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On first order state constrained optimal control problems
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Abstract— We show that exact penalization techniques can
be applied to optimal control problems with state constraints
under a hard to verify hypothesis. Investigating conditions
implying our hypothetical hypothesis we discuss some recent
theoretical results on regularity of multipliers for optimal
control problem involving first order state constraints. We show
by an example that known conditions asserting regularity of
the multipliers do not prevent the appearance of atoms in the
multiplier measure. Qur accompanying example is treated both
numerically and analytically. Extension to cover problems with
additional mixed state constraints is also discussed.

I. INTRODUCTION

Optimal control problems with state constraints have been
a challenging subject since the very birth of optimal control
in the end of the 1950’s. There is a vast literature addressing
many issues of interest concerning the presence of state
constraints, among those questions relating to the normality
and the degeneracy of the maximum principle as well as
the regularity of the optimal control and multipliers (see,
for example, [2], [5], [1], [14], [15], [16], [19], [17] and
references within). The presence of measure measures as
multipliers associated with the state constraint in the Maxi-
mum Principle (see for example [24]) is a source of hardship
both analytically and numerical. It is thus natural to ask if
there exists any class of problem with state constraints where
such measures are well behaved in the sense that they can be
absolutely continuous with respect to the Lebesgue measure.
In this paper, we investigate such question. We first explore
exact penalization techniques to see how the maximum
principle would look like and we discuss the difficulties con-
cerning the validation of such result. Notably, we show that
a Maximum Principle without measure would be possible
if a certain condition were valid. Failing to validate such
handy result we turn the analysis around. Looking to results
asserting some regularity of the multipliers, we look at one
of the simplest problems of state constrained optimal control
problem. For such problems we briefly review the literature
where some regularity of the measures is proved and we
apply them to a specific problem arising from the control of
the spreading of infectious diseases. An important feature of
this problem is that it has a first order state constraint. Taking
into account numerical results, we show that the measure

*The support of the European Union Seventh Framework Programme
[FP7-PEOPLE-2010-ITN] under grant agreement n. 64735-SADCO is
greatly acknowledged. This work was also supported by FEDER funds
through COMPETE and by Portuguese funds through the Portuguese
Foundation for Science and Technology, within projects DAEDALUS
PTDC/EEA-ELC/122203/2010 and OCHERA PTDC/EEI-AUT/1450/2012.

Mgor Kornienko and Maria do Rosario de Pinho are with Department of
Electrical Engineering and Computing, Faculty of Engineering, University
of Porto, 4200-465 Porto, Portugal igor, mrpinho@fe.up.pt

ISBN: 978-90-367-6321-9

447

associated with the state constraint is absolutely continuous
inside the interval but has an atom at the end point. We
go a step further discussing problems with additional mixed
constraints.

Notation

For g in R™, inequalities like g < 0 are interpreted com-
ponentwise. Here and throughout, B represents the closed
unit ball centered at the origin regardless of the dimension
of the underlying space and | - | the Euclidean norm or the
induced matrix norm on RP*9,

A function h: [a,b] — RP? lies in W11([a, b]; R?) if and
only if it is absolutely continuous; in L*([a, b]; RP) iff it is
integrable; and in L*°([a, b]; RP) iff it is essentially bounded.
The norm of L*°([a, b]; RP) is ||| -

We make use of standard concepts from nonsmooth anal-
ysis. Let A C R¥ be a closed set with Z € A. The proximal
normal cone to A at T is denoted by N¥(z), while N%(z)
denotes the limiting normal cone and N§ (z) is the Clarke
normal cone.

Given a lower semicontinuous function f: RF — R U
{+o0} and a point € R¥ where f(z) < +oo, L f(7)
denotes the [limiting subdifferential of f at T. When the
function f is Lipschitz continuous near z, the convex hull
of the limiting subdifferential, co O f(z), coincides with the
(Clarke) subdifferential 0 f ().

II. EXACT PENALIZATION

Consider the following problem

Minimize {(z(a), z(b))
subject to
() = f(t,z(t),u(t)) ae.t€ [a,b]
(P) h(z(t)) <0 forall te [a,0]
u(t) e U(t) ae.t€ a,b
(x(a),z(b)) € E.

The function f : RxR™x RF — R™ describes the system
dynamics and h : R™ — R is the functional defining the
pure state constraint. Furthermore, the set £ C R™ x R™ and
l: R™xR"™ — R specify the endpoint constraints and cost.
The multifunction ¢t — U (t) defines the pointwise set con-
trol constraints. Observe that we introduce a simplification
by assuming that /& is a function of x alone.

This problem involves measurable control functions u and
absolutely continuous state function x. A pair (z,w) is called
an admissible process if it satisfies the constraints of the
problem with finite cost.

We say that the process (Z, @) is a strong local minimum
if, for some ¢ > 0, it minimizes the cost over admissible
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processes (x,u) such that |z(t) — Z(¢)| < e forallt €
[a, b].

We consider the following basic hypotheses on the prob-
lem data throughout which make reference to some process

(Z,u) and a scalar € > 0:

H1 The function t — f(¢,2,u) is £ measurable for all x
and w.

H2 There exists a constant K; > 0 such that

(wa, ) = U, 23)| < Ki|(xa, 25) — (2, 7)]

for all (x4, xyp), (20, 2}) such that z,, 2}, € Z(a) + B,
xy, z}, € Z(b) + eB.

H3 The set E is closed.

H4 The function h is continuously differentiable on and
Vh(z) # 0 for any = such that h(z) =0

H5 There exist constants k/ and kfsuch that all u,u’ € RF
and all 2,2’ € Z(t) + eB we have

|f(t,x,u) -

for almost every ¢ € [a, b].
H6 The graph of the multifunction U is a Borel set.

ft, 2 )| < kLo — 2| 4+ Kkl u — /|

Set :={yeR: y <0} and

S:={zxeR": h(z) € ®}. (1)

Observe that h(z) <0 <= z € S. Consider the distance
function

ds(z)

By definition of S we have

=inf{|z — 2| :

x' € S}

ds(Z(t)) = 0 <= h(Z(t)) < 0.

The set ® is convex and thus N5 (y) = N§ (y) for all y € R.
If, for some = € R", we have h(z) < 0, then N§ (h(z))
{0}. If, however, h(x) = 0, then

¢ € Ng (h(z)) = £ > 0.
Recall that (see [7], [24] for example)
9%ds(x) C NS (x).
Then
¢ € 0%g(z) = ¢ € N§ ().

By (H4), if a € R such that o > 0 and 9% ah(z) = 0, then
a = 0. It then follows from Proposition 4.1 in [10] that

V¢ € 0% g(z) Jae NS (h(z)): ¢ =aVh(z(t). )

This last finding will be important in the subsequence
development.
We now add the following hypothetical assumption:

HH If (Z, ) is a strong minimum for (P), then there exists a
constant K > K such that (Z,@) is a strong minimum
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for the following problem

Minimize {(z( )+ K / ds(x
subject to

z(t) = f(t,z(t),u(t)) ae.té€ [a,b]
u(t) e U(t) ae.t € [a,b
(z(a),z(b)) € E.

where the set S is as defined in (1).

Observe that (Q) is an optimal problem without state
constraints: the state constraint h(z(t)) < 0 in (P) is
incorporated in the cost function of (Q) via the integral of
the distance function dg.

We call (HH) a hypothetical assumption since what we
would like to have is an assumption implying (HH). Let
us see what we would need to guarantee (HH). It is a
simple matter to see that (Z,u) is an admissible solution
to (Q). Moreover, any admissible process (z,v) for (P) is
an admissible process for (Q).

Seeking a contradiction we suppose that (Z,a) is not a
strong minimum to (). First, olzserve that, since h(Z(t)) <

0 for all ¢ € [a,b], we have K [ dg(Z(t))dt = 0. Take now

(2’,u’) to be an admissible pro%ess for (Q) such that

—i—K/dS £)dt < 1(#(a),

'(a) K/ds

It is then obvious that p > 0. Choose some § € (0, 55 ).
Then we have

I(«'(a)

and set

I(z(a),

(b))

p = U(z(a), 2(1)) ~ Uz

0<K6§g<p.

Consequently

0 < i(z(a), 2(b)) -

It follows that
)+ K / ds(z

Ko—1('

K/ds

I(a'(a) t))dt < 1(z(a),

Suppose now that that there exists an admissible process
(z,v) for (P) such that

(b)) — K.

s {[a(0) - (0]} < 5 / ds(a 3
We know that
(=(a). 2(6)) — (&' a). 2/ ()| < 2 maxe {[2(t) — /(1))

tela,b]

and since [ is Lipschitz we have

I(z(a), 2(0)) ~1(a' (a), 2' (1)) < Ki(2(a), 2(8)) = (&' (a), 2/ (1))
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Thus, assuming K > K; we have
1(2(a), 2(b)) — l(z'(a), 2" (b)) <
K| (:(a), 2(0)) = (@'(@),2/ (1)) <
K [P ds(z'(t)dt < K [ ds(a!(t))dt + K& <
K [P ds(a/(t))dt + p =
(t))dt + 1(z(a), 2(b)) — 1(z'(a), 2’ (b))
~K [} ds(/(t))dt =

l(z(a), (b)) — (z(a), 2" (b))
and we deduce that

1(2(a), 2(b)) < U(z(a), z(b))

contradicting the optimality of (Z,@).

We deduce from the above that if for any admissible
process (z/,u’) for (Q) there exists an admissible process
(z,v) for (P) satisfying ((3), then (HH) would hold. However,
such condition involving (3) is not satisfied in general.

Observe that (3) can be written as

K [P ds(a!

Jo =l < & [ st @

The existence of an admissible process (z,v) for (P) sat-

isfying conditions somewhat similar to (4) has been vastly

explored in the literature (see, for example, [17], [2], [3],
b

dg(z'(t))dt are

known to hold. Nevertheless and as we can see next, if some
conditions on the data of (P) would imply (4), they would
be of use as we illustrate next.

[4]). However, no conditions involving

A. Hypothetical Theorem

Now let us work under the assumptions (H1)—-(H6) and
(HH). The following result can be obtained by simply
applying to (Q) the nonsmooth Maximum Principle (see, for
example, [24]) and appealing to (2):

Let (Z,u) be a strong minimum for (P). Then then there
exist an absolutely continuous function p, a measurable
function & and a scalar A > 0 such that

(i) |Iplloc +A >0,
(ii) —p(t) €

a5 (p(t), f(t, 2(t),u(t))) — AE(t)Vh(z(t)) ae.,
(iii) uweU(t) =

(p(t), (£, 2(t),u)) < (p(t), f(t, Z(t), u(t))) ae.,
(iv) (p(a), —p(b)) €

NE(#(a), 2(b)) + A0 1(Z(a), (b)),

(v) §(t) = 0 and £(t)R(2(t)) =0 ae.

Notably no measure is present in the above conditions.
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III. A FIRST ORDER PROBLEM

Let us now turn to autonomous problems of the form

Minimize /b<c, x) 4+ u? dt
subject to ‘
i(t) = F(a(t) + g(o(®)u(t) act,
Ba(t) <0 ¥,
u(t) e U aelt,
(

a) = xq,

8

where ¢ € R™, u is a scalar, U is a compact set in R and
Vh(z) # 0 whenever h(z) = 0. Here, as before, we assume
that h is a scalar valued function.

Before proceeding, let us briefly review some concepts
on the state constraint appearing in problem (F'O) that will
be important in our setting. A boundary interval for the
state constraint along a trajectory x of (FO) is an interval
[t8, 28] C [a,b] if it is the maximal interval where h(z(t)) =
0 Vt € [th,t%]. The point t} and ¢} are called entry point
and exit point. Any interval I C [a,b] is an interior interval
if h(z(t) <0 Vtel. A point o € [a,b] is a contact point
for z if it is an isolated point such that h(xz(c)) = 0.

Problem (FO) has one state constraint. Let (Z, @) be local
strong minimum for (FO) and assume that our conditions H1-
H6 are satisfied. Theorem 9.3.1 in [24] asserts that there exist

an absolutely continuous function p, a scalar A, a measure
w € C%([a,b]) such that

(1) (pa)‘alu’) 7é (03();0);
(i) —p(t) = f7 (2(t)q(t) +
(i) for all w € U, (g

I

(H)g5 (z(t)a(t) — Ac:

—

(9(Z(t))u, q(t)) — Au?,
(iv) —q(b) = 0;
) supp{u} C {t: h(z*(t)) = 0}.
where

ﬂﬂ=pt+mﬂVhﬂ@)M$
q(b) = p(b) —|—f[ (s)) p(ds).

If the above conditions hold with A = 1, then we say that
the problem is normal.

In [22] (see also [17] and the references within), conditions
are derived for the problems of the type of (FO) to guarantee
that the measure associated with the state constraint in the
normal form of the maximum principle is regular (in the
sense that it is absolutely continuous with respect to the
Lebesgue measure in the interior of the interval [a, b]). One
might think that conditions imposed to assert regularity of
the adjoint variable, if satisfied, would also imply that our
hypothetical assumption (HH) holds. However, we need to
keep in mind that neither [22] nor [17] provide us with
information about the possible behaviour at the points ¢t = a
or t = b. If we knew a priori that h(Z(a)) < 0 and
h(z(b)) < 0, then, the regularity of the measure would
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follow. But no such guarantee exists as we illustrate next
with a simple problem with one state constraint of first order
recovered from [6].

A. An example with state constraints

We want to determine a vaccination policy to control
the spreading of a generic infectious diseases in a certain
population. Let us consider a “SEIR” model. This is a
compartmental model dividing the total population N into
four different compartments relevant to the epidemic. Those
compartments are susceptible (S), exposed (FE), infectious
(I), and recovered (immune by vaccination) (R). We look
at the evolution of the disease over a certain period of
time 7' with parameters describing the population and the
disease transmission constant over a period of time 7.
Taking into account certain assumptions on the population
and the disease transmission (see [20] for a more complete
description), considering a simple cost and requiring that the
susceptible population is to be bounded at each instant of
time, we are led to following the problem (Pgs):

T
Minimize / (AI(t) 4+ u?(t)) dt
0

subject to

S(t) =bN(t) — dS(t) — cSH)I(t) — u(t)S(t),

E(t) =cSt)I(t) — (e+ d)E(t),

[(t) =eE(t) = (g9+a+d)I(),

N(t) = (b—d)N(t) —al(t),

S(t) < Smaz;

u(t) €10,1] a.e.t,

S(0) = So, E(0) = Ex,

1(0) = 1Io, N(0) = No.

The above problem has the form of problem (FO) as shown
in [6]. To see this set

x(t) = (S(t), E(t), I(t), N(t)),
A=1(0,0,4,0), C=(1,0,0,0).

and for a convenient choice of matrices A; and B, define
where fi(z) = Ajx + ¢(—SI,SI,0,0)T, (here c is some
parameter) g(z) = Bz and h(z) = (C,z) — Spax = S —
Smae for some fixed Sy,q. > S(0).

Now we concentrate on the necessary conditions given by
(1))-(v) above. Consider ¢ = (gs, ¢e, Gi, ¢n) and analogously
p = (Ds,Pe, Pi,Pn)- It is an easy task to show that in the
region of interest Theorem 4.1 in [21] holds. Thus conditions
(i)-(v) with A = 1. Applying such conditions to (Ps) we
deduce that

_ . s (1)S™(t)
u(t) :maX{O,mm{l,—qQ}}. 5)
Since
q(t) = p(t) + o t)Vh(w*(t)) p(ds),
and
Vh(z*(t)) = (1,0,0,0),
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we obtain

/ (1,0,0,0) u(ds) = (/ u(ds),0,070>
[0,%) [0,¢)

Then we get

%@:m®+/ u(ds),

(0,%)

Qe (t) = pe(t), 4i(t) = pi(t), qn(t) = pn ().

Appealing to the main results of [22] we conclude that
1 is absolutely continuous w.r.t. Lebesgue measure. Hence,
there exists an integrable function v such that

/0 t v(s)ds = /m 1(ds)

and ¢ is absolutely continuous on [0, 7T'[ with

Gs(t)

It is now a simple matter to see that for ¢ € [0, T,

gs(t) = u”(t))gs(t) — Ge(t)-

We do not know whether g, has a jump at £ = T or not.
However, the maximum principle tells us that g;(7") = 0 and
that we have pe(t) = g.(t), pi(t) = ¢i(t), pn(t) = gn(t) and
Pe(T) = pi(T) = pu(T) = 0.

To see if g5 has a jump on 7" or not, we treat our problem
numerically. To do our simulations we use the Imperial
College London Optimal Control Software — ICLOCS —
version 0.1b. ICLOCS calls IPOPT - Interior Point OP-
Timizer — an open-source software package for large-scale
nonlinear optimization. Treating our numerical data we show
in [18] that the numerical solution does satisfy the maximum
principle and the state constraint is active at the end point
t =T (see Figure 1).

= pa(t) + v(t).

(d+ cI*(t) + v(t) + eI* (1)

@

C

2 1100f

S

=3 950

£ 800

©

5 850 -

‘% 500+ , ;

& 0 5 10 15 20

@ Time (vears)
Fig. 1. The state (S) for (Pgs)

Moreover, checking the the numerical multipliers, we
deduce that the measures (see also [18]) does indeed have
an atom. This is of interest because of the simple structure
of the state constraint of (Ps). Indeed, this state constraint
is of first order.
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B. Example with State and Mixed constraints

As in [6], we can now add a mixed constraint of the form
S(t)u(t) < Vp to (Pg) creating a new problem, (Pys), with
both mixed and state constraints.

Appealing to appropriate necessary conditions for (Ppsg)
and adapting the proof of known results such as Theorem
4.1 in [21] we can show that, as before, (Pysg) is normal.
Regularity of the adjoint variable can also be guaranteed,
adapting, for example the proofs, of [22]. Hence, once more,
we have the regularity of the measure in [0, 7'[. However, our
numerical findings also show that the state constraint is active
at the end point and that the measure has an atom at ¢t =T
as shown in Figures 2 and 3.

—k

o

10 15 20
Time (years)

1
—k

State multiplier (MU)

o
6]

Fig. 2. The state multiplier exhibiting a jump at the end point for (Pysg)

Once more, the pathological aspect is the fact that the state
constraint is active at the end point.
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2 1100]
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3 950

§ 800}
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= | "

0~ Time (years)

Fig. 3. The optimal state (S) for (Pass).

IV. CONCLUSIONS

It is important to identify a class of state constrained prob-
lems with regular adjoint variables, since the conclusions of
the maximum principle under such circumstances would be
easy to apply. We investigate here some possible conditions
under which this would hold. Moreover, we point out that
when the state constraint is not active at the end points, such
class of problems coincide with the class of problems to
which regularity conditions derived in [17] and [22] hold.
However, even for problems with a simple structure, it is not
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an easy task to guarantee that the state constraint is inactive
on end points. We present an example with first order state
constraints where the state constraint is active on the end
point and the adjoint variable does have a jump there. We
believe that the analysis of known results on regularity is not
affected under addition of a mixed constraint (this will be the
focus of future work). Remarkably, adding mixed constraint
to our example problem does not change the behaviour of
our adjoint variable.

Our examples have active constraints on the end point
but do have regularity of the measure at any point ¢t # 7.
Taking into account the literature on nondegeneracy of the
maximum principle, we hope that nondegeneracy conditions
at the end point together with the known regularity conditions
for problems in the form of (FO) may be of help in the quest
for conditions implying our hypothetical assumption (HH).
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