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Abstract

In this paper, we investigate a two-stage lot-sizing and scheduling problem in a spinning industry.

A new hybrid method called HOPS (Hamming-Oriented Partition Search), which is a branch-and-

bound based procedure that incorporates a fix-and-optimize improvement method is proposed

to solve the problem. An innovative partition choice for the fix-and-optimize is developed. The

computational tests with generated instances based on real data show that HOPS is a good

alternative for solving mixed integer problems with recognized partitions such as the lot-sizing

and scheduling problem.

Keywords: matheuristic, lot-sizing and scheduling problems, textile industry, mixed integer

programming

1. Introduction

The textile industry is very important for the Brazilian economy as it generates employment

and increases regional development. According to the annual report of the textile sector (ABIT,

2011), Brazil plays a major role in the textile and apparel international market, as it generated a

revenue of US$ 41.8 billion in 2010. There are currently 1.6 million employees in textile industries

in Brazil and spinning factories employ approximately 80,000 workers.

The production system of the spinning industry is characterized by a multi-stage process, with

single or parallel machines on each stage. In general, these machines have dissimilar production

characteristics, such as processing speeds and changeover times. The setups depend on the

sequence of products manufactured by the machines. The main products are made of natural

or synthetic fibers, but the most commonly used raw material is cotton. Production orders or
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lots must be achieved in order to satisfy customer demand in the most cost-effective manner.

Therefore, the spinning industry requires simultaneous size and sequence production lots. The

integration of scheduling and lot-sizing problems helps to define better production plans than

those generated from the solution of these problems in a hierarchical way. The integrated lot-

sizing and scheduling problem is considered the major issue in operational production planning

(Drexl and Kimms, 1997) and is also present in other industrial processes, such as foundry

(Araujo et al., 2007), glass containers (Almada-Lobo et al., 2008), soft drinks (Ferreira et al.,

2009) and beverages (Guimarães et al., 2012).

The research reported in the literature on production planning in the textile industry is rather

scarce. Silva and Magalhaes (2006) focus on the lot-sizing and scheduling problem of an acrylic

fiber industry. The fiber manufacturing process appears upstream the spinning in the textile

supply chain. Nevertheless, three studies address the production planning problem downstream

the spinning. Serafini and Speranza (1992) focus on the weaving process, Karacapilidis and

Pappis (1996) tackle the integrated process of the warp making, starching and weaving machines

and Pimentel et al. (2011) address the knitting process. To the best of our knowledge, few studies

have focused on the production planning in the spinning process. In addition to that, a weak

point regarding the efficiency of this industry is the difficulty to quickly devise good production

plans. By overcoming this weakness, companies’ competitiveness may be increased.

Solution methods for this type of problem rely on MIP solvers or (meta)heuristics. Usually,

MIP solvers are exact methods that aim to provably find optimal solutions. In some cases,

the running time may be prohibitive. On the other hand, (meta)heuristics provide better fea-

sible solutions faster, although the optimality proof is (often) not guaranteed. Recent research

focused on problem-oriented methods (James and Almada-Lobo, 2011), such as relax-and-fix

(Beraldi et al., 2008) and fix-and-optimize (Sahling et al., 2009) heuristics. Variables belonging

to a problem partition are fixed to a certain value to create a reduced problem of an easier

solution. These problem-oriented methods carry problem aspects into the solution procedure, as

the variable partition is inherent to the problem.

State-of-the-art MIP solvers incorporate heuristics in the exact methods (e.g. relaxation

induced neighborhood search (Danna et al., 2005), local branching (Fischetti and Lodi, 2003)

and some variants) to quickly find better solutions. These hybrid methods follow the variable

fixing ideas. Each branch-and-bound node provides information for the decision variables and a

reduced problem is created by fixing some variables based on this information. In case the reduced
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problem returns a solution, it is also a solution to the original problem and this new solution can

be injected into the branch-and-bound tree as a new upper bound. These improvement strategies

can accelerate the optimality proof. The cross fertilization between exact and (meta)heuristic

methods is called matheuristics (Maniezzo et al., 2010).

In this paper, we propose a mathematical model that integrates the lot-sizing and scheduling

decisions of a spinning industry taking into account the synchronization between the first and

second stages. The model is based on the multi-stage general lot-sizing and scheduling problem.

Equally important, the exact approach called HOPS (Hamming-Oriented Partition Search) is

proposed as a new method based on mathematical programming to solve this problem. It involves

the problem solution with the branch-and-bound method combined with a problem-oriented

procedure that injects new and better upper bounds into the original problem. The Hamming

distance (Hamming, 1950) between the solutions found when exploring the branch-and-bound

tree is used to define the problem partitions of stabilized values. The stabilized partitions are fixed

to create the reduced problems and their solutions can be injected into the branch-and-bound tree

of the original problem. Initially, the HOPS is tested on a well-known lot-sizing problem and its

performance is compared against that of a recent tailored heuristic reported in the literature. For

the spinning problem, an instance generator is designed to conduct computational experiments in

an extensive dataset. The HOPS validation in the production planning in the spinning industry

is also supported by real-world data based on instance settings.

The paper is organized as follows: Section 2 describes the production problem of the spinning

industry, which is then formulated by adapting a known mathematical model; Section 3 gives an

overview of the fixing variable matheuristics; Section 4 introduces the HOPS algorithm; Section

5 sets benchmarks for the results of HOPS compared to those obtained by other state-of-the-

art approaches based on mathematical program available in commercial software. Section 6

addresses some concluding remarks.

2. The production system

The manufacturing system in a spinning industry can be defined as a procedure in which

fibers are processed and then used to make different types of yarns. This procedure is described

in the sequence of processes represented in Figure 1. In the beginning, lints from various bales

are mixed and blended in order to achieve a uniform blend of fiber properties. The fiber blend

is blown by air from a feeder through ducts to intermediate machines for cleaning and carding
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and these machines separate and align the fibers into a thin web. The fiber web is then pulled

through a conical device, providing the sliver that is pulled again and then twisted to make the

sliver tighter and thinner until it complies with yarn specifications. After spinning, the yarns are

tightly wound around bobbins or tubes. The yarn packages are then ready for distribution.

Figure 1: Sequence of processes in the production system of a spinning industry.

The spinning process is categorized according to the types of spinning, such as open-end,

ring, air jet and Vortex spinning. In the open-end spinning, the yarn is directly produced from

the sliver, eliminating the additional pulling process presented in the ring spinning. The air jet

and Vortex spinning systems have also eliminated the need for the additional pulling process.

This study deals with open-end spinning and all its intermediate processes can work in a

synchronized mode with the opening and mixing processes. The capacities of the first processes

are sufficient to maintain the spinning process working. Therefore, the last process - spinning -

is considered the production bottleneck.

In order to detail the production features, consider N yarns to be scheduled on M parallel

machines over a finite planning horizon with a given length T . The demand for yarns is known

prior to each period of the planning horizon that should be met in case capacity is sufficient.

Although the production line operates 24 hours on a 7-day week basis, there may occur delays

when the demand for yarns is high, thus backlogs must be represented in the model.

A yarn can not be manufactured in a given time period unless a fiber blend that ensures

its quality is also processed in this period. Therefore, the planning of the first-stage product is

also required. A fiber blend is often used in several yarns, but a yarn is only made using a fiber

blend that respects its quality limits. As only one fiber blend can be processed in this type of

production line, all the machines must produce yarns that require the same quality of fibers at

each point in time. The production dependency between the two stages is represented in Figure

2.

The machines may differ in the processing rates of the same yarn, thus the fiber blend can be

consumed at different speeds. A setup changeover from one yarn to another consumes capacity

time, which is dependent on the sequence in which the yarns are processed. The setup can be
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Figure 2: Diagram of a two-stage production environment in a spinning industry.

carried from one period to the next. The setup changeover for the fiber blend can be considered

null as another fiber blend is immediately available for a later use in the production. This fact

reinforces the statement that the fiber blend sub-process is not the production bottleneck.

The production plan must determine the size and sequence of the lots on all machines with

minimal backlog, inventory and changeover costs. An example of a production plan for the

spinning case is illustrated in Figure 3. Five yarns of two different fiber qualities are scheduled

on three parallel machines over three planning periods. The dark gray rectangles represent the

time wasted on setting up the machine for the yarn production. The first two blends are dedicated

to the same product family, that is, the set of yarns that requires the same fiber blend quality.

The third blend is dedicated to a different product family.

Figure 3: An illustrative production plan.

2.1. Mathematical model

This section describes an MIP formulation adapted from the Multi-Stage General Lot-sizing

and Scheduling Problem (MSGLSP) - introduced in Camargo et al. (2012) - for the problem

addressed. Backlogging must be taken into account as it is a common feature in the spinning

industry. The MSGLSP divides the planning horizon into T periods. Each period is sub-divided

into a number of micro-periods in which only one yarn can be produced as a small-bucket model

(Meyr, 2002). Therefore, the sequence of production is obtained in a rather straightforward
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manner allowing for the incorporation of sequence-dependent setups. The fundamental assump-

tion is that a user-defined parameter restricts the number of micro-periods per period and,

consequently, the upper bound on the number of setups. However, the micro-periods have no

predefined length. A micro-period is confined to be within a single period and its length can

not exceed the length of its period. Without loss of generality, we have assumed the length of

each period to be equal to one. This assumption ensures some parameters to be standardized

accordingly. The model makes use of the same micro-period length across all machines (that is,

a fixed time grid). This feature enables the easy synchronization between the fiber blend (first

stage) and the yarns produced by the spinning machine (second stage).

An optimal solution involves sizing and scheduling the production lots, respecting the con-

straints with the minimum setup, backlogging and inventory costs. The solution to the general

lot-sizing and scheduling problem - GLSP (Fleischmann and Meyr, 1997) and its extensions (e.g.

MSGLSP) from an MIP solver is limited to small-sized instances - see (Santos and Almada-

Lobo, 2012). However, improvements such as reformulations, provide tighter bounds and can

speed up the solution to the problem or even partially overcome these limitations. The SPL -

simple plant location reformulation (Krarup and Bilde, 1977) is one of the improvements for the

lot-sizing problem - see (Gao et al., 2008) for a comparative study. Hereafter, the SPL is used to

reformulate the MSGLSP. In addition, a stronger set of equations (8)-(10) that ensures a setup

changeover in consecutive periods and micro-periods provides a much better alternative for the

MSGLSP proposed in (Camargo et al., 2012). Such constraints were first proposed for the DLSP

- discrete lot-sizing and scheduling problem (Belvaux and Wolsey, 2001).

In order to clearly present the model formulation, the notation is given as follows:

Indices

i, j = 1, . . . , N yarns;
k = 1, . . . , K blend that ensures the quality of the family S(k) of yarns;
m = 1, . . . , M spinning machines;
r = 1, . . . , R micro-periods per period;
t, t′ = 1, . . . , T time periods.

Parameters

citt′ production cost for yarn i produced in period t to meet demand in period t′;
σmij setup cost of a changeover in machine m from yarn i to j;
dit demand of yarn i in period t;
C maximum capacity (kg) per loading of the bale laydown machine - fiber blend process;
pmi processing time in machine m of one kilogram of yarn i;
smij setup time of a changeover in machine m from yarn i to j;
S(k) set of yarns that belong to family k.
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Variables

Xmitrt′ ≥ 0 production quantity in machine m of yarn i in micro-period r of period t to meet demand
in period t′;

Zmijtr takes on 1, if there is a changeover in machine m from yarn i to yarn j in period t and
micro-period r; 0 otherwise;

µs
tr ≥ 0 start time of micro-period r in period t;

µf
tr ≥ 0 end time of micro-period r in period t;
Ymitr ∈ {0, 1} takes on 1, if machine m is set up for yarn i in period t and micro-period r;

0 otherwise;
Utrk ∈ {0, 1} takes on 1, if fiber blend processed in period t and micro-period r meets the quality

to produce yarns of family k; 0 otherwise.

The stronger Multi-Stage General Lot-sizing and Scheduling Problem (sMSGLSP) reads:

Minimize

M∑
m=1

N∑
i=1

T∑
t=1

R∑
r=1

T∑
t′=1

citt′ ·Xmitrt′ +

M∑
m=1

N∑
i=1

N∑
j=1

T∑
t=1

R∑
r=1

σmij · Zmijtr (1)

subject to

M∑
m=1

T∑
t=1

R∑
r=1

Xmitrt′ = dit′ ∀i, t′ (2)

µs
t1 = t− 1 ∀t (3)

µf
tR = t ∀t (4)

µs
tr ≥ µ

f
t(r−1) ∀t, r > 1 (5)

µf
tr − µs

tr ≥
N∑
i=1

N∑
j=1

(smji · Zmjitr) +

N∑
i=1

T∑
t′=1

pmi ·Xmitrt′ ∀m, t, r (6)

Xmitrt′ ≤ dit′ · Ymitr ∀m, i, t, r, t′ (7)

Ymitr =

N∑
j=1

Zmjitr ∀m, i, t, r (8)

Ymit(r−1) =

N∑
j=1

Zmijtr ∀m, i, t, r > 1 (9)

Ymi(t−1)R =

N∑
j=1

Zmijt1 ∀m, i, t > 1 (10)

N∑
i=1

Ymitr = 1 ∀m, t, r (11)

Xmitrt′ ≤ dit′ · Utrk ∀m, i ∈ S(k), t, r, t′, k (12)

M∑
m=1

N∑
i=1

T∑
t′=1

Xmitrt′ ≤ C ·
K∑

k=1

Utrk ∀t, r (13)
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K∑
k=1

Utrk ≤ 1 ∀t, r (14)

Ymitr ∈ {0, 1} ; Utrk ∈ {0, 1} ∀m, i, j, t, r, k (15)

all other variables are non-negative and continuous. (16)

This type of model is known as the disaggregate formulation (Brahimi et al., 2006). The

objective function (1) is to minimize the sum of backlogging, inventory and sequence dependent

setup costs. Here, the amount produced before the delivery date is considered inventory, given

by Xmitrt′ in case t < t′. On the other hand, Xmitrt′ when t > t′ is the amount produced

after the delivery date, that is, backlogging orders. Similarly, the production costs citt′ refer to

inventory costs in case t < t′ and to backlogging costs in case t > t′. For t = t′, citt′ equals

zero. Constraints (2) attempt to satisfy the demand, by taking into account inventories and

backlogging. Constraints (3)-(5) define the start and end times of each micro-period r, hence its

length. Constraints (3) block the starting time of the first micro-period to the beginning of the

respective macro-period. Likewise, constraints (4) block the ending time of the last micro-period

to the end of the respective macro-period. It must be highlighted that µf
tR − µs

t1 = 1. This

condition will be clear when the capacity limits are discussed later on. Constraints (5) avoid the

micro-periods overlapping. A spinning machine works continuously during the period, therefore

pmi can be comprehended as the fraction of the period consumed by machine m to produce

one kilogram of yarn i. The capacity limitation of the parallel spinning machines is implicitly

expressed and Constraints (6) ensure that pmi ·Xmitr respects this capacity limitation, that is,

the machine capacity, the processing rates and the setup times are normalized to 1. Moreover,

they define the lower bound on each micro-period length based on the production and setup times

of all machines. The same requirements determine the upper bound on the amount produced

in each micro-period and set a fixed time grid of micro-periods for the machines. Observe that

the model allows for idle time intervals, which may take place within a micro-period or between

micro-periods.

Constraints (7) ensure that the production of a yarn in a micro-period occurs only if the

machine is set up for it. Equations (8)-(10) link the setup variables to the changeover variables.

By means of Constraints (8), machine m can produce yarn i in micro-period r of period t if

and only if a changeover from another yarn j to yarn i takes place at the beginning of micro-

period (i = j is possible). Similarly, (9) and (10) make sure that if a changeover from yarn
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i to yarn j takes place in a given micro-period, then the precedent micro-period is set up for

yarn i. Requirements (11) establish that each machine is set up for one and only one yarn in

each micro-period. By Constraints (12), in each micro-period, all the machines produce yarns

of the same family. Constraints (13) restrict the production in a micro-period to the maximum

size of the bale laydown. As only one machine is considered in the first stage, Constraints (14)

limit the number of families (or, in other words, the number of fiber blends) to be produced per

micro-period to one. Constraints (15) and (16) express the variable domains.

Figure 4 illustrates a production plan based on the sMSGLSP variables. Three groups of

active variables are shown. Recall that variables µs
tr and µf

tr indicate the start and end of each

micro-period. The fiber blend produced in each micro-period that supplies all the spinning

machines is expressed by Utrk. Finally, variables Ymitr represent the yarn prepared for the pro-

duction. The variables defining production quantities, inventory and backlogging levels, as well

as the setup changeover are associated with the variables depicted in Figure 4.

Figure 4: An illustrative production plan based on the decision variables.

For this example, the plan for machine 1 consists of six micro-periods and the yarn production

sequence of 1-3-3-3-5-5. The sequences for machines 2 and 3 are 2-2-2-4-4-5 and 2-2-3-3-5-5,

respectively. Note that a micro-period can allocate time for both production and changeover.

Although the idle time is not illustrated in the example, it may also occur within the micro-

periods.

3. Solution methods

As a first attempt to address the sMSGLSP, one may rely on an MIP solver. However, as

reported in (Camargo et al., 2012), the MSGLSP is a hard problem and the exact methods
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embedded in such solvers can only find feasible solutions for small-sized instances. The MIP

solver does not often find solutions for MSGLSP concerning medium and large instances, which

are relevant in practical applications. Exact methods try to find an optimal solution and prove

its optimality, but their respective running times increase exponentially according to the instance

size. A (meta)heuristic method, on the other hand, is able to find a good solution in a limited

time, at the cost of sacrificing the guarantee of finding optimal solutions. Therefore, when

choosing between an exact method or a (meta)heuristic method to solve this problem, one should

consider the best option to ensure optimality and acceptable running times.

Combinations of exact and (meta)heuristic methods have been studied in depth by re-

searchers. These combinations, usually referred to as hybrid metaheuristics, try to cross-fertilize

different optimization strategies. Puchinger and Raidl (2005) classify the hybrid metaheuristic

into two main groups. First, the collaborative combinations are algorithms that exchange infor-

mation, but no algorithm is incorporated into another. The group of collaborative combinations

can be sub-divided into sequential, intertwined or parallel executions. The second group con-

tains the integrative combinations, in which the algorithm is a dependent embedded component

of another algorithm. This second group is sub-divided into (i) metaheuristics that incorporate

exact algorithms and (ii) exact algorithms that incorporate metaheuristics. The second group of

hybrid methods is also called Matheuristics (Maniezzo et al., 2010).

In this matheuristics class, various approaches have adopted the strategy of fixing a variable

set to certain values in order to create a reduced problem. These approaches decrease the number

of freed variables, facilitating the solution to the problem. Soft and hard variable fixing methods

have been developed to construct and improve solutions. On the one hand, the soft variable fixing

concept is characterized by the non-imposition of the variable set which is fixed. Fischetti et al.

(2005) introduced the feasibility pump, in which a feasible solution is obtained from successive

roundings based on the linear programming relaxation. As a soft fixing method, the roundings

are performed in a non-imposed variable set. The Local Branching - LB (Fischetti and Lodi,

2003) is an iterative local search method that solves reduced problems. The reduced problems

are created by introducing a local branching constraint based on an incumbent solution. This

constraint ensures that the difference of the 0-1 variables between the incumbent solution and

an improved solution (measured by the Hamming distance) is limited to a given positive integer

parameter k. Therefore, the variables are soft fixed.

On the other hand, hard fixing methods impose the variables to be fixed. The relax-and-fix
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heuristic - as proposed in (Araujo et al., 2007), (Beraldi et al., 2008) and (Ferreira et al., 2009)

- solves the lot-sizing and scheduling problems as a sequence of partially relaxed sub-MIPs.

Each sub-MIP retains the variables of some time-partitions with integrality constraints and the

following partitions are relaxed. The integer variables are progressively fixed at the optimal

values obtained in earlier iterations. Relax-and-fix is often used as a construction-heuristic. The

fix-and-optimize heuristic, such as those presented in (Sahling et al., 2009; Helber and Sahling,

2010; James and Almada-Lobo, 2011), is an iterative improvement method. At each iteration,

the integer variables are fixed at the best previously found value, except for a limited set of

integer variables. This fixing strategy relates to the original problem, but by fixing part of the

solution, just a partition of the search space is explored. The fix-and-optimize heuristic requires

two elements: the original problem to be solved and a partition scheme that can generate new

solutions from a current incumbent solution. Besides the traditional time-partitions, James and

Almada-Lobo (2011) implemented partitions based on product and machine. However, the choice

of the partition to be optimized still requires attention. Problem-oriented methods, such as the

relax-and-fix and fix-and-optimize heuristics, bring elements of the problem into the solution

procedure, in such cases, the partitions of the problem.

Another two hard-fixing matheuristics, the Relaxation Induced Neighborhood Search - RINS

(Danna et al., 2005) and the Distance Induced Neighborhood Search - DINS (Ghosh, 2007) are

improvement procedures within the branch-and-bound method in an effort to quickly obtain a

good feasible solution, that maintains the optimality guarantee - which is an advantage of the

exact method. They share the core of large neighborhood search running under the branch-

and-bound exact method. Moreover, their execution depends on the existence of a relaxation

and/or an incumbent solution. In the RINS and DINS, a set of decision variables is fixed to

a bound and only the remaining variables are optimized by the MIP solver. If the MIP solver

finds an improved solution using the reduced problem, it becomes the new incumbent of the

original problem. The idea of the RINS is to occasionally devise a subproblem at any node

of the branch-and-bound tree that corresponds to a neighborhood of an incumbent solution.

The variables whose values are the same in both incumbent and current solution of the linear

relaxation are fixed and the reduced problem is then solved. Similarly, DINS fixes the variables

using a metric between the variables of the linear relaxation solution at the current node and the

variables of the best known feasible solution. RINS performs hard fixing by setting every variable

that has the same value as the linear relaxation. Finally, DINS plays around with hard and soft
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fixing as it fixes variables through imposed and non-imposed ways. A motivation for using this

type of matheuristics is that it produces a good upper bound early in the solution procedure and

prunes as much of the branch-and-bound tree as possible. These algorithms exploit the fact that

smaller problems can be easily generated from the original problem and can often be efficiently

solved by exact methods, as MIP solvers. As previously mentioned, the reduced problem can

be defined in different ways and its solution may provide better upper bounds to the original

problem.

As far as our problem is concerned, the backlogging feature permits the MIP solver to quickly

achieve a feasible solution. Therefore, hybrid methods that improve the upper bound, such as

RINS, seem to be a good alternative to solve the sMSGLSP. Bearing this in mind, a novel MIP

improvement heuristic is proposed in the next section.

4. HOPS - Hamming-Oriented Partition Search

Our approach is oriented by problem features when it comes to selecting the set of decision

variables to be fixed in order to create the reduced problem. When following the problem-

oriented methods (e.g. (James and Almada-Lobo, 2011)), the variable set selection is based on

clearly recognized problem partitions from the model, such as periods, micro-periods, machines

or products. The choice is performed according to a ranking that identifies the most promising

partitions to be optimized. The procedure to determine the improvement potential of a partition

is designated as Partition Attractiveness Measure and provides a clever partition choice. This

idea resembles the consistent variables as defined by (Glover, 1977) to define the variables that

repeatedly assume a particular value. In the partition case, the idea can be extended to the

variable set that belongs to the partition. Thus, following the variable fixing concept, HOPS is

classified as a hard fixing method since it creates the reduced problem by freezing the values of

certain variables.

To sum up, we bring and compile ideas to propose a new matheuristic called HOPS (Hamming-

Oriented Partition Search), which incorporates interesting strategies to solve large problems by

reducing them to smaller and more tractable sub-problems.

The algorithm scheme is divided into three parts. The first part illustrates the main method

incorporated in the branch-and-bound exact method (Section 4.1). The second part presents the

function that defines the metric to choose the variable partition that will be fixed (Section 4.2).

Finally, in the third part we show the necessary steps to fix the decision variables in order to
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create and solve the reduced problem (Section 4.3).

4.1. The HOPS core

Algorithm 1 shows the pseudo code that must be embedded in the branch-and-bound scheme.

The HOPS - Hamming-Oriented Partition Search may be performed after the branch-and-bound

has processed each node. Let P be the problem to be solved by the MIP solver with HOPS. (For

our previously addressed problem, P is the sMSGLSP):

P = Minimize

M∑
m=1

N∑
i=1

T∑
t=1

R∑
r=1

T∑
t′=1

citt′ ·Xmitrt′ +

M∑
m=1

N∑
i=1

N∑
j=1

T∑
t=1

R∑
r=1

σmij · Zmijtr

subject to (2)− (16).

The search for improvements is performed every time a new incumbent x0 is found throughout the

exploration of the tree. As previously explained, x0 can be improved by freeing one partition of

that solution and optimizing the reduced problem. The partition choice relies on a ranking based

on the frequency of the variable changes - belonging to that partition - in the past iterations. In

other words, one can determine the attractiveness of each partition to be optimized by calculating

a measure for the stability of the 0-1 variables throughout the search. Intuitively, one may say

that every feasible solution found along the branch-and-bound tree contains parts of the optimal

solution (or even the entire optimal solution). Therefore, partitions with stable variable values

might be part of the optimal solution and do not need to be iteratively optimized. On the other

hand, unstable variables should be more frequently re-optimized to promote convergence to the

optimal solution. Some elements are required in the procedure and must be defined. Let z be

the smooth array that saves the history of the solutions obtained along the branch-and-bound

tree. The array storage values are obtained by using the previous individual decision variable

values. Each new feasible solution is incorporated into z with an importance factor α. This aims

to smoothly integrate the solutions without loosing their memory. z is called smooth array as

the most recent solutions are given more weight than the less recent ones and the respective

weights decay exponentially as their recency lowers. In order to create the reduced problem,

the partitions to be considered by HOPS are listed in set A. For the sMSGLSP example, A

may contain machine, period, micro-period and/or product partitions. The partition selection is

based on the Partition Attractiveness Measure H, which determines the distance between each

partition’s new incumbent and array z.
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Algorithm 1: HOPS

Data: Problem P, incumbent solution x0, smooth array z, parameter α, set of partitions
A, and Partition Attractiveness array H.

Result: A new feasible solution x̄ to P.
1 begin
2 while Branch-and-bound active do
3 if x0 is a new incumbent to P then
4 H ←− PartitionAttractivenessMeasure(x0, z, α,A)
5 x̄←− Fix-and-Optimize(P,H, x0,A)
6 if x̄ is feasible then
7 inject x̄ in the branch-and-bound as a new incumbent

The HOPS core consists of two main procedures. First (line 4), if the new incumbent found

by the branch-and-bound is the best known solution, the attractiveness for the optimization (H)

of each partition is determined. Second (line 5), the reduced problem is created based on the

original problem, the new incumbent solution x0 and the partitions to be fixed following the

Partition Attractiveness Measure. The reduced problem is also solved by an MIP solver. In case

a feasible solution to the reduced problem is found, then it is injected into the branch-and-bound

tree of the original problem P as the new incumbent and the new upper bound. Therefore, when

solving the reduced problem, better upper bounds are searched for P . It is important to note

that the optimal solution of the reduced problem is at least as good as the best solution obtained

so far. By fixing the variables of the partitions that usually undergo no (or few) changes along

the branch-and-bound exploration, one may reach good partial solutions and the optimization

of the remaining part of the solution may improve the upper bound faster.

HOPS can be invoked in situations other than when a new incumbent is found. For example,

in line 3, the number of nodes between two invocations may be another condition to execute

HOPS. This alternative provides the control over the frequency of applying the improvement

heuristic. In this case, at least one feasible solution must have been previously generated.

4.2. Partition attractiveness measure

The choice of which variables should be fixed is the main difference between HOPS and other

methods from the literature. RINS and DINS fix variables without considering the relationships

between them. In contrast, our approach takes into account the inherent relationship between

the variables presented in the problem. The relationship is expressed as partitions of the problem,

such as periods, products or machines. In the sMSGLSP example, if only the machine partition

is considered, A =
{

machine m1, machine m2, . . . , machine mM
}
, where machine m1 denotes
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the set of decision variables related to machine 1. This setting is applied when other partitions

are considered simultaneously with this partition. The procedure to define the attractiveness

measure for each partition to be optimized is illustrated in Algorithm 2. To understand the

procedure, let S =
{
j : x0j = 1

}
denote the set of binary variables with a non-zero value of a new

solution x0 found by the branch-and-bound.

Algorithm 2: PartitionAttractivenessMeasure

Data: Incumbent solution x0, smooth array z, parameter α, and set of partitions A.
Result: Partition Attractiveness array H updated.

1 begin
2 foreach partition Ak ∈ A do

3 H(Ak) =

∑
j∈(Ak∩S)

(
x0j − zj

)
+

∑
j∈(Ak\S)

zj

|Ak|
4 foreach j do
5 z′j ←− α · x0j + (1− α) · zj
6 zj ←− z′j

The Partition Attractiveness Measure algorithm ranks the partitions every time a new feasible

solution is found. Moreover, the history of solutions (smooth array) found must be updated. The

first step (lines 2 and 3) returns the information on how much each variable value has changed in

comparison to the feasible solution history. The Hamming distance between the new incumbent

and the smooth array z is used and, by grouping the Hamming distances of the variables, one

can quantify and rank the partitions with more changes. It is important to note that the same

variable might belong to more than one partition. This grouping strategy defines the stable

partitions, that is, the average Hamming distance of all variables belonging to a partition defines

its stabilization level. By comparing the solution history and the new solution, an attractiveness

measure for each partition optimization is defined. The variable values of those partitions that

have no (or few) changes are considered changeless, whereas the other part must be stabilized.

Finally, the feasible solution history in smooth array z is updated with the new solution x0 (lines

4, 5 and 6). The linear combination creates the history in which each new x0 has an importance

factor α over z.

For example, let z = {0, 0, 1, 0, 0.6, 0.4, 0, 0} be the smooth array that must be updated with

the solution x = {0, 0, 1, 0, 0, 1, 0, 1} and importance factor α = 0.6. The new smooth array is

z’ = {0, 0, 1, 0, 0.24, 0.76, 0, 0.6} . Let Ak contain six partitions as follows: A1 ⊆ {x1, x2} , A2 ⊆

{x3, x4} , A3 ⊆ {x5, x6} , A4 ⊆ {x7, x8} , A5 ⊆ {x1, x4, x5, x8} , A6 ⊆ {x2, x3, x6, x7} . The differ-
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ence between z’ and the newest solution x′ = {1, 0, 1, 0, 0, 1, 0, 0} isH(Ak) = {0.5, 0, 0.24, 0.3, 0.46, 0.06} .

4.3. Fix-and-Optimize

This section introduces a heuristic that optimizes the reduced problems. Similarly to the

fix-and-optimize heuristic used in (James and Almada-Lobo, 2011) or (Sahling et al., 2009), our

design creates the reduced problem (P1) from the original problem (P ) fixing all, but a predefined

partition of the solution. The solution to the reduced problem P1 respects all the constraints of

the original problem. In addition, the objective function value is limited to be lower than the

upper bound (f(x0)) and higher than the lower bound (Z(P )) in the original problem. It implies

that a better solution for P is obtained or the reduced problem delivers an infeasibility status.

The variables are fixed, leaving out those belonging to the chosen partition.

Algorithm 3: Fix-and-Optimize

Data: Problem P, Partition Attractiveness array H, incumbent solution x0, and set of
partitions A.

Result: A new feasible solution x̄ to P.
1 begin
2 Define partition Ak from A that must be improved
3 Let ε be a small number
4 Let P1 be a reduced problem from P with additional constraints:
5 x←− x0 ∀ x /∈ Ak

6 f(x) ≤ f(x0)− ε
7 f(x) ≥ Z(P )
8 Solve(P1)
9 if a new solution x̄ is obtained from P1 then

10 return a new feasible solution x̄ to P

11 else
12 return ∅

Obviously, even by using the Partition Attractiveness Measure to choose the best portions

to be optimized, the selection of the partition variables requires a strong trade-off. The number

of variables of the freed partition directly influences the improvement of the solution. In fact,

it plays with diversification and intensification mechanisms. The higher the number of freed

variables, the wider the search space, which opens the possibility to diversify the solution. In

case the solution space is small, the available computational time is used to intensify the search

in the region closer to the incumbent solution. On the other hand, too large partitions might

result in excessive running times to solve the reduced problem with the MIP solver. In order to

avoid this scenario, the MIP solver is aborted when the established time limit is reached and the

best solution (if available) is considered.
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4.4. Accelerators

This section describes a set of six strategies to boost the HOPS method over its core. These

strategies mitigate the computational effort and add HOPS invocations.

HOPS node invocation

HOPS is initially invoked by default when the first MIP feasible solution is found. It can

also be called at every node in the tree or several consecutive times at the same node. Each

invocation comprehends the improvement attempt of one partition. Parameter nl ≥ 1 indicates

the number of nodes explored by the branch-and-bound between two consecutive invocations. In

case HOPS is invoked without a new feasible solution since the last call, the history of solutions

found remains unchanged and the procedure to update the smooth array z is skipped.

Unambitious choice

The choice of partition to be fixed is based on the attractiveness measure of the partitions.

The higher the attractiveness measure, the higher the unstability of the partition and its priority

to be fixed. Preliminary tests showed that HOPS performs slightly better when the partition

choice is not pure greedy, that is, the selection is made from a restricted candidate list of partitions

based on the value of the attractiveness measure.

Prohibited partition list

With an incumbent solution x0 at hand, the same reduced problem is generated consecutively

if partition Ak does not change. By designing a prohibited partition list, the method invests

computational efforts only in the unexplored partitions. Each explored partition is incorporated

in the list avoiding a future generation of the same reduced problem. In case a new incumbent

solution is found, the prohibited partition list is emptied.

Infeasibility invocation

Constraints limiting the upper and lower bounds in the reduced problem may accelerate its

solution. On the one hand, it can return an improved solution quickly. However, the reduced

problem can be too tight and may return an infeasibility status.

Each invocation is expected to return one new improved solution, therefore an infeasibility

invocation is designed to generate another reduced problem, if an infeasibility response is returned

in a minimum time.

Partition oscillating growth

The prohibited partition list and the infeasibility invocation enable a quicker exploration of

partition setA. If the improvement of the incumbent solution fails, the partitions can be combined
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in pairs, triples or larger clusters to expand the search space. If an improved solution is found,

the partition combinations move back and the prohibited partition list is again emptied.

HOPS turn on/off

HOPS is turned on when the MIP exploration tree finds its first feasible solution. If the

partition oscillating growth does not retract, HOPS can be turned off. This adaptive tool permits

the branch-and-bound to invest more time in exploring the original problem tree. It may speed

up the lower bound improvement and/or find a new incumbent solution to the problem. In case

of a new incumbent solution, HOPS is turned on.

5. Computational results

This section reports two computational tests performed to validate the HOPS method.

Firstly, HOPS was tested on a well-known lot-sizing problem and its performance was com-

pared against that of the state-of-the-art method proposed by Muller et al. (2012). Our goal

is to show HOPS’s competitiveness on a standard lot-sizing problem, for which best results are

available in the literature. Secondly, HOPS was run on a set of instances generated based on real

data from a spinning industry and compared to the results provided by RINS and LB. The pur-

pose is to analyze the HOPS front results against other hard and soft variable fixing strategies.

HOPS was implemented in C++ and used the ILOG CPLEX version 12.1 with default settings

to solve both the original and reduced problems. The experiment settings are described in the

following sections.

5.1. HOPS on a classical lot-sizing problem

In the first test, HOPS was executed for a widely used LSP, first proposed by Trigeiro et al.

(1989). Several variants of this problem were introduced in recent years, such as the variant

without setup costs in (Sural et al., 2009). To the best of our knowledge, the best results to this

LSP variant were published by Muller et al. (2012). The authors consider two instance classes:

Heterogeneous and homogeneous instances. Instances of 30 and 45 periods, and of 12 and 24

products are tested, totalizing 40 instances. For further details, the reader is referred to (Muller

et al., 2012).

The experiments of Muller et al. (2012) were performed on a 2.66 GHz Intel (R) Xeon (R)

X5355 machine with an 8 GB memory using ILOG CPLEX version 12.1 with default settings.

The HOPS tests were conducted on a 3.0 GHz Intel Q9650, 4GB RAM and Ubuntu 12.10
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operational system, which is considered to be a similar machine for these tests according to

SPEC (www.spec.org).

Parameters for HOPS and its accelerators were defined by preliminary tests and are provided

hereafter. The reduced problems were created by freeing a variable set of the incumbent solution.

The variable partitions must be clearly recognized in the problem. For the LSP with setup

times and no setup costs, the variable sets of periods and products were used in the HOPS

computational tests. The partition attractiveness, which determines which partition is freed to

create the reduced problem, was measured from the smooth array z. In these tests, a new feasible

solution x0 was incorporated into the smooth array with an importance factor α = 0.4. For the

HOPS node invocation, the parameter to define the nodes explored between two consecutive

invocations was set to nl = 500. The minimum time parameter to solve a reduced problem

required in Infeasibility invocation was set to 2 seconds. Nevertheless, the maximum time spent

on searching for an improved upper bound was 15 seconds. HOPS was turned off after the

partition list has been explored twice without any new solutions been found. A variation of the

parameters used in the computational tests to validate HOPS was also tested. Nevertheless, it is

worth to note that parameter calibration was not a priority in this work. Its emphasis is rather

on the presentation of a new matheuristic.

In order to resemble the computational experiments proposed by Muller et al. (2012), the

established time limit was 300 seconds and the results were calculated from the average of 10

runs for both the heuristic of Muller et al. (2012) and HOPS. Table 1 shows the compiled results

for heterogeneous and homogeneous classes, in which Gap = 1− lb/ub.

Table 1: Compiled gap results for the heterogeneous and homogeneous classes.

Class Heterogeneous class Homogeneous class
(Muller et al., 2012) HOPS (Muller et al., 2012) HOPS

G*-30 7.52 7.08 12.40 12.39
G*-45 7.55 7.16 12.02 12.03

The results clearly indicate the competitiveness of HOPS to solve a standard lot-sizing prob-

lem. On average, HOPS is slightly superior to the heuristic by Muller et al. (2012) for the

heterogeneous class and for the 30-periods instances that belong to the homogeneous class.

5.2. HOPS versus matheuristics of commercial implementations to solve the sMSGLSP

In the second test, the sMSGLSP was solved on instances based on real-world data. HOPS

was analyzed against other hard and soft variable fixing strategies. The experimental results
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were compared to the results given by RINS and LB.

Most of the practical cases present difficulties to obtain stable static data. The real-world case

delivers a relative low number of instances and statical parameters. Therefore, to demonstrate

the HOPS performance with respect to the solution quality over the problem, it is important

to provide the ground for systematic testing. An instance generator was designed to supply an

extensive set of instances that reflects the characteristics of real-world cases.

5.2.1. Problem-instance generation

By drawing an instance generator, the parameters can be systematically varied and a large

number of problem instances with specific desired properties are generated. Here, the problem

is posed with a constructive procedure. Period after period, product setups are assigned to each

machine and the maximum level for the production of each yarn is determined. The other main

points to generate the instances are randomly designed, but their proportions are similar to the

real data. Given a set of parameters N (number of yarns), K (number of families), M (number

of machines) and T (number of periods), the remaining data are determined as follows:

• all yarns are randomly assigned to a product family;

• the set of yarns of the same family that might be allocated to each machine is randomly

chosen;

• the setup times (with triangle inequalities respected) and the processing times for all yarns

on each machine are randomly generated;

• all costs are derived from the opportunity cost per yarn package unit;

• the demand of a yarn and the capacity of the first-stage machine are chosen with respect

to the capacity requirements.

In our tests, the evaluated instances had the following parameters: the number of products

N was four, five, seven or nine, and can belong to two or three product families K. The number

of spinning machines M considered was three, five, seven or nine. The number of periods T

was equal to five and the number of micro-periods R was fixed to three, which represents the

working days with three shifts. The generator was constructed to provide feasible solutions for

the case without backlogging, that is, the whole yarn demand can be satisfied in the planning

horizon. In order to evaluate the backlogging feature (presented in real-world cases), factors
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df = {1.0; 1.5; 2.0} were adopted to inflate the yarn demand. For each combination M/N/K/df ,

ten different instances were randomly generated, making a total set P of np = 840 instances.

5.2.2. HOPS versus RINS and Local Branching

The MIP solver CPLEX has the RINS implemented and activated by default in version 12.1.

Similarly, the Local Branching is part of the CPLEX package, but must be activated by setting

parameter IloCplex::LBHeur to 1. HOPS was implemented in C++ and used CPLEX to solve

the original and reduced problems. In order to ensure a fair comparison, RINS was disabled

from CPLEX when running LB and HOPS by setting parameter IloCplex::RINSHeur to -1. No

other CPLEX parameter was changed.

Similar to the test in Section 5.1, the parameters for HOPS and its accelerators were defined

by preliminary tests. The variable partition used in these tests were micro-period and machine

decomposition. The Partition oscillating growth accelerator was implemented allowing for the

period partition implicit usage in case the micro-period partition size increased. The minimum

time to solve a reduced problem was set to 5 seconds and the maximum time to 36 seconds.

Other parameters were set to the parameter indicated in Section 5.1.

All these computational tests were conducted on an Intel Xeon (2 GHz) with 5 Gb of random

access memory, running under Linux. In all cases, the methods were unable to compute the

optimal solution within a time limit of one CPU hour for each problem instance. Thus, the

comparison was focused on the best solution found and the respective optimality gap considering

the time limit of one hour.

Despite the fact that CPLEX is able to provide the optimal solution for a problem (if it

exists), in some cases this is not possible to be achieved in reasonable time. For the sMSGLSP

problem and the instances provided in this validation, the optimality proof was not complete

within the time limit. It is well-known that the newest CPLEX versions have a non-deterministic

exploration of the tree nodes and that the truncated results may therefore be divergent. Thus,

each instance was run five times to dilute any possible dissonant solution. The results reported

below are the average of the five runs.

The instances were grouped into three different sets following the factors that determine the

yarn demand (df). Three classes are presented: Class A details the instances where df = 1.0,

Class B and Class C lay out the instances where df = 1.5 and df = 2.0, respectively. This

division makes the effectiveness of the different methods visible in three different yarn demand

scenarios.
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Three measures were used to evaluate the performance of the methods. After one hour of

running time, the upper bound (best feasible solution found) and its respective optimality gap

were collected. In Tables 2, 3 and 4, the ten different instances of each class M/N/K/df are

grouped together. On each line, “#UB” represents the number of instances for which the method

found the best upper bound. If the same best upper bound was found by two methods, it is

written up for both. Similarly, “#GAP” refers to the number of instances for which the method

found the smallest relative gap. The relative gap provided by CPLEX is defined as GAPp,s = 1−

LBp,s/UBp,s, where LBp,s is the lower bound and UBp,s the upper bound for the instance p ∈ P

found by method s after 1 hour of running time. The third measure, “rp,s” depicts the aggregated

relative performance of each method for each instance class and refers to the ratio of the solution

found by each method over the best solution reported by the three methods all together. For

the HOPS example, rp,HOPS = UBp,HOPS/min(UBp,HOPS , UBp,RINS , UBp,LB). This metric

is an average of the ten instances of each class. In the last line, “Total #UB” represents the

percentage of instances in which the method found the best solution. “Total #GAP” is the

percentage of instances for which the method reported the minimum gap. Subsequently, “Total

rp,s” is the ratio average of the 280 instances.

From the results shown in Table 2, HOPS achieves the best solution for 55% of 280 instances

belonging to Class A. The “Total rp,HOPS” value of 1.041 indicates that the solution values

found by HOPS are, on average, 4.1% worse than the best solutions. On the other hand, the

solutions from RINS and LB are, on average, 20.6% and 41.8% worse than the best solutions.

The HOPS optimality gaps are as good as the RINS gaps. It is important to note that as the

problem dimension increases, the superiority of HOPS over the other two methods seems to be

clearer. For every instance of class 9/9/3/1.0, HOPS presents the best solution and gap.

Table 3 shows the results of Class B, in which yarn demands are increased by factor df = 1.5.

For this class, backlogging may occur to satisfy the demand constraints. Once again HOPS

reached the best objective value for 45% of 280 instances against 42% by RINS. Nevertheless,

the optimality gap provided by HOPS is the best for 85% of the instances. These results indicate

that HOPS finds good solutions quicker and concentrates more efforts on improving the lower

bound. In terms of solution quality, both HOPS and RINS found solutions not worse than 0.8%

(on average) to the best solutions. Clearly, the LB method yields a poor relative performance
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Table 2: Comparison among HOPS, RINS and LB for Class A.

HOPS RINS LB

M N K #UB rp,s #GAP #UB rp,s #GAP #UB rp,s #GAP
3 4 2 7 1.016 4 4 1.013 6 5 1.023 7
3 5 2 4 1.018 2 5 1.010 4 3 1.026 7
3 7 2 5 1.038 1 1 1.068 5 4 1.030 5
3 9 2 4 1.017 2 5 1.026 5 1 1.056 3
5 4 2 6 1.034 3 2 1.043 6 2 1.032 3
5 5 2 4 1.010 3 4 1.031 6 2 1.067 1
5 7 2 7 1.003 4 3 1.096 5 0 1.158 4
5 9 2 6 1.031 6 3 1.173 3 1 1.285 2
7 4 2 6 1.026 2 1 1.049 4 3 1.044 7
7 5 2 3 1.055 3 6 1.050 6 1 1.097 2
7 7 2 7 1.023 8 3 1.092 4 0 1.376 0
7 9 2 5 1.085 4 4 1.187 5 1 1.481 1
9 4 2 4 1.030 2 3 1.058 6 3 1.071 4
9 5 2 4 1.023 3 4 1.082 5 2 1.072 4
9 7 2 6 1.083 6 3 1.100 4 1 1.484 1
9 9 2 5 1.027 4 5 1.138 6 0 2.198 1
3 5 3 5 1.016 2 2 1.051 5 5 1.012 6
3 7 3 7 1.025 3 0 1.130 3 3 1.048 4
3 9 3 1 1.034 3 1 1.040 5 8 1.016 6
5 5 3 5 1.020 3 3 1.081 4 2 1.076 5
5 7 3 6 1.153 4 4 1.093 7 0 1.300 0
5 9 3 5 1.082 4 3 1.296 3 2 1.267 3
7 5 3 7 1.017 6 2 1.128 3 1 1.368 2
7 7 3 5 1.079 7 2 1.451 3 3 1.798 3
7 9 3 6 1.132 6 4 1.324 5 0 2.772 0
9 5 3 7 1.024 8 3 1.110 4 0 1.389 0
9 7 3 8 1.041 8 2 2.244 2 0 3.057 0
9 9 3 10 1.000 10 0 2.593 0 0 3.099 0

Total 55% 1.041 43% 29% 1.206 44% 19% 1.418 29%

Table 3: Comparison among HOPS, RINS and LB for Class B.

HOPS RINS LB

M N K #UB rp,s #GAP #UB rp,s #GAP #UB rp,s #GAP
3 4 2 7 1.002 9 5 1.002 4 1 1.004 3
3 5 2 7 1.002 8 4 1.002 6 2 1.005 5
3 7 2 7 1.000 10 1 1.011 2 4 1.004 4
3 9 2 5 1.004 7 3 1.006 3 2 1.007 3
5 4 2 2 1.004 9 4 1.004 3 5 1.002 4
5 5 2 4 1.004 9 2 1.002 1 4 1.001 1
5 7 2 4 1.004 8 4 1.002 4 2 1.016 1
5 9 2 5 1.008 9 5 1.005 1 0 1.034 1
7 4 2 3 1.004 8 4 1.004 4 3 1.004 1
7 5 2 7 1.003 10 0 1.008 0 3 1.015 0
7 7 2 7 1.008 10 3 1.015 1 0 1.034 0
7 9 2 4 1.013 9 6 1.011 3 0 1.047 0
9 4 2 3 1.007 9 5 1.006 0 2 1.007 1
9 5 2 5 1.007 9 3 1.014 4 2 1.016 0
9 7 2 2 1.013 8 7 1.003 2 1 1.027 1
9 9 2 3 1.021 8 6 1.006 3 1 1.064 0
3 5 3 4 1.001 9 5 1.004 0 2 1.004 4
3 7 3 4 1.004 10 2 1.012 1 4 1.006 3
3 9 3 4 1.008 6 4 1.006 2 2 1.012 4
5 5 3 4 1.005 9 5 1.01 0 1 1.016 2
5 7 3 2 1.021 7 7 1.004 3 1 1.026 1
5 9 3 3 1.017 7 7 1.003 4 0 1.025 1
7 5 3 7 1.006 9 1 1.015 3 2 1.016 1
7 7 3 5 1.010 9 3 1.007 3 2 1.032 1
7 9 3 6 1.006 10 4 1.008 0 0 1.055 0
9 5 3 3 1.013 8 6 1.008 3 1 1.024 0
9 7 3 2 1.015 7 7 1.009 4 1 1.081 0
9 9 3 6 1.010 8 4 1.034 2 0 1.141 0

Total 45% 1.008 85% 42% 1.008 24% 17% 1.026 15%

for the whole set instances.

Table 4 shows the results from Class C. Similarly to Class B, the solution qualities for both

HOPS and RINS are equivalent and deviate on average 0.2% from the best solutions. However,
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HOPS outperforms RINS and LB when it comes to find the best solutions (53%) and the best

optimality gaps (94%).

Table 4: Comparison among HOPS, RINS and LB for Class C.

HOPS RINS LB

M N K #UB rp,s #GAP #UB rp,s #GAP #UB rp,s #GAP
3 4 2 6 1.000 9 5 1.000 6 3 1.000 5
3 5 2 5 1.001 9 5 1.001 3 1 1.000 4
3 7 2 7 1.000 8 2 1.002 5 2 1.001 5
3 9 2 5 1.002 9 5 1.001 5 1 1.002 3
5 4 2 5 1.000 9 3 1.000 1 4 1.000 1
5 5 2 6 1.001 10 2 1.002 2 2 1.001 2
5 7 2 5 1.002 9 3 1.001 3 2 1.004 3
5 9 2 5 1.001 8 3 1.002 2 2 1.004 2
7 4 2 6 1.001 10 3 1.001 3 1 1.002 3
7 5 2 6 1.001 9 3 1.000 6 1 1.003 3
7 7 2 4 1.002 9 5 1.003 1 1 1.008 1
7 9 2 4 1.005 9 5 1.003 4 1 1.014 0
9 4 2 5 1.001 10 3 1.002 4 2 1.005 1
9 5 2 7 1.001 10 2 1.002 1 1 1.005 1
9 7 2 6 1.001 10 3 1.004 1 1 1.011 0
9 9 2 3 1.003 10 6 1.003 4 1 1.018 1
3 5 3 6 1.001 10 1 1.002 4 3 1.001 3
3 7 3 7 1.001 10 2 1.004 3 1 1.003 1
3 9 3 7 1.000 10 2 1.004 3 1 1.005 1
5 5 3 8 1.000 10 1 1.003 3 1 1.006 2
5 7 3 4 1.003 10 3 1.003 2 3 1.008 2
5 9 3 4 1.004 10 5 1.004 6 1 1.011 2
7 5 3 5 1.002 10 5 1.002 1 0 1.006 2
7 7 3 4 1.005 10 5 1.002 2 1 1.010 2
7 9 3 4 1.007 9 5 1.005 2 1 1.027 1
9 5 3 8 1.002 10 2 1.005 1 0 1.006 0
9 7 3 4 1.010 8 5 1.004 4 1 1.014 2
9 9 3 2 1.014 7 8 1.002 6 0 1.044 0

Total 53% 1.002 94% 36% 1.002 31% 14% 1.008 19%

Below, the performance profiles (Dolan and Moré, 2002) are plotted to compile the informa-

tion from Tables 2, 3 and 4. Given the set P of 840 instances and s ∈ S = [HOPS, RINS, LB]

methods under evaluation, the performance ratio is determined as:

rp,s =
UBp,s

min (UBp,HOPS ; UBp,RINS ; UBp,LB)
.

Let ρs (τ) be the proportion of instances from P that were solved by method s with relative

performance within a factor τ ≥ 1, that is, ρs (τ) is expressed as:

ρs (τ) =
|P : rp,s ≤ τ ; p ∈ P|

|P|
.

Figure 5 summarizes the comparison of the performance over set P. By taking into account

all 840 instances, HOPS found the best solution for 50.9% of the instances, RINS for 35.8%

and LB for 16.6%. Regarding solution robustness, HOPS has proved to be by far the best. For

95% of the instances, HOPS provided solutions that dist less than 7.9% of the best solutions.

On the other hand, RINS and LB solutions are up to 26.0% and 66.6% away from the best
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solutions, respectively. In the worst case, when ρs (τ) is equal to 100, there is a problem p such

that rp,HOPS = 1.79 (that is, HOPS is 79% away from the best solution). For the RINS and LB

cases, rp,RINS = 6.55 and rp,LB = 8.88 (not shown in the trucated graphic).
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Figure 5: Performance profiles.

HOPS is indeed more robust and can provide better solutions than RINS and LB. Figure 6

illustrates the solution value evolution along the search for HOPS, RINS and LB on a particular

instance of Class C. We recall that the backlogging feature benefits the CPLEX to provide a

quick feasible solution. All methods start from the same solution at node 0. HOPS improves the

solution faster not only at the beginning of the run (before 600 seconds), but also throughout

the one hour of computational time.

6. Final remarks

This paper presents an integrated industrial problem at a spinning industry. The first-stage

process deals with cotton blending whereas the second stage concerns the yarn production. The

first-stage production must be synchronized with the second-stage product, in product quality

terms. The problem becomes harder with the occurrence of sequence-dependent setup features.

A mathematical modeling aims to determine the production plan of the first and second stages

with minimum setup changeover, inventory and backlogging costs while trying to meet the due

dates of the required demand.
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Figure 6: Solution quality evolution over time for a Class C example.

This two-stage lot-sizing and scheduling problem is approached by a new matheuristic. The

HOPS - Hamming-Oriented Partition Search is an exact method that incorporates a heuristic,

in which a fix-and-optimize procedure finds better feasible solutions to boost the branch-and-

bound procedure. The Partition Attractiveness Measure is used to choose the variable set that

is considered unstable and can potentially improve an incumbent solution. The new solution is

injected into the branch-and-bound tree, accelerating the optimality proof.

HOPS was first tested on instances of a well-known lot-sizing problem and its performance

was positively assessed against recent results from the literature. For the production planning

problem of the spinning industry, a large set of instances that assumes proportions similar to

real-world data was designed to validate the new matheuristic. A comparison of HOPS against

commercial implementations of improvement matheuristics shows that HOPS outperforms both

RINS and LB in obtaining good feasible solutions within a certain time limit. The computational

results support the argument that in the context of problems addressing production backlogging,

exact methods with improvement procedures are good options for providing better solutions.

HOPS results show that a problem-oriented improvement procedure can provide better solutions

for problems with a known partition structure (in this case, machine, period, micro-period and

product).

Our work is in line with research gaps pointed out in the literature by addressing lot sizing
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and scheduling considering backlogging and sequence-dependent setups (Zhu and Wilhelm, 2006),

multiple stages with parallel machines and synchronization of resources (Clark et al., 2011) and

problem-oriented methods (James and Almada-Lobo, 2011).

Although HOPS has been designed to solve the production planning in the spinning indus-

try, some of the ideas can be applied to different lot-sizing and scheduling problems or other

problems not covered by this research subject. The main requirement is to recognize the “nat-

ural” partitions of the problem. We believe HOPS will serve as a guidance for solving many

applications.
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