (OR) often < 1.50) [22]. Due to the modest effect sizes conferred by these variations, 

large sample sizes are required to achieve enough statistical relevance [23]. This limitation 

Advantages [16, 19] Disadvantages [10, 11, 16] 

In contrast to candidate gene studies, GWAS 
enable the identification of novel unsuspected 
susceptibility factors which allows a better 
comprehension of a variety of phenotypes. 
 

GWAS are associated with a high rate of false-
positive results 

Typically, GWAS are based in a case-control 
study design, which make them less expensive 
and allow samples acquisition in a relatively 
simple manner when compared to the extensive 
pedigrees used in linkage studies. 
 

Interpretation of obtained results can be 
problematic and require fine mapping of 
associated loci, as well as functional studies to 
understand the biological plausibility of certain 
findings 

GWAS have higher statistical power for detection 
of slight genetic effects than genetic linkage 
studies. 
 

By restricting statistical significance thresholds, 
GWAS need a substantial sample size. 

Since this type of studies is based on LD 
principle, obtained results have a more restrict 
location than genetic linkage studies, leading to a 
rapid identification of pathological variants 
through narrowing regions that will be analyzed in 
subsequent functional studies. 
 

Due to tagSNPs use, GWAS are incapable to 
detect rare susceptibility variants, beyond the 
lack of cost-effectiveness in low LD regions, 
which can represent almost 20% of the genome  

GWAS are cost-effective due to tagSNPs use, 
which cover much of the genetic variation of a 
region of the genome. 

It is necessary a high number of association tests 
(at least one per SNP) 



1.Introduction 
 

6 
 

is meaningful even for common traits, as cancer. Inclusively, effect sizes conferred by 

variants associated with lung, breast, or prostate cancers, known as the most incident 

cancers, are usually found to be modest, with OR values ranging from one to three [24-26].  

In fact, the search for “missing heritability” has become an important challenge for 

GWAS. Yang and collaborators have proposed three major hypotheses as the source for 

missing heritability: 1) rare variants (frequency < 0.01%) may also have a role in heritability 

estimation, as they can have a great impact on phenotype; 2) common variants with subtle 

effects are not covered by the current available methodologies, prompting an increase in 

sample sizes; 3) heritability estimation found in family studies is frequently overestimated, 

by not avoiding shared environmental effects [27]. Recently, beyond the agreement with 

these three mutually compatible hypotheses, Bourrat and colleagues have proposed that 

the role of nongenetic factors (epigenetics) must also be considered [28]. Since GWAS 

focus exclusively on DNA, this genome-wide approach does not consider non-DNA 

information. Given that some epigenetic factors can be stably inherited (transgenerational 

effect), they could also respond to selection and should be incorporated in the definition of 

heritability [29].  

Another drawback initially proposed for GWAS is that, in contrast to protein-coding 

alterations characteristic of Mendelian diseases, complex traits are mainly influenced by 

noncoding variants with a putative role in genetic regulation [30]. Namely, significant 

variants are broadly enriched in regions that are transcriptionally active (or with a role in 

transcription) in meaningful cell types, although they are absent from transcriptionally idle 

regions in those cell types. However, although some of the largest-effect variants are in 

genes or pathways with a direct role in a trait manifestation (core genes), SNPs that vastly 

contribute for heritability tend to be spread across the genome (peripheral genes). As 

proposed by Boyle and collaborators, for typical traits, an omnigenic model must be 

considered, assuming that regulatory networks are highly correlated, as the expression of 

peripheral genes might have an impact in the regulation or function of core genes. Thereby, 

a phenotype should be related to a dysfunction in associated tissues and a genetic variant 

will only be considered relevant if it has a putative regulatory role (and hence network 

impact) in those tissues. In summary, a phenotype manifestation might not be assigned to 

a single gene or genetic loci, being largely driven by peripheral genes with an indirect role 

in phenotype and propagated through complex regulatory networks for which only a small 

number of core genes have a direct role, which is consistent with most GWAS findings [30] 

(Figure 2). 
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As in GWAS millions of SNPs are tested simultaneously for the association with a 

specific trait, each one with its own false positive probability, the cumulative likelihood to 

detect false positives is high, so multiple testing adjustment is required. A simpler approach 

is to perform a Bonferroni correction by the adjustment of the alpha value, generally set to 

5.00x10-2, which assumes the independence of all performed tests (α = 0.05/k, where k is 

the number of statistical tests conducted) [31]. Thus, a genome-wide significance threshold 

of P<5.0x10-8 has generally been applied in the majority of GWAS. However, given the high 

number of analyses and outcomes addressed in a GWAS, even a P-value ≤ 10-10 might be 

applied to safely confirm an association [23, 32]. Additionally, an adjustment approach 

based in the determination of false discovery rate (FDR) can be used, which estimates the 

false positives among the significant results [33]. Permutation testing is another effective 

strategy widely applied in GWAS, where the response variable is repeatedly shuffled and 

an empirical P-value is registered [34, 35].  

In the last years, GWAS development have demonstrated that common genetic 

variants might indicate underlying susceptibility loci to common diseases. Therefore, GWAS 

have been greatly explored in medical research leading to the identification of positive 

results in several pathologies including type I and II diabetes mellitus [36-43], inflammatory 

bowel disease (10-14) or coronary heart disease (25-27). A field of particular interest for 

Figure 2 – Schematic representation of the omnigenic model. As postulated, several peripheral genes might contribute 

to the regulation of genes (core genes) with a direct role in a trait’s phenotype. Thus, complex genetic networks could 

underlie the manifestation of a particular feature. 

 

Figure 2 – Schematic representation of the omnigenic model. As postulated, several peripheral genes might contribute 

to the regulation of genes (core genes) with a direct role in a trait’s phenotype. Thus, complex genetic networks could 

underlie the manifestation of a particular feature. 
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GWAS development is in oncology, with the identification of genetic markers associated 

with prostate cancer (15-20), breast cancer (21-23), colorectal cancer [44, 45], lung cancer 

[46, 47], gastric cancer [48], pancreatic cancer [49], bladder cancer [50]. A diagram of all 

cancer GWAS-identified variants is represented in Figure 3, according to their chromosomal 

localization.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Diagram representing the chromosomal localization of all 864 cancer GWAS-identified variants (P<5.00x10-8) [51]. 

 

The prompt increase in GWAS development provided a crucial opportunity to reveal 

the true impact of common genetic variations on complex traits. Besides the drawbacks 

associated with this genomic approach, GWAS findings might have potential clinical 

applicability, as the identification of risk/prognostic markers might lead to the prediction of 

high risk individuals or to the implementation of prophylactic strategies [52, 53]. Additionally, 

it is well known that patients exhibit distinct treatment response profiles, and this variability 

might be influenced by disease pathophysiology and drug metabolism, both features 

thought to be conditioned by individual’s genetic background [54].  

Although candidate gene studies have an important impact for personalized 

medicine, the development of GWAS might contribute with novel and less obvious targets 

to pharmacogenomics [55]. Furthermore, considering the expanded view from polygenic to 

omnigenic complex traits, the identification of peripheral genes (and SNPs) associated with 

drug response or toxicity profiles might be achieved in GWAS, contributing to expand our 

knowledge on variants with putative influence in treatment regulatory network. Actually, 
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these variants might be those that have escaped the negative selective pressures from 

recent and recurrent therapeutic drugs [52]. Thereby, the additional successful identification 

of genes involved in treatment response regulatory networks could be a major achievement 

in the era of treatment individualization [56-63].  

Some GWAS findings are leading to clinical implementation, as the example of 

CYP2C9 and VKORC1 genetic variants (rs9923231 in VKORC1 gene, rs1057910 and 

rs1799853 in CYP2C9 gene), which have been considered by United States (US) Food and 

Drug Administration (FDA) as relevant biomarkers for warfarin dosage establishment [52, 

64].  

 The oncology field is a paradigmatic example of this evident interaction between 

individuals’ genetic profiles and treatment response phenotypes. In fact, the failure of 

response to a particular treatment is often observed in cancer patients and cytotoxic agents 

have a narrow therapeutic index, with potential for toxicity [14]. Thus, research on this field 

might benefit from genome-wide high-throughput approaches, with the identification of new 

genetic markers that could be integrated into predictive clinical nomograms.   

 

 

1.2. Oncobiology and molecular epidemiology  

 

Cancer is the leading cause of death worldwide, overcoming even de number of 

deaths caused by cardiovascular diseases. In 2012, according to the International Agency 

for Research on Cancer (IARC), 14,1 million new cases and 8,2 million deaths occurred 

worldwide due to this pathology [65]. Lung cancer (around 1,2 million new cases/year and 

1,1 million deaths/year) and breast cancer (around 1,7 million new cases/year and 522 

thousand deaths/year) are the most frequently diagnosed and deathly tumor types in man 

and woman, respectively. It is considered that the increase of cancer cases is due, 

especially, to the expansion and ageing of population, as well as the growing prevalence of 

risk factors associated with cancer susceptibility [66]. Thus, it is estimated that in 2030 about 

22,2 million new cases will be diagnosed [67]. 

As a genome disease, originated by the deregulation of biological pathways and 

processes, cancer is characterized by a wide range of dynamic alterations (spontaneous or 

inherited) that affect multiple cellular systems, from molecular activity to cellular 

communication [68]. Namely, carcinogenesis is influenced by individual genetic background 

and is driven by the accumulation of multiple genetic events, as point mutations, 

translocations, and gene copy number variations. Epigenetic processes, as hypo and 

hypermethylation of specific genomic regions or variations in histones modification levels, 

frequently accompany these genetic alterations [68-70]. Despite the constant occurrence of 
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genetic and epigenetic events, only a part of them present selective growth advantage, 

being causal of neoplastic development  [71]. 

Conceptually, tumorigenesis encompass three main stages: initiation, promotion 

and progression [72]. Initiation might occur upon a brief exposure to potent chemical, 

physical or biological carcinogenic agents, by the occurrence of epigenetic alterations and 

by the inheritance of germline alterations, which prompt non-lethal permanent genomic 

damage in normal cells, rendering them susceptible to both neoplastic promotion and 

development. Promotion is a reversible process in which the regular exposure to promoter 

agents prompt the proliferation of initiated cells, which favors the clonal expansion of cells 

with malignant potential. Consequently, the constant promotion of cellular proliferation 

enhances the propagation of damage caused by initiation, as well as increase the risk of 

additional mutations [72-74]. Finally, in the progression stage, additional mutations promote 

the expression of malignant features in propagated cells [73]. 

This complex process ultimately leads to modifications in the physiology of tumor 

cells responsible for the acquisition of particular hallmarks as self-sufficiency in growth 

factors, insensitivity to growth-inhibitory factors, altered cellular metabolism, evasion to 

apoptosis, unlimited replicative potential, sustained angiogenesis, tissue invasion and 

metastasis and capability to escape to immune response [69, 75]. Moreover, the acquisition 

of these hallmarks is also exacerbated by genomic instability and inflammation promoted 

by tumor cells [75]. However, a tumor cannot be seen as an inert mass of cells and the 

interaction with several other types of cells should be considered. Indeed, tumor 

microenvironment plays a relevant role, contributing with external signals to the 

development and manifestation of the malignant phenotype [75, 76]. Therefore, cancer 

development is considered as a dynamic process, where, in a first punctuated phase, 

random genomic alterations could occur, as well as the natural selection of specific clones 

of tumor cells, in subsequent phases [77]. Actually, a paradigmatic example of the dynamics 

in the tumor landscape can be ascertained by the adaptive capacity that cancer cells have 

to almost environmental change, with the unlimited ability to exhibit pathway superposition 

[78-80]. 

 

 

1.3. Ovarian cancer  

 

Ovarian cancer (OC) is the seventh most common cancer among women worldwide, 

although represents the most lethal gynecological cancer in Western countries [66]. In 2012, 

almost 239 thousand newly diagnosed cases and 152 thousand associated deaths (3.6% 

of cases and 4.3% of deaths by cancer in women) were registered [65]. In Portugal, it is 
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estimated that around 620 new OC cases occurred with almost 380 deaths, with an age-

standardized incidence and mortality rates of 8,2 cases and 4,4 deaths/100 000 women, 

respectively [81].  

Based on the World Health Organization (WHO) criteria for gynecological tumors, 

ovarian neoplasms are classified according to its cellular heterogeneity and, therefore, 

might be integrated into three major groups (epithelial, sex cord and ovarian stroma, and 

germ cell tumors) [82]. Although the high cellular diversity, a great proportion (almost 90%) 

of ovarian tumors arise from the epithelial surface [83, 84]. Accordingly, epithelial ovarian 

tumors can be further divided into seven histological subcategories, namely serous, 

mucinous, endometrioid, clear cell, Brenner, seromucinous and undifferentiated (Figure 4). 

[82]. Within these histological subgroups, except for the undifferentiated subtype, epithelial 

tumors can be further characterized grounded on their behavior, being considered as 

benign, borderline or malignant  [85, 86]. In fact, ovarian epithelial malignant tumors 

constitute almost 30% of epithelial neoplasms [85]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to the great OC cellular heterogeneity, and considering that each histological 

subtypes exhibit distinct clinical and treatment patterns, the correct staging of the tumor is 

indispensable to a successful disease management. OC staging is surgical, being 

performed based on the International Federation of Gynecologists and Obstetricians (FIGO) 

guidelines [86]. According to these criteria, stage I tumors are confined to ovaries; stage II 

Figure 4 – Ovarian cancer cellular heterogeneity. Ovarian tumors can have an epithelial, sex cord and ovarian stroma, and 

germ cells origin (adapted from [113]). 

 

Figure 4 – Ovarian cancer cellular heterogeneity. Ovarian tumors can have an epithelial, sex cord and ovarian stroma, and 

germ cells origin (adapted from [114]). 
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tumors involve one or both ovaries, presenting pelvic invasion, or primary peritoneal tumors; 

stage III tumors involve one or both ovaries, with cytologically or histologically confirmed 

dissemination to the peritoneum outside the pelvis and/or metastasis to the retroperitoneal 

lymph nodes; stage IV tumors encompass those with distant metastasis (excluding 

peritoneal metastasis). Based on the FIGO criteria, OC staging not only provides essential 

information regarding the histopathology of the disease, but also reflects its dissemination 

pattern. In fact, OC dissemination occurs preferentially from primary organ to the peritoneal 

cavity, through exfoliation, transperitoneal migration and malignant cells deployment 

(transcavitary route). Alternatively, ovarian malignant cells might disseminate via lymphatic 

system, through lymph nodes, or hematological system, up to parenchyma of distant 

organs, as liver, lung or brain [87, 88]. However, the transcavitary propagation route is the 

most clinically relevant as it is an early event in the natural history of the disease which, in 

most of cases, has impact in prognosis. Due to this dissemination pattern and its early stage 

indolent nature, several organ systems are already affected at the time of diagnosis [89]. 

In the attempt to characterize the epithelial ovarian carcinogenesis and etiology, 

several theories have been proposed (Table 2). Despite none of these theories completely 

clarify epithelial ovarian cancer (EOC) etiology, it is likely that they act synergistically, 

evidencing the complex and multifactorial nature of ovarian tumors. Nevertheless the 

importance of the proposed theories, age is considered as a major risk factor for OC 

development: 80% of OC cases are diagnosed after the age of 45 years, with a peak of 

incidence after the menopause [90, 91]. 

 

Table 2 – Explicative hypothesis of epithelial ovarian cancer etiology (adapted from [92]) 

Hypothesis Biological mechanism  

Incessant 
Ovulation  

[93-100] 

Ovarian surface epithelium is constantly exposed to repetitive cycles of 
damage (from the ovulation process) and repair (with subsequent cellular 
proliferation), which propitiates the acquisition of genomic lesions in ovarian 
epithelial cells. The accumulation of these lesions might lead to the 
development of inclusion cysts which subsequently can trigger OC. 

Gonadotropins 
[101, 102] 

Excessive stimulation of ovarian epithelial cells by gonadotropins follicle-
stimulating hormone (FSH) and luteinizing hormone (LH) promotes cellular 
proliferation and neoplastic development. 

Hormones  
[98, 100] 

Through the direct interaction with the ovarian epithelium, estrogens and 
androgens might have a tumorigenic role and progestins may confer a 
protective effect against tumorigenesis.   

Inflammation  
[98, 100] 

Inflammatory factors resulting from the ovulatory process or concomitantly 
released with other pathological processes may damage ovarian epithelium 
and trigger tumorigenesis. 

 



1.Introduction 
 

13 
 

Moreover, a portion of OC cases (10-15%) arises in individuals with genetic 

predisposition, making it one of the key risk factors in ovarian tumorigenesis [98]. A family 

history of OC confers, in women with affected first-degree relatives, a three/four-fold  

increased risk of OC development [103]. Hereditary Breast and Ovarian Cancer Syndrome, 

which is associated with BRCA1 (3-6%) and BRCA2 (1-3%) gene mutations, is the most 

common cause of inherited OC [104, 105]. Despite the low frequency of these mutations, 

the lifetime risk of OC development for BRCA1 mutation carriers is 40%, whereas for 

BRCA2 mutation carriers is 20%, unlike to the 1,4% lifetime risk for general population [104, 

106]. The second most common cause of inherited ovarian cancer is Lynch Syndrome, 

which is associated with germline mutations in mismatch repair genes MLH1, MSH2, MSH6 

and PMS2 (1-2%) [104, 107]. Though, apart from the already identified syndromes, some 

studies point that the known susceptibility genes explain only a small fraction of the familiar 

risk [8, 108, 109].  

Additionally, endocrine and reproductive factors seem to be important whereby the 

nulliparity, early menarche, late menopause and the exposure to hormone replacement 

therapy are considered as potential risk factors for OC development [84]. 

Due to the asymptomatic nature of the disease and the lack of methods for its early 

detection, nearly 70% of OC cases are diagnosed in an advanced stage. Furthermore, the 

development of resistance to current therapies is a common feature in these patients, which 

results in a 5-year survival rate of only 30% [110, 111]. However, a high 5-year survival rate 

(90%) is seen in patients with localized tumor at diagnosis [111, 112]. 

Over the past decades, significant advances have been achieved in the OC 

treatment. The combination of cytoreductive surgery followed by the doublet of platinum 

(carboplatin or cisplatin) and taxane (paclitaxel or docetaxel), every 21/21 days for 6 cycles, 

has been the standard regimen for EOC first-line treatment  [113, 114]. Although EOC is 

considered a chemosensitive tumor, as most of patients respond to the first-line 

chemotherapy achieving tumor response rates up to 80%, a great percentage of them will 

relapse.  

Disease stage, tumor size, histological subtype, differentiation degree and the extent 

of residual disease are considered as classic prognostic factors for OC. In opposite, the 

determination and selection of predictive biomarkers for OC first-line treatment has proved 

to be a challenge, which establish this field as a domain of high priority research.   
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1.4. Ovarian cancer as a study model for GWAS development 

 

 As previously mentioned, genetic factors are one of the key risk factors for OC [115]. 

Over the years, linkage analyses have concluded that several high penetrance genes have 

a crucial role in the malignant transformation of the ovary, although, with the postulation of 

the “common disease-common variant” hypothesis, common variants have also been 

associated with OC development [116]. Moreover, the identification of variants relevant to 

the response to treatment and survival in OC patients might contribute to a better 

understanding of prognosis, ultimately guiding the selection of improved chemotherapy 

schemes [117]. To date, several candidate gene studies have been performed allowing the 

recognition that individual genetic profiles have the potential to influence inter-patient 

variability in drug response and, hence, OC treatment outcome [92, 118-129]. Some of the 

obvious candidate genes encode drug metabolism enzymes or DNA repair mediators that 

can influence treatment response, toxicity profiles and, lastly, survival endpoints [130, 131]. 

Genome-wide strategies that encompass SNP genotypes, drug-induced cytotoxicity in cell 

lines and gene expression data are potential models for the identification of predictors of 

treatment and clinical outcome in OC patients [132].  

To this date, 15 OC GWAS have been performed, most of them evaluating 

susceptibility loci (Supplementary Table 1), although the impact regarding clinical outcome 

has also been investigated (Supplementary Table 2) [133-145]. To highlight that the majority 

of the variants reviewed and presented are associated with a significant P-value 

(P<5.00x10-2), despite only a small fraction reached the desired genome-wide threshold 

(P<5.00x10-8). 

Replicated and/or validated susceptibility and clinical outcome associated SNPs 

lying within genes are schematically grouped in Figure 5 according to the molecular 

pathway(s) they are involved. Each group was constituted based on information available 

in an online database, Reactome, which resulted in the establishment of seven main groups 

[146]. 
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1.4.1. OC susceptibility GWAS 

 

 In 2009, the first OC GWAS was conducted by Song and collaborators concerning 

the identification of common OC susceptibility alleles [133]. The authors have evaluated 

more than 500 thousand SNPs, reporting the association of 12 SNPs at 9p22 locus with the 

risk of OC development (P < 10-8). The most significant associated SNP (rs3814113) was 

also genotyped in a replication set which confirmed the association (combined OR=0.82; 

Ptrend=5.10x10-19). Moreover, the authors reported that the association is distinct regarding 

the histological subtype, being the strongest association obtained for serous OC subgroup 

(OR = 0.77; Ptrend=4.10x10-21). This SNP is localized near the BNC2 gene, which encodes 

a zinc finger protein highly expressed in reproductive tissues and involved in DNA 

transcription (Supplementary Table 3). However, none of the top SNPs seem to be 

Figure 5 - Molecular pathways in which replicated and/or validated susceptibility and clinical outcome associated SNPs are 

involved, according to the information presented in Supplementary Tables 4 and 5. Highlighted in red are SNPs associated 

with OC susceptibility; highlighted in green are SNPs associated with OC clinical outcome and highlighted in dark are SNPs 

associated both with OC susceptibility and clinical outcome. Briefly, “signal transduction” set refers to SNPs in genes involved 

in signaling transduction pathways; “cell membrane molecules” set includes cell surface receptors and transporters subgroups; 

“cellular processes” set covers SNPs lying in genes involved in cell cycle, apoptosis, cellular senescence, cell motility and 

vesicle-mediated transport and catabolism; “genetic information processing” set encompass SNPs involved in gene 

expression and replication processes, as well as ubiquitin-mediated proteolysis processes; “metabolism” set enclose genetic 

variants associated with biomolecules and energy metabolism; in “DNA damage response” set, SNPs affecting DNA damage 

repair systems are presented and “others” set includes subgroups related to less representative pathways. 
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associated with BNC2 expression or to be near predictable or known transcription regulation 

elements, demanding for further evaluations [133]. 

After the publication of the first GWAS, ten additional OC susceptibility studies have 

been conducted  [134, 135, 137-141, 143, 147, 148] (Supplementary Table 1). Most of these 

studies were case-control based, although studies conducted by Lu et al. [137] and Earp et 

al. [141] used a pooled DNA-technique in one of the GWAS phases. This approach allows 

to reduce the cost of genotyping, maintaining the study power, through the construction of 

two sets of pools composed by a combination of the same amount of DNA from cases and 

controls. Subsequently, these pools are genotyped and allelic frequencies calculated [149]. 

Briefly, 49 SNPs were found to be associated with susceptibility to EOC. Among them, 14 

SNPs reached genome-wide significance for EOC risk, being the three most significant the 

genetic variants rs3814113 (Ptrend=5.10x10-19), rs2072590 (P=4.50x10-14) and rs199661266 

(P=1.00x10-9) [133, 135, 143] (Supplementary Table 1). The SNP rs3814113 lies ~44kb 

upstream of BNC2 gene, which encodes a protein highly expressed in reproductive tissues, 

being a potential regulatory protein of DNA transcription [133]. The genetic variant 

rs2072590 lies within a non-coding region downstream of HOXD3 and upstream of HOXD1 

and it tags SNPs in the HOXD3 3’ untranslated region, genes found to be implicated in 

cancer development [135]. The associated variant rs199661266 locates in intron 6 of 

ATAD5, a gene involved in DNA damage response  [143] (Supplementary Table 3).  

In this set of GWAS, were also found several markers associated with the 

susceptibility to particular EOC subtypes, highlighting the role of distinct molecular 

pathways underlying each histological subtype [134, 135, 138-141, 143, 147, 148]. In this 

context, 31 SNPs were found to have an influence in the susceptibility to OC serous subtype 

(top associated SNP: rs3814113; Ptrend=4.10x10-21) [133], 13 SNPs were associated with 

endometrioid subtype (top associated SNP: rs555025179; P=4.50x10-8) [148], 13 SNPs 

with mucinous subtype (top associated SNP: rs112071820; P=1.50x10−13) [148], seven 

SNPs with clear cell subtype (top associated SNP: rs757210; P=3.90x10-6) [139] and one 

SNP with low-malignant potential serous subtype (top associated SNP: rs9609538; 

P=7,00x10-4) [141]. Five additional SNPs were associated with less representative subtypes 

(top associated SNP: rs1413299; P=9.69x10-6) [140] (Supplementary Table 1).  

Regarding effect sizes conferred by associated markers, they have been found to 

have generally low to moderate effects, with ORs ranging from 0.67 to 2.19 (Supplementary 

Table 1). These values are in accordance with genetic variants associated with the 

susceptibility for other cancer types, as previously mentioned [24-26]. 

Concerning OC susceptibility GWAS, a highlight must be given to the study 

performed by Bolton and colleagues that reported that the BRCA1-interacting gene 

MERIT40 might be a relevant gene underlying the genetic influence to EOC, supporting a 
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role of the 19p13 locus in OC susceptibility. These results revealed special interest by the 

fact that genetic variants in this region have already been identified as modifiers of breast 

cancer risk in BRCA1-mutated carrying patients [134]. 

 

1.4.2. OC clinical outcome GWAS 

 

 As OC patients may inherently vary in their ability to respond to treatment, genetic 

association studies have sought to identify variants with impact in clinical outcome. In 2010, 

Bolton and colleagues performed the first OC clinical outcome GWAS, evaluating more than 

250 thousand SNPs, from which rs8170 (Hazard Ratio (HR)=1.11; Ptrend=5.20x10-4) and 

rs2363956 (HR=1.09; Ptrend=5.60x10-4), located in locus 19p13, were associated with OC 

survival (Supplementary Table 2). The presence of the variant allele was associated with a 

slightly decrease in patients’ survival for both variants [134]. However, this first GWAS did 

not replicate any survival-associated SNPs.  

In the total, five OC GWAS have evaluated the association of genetic markers with 

patients’ clinical outcome [134, 136, 142, 144, 145] (Supplementary Table 2). Despite the 

case-control study design used by Bolton and collaborators, the other four clinical outcome 

GWAS were cohorts or used a LCLs approach. Briefly, in most cell line-based GWAS, LCLs 

are exposed to increasing concentrations of a drug, and individual cellular sensitivity to the 

agent is measured by cell growth inhibition or apoptosis ability [14]. The GWAS is 

simultaneously conducted, often including genome-wide genotype and gene expression 

evaluation [150]. In the context of a cell-based model, Huang and colleagues employed a 

GWAS to identify germline variants with clinical applicability. In this study, the risk allele of 

rs1649942 was significantly associated with an increased risk of disease progression and 

death in phase 1 patients submitted to carboplatin-based chemotherapy, with a greater 

genetic contribution among the subset of patients with optimally debulked tumors. Since 

clinical outcomes obtained from optimally debulked patients might represent the ideal 

treatment scenario for OC, in order to eliminate the confounder effect associated to the 

presence of residual disease, the role of rs16499942 was addressed in this subset of 

patients. However, the results were not replicated in phase two, which was attributable to a 

different categorization of residual disease and to the fact that patients were presumed, but 

not known, to have had standard doses of paclitaxel and carboplatin, which might reflect 

the impact of distinct clinical definitions across studies [136].  

Clinical outcome in OC patients has been reported to be under the influence of 46 

SNPs. The three most associated SNPs reported by these GWAS were rs185229225 

(Pmeta=2,2x10-7), rs3842595 (Pmeta=2,6x10-7) and rs4910232 (P=4,7x10-7), although any of 

the 46 associated SNPs have reached genome-wide significance [142, 145]. The 
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polymorphism rs185229225 lies within BOD1L1, a gene coding a protein found to be a 

protection factor of replication fork [145, 151] (Supplementary Table 4). SNP rs3842595 is 

located within SNCAIP gene, which is involved in ubiquitin mediated proteolysis system and 

in Parkinson’s’ disease [145] (Supplementary Table 4). With respect to variant rs4910232, 

it lies within a non-coding region [142] (Supplementary Table 4). Nevertheless, four SNPs 

were associated with clinical outcome in serous subtype, being rs7874043 the most 

significant SNP (P=7,3x10-5), located within a putative regulatory element of TTC39B gene 

and, consequently, potentially involved in the regulation of High Density Lipoprotein-C 

(HDL-C) levels [144] (Figure 5, Supplementary Table 4). Moreover, rs8170 was associated 

with endometrioid subtype (Ptrend=3.00x10-2), and lies within MERIT40, a gene involved in 

DNA double strand break response pathway and with a role in cell cycle checkpoints [134] 

(Figure 5, Supplementary Table 4). 

In concordance with the variants identified in susceptibility OC GWAS, SNPs that 

were found to be associated with OC patients’ clinical outcome do not confer large effect 

sizes, despite the slightly increase in HR values (ranging from 1.07 to 1.91) (Table 3).  

Regarding OC clinical outcome GWAS, a special focus must be given to the study 

performed by Johnatty and colleagues, which selected SNPs for replication in the presence 

of a good imputation quality (r2 ≥ 0.9) to minimize the risk of false positives. This study was 

one of the largest performed studies that evaluated the presence of genetic variation across 

the genome for a possible association with OC clinical outcome, either in regard to first-line 

standard treatment and regardless of treatment scheme. Once again, by the role of residual 

disease extension as predictive marker, patients were only included if they received a 

minimum of cytoreductive surgery and had available information on level of residual 

disease. Factors of appreciation of this study are that, beyond the SNPs prioritization on 

basis of good imputation quality, the final estimates were derived from meta-analysis of all 

available imputed data and genotypes from OC consortiums and the analysis was restricted 

to European invasive EOC patients with standardized clinical and pathological information 

[142].      

Moreover, French and collaborators have identified two SNPs, located in a intronic 

region of TTC39B. Functional tests have showed that the likely functional SNP is 

rs7874043, which alters transcription factor (TF) binding and, ultimately, chromatin 

conformation (Figure 5, Supplementary Table 4). Moreover, the silencing of PSIP1, one of 

the targets of the regulatory element, significantly impaired DNA damage repair by 

homologous recombination in OC cell lines, suggesting that PSIP1 is a potential target for 

a therapeutic approach as previously suggested for other tumors [152]. A high expression 

of PSIP1 is also associated with high risk of recurrence proposing that altered PSIP1 

expression may be a functional consequence of associated SNP [153]. The strengths of the 
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study performed by French and colleagues are that they only included cases that received 

standard first-line treatment (duplet carboplatin/paclitaxel) and the progression-free survival 

(PFS) was the survival endpoint evaluation, rather than overall survival (OS) following 

exposure to multiple drugs [144]. 

 

 

1.5. OC and GWAS: the challenge of post-GWAS research    

 

 Since Song and collaborators conducted in 2009 the first OC GWAS, several loci 

have been identified as being associated with susceptibility and clinical outcome, although 

without reaching definitive and conclusive results. In fact, as previously mentioned, despite 

the relative success of GWAS, they are associated with some disadvantages, when 

compared to other genetic studies, as the GWAS’ low statistical power in addition to high 

rates of false positive results. Consequently, a great number of association tests are 

necessary, as it is a wide study size due to strict statistical significance thresholds [10, 11, 

16].  

Additionally, the failure to conclude an association in OC GWAS might be caused 

by a variety of factors such disease heterogeneity as in most GWAS the initial analysis, that 

allows SNP selection for succeeding phases, combine all EOC histological subtypes 

whereas the subsequent phases might be performed based on a subgroup stratification. An 

example is the study performed by Bolton and colleagues [134]. Limitations in GWAS might 

also reflect heterogeneous clinical criteria and the use of self-reported ethnicity. However, 

the later limitation could be overcome using ancestry informative markers (AIMs) to define 

ethnicity, as exemplified in studies conducted by Song, Bolton and Goode [133-136].   

Another factor that might explain the spurious results obtained by GWAS concerning 

to cancer treatment response is that, for most cancers, a wide variety of chemotherapeutic 

regimens is administered, which might contribute to heterogeneity in treatment response 

[154-156]. Moreover, the ability to obtain follow-up data for a suitable number of patients 

might restrict the detection of statistical relevance regarding survival endpoints. Accordingly, 

pharmacogenomics GWAS have failed to identify associations with relevant effect sizes for 

a genome-wide significance mainly due to the small samples sizes, as the low incidence of 

OC preclude the acquisition of a large quantity of samples, as well as cancer drug non-

responders are often less frequent than responders. Moreover, drug response is not always 

measured in a completely quantitative manner, which prompt a heterogeneous phenotype 

definition [144]. Therefore, in order to overcome the small number of samples available, 

most of the performed OC GWAS have recruited patients from several consortiums [133-

135, 139, 142-144]. 
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Thereby, the major challenge in in this area of research is to discriminate the true 

associations from false positives through attempts to replicate positive findings in 

subsequent studies. Thus, it becomes essential to adopt strategies that enable researchers 

to support the obtained results. In this perspective, fine mapping, functional analyses or the 

study of populations from many geographical ancestries have become important 

approaches that will complement GWAS findings and will help to achieve a better 

comprehension of the role of the identified variants in disease genetics [10, 20, 157, 158].  

Validation studies in an independent set or using different methodologies are 

another strategy with possible impact in GWAS evaluation. They allow the assessment and 

confirmation of previously reported results in order to validate them and/or to refute chance 

or possible bias as probable cause of association [159]. Moreover, they minimize false 

positive results observed in common low penetrance alleles, since only a limited number of 

variants are truly risk alleles [160-162]. Another reason why validation is important is that, 

in a first GWAS, the effect of an association is usually overestimated. Thereby, as validation 

studies are made, the estimate effect declines, in a phenome known as “winner’s curse” 

[31]. Consequently, the calculation of validation sample size is a major determinant to be 

taken in consideration [163]. 

Although the terms “replication” and “validation” are interchangeably used, they have 

different meanings: in a replication study, the replication sample is an independent dataset 

drawn from the original sample (discovery sample), in an attempt to confirm the effect in the 

GWAS target population [164] (Figure 6). As loci are replicated as truly causal, extension 

into multiple ethnicities is highly recommended to determine the generalizability and 

consistency of the proposed markers [165, 166]. On the other hand, in validation studies, 

the validation sample and the original sample are originated from different populations, 

meaning that an independent validation subset is used [165].  
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The intention of replication and validation studies is not only to provide further 

evidence to accept or refute the original association but also to systematic evaluate the 

potential sources of error or bias underlying the GWAS [166]. Validation studies have been 

made for several types of cancers, however, to the best of our knowledge, only five studies 

were conducted in OC [136, 137, 140, 141, 167]. As mentioned before, Huang and 

collaborators used a cell-based approach to identify SNPs associated with carboplatin 

sensitivity and performed, subsequently, a two-phase validation in clinical samples for SNPs 

found to be associated in the cell-based phase. However, no subsequent confirmation was 

performed for the second stage validation [136]. In the studies conducted by Lu et al (2012) 

and Earp et al (2014), a pooled DNA strategy was used and, to validate associated SNPs 

from the previous phase, they were genotyped in a large set of OC samples. Although in 

the later, all SNPs associated with OC susceptibility were validated, Lu and colleagues were 

not able to confirm any association [137, 141]. In a study conducted in Han Chinese women, 

Chen and collaborators tested the association of previously reported SNPs with OC risk 

and validated one SNP (rs9303542). In 2014, an independent validation study conducted 

by Mostowska and collaborators evaluated the association of seven GWAS-associated 

Figure 6 – Schematic representation of the rational beyond validation and replication studies. In a GWAS, hundreds of 

thousands of SNPs are genotyped in a limited number of samples in a discovery phase, in order to select variants 

associated with the interest trait. Then, these SNPs are genotyped in replication stages with larger sample sizes to confirm 

their association. Validation studies use a sample set recruited from a different population to confirm reported associations. 

 

Figure 6 – Schematic representation of the rational beyond validation and replication studies. In a GWAS, hundreds of 

thousands of SNPs are genotyped in a limited number of samples in a discovery phase, in order to select variants 

associated with the interest trait. Then, these SNPs are genotyped in replication stages with larger sample sizes to confirm 

their association. Validation studies use a sample set recruited from a different population to confirm reported associations. 
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SNPs in a Polish population regarding susceptibility to OC. They have statistically validated 

loci 9p22 and 8q24 for all OC patients and, more specifically, for serous subtype [167].  

 As previously mentioned, OC candidate gene studies are mainly conducted for 

variants in genes or pathways with an obvious role in the disease or in the response to 

platinum/taxane duplet. Besides their putative direct influence, no conclusive results have 

been achieved, since only a few solid associations were reported and, even less, were 

positively replicated and/or validated [116, 168]. The existence of non-definitive 

associations seems to be concordant with the OC GWAS results, as only a small part of 

associated GWAS variants are consistently replicated and/or validated and few robust 

associations have been reached (P<5.00x10-8) (Figure 5). 
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2.1. Main aim 

 

Independent validation of GWAS-identified Neuregulin 3 (NRG3) rs1649942 and 

Brain and reproductive organ-expressed (BRE) rs7572644 genetic variants as predictive 

biomarkers, in a cohort of OC patients from the North region of Portugal. 

 

 

2.2. Specific aims 

 

▪ Literature review on OC GWAS; 

 

▪ Selection of genetic variants previously reported to be associated with clinical outcome 

in OC patients; 

 

▪ Validation of GWAS-associated NRG3 rs1649942 and BRE rs7572644 in an 

independent cohort of OC patients. 

 

 

 

  



 

 

26 
 

 

 

 

 

 

 

 

 

 

 

 

3. Materials and methods 

 

 

  



 

 

27 
 

 



3. Materials and methods 
 

 

28 
 

3.1. Study population description 

 

We performed a retrospective hospital-based cohort study on European female 

patients with the histological confirmation of EOC, admitted between January of 1996 and 

December of 2012 in the departments of gynecology and oncology of the Portuguese 

Institute of Oncology, Porto, Portugal (IPO-Porto). From this group of patients were 

excluded those who were only admitted for a second opinion or to be submitted to specific 

treatment techniques, namely hyperthermic intraperitoneal chemotherapy or with follow-up 

in other institutions. A cohort of 339 conveniently sampled patients from the North region of 

Portugal and for which biological material was available was enrolled.  

Tumor staging was performed according to the FIGO guidelines and the assessment 

of the tumor response to chemotherapy was based on Rustin criteria [169, 170]. Patients’ 

clinicopathologic and follow-up data were obtained from their medical records. The mean 

age of included patients was 55 years (median = 54 years; minimum = 18 years; maximum 

= 80 years), from which 57.2% were post-menopausal women. The majority of patients was 

diagnosed with advanced disease stage (57.5% FIGO III/IV). The distribution considering 

the extent of residual disease occurred as follows: in 41.9% of the cases was achieved an 

optimal surgical resection whereas 11.8% and 26.2% presented residual disease ≤2 cm 

and >2 cm, respectively (no information available for 20.1% of the patients). Considering 

the histological subtype, 56.9% presented serous tumors, 12.1% clear cell, 10.0% 

mucinous, 10.0% endometrioid and the remaining 10.9% less common subtypes. 

Regarding the therapeutic strategy, 89.5% of patients were submitted to the standard 

regimen based on cytoreductive surgery followed by a combination of Paclitaxel 

(175mg/m2) and Cisplatin (75 mg/m2) or Carboplatin (Area under the curve 5-7.5), although 

doses were adjusted whenever severe toxicity was reported. Chemotherapy alone (5.1%), 

neoadjuvant chemotherapy (3.7%) or only surgery (1.7%) were also considered as first-line 

treatment options.  

Follow-up information was reviewed from the initial diagnosis through December 

2016 in 322 patients (95% of all patients). The mean follow-up of all participants enrolled in 

the study was 89.9 months (median = 68.5 months; minimum = 2 months; maximum = 246 

months).  

A written informed consent was obtained from each participant prior to their inclusion 

in this study, according to Helsinki Declaration principles. Furthermore, this study was 

approved by the ethics committee at IPO-Porto (CES IPO:286/2014). 
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3.2. Laboratory procedures 

 

3.2.1. Sample collection and genomic DNA extraction 

 

Peripheral venous blood samples were obtained with a standard technique and 

collected in ethylenediamine-tretaacetic acid (EDTA)-containing tubes.  

Genomic DNA was extracted from peripheral blood samples using the extraction kit 

Qiagen®, QIAmp DNA Blood Mini Kit (Qiagen® 51106), as indicated by the manufacturer’s 

procedure. 

 

3.2.2. SNP selection  

 

To select the variants to be validated in this study, we gathered all polymorphisms 

statistically associated with OC clinical outcome, identified in a recently accepted review on 

OC GWAS studies carried-out by our group [171], which were further submitted to the SNP 

Prioritization Online Tool (SPOT) software [172]. Based on the priority ranking returned by 

the SPOT software (which takes into account the P-value reported by the original study and 

the possible functional impact of each variant considering its genomic location), the minor 

allele frequency (MAF) in the Iberian population (>15%), the availability of the respective 

genotyping assay, the putative relevance in ovarian biological pathways and the previously 

accomplishment of validation studies, the NRG3 rs1649942 and BRE rs7572644 SNPs 

were selected, among the top prioritized polymorphisms . 

 

3.2.3. Polymorphisms genotyping 

 

 Genotyping for NRG3 rs1649942 and BRE rs7572644 genetic variants was 

performed using TaqMan® Allelic Discrimination methodology (Figure 7), through the Real-

Time Polymerase Chain Reaction (PCR) technique. The two validated assays were: 

C__29412070_10, targeting the rs7572644 polymorphism, whose VIC dye probe was 

associated with C allele and FAM dye probe was associated with T allele 

(TAAGAGCCATGGGGAACCATAGCTG[C/T]AGGGAAACCGTGATGCCTGCCAGCA) 

and C___8914657_10, targeting rs1649942 polymorphism, whose VIC dye probe was 

associated with A allele and FAM dye probe was associated with G allele 

(GCCCTGCGGTTGAGGGTTCTTGCCA[A/G]TTCGATTCTAATACATGAACACTTT). 

 Real-time PCR reactions were carried out using 6 µL reaction mixture, containing 

the following components: 2.5 µL of TaqPathTM ProAmpTM Master Mix (1x), 0.125 µL of 
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TaqMan® SNP Genotyping Assay mix, 2.375 µL of sterile water and 1 µL of genomic DNA. 

Thermal conditions were based in the activation of Taq DNA Polimerase at 95°C for 10 

minutes, followed by 45 cycles at 92°C for 15 seconds to denature DNA chain and 60°C for 

1 minute to primers pairing and extension. 

 Amplification was detected and data analyzed through the StepOne Plus Real-Time 

PCR system and StepOne Software (version 2.3 Applied Biosystems). In order to ensure 

the quality of genotyping, two negative controls were included in each amplification reaction 

(to avoid false positives) and double sampling was performed in, at least, 10% of the 

samples, with an accuracy above 99%.  The genotype results were independently evaluated 

by two researchers, who were blinded to patient clinical status. 

 

 

 

 

3.3. In silico analysis 

 

 In silico analysis was conducted to due to the lack of knowledge regarding the 

functional consequence of both intronic variants studied. Therefore, the Human Splicing 

Finder 3.0 was used to understand the possible influence of both SNPs in the respective 

Figure 7 – Exemplification of an allelic discrimination plot for NRG3 rs1649942 polymorphism. 

 

Figure 7 – Exemplification of an allelic discrimination plot for NRG3 rs1649942 polymorphism. 
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gene pre-mRNA splicing. Furthermore, to identify putative regulatory elements recognition 

binding sites created by the different alleles, the MotifMap online tool was also used. 

 

 

3.4. Statistical analysis 

 

 Statistical analysis was performed resorting to the computer software IBM® SPSS® 

Statistics for WindowsTM (version 24.0, SPSS Inc, 2016). 

Associations between genetic polymorphisms and patients’ clinicopathologic 

characteristics were assessed using chi-square test (χ2), for categorical variables, whereas 

student’s t-test was used for continuous variables (age).  

Kaplan-Meier method was used to obtain survival curves and the log-rank test was 

used to compare the probabilities of survival. The most suitable genetic model for each 

variant was established after an initial comparison between Kaplan-Meier curves under the 

log-additive genetic model. Subgroup stratification was also performed according to FIGO 

stage (FIGO I/II vs FIGO III vs FIGO IV).  

OS, defined as the interval of time between diagnosis and patients’ death by EOC 

(EOC specific survival) or the last clinical evaluation, and disease-free survival (DFS), 

defined as the period from the date of diagnosis until the date of first recurrence or last 

clinical evaluation in patients with complete response to the first-line treatment, were the 

two clinical endpoints evaluated in this study. Endpoint definition was based on RECIST 

criteria [173].  

The death and recurrence risk were estimated by a Cox proportional HR, along with 

95% confidence interval (CI), adjusted for hormonal status (pre- vs post-menopausal), 

histologic subtype (serous vs others), surgery (complete vs others) and tumor grade (grade 

1 vs grade 2 vs grade 3 vs grade 4). Cause of death was determined from the patients’ 

medical records.  

 All tests were two-sided and a 5% level of significance was stablished. 
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4.1. Descriptive statistics of NRG3 rs1649942 and BRE rs7572644 polymorphisms 

 

 NRG3 rs1649942 genotype distribution (MAF, 28.3%) was 51.7% for homozygous 

AA (n=169), 40.0% (n=131) for heterozygous AG and 8.3% for homozygous GG (n=27) (4% 

of genotyping failure). Regarding the variant BRE rs7572644 (MAF, 21.1%), 63.2% of the 

patients were found to be homozygous for the T allele (n=208), 31.3% were heterozygous 

TC (n=103) and 5.5% homozygous for the C allele (n=18) (3% of genotyping failure).  

Our data did not reveal significant statistical differences between the different 

genotypes of NRG3 rs1649942 and BRE rs7572644 and patients clinicopathological 

characteristics, namely age (P=0.481 and P=0.968, respectively), FIGO stage (P=0.554 

and P=0.402, respectively), histological subtype (P=0.060 and P=0.338, respectively), 

hormonal status (P=0.571 and P=0.271, respectively) and extent of residual disease 

(P=0.867 and P=0.863, respectively). 

For the cohort involved in this study, the mean OS and DFS were 89.39 and 79.83 

months, respectively. 

 

 

4.2. Association of NRG3 rs1649942 polymorphism with the clinical outcome of OC 

patients 

  

Concerning the survival curves obtained using Kaplan-Meier method and log-rank 

test, no statistically significant differences were observed for the survival time of all patients 

according to NRG3 rs1649942 genotypes (P=0.708), neither when considering a subgroup 

analysis restricted to early disease stage (FIGO I/II; P=0.644) or FIGO III patients 

(P=0.986). However, a significant impact of NRG3 rs1649942 genotypes was observed for 

the FIGO IV stage patients (P=0.027). Considering a recessive genetic model (AA/AG 

genotypes vs GG genotype), no significant differences on survival were observed 

(P=0.699). Regarding the subgroup with distant metastasis at diagnosis, a consistent 

association was observed, as A allele carriers had a higher survival when compared to GG 

genotype carriers (P=0.011) (Figure 8). Namely, a mean OS time of 61.96 months was 

observed for patients with A allele that contrast with the 13.00 months reported for GG 

genotype patients. Anew, the protective effect of NRG3 rs1649942 reference allele was not 

observed in early stages (FIGO I/II; P=0.377) or FIGO III stage patients (P=0.869). 
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Regarding the impact of NRG3 rs1649942 polymorphism with DFS for the entire 

cohort, no statistically significant associations were observed, considering either the log-

additive and the recessive genetic model (P=0.356 and P=0.158, respectively). Additionally, 

no significant association was observed when the analysis was stratified by FIGO staging, 

independently of genetic model applied (data not showed). Furthermore, multivariate 

analyses for the risk of death and recurrence of EOC patients were calculated, adjusted for 

EOC prognostic variables (hormonal status, histological subtype, surgical extension and 

tumor grade). However, this analysis did not reveal a predictive impact of NRG3 rs1649942 

regarding the risk of death and recurrence of EOC patients (HR, 1.30; 95% CI, 0.63-2.67; 

P=0.477 and HR, 0.59; 95% CI, 0.24-1.45; P=0.251, respectively). 

 

 

4.3. Association of BRE rs7572644 polymorphism with the clinical outcome of OC 

patients 

 

  Concerning the impact of BRE rs7572644 polymorphism on survival, no significant 

associations were observed either under a log-additive (TT vs TC vs CC; P=0.181) or 

Figure 8 – Overall survival by Kaplan-Meier and log-rank test for the subgroup of EOC patients with FIGO IV stage disease 

at diagnosis, according to NRG3 rs1649942 polymorphism genotypes (recessive genetic model). The group of patients 

with A allele carrier genotypes (AA/AG genotypes) had significantly higher survival when compared with patients with GG 

genotype (P=0.011).   
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dominant genetic model analysis (CC/TC genotypes vs TT genotype; P=0.889). None the 

less, upon a stratified analysis, a statistically significant impact on survival time and BRE 

rs7572644 genotypes was observed in FIGO I/II and FIGO III stage patients (P=0.038 and 

P=0.040, respectively).  No statistically significant difference was noticed for the later stage 

OC patients (P=0.139). Furthermore, under the dominant genetic model (CC/TC vs TT), we 

observed that TT homozygous genotype patients had an extended long-term survival of 

39.53 months when compared to C allele carriers (214.46 vs 174.93 months; P=0.014), in 

the subgroup with early stage disease at diagnosis (FIGO I/II) (Figure 9). In opposite, for 

patients with FIGO III and IV stage, TT homozygous patients showed a shorter survival than 

those with CC/TC genotypes, even though these associations did not reach the significance 

level (mean survival time (months) for FIGO III stage patients: TT genotype = 100.52, C 

allele = 135.02; P=0.052; and FIGO IV stage patients: TT genotype = 44.99, C allele = 

70.06; P=0.384, respectively). 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

No statistically significant associations were observed considering the DFS as 

outcome, independently of the genetic model assumed (data not showed). However, for 

early stage patients, we observed that C allele carriers had a lower DFS time than TT 

genotype patients, with CC and TC genotype carriers presenting recurrence at 175.13 

Figure 9 – Overall survival by Kaplan-Meier and log-rank test for the subgroup of EOC patients with FIGO I/II stage disease 

at diagnosis, according to BRE rs7572644 polymorphism genotypes (dominant genetic model). The group of patients with TT 

genotype had significantly higher survival when compared to C allele carrier genotype patients (P=0.014).   

 

Figure 9 – Overall survival by Kaplan-Meier and log-rank test for the subgroup of EOC patients with FIGO I/II stage disease 

at diagnosis, according to BRE rs7572644 polymorphism genotypes (dominant genetic model). The group of patients with TT 

genotype had significantly higher survival when compared to C allele carrier genotype patients (P=0.014).   
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months and TT homozygous patients at 214.23 months (P=0.032) (Figure 10). No further 

statistical associations were observed for FIGO III (P=0.224) and FIGO IV stage patients 

(P=0.897).  

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, a multivariate analysis was performed to estimate the risk of death and 

recurrence of FIGO stages I/II patients, considering the BRE rs7572644 polymorphism and 

known EOC prognostic factors (hormonal status, histological subtype, surgical extension 

and tumor grade) (Table 3). We observed that C allele carriers had not only a threefold 

increased risk of disease recurrence but also death compared to TT homozygous genotype 

patients (HR, 3.33; 95% CI, 1.35-8.23; P=0.009 and HR, 3.09; 95% CI, 1.25-7.66; P=0.015, 

respectively) (Table 3).  

 

 

 

 

Figure 10 – Disease-free survival by Kaplan-Meier and log-rank test for the subgroup of EOC patients with FIGO I/II stage 

disease at diagnosis, according to BRE rs7572644 polymorphism genotypes (dominant genetic model). The group of 

patients with TT genotype had significantly higher survival when compared to C allele carrier genotype patients (P=0.032). 

 

Figure 10 – Disease-free survival by Kaplan-Meier and log-rank test for the subgroup of EOC patients with FIGO I/II stage 

disease at diagnosis, according to BRE rs7572644 polymorphism genotypes (dominant genetic model). The group of 

patients with TT genotype had significantly higher survival when compared to C allele carrier genotype patients (P=0.032). 
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Bold values are statistically significant. 

 

 

 

 

 

 

 

 

 

 

 Risk of death Risk of recurrence 

Variable HR 95% CI P-value HR 95% CI P-value 

BRE rs7572644 
(TT genotype vs C allele) 

3.09 1.25-7.66 0.015 3.33 1.35-8.23 0.009 

Hormonal status 
(Pre- vs Post-menopause) 

1.17 0.98-1.39 0.086 1.25 1.06-1.47 0.007 

Histology 
(serous vs others) 

0.63 0.26-1.56 0.319 0.45 0.18-1.10 0.078 

Surgery 
(complete vs other) 

1.90 0.61-5.97 0.271 3.37 1.21-9.36 0.020 

Tumor grade  
(Grade 1 vs 2 vs 3 vs 4) 

1.05 0.91-1.21 0.489 1.00 0.86-1.15 0.946 

Table 3 –  Multivariate Cox regression analysis on the risk of recurrence and death in early stage patients (FIGO I/II) at 

diagnosis, considering several clinical and pathological variables. 
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Besides OC low incidence, this gynecological cancer is a main factor of morbidity 

and mortality [118]. Namely, the high OC-associated lethality can be explained by the lack 

of specific and sensitive screening methods and by the anatomic location of this organ which 

allows the painless development of the tumor, both factors that preclude the early diagnosis 

of the disease [110, 111]. Although the implementation of platinum-based chemotherapy 

schemes has increased the response rates to first-line treatment up to 70%, the 

development of chemotherapy resistance by most patients remains a major hurdle,  which 

also contributes for  the slight percentage of individuals who survive 5 years after the initial 

diagnosis (around 30%) [120]. Thus, it becomes essential to identify biomarkers that 

contribute to the optimal selection of therapeutic schemes, namely by dose adjustment 

according to each individual’s risk of relapse (risk stratification) [118].  

The application of genome-wide strategies was faced with the potential to 

revolutionize the molecular oncology field. However, namely regarding OC, numerous 

results have been obtained by GWAS, although without reaching definitive conclusions. 

Therefore, it becomes essential to meticulously analyze these data to conclude the possible 

role of associated markers which, ultimately, could translate in clinical implementation [52]. 

To the best of our knowledge, five validation studies have been conducted in the attempt to 

validate OC GWAS associated markers, four of them evaluating susceptibility associated 

markers and the study conducted by Huang and colleagues being the only which attempted 

to validate clinical outcome associated variants [136, 137, 140, 141, 167]. Thus, it is evident 

the need to validate clinical outcome associated markers, not only because of the lack of 

this type of studies, but also due to the potential clinical applicability arising from truly causal 

variants. Furthermore, only the study conducted by Mostowska et al. was independently 

performed [167]. Thus, the present study was the first designed with the purpose to 

independently validate OC clinical outcome GWAS findings in a Caucasian population.   

 

 

5.1. Association of NRG3 rs1649942 polymorphism with the clinical outcome of OC 

patients 

 

 The genetic variant rs1649942 corresponds to an intronic variation that leads to the 

replacement of an adenine (A) by a guanine (G) in the NRG3 gene [174]. This gene codifies 

a homonymous extracellular protein, being a member of the neuregulin family, which has 

been shown to have low expression levels in normal ovarian tissues [175]. This protein has 

the capacity to bind exclusively to ErbB4 and, so, to be involved in ErbB signaling, which, 

in turn, seems to be related to ovarian tumorigenesis [136, 175-179] (Figure 11).  
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Figure 11 – Specificity of ligands to Epidermal Growth Factor Receptor (EGFR) family. Epidermal Growth Factor (EGF), 

Transforming Growth Factor-α (TGF-α), Amphiregulin (AR) and Epigen (EPG) are specific ligands for EGFR; Betacellulin 

(BTC), Heparin-binding EGF (HB-EGF) and Epiregulin (EPI) bind both EGFR and ErbB4; Neuregulin 1/2 (NRG1/2) have the 

capacity to bind ErbB3/4; Neuregulin 3/4 (NRG3/4) are exclusive ligands for ErbB4. No ligand is known to bind ErbB2, although 

it has the strongest kinase activity. Thus, it is the preferential heterodimerization partner of other ErbB receptors. In contrast, 

ErB3 lacks its kinase activity, so it needs to heterodimerize with other partners to have signaling potential (adapted from [180]). 

 

 

This SNP was firstly identified to be associated with response to cytotoxic drugs in 

a study conducted by Huang et al. (2007) that aimed to discover genetic variants that 

contribute to cisplatin-induced cytotoxicity, concluding that rs1649942 was significantly 

associated with cisplatin IC50 [132]. Despite NRG3 rs1649942 was first reported a decade 

ago it still is not well characterized [132]. Interestingly, although the most part of intronic 

variants lies within consensus regions of exon-intron junctions and directly affect splicing, 

some of them might lie in regions with a regulatory role in the maturation of pre-mRNA [181, 

182]. Additionally, polymorphisms lying within regulatory regions of the genome may lead 

not only to alterations in TFs binding motifs, but also influence methylation patterns and the 

alternative splicing of target genes and, hence, affecting their transcription [183-185]. The 

in silico analyses’ results provided by the Human Splicing Finder 3.0 and MotifMap 

bioinformatic tools revealed that the rs1649942 genetic variant is unlikely to be in a splicing 

or in a TF binding site. Nevertheless, this variant has already been shown to be associated 

with the expression levels of target genes, which suggest that its functional consequence 
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might be due to a regulatory network role [132, 136]. Effectively, some regions of the 

genome harbor genetic alterations capable of regulate the expression of near (cis-

regulation) or distant genes (trans-regulation), being defined as expression quantitative trait 

loci (eQTL) [183]. Namely, it has been shown that these regulatory properties appear to 

clarify the role of a large proportion of non-coding variants [186].  

Although the GWAS data was not validated in the overall analysis, our results 

indicate that NRG3 rs1649942 polymorphism was significantly associated with OS in the 

subgroup of FIGO IV stage patients, either considering a log-additive (P=0.027) and a 

recessive genetic model analysis (P=0.011). Therefore, in the subgroup of individuals with 

advanced disease at diagnosis, a lower survival time was observed for patients carrying the 

GG genotype (13.00 months), in contrast to A allele carriers who presented a better OS 

(61.96 months). However, no impact on the time until tumor recurrence was noticed.  

Huang et al. [136] reported, for the first time, the association of NRG3 rs1649942 

variant with the clinical outcome of OC patients, submitted to the first-line treatment. An 

association between this variant and PFS was observed for all the patients (P=0.008), being 

even more marked in the subgroup of optimal debulked patients (P=0.002), as GG genotype 

carriers presented a lower survival time when compared with AA/AG genotype patients. 

Thus, the negative impact assigned to GG genotype is consistently observed in our study. 

Furthermore, considering OS analysis, Huang and colleagues also reported a reduced 

survival time for GG homozygous patients compared with AA/AG genotype patients 

(P=0.014), although this association was only observed in the subset of optimally debulked 

patients. Moreover, the regulatory role of NRG3 rs1649942 was demonstrated, namely by 

being associated with the expression levels of several genes, some of them associated with 

carboplatin IC50  [132, 136, 187]. One of these regulated genes, KYNU, known to be 

involved in tryptophan metabolism, was already reported to impact the OS of advanced 

stage serous OC patients submitted to the standard treatment and its overexpression was 

associated with an increase in the cellular sensitivity to carboplatin [136, 188, 189]. Taking 

together, these results suggest a regulatory role as the main functional consequence of this 

SNP.  

In advanced disease stages, the metastatic process assumes a great 

preponderance being responsible for the high mortality rates [190]. Namely, the 

dissemination to the peritoneal cavity is an early phenomenon in the natural history of the 

ovarian disease since the malignant cells follow the peritoneal fluid, obeying to the intra-

abdominal pressure variations, being able to avoid anoikis and, hence, having the ability to 

survive in suspension. The molecular mechanisms implied in OC cell dissemination are not 

fully described, though several biological pathways might be involved, with distinct gene 

expression profiles between tumor stages [110, 191-193]. Considering the previous 
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assumptions, we hypothesized that NRG3 rs1649942 GG genotype might lead to the 

expression of peripheral genes that promote the acquisition of an aggressive phenotype, 

namely with a pro-oncogenic role in the metastatic niche. Consequently, GG genotype 

patients with distant metastatic disease at diagnosis have a lower survival time compared 

with A allele carriers. However, for less spread disease stages, the expression of core genes 

involved in the metastatic process might have a more direct and preponderant role when 

compared to the complex regulatory network in which the NRG3 gene might be involved. In 

fact, neuregulins have already been associated with metastatic process, namely in 

medulloblastoma, breast and papillary thyroid tumors [194, 195]. Regarding OC, it was 

reported the relevant contribution of the interaction Neuregulin 1 (NRG1)-ErbB3 in omentun 

metastasis via a hematogenous route [196]. Consequently, the quantification of NRG3 

circulatory levels might be considered in future studies. Despite the association with OS, 

the impact of this variant in the DFS time appears to be irrelevant, which might indicate a 

preponderant role of further clinical and pathological factors in the time until EOC 

recurrence. 

 

 

5.2 Association of BRE rs7572644 polymorphism with the clinical outcome of OC 

patients 

 

The polymorphism rs7572644 lies within a intronic region of the BRE gene and leads 

to the substitution in the DNA chain of a thymine (T) by a cytosine (C) [145, 174]. BRE, also 

known as BABAM2 (BRISC and BRCA1 A complex member 2), codifies a protein involved 

in DNA damage response [145] (Figure 12). Namely, it is involved in the maintenance of 

the integrity of the BRCA1-A complex in the nucleus, although BRE could also act as an 

anti-apoptotic protein [145, 197, 198]. In the ovary, BRE deficiency was found to promote 

follicular atresia, through the enhancement of granulosa cells’ apoptosis [199]. Regarding 

OC, some evidences point a possible role of BRE in disease susceptibility and 

chemotherapy response [145, 200]. As the functional impact of rs7572644 is not fully 

described yet, in silico analyses revealed a possible null impact in splicing mechanisms as 

well as no predicted TF binding site. However, the minor allele of this variant was shown to 

be associated with chemotherapy sensitivity [145].  
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Figure 12 – Schematic representation of BRCA1-A complex. This DNA repair complex is structurally constituted by a dimer 

of heterotetramers composed by MERIT40, Abraxas, BRCC36 and BRE (adapted from [201]). 

 

 

None significant results were observed in the overall cohort, according to the BRE 

rs7572644 genotypes. Upon subgroup analysis, we observed that TT genotype patients 

had a prolonged OS when compared to C allele carriers (dominant genetic model), for the 

subgroup of patients with early stage disease (FIGO I/II) at diagnosis (P=0.014). Moreover, 

despite the non-significant result for FIGO stage III subgroup (P=0.052), there is a trend for 

the impact of this variant in the survival of these subset of individuals. Moreover, in the 

subgroup of FIGO stages I/II patients, TT genotype was associated with improved DFS 

(P=0.032), meaning that C allele carrier patients would take less time until the emergence 

of recurrent disease. Additionally, using multivariate Cox regression models, and 

exclusively evaluating patients with localized tumor at diagnosis, we verified that C allele 

carriers have a three-fold increase in the risk of death and recurrence, adjusted for known 

OC prognostic factors. Namely, this polymorphism is the only variable significantly 

associated with the risk of death of this subset of patients. Thus, BRE rs7572644 

polymorphism could be a useful predictive marker for early stage disease patients.  

Considering the role of BRE in DNA damage repair, the presence of BRE rs7572644 

C allele could lead to the translation of a more stable isoform with higher affinity for the 

BRCA1-A complex. Consequently, there might be an increase in the complex integrity which 

can promote an improved DNA damage repair response. Although early stage disease 

patients have tumor confined to ovaries (FIGO stage I) or with pelvic extension/primary 

peritoneal cancer (FIGO stage II), patients are submitted to platinum-based chemotherapy, 
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after cytoreductive surgery, meaning that cancer cells that have not been completely 

eradicated by surgery are exposed to the action of DNA damage agents. Considering the 

presence of BRE rs7572644 C allele, and hence an improved DNA repair damage 

response, residual cancer cells could promptly repair the platinum-induced damages, which 

could result in a precocious and higher risk of disease relapse. Moreover, BRE was also 

found to be an anti-apoptotic protein [198]. Namely, BRE was considered to be involved in 

lung cancer cisplatin resistance through its anti-apoptotic activity mediated by the protein 

kinase B signaling pathway [202]. Thereby, beyond the possible impact in DNA repair, we 

further hypothesized that BRE rs7572644 C allele is associated with an increased anti-

apoptotic activity of EOC cells, promoting a decrease in the cellular sensitivity to 

chemotherapy. Supporting this assumption is the fact that PI3K/Akt signaling pathway (in 

which protein kinase B has a major effector role) activation has already been associated 

with cisplatin resistance in OC [202]. In agreement to what was hypothesized for NRG3 

rs1649942 polymorphism, BRE rs7572644 could also exert its effect through the regulation 

of target genes. Despite in silico analyses have not predicted the binding of any TF at this 

locus, this putative eQTL SNP could act through several other mechanisms, as mentioned 

before [183-185]. Therefore, the present variant could be potentially associated with the 

expression of peripheral genes with an additional negative role in the prognosis of OC 

patients. Moreover, this SNP could not be the functional variant itself, as it is in linkage 

disequilibrium (r2>0.8) with other four intronic variants (rs7581813, rs2337700, rs55796876 

and rs11691385) which could be causal of the disease. 

On the other hand, the influence of BRE rs7572644 does not appear to be relevant 

in FIGO III and IV stage patients, although a trend was seen for FIGO III stage patients. 

Besides the undoubtedly importance of DNA repair mechanisms in OC susceptibility and 

treatment response, namely for the newly targeted therapies, its role in the metastatic 

process might not be so determinant, being that function fulfilled through additional and 

more relevant molecular networks [110]. In this sense, as disease dissemination increases 

less relevant might be the role of BRE in the maintenance of genomic integrity. Accordingly, 

BRE was reported to promote tumor cell growth but not metastasis of mouse Lewis lung 

carcinoma cells transfected with this protein in syngeneic mice models [203].  

Variant BRE rs7572644 was firstly reported by Fridley et al., which used a cell-based 

model to associate drug response phenotypes with genetic variants [145]. The influence of 

each identified variant with any clinical endpoint was not assessed in the original study, 

although it was observed that BRE rs7572644 C allele carriers were sensitive to the 

carboplatin and paclitaxel combination. Therefore, intuitively, patients who are sensitive to 

chemotherapy might have an improved outcome. However, the data obtained in the present 

study appear to be in disagreement with the chemosensitive properties conferred by C allele 
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in the study of Fridley et al. [145]. Nevertheless, the results obtained in LCLs GWAS should 

be taken carefully as one of the limitations inherent to this approach is that it does not 

consider interactions between several biological pathways in response to chemotherapy, 

which can be a possible bias as it not fully represents the complexity of drug effect [14, 136, 

145].  
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GWAS development will aid to rethink OC genomics much beyond the obvious and 

direct analysis. Namely, multiple small effect genetic variants, most of them lying in 

regulatory regions of the genome and potentially irrelevant to a particular disease, might 

indirectly exert its influence on trait phenotypes through the regulation of complex networks, 

affecting thereby the expression and activity of a restrict core set of genes [30]. This theory 

seems to be consistent with the results obtained for OC GWAS, as most of the associated 

variants are in regulatory sequences of genes with an unapparent direct role in this 

gynecological neoplasia. The combination of genomic knowledge might be the key to 

unravel OC genetics and further work is needed to underpin this assumption. 

In this perspective, the present study aimed to validate two intronic variants 

associated with the clinical outcome of OC patients previously reported by GWAS. In fact, 

this is the first study which attempts to confirm the association of GWAS-identified variants 

with the clinical outcome of EOC patients, in an independent cohort, namely, in a 

Portuguese population. In sum, we were able to independently validate both NRG3 

rs1649942 and BRE rs7572644 variants in our population, as they seemed to have a role 

in the clinical outcome.   

In our population, the two genetic polymorphisms previously highlighted in GWAS 

presented a FIGO staging-specific behavior. Although promising, these results, particularly 

regarding NRG3 rs1649942 variant, should be taken carefully due to the under-power in 

FIGO stage IV A allele carriers. Though underpowered in the stratified analysis, this study 

represents one of the largest series of OC patients published so far. Furthermore, clinical-

pathological characteristics of included patients are similar to the entire series admitted in 

our institution, meaning that we can accept the representativeness of our cohort. Moreover, 

a low number of individuals was lost to follow-up (attrition bias of 5%), although the extended 

period of follow-up time. Furthermore, the low range of 95% CIs determined in the 

multivariate analysis could demonstrate the low variance in the concluded outcomes. 

We suggest that further validation studies should be conducted in larger cohorts in 

order to reinforce the study power. Additionally, the need for additional post-GWAS 

analyses is evident, in order to perceive the genetic context in which each variant is inserted 

and to understand their biological plausibility regarding OC. To achieve this purpose, future 

analysis should be oriented to fine map the regions where these variants lie, as well as for 

the accomplishment of functional studies. Further studies evaluating the regulatory network 

of each associated region should be conducted resorting to the analysis of chromatin 

markers which tag promoters or enhancers/silencers [144]. Additionally, eQTL studies might 

be informative of the influence of these polymorphisms in the expression levels of several 

genes and would contribute to the linking between identified variants and their target genes 

[158]. 
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 The success of GWAS suggests that this genomic approach will continue to be 

applied for the assessment of variants with probable impact in complex traits. However, 

their development should be complemented with post-GWAS analyses, in order to identify 

and confirm the most significant associated variants and to understand their potential 

biological involvement [10, 20, 157, 158]. Ultimately, GWAS findings might be of potential 

interest for clinical practice, in the era of personalized medicine, since some variants 

identified through these studies might be important independent prognostic markers or 

assume a predictive role of therapy response and, consequently, help in the adoption of 

treatment options suited to individual genetic profile. 
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Appendix 1 

Supplementary Table 1 - Overview of OC susceptibility GWAS 

Study Associated SNPs Population 
No. 

cases/controls 
(combined) 

MAF Locus Gene 

Overall risk Subtype-specific risk 

OR (95% CI) P-value OR (95% CI) P-value 
Histological 

subtype 

Song et al. 
2009 rs3814113 

ǂ, #
 European ancestry 8761/11831 0.32 9p22.2 

~44 kb 
upstream of 
BNC2 gene 

0.82 (0.79-0.86) a 5.10x10-19 c 

0.77 (0.73-0.81) a 4.10x10-21 c Serous 

0.86 (0.79-0.94) a 1.00x10-3 c Endometrioid 

0.83 (0.76-0.91) a 6.60x10-5 c Other 

Bolton et al. 
2010 

rs8170 ǂ European ancestry 10496/13172 0.11 e 

19p13 

MERIT40 1.12 (1.07-1.17) a 3.60x10-6 c 1.18 (1.12-1.25) a 2.70x10-9 c Serous 

rs2363956 
ǂ

 European ancestry 10480/13176 0.46 e ANKLE1 1.10 (1.06-1.15) a 1.20x10-7 c 1.16 (1.11-1.21) a 3.80x10-11 c Serous 

Goode et al. 
2010 

rs2072590 
ǂ

 

European ancestry 

10406/16340 0.18 e 2q31 
Non-coding 

region 
1.16 (1.12-1.21) a 4.50x10-14 

1.20 (1.14-1.25) a 3.80x10-14 Serous 

European ancestry 1.30 (1.17-1.44) a 7.30x10-7 Mucinous 

European ancestry 1.13 (1.04-1.22) a 2.40x10-3 Endometrioid 

rs2665390 
ǂ

 

European ancestry 

10406/17369 0.07 e 3q25 TIPARP 1.19 (1.11-1.27) a 3.20x10-7 

1.24 (1.15-1.34) a 7.10x10-8 Serous 

European ancestry 1.23 (1.08-1.40) a 1.90x10-3 Endometrioid 

rs10088218 
ǂ

 

European ancestry 

10462/16362 0.09 e 

8q24 
Gene desert 

region 

0.84 (0.80-0.89) a 3.20x10-9 

0.76 (0.70-0.81) a 8.00x10-15 Serous 

European ancestry 1.21 (1.05-1.40) a 1.00x10-2 Clear cell 

rs1516982 
ǂ

 European ancestry 10472/54111 0.16 c 0.86 (0.82-0.91) a 2.00x10-8 0.81 (0.76-0.86) a 3.30x10-11 Serous 

rs10098821 
ǂ, # European ancestry 10414/16136 0.10 c 0.83 (0.78-0.89) a 4.70x10-9 0.75 (0.70-0.81) a 2.30x10-13 Serous 

rs9303542 
ǂ, #

 European ancestry 10242/13091 0.32 e 17q21 SKAP1 1.11 (1.06-1.16) a 1.40x10-6 1.14 (1.09-1.20) a 1.40x10-7 Serous 

Lu et al. 
2012 

No significant associations 

White, non-
Hispanic 

342/643 

- - - - - - - - 
(White, non-

Hispanic) 
6195 (5620)/7854 

(6966) 

Couch et al. 
2013 

BRCA1 
mutation 
carriers 

rs17631303 
ǂ

 European ancestry 2273/11997 0.22 

17q21 

PLEKHM1f 1.27 (1.17-1.38) a, g 1.40x10-8 c    

rs183211 
ǂ

 European ancestry 2281/12070 0.26 NSF f 1.25 (1.16-1.35) a, g 3.10x10-8 c    

rs4691139 ǂ European ancestry 2280/12070 0.52 4q32.3 Chr4:164987569 1.20 (1.17-1.38) a, g 3.40x10-8 c    
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Supplementary Table 1 - Overview of OC susceptibility GWAS (cont.) 

 

Study Associated SNPs Population 

No. 
cases/controls 

(combined) 
MAF Locus Gene 

Overall risk Subtype-specific risk 

OR (95% CI) P-value OR (95% CI) P-value 
Histological 

subtype 

Pharoah et 
al. 2013 

rs11782652
 ǂ

 European ancestry 

16283/23491 

0.07 8q21 CHMP4C 1.19 (1.12-1.26) a 5.50x10-9 1.24 (1.16-1.33) a 7.00x10-10 Serous 

rs1243180 
ǂ

 European ancestry 0.31 10p12 MLLT10 1.10 (1.06-1.13) a 1.80x10-8 
1.11 (1.07-1.15) a 1.40x10-7 Serous 

1.08 (1.00-1.15) a 3.80x10-2 Endometrioid 

rs757210 
ǂ

 European ancestry 0.37 17q12 HNF1B 1.05 (1.02-1.09) a 9.00x10-4 

1.12 (1.08-1.17) a 8.10x10-10 Serous 

0.80 (0.72-0.88) a 3.90x10-6 Clear cell 

0.89 (0.81-0.99) a 2.70x10-2 Mucinous 

Earp et al. 
2014 

rs11108890 
#
 European ancestry 

78/392 
0.04 

Chr12: 
96137530 

LOC105369927 f   1.38 (1.16–1.66) b 4.00x10-4 

Mucinous 

1483/21530 

rs933518 
#
 European ancestry 

78/392 
0.08 

Chr16: 
53079622 

   1.26 (1.11–1.45) b 8.00x10-4 
1483/21530 

rs17106154 
#
 European ancestry 

78/392 
0.07 

Chr14: 
68230927 

Lies within a 
~150kb LD region 

of ZFP36L1 
  1.21 (1.06–1.39) b 5.80x10-3 

1483/21530 

rs970651 
#
 European ancestry 

78/392 
0.16 

Chr13: 
47351705 

   1.16 (1.05–1.28) b 4.20x10-3 
1483/21530 

rs7981902 
#
 European ancestry 

78/392 
0.13 

Chr13: 
47368792 

   1.15 (1.03–1.28) b 1.14x10-2 
1483/21530 

rs2190503 
#
 European ancestry 

114/392 
0.13 

Chr7: 
50710111 

Identify a locus 
upstream/intronic 
to GRB10 gene 

  1.12 (1.04–1.22) b 5.00x10-3 

Endometrioid/
clear cell 

2903/21528 

rs6593140 
#
 European ancestry 

114/392 
0.12 

Chr7: 
50765627 

  1.09 (1.03–1.17) b 6.00x10-3 
2903/21528 

rs2329554 
#
 European ancestry 

114/392 
0.22 

Chr7: 
50842524 

  1.12 (1.03–1.22) b 6.00x10-3 
2903/21528 

rs9609538 
#
 European ancestry 

68/392 

0.24 
Chr22: 

31139832 

~5 bp downstream 
BPIL2 and ~500 

bp upstream 
C22orf28 

  0.84 (0.76–0.93) b 7.00x10-4 LMP Serous 
892/21529 

Chen et al. 
2014 

rs1413299 
ǂ

 Han Chinese 

2496/3975 

0.42 9q22.33 COL15A1 1.24 (1.15-1.33) b 1.88x10-8 d 
1.25 (1.14–1.38) b 2.13x10-6 d Serous 

1.30 (1.15–1.45) b 9.69x10-6 d Other 

rs1192691 
ǂ

 Han Chinese 0.41 10p11.21 
245 kb upstream 

of exon 1 of 
ANKRD30A 

0.81 (0.75-0.87) b 2.62x10-8 d 
0.80 (0.72–0.87) b 1.13x10-6 d Serous 

0.83 (0.73–0.92) b 1.16x10-3 d Other 
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Supplementary Table 1 - Overview of OC susceptibility GWAS (cont.) 

  

Study Associated SNPs Population 
No. 

cases/controls 
(combined) 

MAF Locus Gene 

Overall risk Subtype-specific risk 

OR (95% CI) P-value OR (95% CI) P-value 
Histological 

subtype 

Chen et al. 2014 
(cont.) 

rs11175194 
ǂ

 Han Chinese 

2496/3975 

0.37 12q14.2 SRGAP1 0.82 (0.76-0.88) b 1.14x10-7 d 

0.83 (0.75–0.91) b 6.22x10-5 d Serous 

0.73 (0.59–0.90) b 3.36x10-3 d Endometrioid 

0.86 (0.76–0.97) b 1.40x10-2 d Other 

rs633862 
ǂ

 Han Chinese 0.42 9q34.2 
5 kb 

upstream of 
ABO gene 

0.83 (0.77-0.89) b 8.57x10-7 d 

0.86 (0.79–0.95) b 1.95x10-3 d Serous 

0.73 (0.59–0.90) b 2.50x10-3 d Endometrioid 

0.80 (0.71–0.90) b 1.93x10-4 d Other 

Kuchenbaecker 
et al. 2015 

rs56318008 European ancestry 

15437/30845 

0.15 1p36 WNT4 1.11 (1.06-1.15) a 8.00x10-7 
1.12 (1.06-1.17) 

a
 6.00x10-6 Serous 

1.24 (1.10-1.39) 
a
 5.00x10-4 Clear cell 

rs58722170 European ancestry 0.23 1p34.3 RSPO1 1.07 (1.03-1.11) a 2.00x10-4 1.12 (1.07-1.17) 
a
 4.00x10-7 Serous 

rs17329882 European ancestry 0.24 4q26 SYNPO2 1.09 (1.06-1.13) a 3.00x10-7 
1.11 (1.07-1.16) 

a
 3.00x10-7 Serous 

1.09 (1.01-1.18) 
a
 2.00x10-2 Endometrioid 

rs116133110 European ancestry 0.31 6p22.1 GPX6 0.94 (0.91-0.97) a 9.00x10-5 0.91 (0.87-0.94) 
a
 3.00x10-7 Serous 

rs6356 European ancestry 0.19 9q34.2 
Upstream of 

ABO 
1.12 (1.08-1.16) a 9.00x10-9 

1.13 (1.08-1.18) 
a
 2.00x10-7 Serous 

1.12 (1.03-1.21) 
a
 7.00x10-3 Endometrioid 

1.23 (1.10-1.38) 
a
 3.00x10-4 Mucinous 

rs199661266 European ancestry 0.28 17q11.2 ATAD5 0.90 (0.87-0.93) a 1.00x10-9 

0.90 (0.87-0.94) 
a
 2.00x10-7 Serous 

0.88 (0.82-0.95) 
a
 5.00x10-4 Endometrioid 

0.88 (0.80-0.98) 
a
 2.00x10-2 Clear cell 

BRCA1 
mutation 
carriers 

rs56318008 European ancestry 

Affected/unaffected 
(2462/12790) 

0.15 1p36 WNT4 1.15 (1.05-1.26) a, g 3.10×10−3    

rs58722170 European ancestry 0.23 1p34.3 RSPO1 1.14 (1.05-1.23) a, g 1.50x10-3    

rs17329882 European ancestry 0.24 4q26 SYNPO2 1.08 (1.00-1.17) a, g 4.20x10-2    

rs116133110 European ancestry 0.31 6p22.1 GPX6 0.92 (0.86-0.99) a, g 2.30x10-2    

rs6356 European ancestry 0.19 9q34.2 
Upstream of 

ABO 
1.11 (1.02-1.21) a, g 1.20x10-2    
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Supplementary Table 1 - Overview of OC susceptibility GWAS (cont.) 

The results shown in this table are the combined phases results of each study or the validation phases results (when conducted).a: per-allele; b: log-additive model; c: Ptrend; d: Pmeta; e:  MAF values for all 
populations obtained on “Ensembl” database; f: data obtained from “NCBI” database; g: HR values. The primary endpoint in this analysis was the age at ovarian cancer diagnosis. Mutation carriers were 
followed until the age of ovarian cancer diagnosis, or risk-reducing salpingo-oophorectomy or age at last observation. 
ǂ: replicated SNPs; #: validated SNPs 

Study Associated SNPs Population 
No. cases/controls 

(combined) 
MAF Locus Gene 

Overall risk Subtype-specific risk 

OR (95% CI) P-value OR (95% CI) P-value 
Histological 

subtype 

Kuchenbaecker 
et al. 2015 

(cont.) 

BRCA2 
mutation 
carriers 

rs58722170 European ancestry 631/7580 0.23 1p34.3 RSPO1 1.35 (1.17-1.57) a, g 5.20x10-5    

Keleman et al. 
2015 

rs752590 European ancestry 

1644 (mucinous subtype) 
/21693 

0.21 2q13 PAX8   1.34 (1.21-1.49) a 3.30x10−8 Mucinous 

rs711830 European ancestry 0.32 2q31.1 HOXD3   1.30 (1.20-1.40) a 7.50x10−12 Mucinous 

rs688187 European ancestry 0.32 19q13.2 IFNL3   0.67 (0.60-0.75) a 6.80x10−13 Mucinous 

Phelan et al. 
2017 

rs112071820 European ancestry 

25509/40941 

0.33 3q22.3 
Non-coding 

region 
  1.29 (1.20-1.37) a 1.50x10−13 Mucinous 

rs9870207 European ancestry 0.27 3q28 
Non-coding 

region 
  1.19 (1.12-1.27) a 4.50x10−8 Serous 

rs13113999 European ancestry 0.44 4q32.3 
Non-coding 

region 
  1.23 (1.14-1.32) a 4.70x10-8 Serous 

rs555025179 European ancestry 0.44 5q12.3 MAST4   1.18 (1.11-1.26) a 4.50x10-8 Endometrioid 

rs150293538 European ancestry 0.01 8q21.11 LINC01111   2.19 (1.65-2.90) a 2.00x10-9 Serous 

rs320203 European ancestry 0.12 9q31.1 LINC00587   1.29 (1.18-1.41) a 1.70x10-8 Mucinous 

rs7902587 European ancestry 0.12 10q24.33 
Non-coding 

region 
  1.29 (1.18-1.41) a 4.00x10-8 Serous 

rs8098244 European ancestry 0.31 18q11.2 LAMA3   1.19 (1.12-1.27) a 3.90x10-8 Serous 

rs6005807 European ancestry 0.09 22q12.1 MIR5739   1.17 (1.11-1.23) a 4.50x10-9 Serous 

BRCA1/2 
mutation + 

non-mutation 
carriers 

rs2165109 European ancestry 

BRCA1 mutation carriers 
(2933 

affected/16103unaffected) 
 

BRCA2 mutation carriers 
(954 affected/11458 

unaffected) 

0.25 2q13 LOC400997   1.09 (1.05-1.12) a 4.20x10-8 Serous + 
BRCA1/2 

BRCA1/2 
mutation + 

non-mutation 
carriers 

rs9886651 European ancestry 0.46 8q24.21 MIR1204   1.08 (1.05-1.11) a 3.50x10-9 
Serous + 
BRCA1/2 

BRCA1/2 
mutation + 

non-mutation 
carriers 

rs7953249 European ancestry 0.42 12q24.31 
Non-coding 

region 
  1.08 (1.06-1.06) a 1.10x10-9 

Serous + 
BRCA1/2 
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Appendix 2 

Supplementary Table 2 - Overview of OC clinical outcome GWAS 

  

Study Associated SNPs Population 
No. 

cases/deaths 
(combined) 

MAF Locus Gene 

Overall risk Subtype-specific risk 

HR (95% CI) P-value HR (95% CI) P-value 
Histological 

subtype 

Bolton et al. 
2010 

rs8170 
ǂ

 All populations 8946/3354 0.11 d 

19p13 

MERIT40 
OS 

1.11 (1.04-1.17) a 
5.20x10-4 b 1.28 (1.02–1.60) a 3.00x10-2 b Endometrioid 

rs2363956
 ǂ

 All populations 8900/3342 0.46 d ANKLE1 
OS 

1.09 (1.04-1.14) a 
5.60x10-4 b 1.09 (1.03-1.16) a 5.20x10-3 b Serous 

Huang et al. 
2011 rs1649942 

ǂ
 

European ancestry 
Non-Hispanic white 

1703 cases 0.24 Chr10 NRG3 

PFS 

1.25 (1.03-1.52) a 
2.30x10-2 

   

PFS 
Optimally debulked patients 

1.43 (1.12-1.81) a 

4.00x10-3 

OS 
Optimally debulked patients 

1.48 (1.10-2.00) a 

9.00x10-3 

Johnatty et 
al. 2015 

“All 
chemotherapy” 

group 

rs6674079 
ǂ

 European ancestry 

4426 cases 

0.28 1q22 
RP11–

284F21.8 

OS 

1.15 (1.08-1.23) a 
7.10x10-6 

   

4095 cases 
PFS 

1.07 (1.01-1.13) a 
2.80x10-2 

rs7950311 
ǂ

 European ancestry 4426 cases 0.48 11p15.4 HBG2 
OS 

1.10 (1.04-1.17) a 
1.70x10-3    

rs4910232 
ǂ

 European ancestry 

4426 cases 

0.32 11p15.3 
RP11-

179A10.1 

OS 

1.12 (1.05-1.19) a 
9.40x10-4 

   

4095 cases 
PFS 

1.17 (1.10-1.24) a 
4.70x10-7 

rs2549714 
ǂ

 European ancestry 

4426 cases 

0.06 16q23 
RP11–

314O13.1 

OS 

1.20 (1.06-1.36) a 
3.40x10-3 

   

4095 cases 
PFS 

1.14 (1.01-1.28) a 
2.80x10-2 

rs3795247 
ǂ

 European ancestry 

4426 cases 

0.08 19p12 ZNF100 

OS 

1.16 (1.04-1.30) a 
8.80x10-3 

   

4095 cases 
PFS 

1.26 (1.14-1.40) a 
1.05x10-5 

“Standard 
chemotherapy” 

group 

rs7950311 
ǂ

 European ancestry 1799 cases 0.48 11p15.4 HBG2 
OS 

1.28 (1.16-1.42) a 
6.80x10-7    

rs4910232
 ǂ

 European ancestry 

1799 cases 

0.32 11p15.3 
RP11-

179A10.1 

OS 

1.20 (1.08-1.33) a 
5.30x10-4 

   

1598 cases 
PFS 

1.24 (1.12-1.56) a 
1.20x10-5 



 

 

74 
 

Supplementary Table 2 - Overview of OC clinical outcome GWAS 

 

  

Study Associated SNPs 
Populatio

n 

No. 
cases/deaths 
(combined) 

MAF Locus Gene 

Overall risk Subtype-specific risk 

HR (95% CI) P-value HR (95% CI) P-value 
Histological 

subtype 

Johnatty et al. 
2015 (cont.) 

“Standard 
chemothera
py” group 

rs2549714 
ǂ

 
European 
ancestry 

1799 cases 

0.06 16q23 
RP11–

314O13.1 

OS 

1.53 (1.28-1.84) a 
5.00x10-6 

   

1598 cases 
PFS 

1.29 (1.08-1.55) a 
5.60x10-3 

rs3795247 
ǂ

 
European 
ancestry 

1799 cases 

0.08 19p12 ZNF100 

OS 

1.34 (1.13-1.60) a 
9.70x10-4 

   

1598 cases 
PFS 

1.39 (1.18-1.65) a 
9.20x10-5 

French et al. 
2016 

rs72700653 
ǂ

 
European 
ancestry 

1244 cases 

0.02 Chr9 

TTC39B 

  
PFS 

1.91 (1.36-2.69) a 
2.20x10-4 Serous 

rs7874043
 ǂ

 
European 
ancestry 

0.02 Chr9 

  
PFS 

1.90 (1.38-2.61) a 
7.30x10-5 Serous 

  
OS 

1.56 (1.09-2.23) a 
1.50x10-2 Serous 

Fridley et al. 
2016 

Paclitaxel 

MTT rs185229225 
European 
ancestry 

74 cases 

0.02 
Chr4: 

13609129 
BOD1L1 - e 2.20x10-7 c    

Caspase rs3842595 
European 
ancestry 

0.14 
Chr5:1217

78606 
MGC32805/ 

SNCAIP 
- e 2.60x10-7 c    

Carboplatin MTT rs150303591 
European 
ancestry 

0.29 
Chr4:7900

9309 
FRAS1 + f 5.90x10-7 c    

Combination 

MTT 

rs201023017 
European 
ancestry 

0.41 
Chr3:1431

03669 
SLC9A9 + f 6.00x10-7 c    

rs66696671 
European 
ancestry 

0.23 
Chr10:121

366953 
TIAL1 - e 7.30x10-7 c    

Caspase 

rs12025262 
European 
ancestry 

0.39 
Chr1:2473

56732 
ZNF731P - e 6.60x10-7 c    

rs10674174 
European 
ancestry 

0.42 
Chr13:618

92075 
PCDH20 - e 8.20x10-7 c    

Paclitaxel 
MTT 

rs35067965 
European 
ancestry 

0.33 d 
Chr18:455

396 
COLEC12 - e 

2.20x10-5    

Caspase 3.80x10-5    

Carboplatin 

MTT rs8091660 
European 
ancestry 

0.28 d 
Chr18:460

87936 
CTIF - e 

8.90x10-6    

Caspase rs113867814 
European 
ancestry 

Del d 
Chr18:462

59604 
1.20x10-5    

MTT rs2748151 
European 
ancestry 

0.28 d 
Chr20:601

33486 
CDH4 + f 

4.70x10-5    

Caspase rs113594423 
European 
ancestry 

0.10 d 
Chr20:603

79048 
2.40x10-5    

Carboplatin Caspase rs5830067 
European 
ancestry 

Del d 
Chr2:2853

7890 
BRE 

+ f 1.70x10-5    

Combination Caspase rs7572644 
European 
ancestry 

0.28 d 
Chr2:2832

0033 
- e 5.80x10-6    
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Supplementary Table 2 - Overview of OC clinical outcome GWAS 

 

The results shown in this table are the combined phases results of each study or the validation phases results (when conducted). 
a: per-allele; b: Ptrend; c: Pmeta; d:  MAF values obtained on “Ensembl” database; e: (-), carriers of the minor/variant allele are, on average more sensitive to chemotherapeutic agents (lower IC50 or EC50); f: 
(+), carriers of the minor/variant allele are, on average more resistant to chemotherapeutic agents (higher IC50 or EC50). 
ǂ: replicated SNPs; #: validated SNPs 

 

 

Study Associated SNPs Population 
No. 

cases/deaths 

(combined) 
MAF Locus Gene 

Overall risk Subtype-specific risk 

HR (95% CI) P-value HR (95% CI) 
P-

value 
Histological 

subtype 

Fridley et al. 
2016 (cont.) 

Paclitaxel Caspase rs75314082 European ancestry 

74 cases 

0.09 d Chr2:55087315 
EML6 

- e 7.90x10-5    

Combination MTT rs17046344 European ancestry 0.17 d Chr2:55023600 + f 4.90x10-5    

Paclitaxel Caspase rs72817940 European ancestry 0.09 d Chr2:58998563 
LINC01122 

+ f 6.40x10-5    

Carboplatin Caspase rs4233974 European ancestry 0.38 d Chr2:59295043 - e 2.60x10-5    

Carboplatin MTT rs17261321 European ancestry 0.39 d Chr2:80197843 
CTNNA2 

+ f 3.60x10-5    

Combination MTT rs6719499 European ancestry 0.31 d Chr2:80193386 - e 6.00x10-5    

Paclitaxel MTT rs1525599 European ancestry 0.12 d Chr2:141778702 
LRP1B 

+ f 8.60x10-5    

Combination Caspase rs13020675 European ancestry 0.26 d Chr2:142212928 - e 6.20x10-5    

Paclitaxel Caspase rs201083182 European ancestry Del d Chr6:65736914 
EYS 

- e 2.30x10-6    

Combination Caspase rs2064701 European ancestry 0.17 d Chr6:65676556 + f 3.60x10-5    

Paclitaxel Caspase rs550987 European ancestry 0.22 d Chr6:124905510 
NKAIN2 

- e 4.10x10-5    

Combination Caspase rs670616 European ancestry 0.28 d Chr6:124885773 + f 7.80x10-5    

Carboplatin Caspase rs10230114 European ancestry 0.29 d Chr7:47705506 
C7orf65 

+ f 2.40x10-5    

Combination Caspase rs11771997 European ancestry 0.43 d Chr7:47712495 + f 2.40x10-5    

Paclitaxel Caspase rs12572446 European ancestry 0.49 d Chr10: 47665906 
ANTXRL 

+ f 4.30x10-5    

Combination Caspase rs10906942 European ancestry 0.50 d Chr10: 47670851 + f 4.90x10-5    

Carboplatin Caspase rs10999018 European ancestry 0.06 d Chr10: 71654602 
COL13A1 

+ f 2.40x10-5    

Combination Caspase rs77535242 European ancestry 0.06 d Chr10: 71652985 + f 3.50x10-5    

Paclitaxel Caspase rs77438645 European ancestry 0.07 d Chr12:130304313 
TMEM132D 

- e     

Carboplatin Caspase rs1451904 European ancestry 0.39 d Chr12:130166947 + f 6.50x10-5    

Carboplatin Caspase rs690089 European ancestry 0.40 d Chr18: 8845223 
MTCL1 

- e 7.80x10-5    

Combination Caspase rs35765215 European ancestry 0.16 d Chr18:8839469 - e 6.00x10-5    



 

 

76 
 

Appendix 3 

Supplementary Table 3 - Overview of molecular pathways which susceptibility associated SNPs are known to be involved 

  

Study SNP Gene Molecular pathway a Functional consequence 

Song et al. 2009 rs3814113 
~44 kb upstream of 

BNC2 gene 
 

Deletion of 5 kb surrounding rs3814113 decreased BNC2 
expression levels [204] 

Bolton et al. 2010 
rs8170 MERIT40 

DNA double strand break response; 
Cell cycle checkpoints 

 

rs2363956 ANKLE1 Human lymphocyte development [205]  

Goode et al. 2010 

rs2665390 TIPARP Aryl hydrocarbon receptor signaling [206]  

rs9303542 SKAP1 
B-cell receptor signaling pathway; 

RAS signaling pathway 
 

Couch et al. 2013 

rs17631303 PLEKHM1 
Osteoclast function regulation [207]; 

Bone resorption [207]; 
Endocytic and autophagy pathways [207] 

 

rs183211 NSF 

Delta508-CFTR (cystic fibrosis transmembrane conductance 
regulator) traffic / Sorting endosome formation in CF (cystic fibrosis); 

Trafficking of AMPA receptors; 
Vasopressin-regulated water reabsorption 

 

Pharoah et al. 
2013 

rs11782652 CHMP4C 
HIV life cycle; 

MTOR signaling; 
Endocytosis 

Association between rs11782652 and CHMP4C 
overexpression in primary EOC tissues and LCLs [139].   

rs1243180 MLLT10 Leukemogenesis [208] 
Association between rs1243180 and C10orf114 and 
SKIDA1 expression in primary EOC tissues  [139]. 

rs757210 HNF1B 
Regulation of β-cell development; 

Type II Diabetes Mellitus; 
Hepatic ABC transporters 

Association between the minor allele of rs757210 and 
overexpression of HNF1B in serous EOC tissues [139].  

Earp et al. 2014 

rs17106154 
~150 kb in LD region of 
ZFP36L1 (BRF1) gene 

Validated targets of C-MYC transcriptional repression; 
PI3K / Akt signaling; 
Translational control 

 

rs2190503 
Identify a locus 

upstream/intronic to 
GRB10 gene 

IGF1 pathway; 
Signaling events regulated by Ret tyrosine kinase; 

Insulin pathway 

 

rs6593140  

rs2329554  
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Supplementary Table 3 - Overview of molecular pathways which susceptibility associated SNPs are known to be involved 

a: data obtained from “GeneAnalytics” database (exceptions are referenced) 

 

Study SNP Gene Molecular pathway a Functional consequence 

Earp et al. 2014 
(cont.) 

rs9609538 

~5 bp downstream of 
BPIL2 gene and ~500 

bp upstream of 
C22orf28 

 
The minor allele of this SNP is predicted to alter 
transcription factor binding site activity and miRNA 
binding site activity [141]. 

Chen et al. 2014 

rs1413299 COL15A1 
Protein digestion and absorption; 

Collagen biosynthesis and modifying enzymes; 
Degradation of the extracellular matrix 

 

rs11175194 SRGAP1 
Signaling by Robo receptor; 
Regulation of RhoA activity; 

Signaling by Slit 
 

Kuchenbaecker et al. 
2015 

rs56318008 WNT4 

Negative regulation of TCF-dependent signaling by WNT ligand 
antagonists; 

WNT ligand biogenesis and trafficking; 
Mesenchymal Stem Cell differentiation pathways and lineage-specific 

markers 

No effect on WNT4 transcription in OC cells [143] 

rs58722170 RSPO1 
Regulation of FZD by ubiquination; 

WNT signaling; 
Signaling by GPCR 

 

rs17329882 SYNPO2 Actin binding protein [209]  

rs116133110 GPX6 
Folate metabolism; 

Detoxification of Reactive Oxygen Species; 
Selenium metabolism and selenoproteins 

 

rs199661266 ATAD5 DNA damage response [143]  

Keleman et al 

rs752590 PAX8 
ID signaling pathway; 

Thyroid cancer; 
TSH signaling pathway 

 

rs711830 HOXD3 
Activation of HOX genes during differentiation; 

Developmental Biology 
 

rs688187 IFNL3 
Peginterferon alpha-2a/Peginterferon alpha-2b Pathway; 

all-trans-Retinoic Acid Mediated Apoptosis; 
RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways 

 

Phelan et al. 2017 

rs555025179 MAST4 Microtubule scaffolding [210]  

rs8098244 LAMA3 
Syndecan-family-mediated signaling events; 

Validated transcriptional targets of AP1 family members Fra1 and Fra2; 
Alpha 6 Beta 4 signaling pathway 
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Appendix 4 

Supplementary Table 4 - Overview of molecular pathways which clinical outcome associated SNPs are known to be involved 

 

 

 

 

Study SNP Gene Molecular pathway Functional consequence 

Bolton et al. 2010 
rs8170 MERIT40 

DNA double strand break response; 
Cell cycle checkpoints 

 

rs2363956 ANKLE1 Human lymphocyte development [205]  

Huang et al. 2011 rs1649942 NRG3 

ErbB4 signaling events; 
Signaling by ErbB2; 

Agrin Interactions at Neuromuscular Junction 

This SNP is associated with baseline 
expression of 18 genes [136] 

Johnatty et al. 2015 

rs7950311 HBG2 
Factors involved in megakaryocyte development and platelet production; 

IL-2 pathway; 
p70S6K signaling 

 

rs3795247 ZNF100 Gene expression  

French et al. 2016 
rs72700653 

TTC39B 
Mediation of the 

association of HDL-regulating proteins [211] 

The minor alleles of these SNPs 
enhance expression of the non-
canonical TTC39B promoter [144] rs7874043 

Fridley et al. 2016 

rs185229225 BOD1L1 Replication fork protection factor [151]  

rs3842595 SNCAIP/MGC32805 
Putative ubiquitin pathway; 

Parkinson’s disease pathway; 
Parkin-Ubiquitin proteasomal system pathway 

 

rs150303591 FRAS1 

Phospholipase-C pathway; 
Integrin pathway; 

ERK signaling 
 

rs201023017 SLC9A9 

Sweet taste signaling; 
Transport of glucose and other sugars, bile salts and organic acids, metal 

ions and amine compounds 
 

rs66696671 TIAL1 

Formation of the HIV-1 Early Elongation Complex; 
Apoptosis and autophagy; 

Translational control 
 

rs10674174 PCDH20 WNT signaling (Antagonist) [212]  
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Supplementary Table 4 - Overview of molecular pathways which clinical outcome associated SNPs are known to be involved 

 

a: data obtained from “GeneAnalytics” database (exceptions are referenced) 

 

Study SNP Gene Molecular pathway Functional consequence 

Fridley et al. 2016 
(cont.) 

rs35067965 COLEC12 
Binding and uptake of ligands by Scavenger receptors; 

Phagosome; 
Vesicle-mediated transport 

 

rs8091660 
CTIF Translation initiation [213] 

 

rs113867814  

rs2748151 

CDH4 
CDO in myogenesis; 

Natural Killer cell receptors; 
S-1P stimulated signaling 

 

rs113594423  

rs5830067 

BRE 
Apoptosis and survival-caspase cascade; 
DNA double strand break response [145]; 

TWEAK pathway 

 

rs7572644  

rs75314082 
EML6 Microtubules dynamics regulation [145] 

 

rs17046344  

rs1525599 
LRP1B Metabolic health programming [214]  

rs13020675 

rs17261321 
CTNNA2 

CDO in myogenesis; 
Adhesion [145]; 

Adherens junction 

 

rs6719499  

rs10999018 
COL13A1 

Articular cartilage extracellular matrix pathway; 
T Cell co-signaling pathway: ligand-receptor interactions; 

Natural Killer cell receptors 

 

rs77535242  

rs690089 
MTCL1 Microtubule dynamics regulation [215] 

 

rs35765215  
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Appendix 5 

 A paper entitled Rethinking ovarian cancer genomics: where GWAS stand? has 

been submitted and accepted for publication in the scientific journal Pharmacogenomics. 

 

 


