
Implementing a Self-Checking PROFIBUS Slave

Margrit Reni Krug*
Marcelo Lubaszewski*

José Manuel Martins Ferreira**
Gustavo Ribeiro da Costa Alves**

margrit@inf.ufrgs.br, luba@iee.ufrgs.br
jmf@fe.up.pt, galves@def.isep.ipp.pt

*PPGC – UFRGS – Instituto de Informática
Av. Bento Gonçalves, 9500 – Campus do Vale – Bloco IV

Caixa Postal 15064 – CEP 91501-970 Porto Alegre – RS - Brasil

** Departamento de Engenharia Electrotécnica e de Computadores da
Faculdade de Engenharia da Universidade do Porto - Portugal

Abstract

This work presents the study and
preliminary results of the high level
implementation of a self-checking Profibus
slave. From an existing VHDL description of
the device, a test strategy was studied and
implemented, so that the whole circuit has
embedded test structures capable to perform
at-speed test of the slave. In this paper, we show
the used test strategies and implementation
results achieved from a synthesis process in a
FPGA environment.

1 Introduction

In a world of great and hard
competition, it is mandatory for a company to
supply the best products and services to its
customers. To make this task possible, a good
information system is crucial. A system capable
to get and process data that come from factory
ground is even more critical, since these
information contribute to taking several
decisions, considering economical, technicial
and safety factors. To accomplish this
communication between the equipments of a
factory and the control system, fieldbuses are
used. Due to the great importance of the
information that is present in this sort of bus, it
is necessary to guarantee the media reliability
and avalability. A solution that presents a good

tradeoff between cost and efficiency is the
integrated self-test approach.

Nowadays, the dimension of the
systems make it difficult the test process. For
this problem, the solution has been the insertion
of test structures into the circuit, rather than test
the complex system by external means
[D&T97]. Since the fieldbuses are complex
systems used in crucial processes which claim
for security, the self-checking capability is of
great interest. In this work we address the
problems related to the self-checking design of
an entire slave block of a fieldbus, regarding the
description language, time restrictions and area
overhead.

This paper presents in section 2 a brief
description of industrial buses. In section 3, the
Profibus struture, self-chek concept is discussed;
in the section 4, test strategies for FSMs are
studied. Experimental results are presented in
section 5. In section 6, an strategy to fault
tolerant slave is presented, and, finally, in
section 7, the conclusions and future works are
given.

 2 Industrial Buses

An industrial bus, also known as
fieldbus, is a protocol for the communication
between automation and control equipments of
an industrial plant, such as sensors or actuators
and a microprocessor.

Several types of fieldbuses exist in the
market: Profibus [PRO98], Foundation Fieldbus

[FOU96], CAN [CAN98], InterBus [INT98],
etc. Each one has its characteristics and
advantages, but a standard protocol capable to
provide all industry requirements is not
avaliable yet.

The fieldbus came on as a solution for
the problem of joining and operating
instruments of factory ground. The main
requirements for this protocol are: a) it should
be capable to operate instruments from different
manufaturers having different features b) it
should work in a distributed system.

This protocol implements some
techniques for safe communication, ensuring the
transmission of message packages (frames).
Some test techniques, such as to verify whether
a certain node of the net is active (that is
answering to requests and receiving
information) are accomplished by most of the
protocols.

However, the functionality of the bus,
that is, if the protocol itself is meeting to its
requirements, is not guaranteed. What is
detected now is if some device tied up in the
fieldbus is not simply working. If the fieldbus
itself fails, stopping its activities completely or
even presenting a random behavior, it does not
exist a mechanism that comes to identify the
fault, not even to signal the error.

The behavior of permanent or random
fault in the fieldbus can cause considerable
losses, and possibly irreparable damages.

Permanent faults occur in components
affected by mechanical rupture or some other
waste phenomenon. Random faults are caused
by disturbances of external signals, in general,
due to radiations or electrical source floating.
This paper aims at proporing a test technique
that can detect those faults in a particular
fieldbus described next, the Profibus.

3 Profibus

The Profibus is divided in a
master/slave structure. Master devices are called
active elements, because any communication
request is accomplished through them.
 The slave Profibus is a passive element
of the architecture, because it can only answer to
requests and never taking the initiative of a
communication. It is modeled using finite state
machines (FSM).

A slave's Profibus FSM consists on
just two states: offline and passive-idle. When a

station is found in the offline state it is unable to
communicate with any other station that is tied
up to the bus. This is due to the fact that the
initialization of the whole set of necessary
variables to the communication process was not
correctly done.

After the initialization of the variables,
the FSM transitions from the offline state to the
passive-idle state, which represents the
operational state. The machine stays in this state
until there is a restart request or till a fatal error
occurs.

In the passive-idle state the slave
station is permanently listening to the messages
passing through the bus to check if they are
addressed for itself or if they are broadcast
messages.

4 The Self-Checking Capability

It is common knowledge that the
solution to test problems must be based on the
adoption of a hierarchical and structured
strategy, taken into account early in the
integrated circuit design. Furthermore, it is
important that this same strategy can be
employed for design validation, manufacturing,
maintenance and on-line tests, thus being
applicable to all phases of a circuit’s
lifetime[LUB92].

Existing off-line test techniques cover
one part of the test necessary for integrated
circuits and boards. These techniques, in the
form of Built-In Self-Test (BIST) schemes
[AGR93a],[AGR93b], have already reached an
important level of maturity regarding the fault
coverage, the surface overhead and the test
application time.

The other part of the tests necessary for
circuits and boards is related to the on-line
testing capability, a feature of great importance
for systems where poor functioning can, for
example, lead to a disaster.

The self-checking circuit
implementation, for making on-line testing
possible, is based on the encoding of functional
block outputs and on the verification of these
outputs by specific checkers [CAR68].The
circuit error indication is supplied by a global
checker to the level immediately higher in the
test hierarchy (figure 1).

Functional

Block

Encoded Outputs

Checker
Error Indication

Figure 1 - A self-checking circuit

The goal to be self-checking circuits is often
called TSC (totally Self-Checking). The first
erroneous output of a functional block has
provoke an error indication on its checker
outputs. In [CAR68] is introduced the basic
ideas and Anderson [AND71] defined the TSC
property for functional blocks and for checkers.
Smith and Metze [SMI78] define SFS (Strongly
Fault Secure) circuits and Nicoladis et al
[NIC84] defined SCD (Strongly Code Disjoit)
checkers, wich are respectively the largest
classes of functional blocks and of checkers
allowing the TSC goal to be ensured.

In finite state machines, several faults
can occur, among them illegal and incorrect
state transition. The first one refers to a
transition that is not specified in the machine. In
the second one, the transition is specified in the
machine, but it happened in an wrong time
[ROC95]. Therefore it is very important to
embed self-checking techniques in the slave
controllers of the fieldbuses, to guarantee that
the transition of the states happens in a safe way.

5 FSM On-Line Test Strategy

A typical fault in a FSM is a wrong
state transition, that may cause a transition to a
new state that does not exist or that is
incorrectly selected [LEE96]. An approach
capable to detect these single-state transition
faults is a parity checker associated with the
FSM as shown in figure 2 [SHE94]. This
technique was implemented in our Profibus
slave.

Figure 2 - Parity checker

In this approach, a parity code is
associated with each state of the FSM, and a
parity checker verifies the state transition to
detect possible incorret behaviors. This
technique was presented in [SHE94], and its
main advantage is that the circuit is capable to
keep working as a sequential circuit during test,
avoiding scan propagation, very common in this
kind of logic. The state code is defined so that
fault masking is considered. The detailed coding
method is presented in [SHE94] and it is based
on definitions of distinguishable machines
[CHE92], [LEE76], [CHE90].

This technique makes it possible the
on-line test of the FSM, since it does not
interfere in the normal operation of the machine.

6 Experimental Results

The slave block of the Profibus was
firstly described using two VHDL [ALT95]
modules. The first one represents the connection
of data of the frame level, called FHD3FRM
and, the second one represents the level of
physical connection, named PHY_5.

The technique of parity check was
implemented in each one of the Profibus slave
machines.

Table 1: Synthesis results for the original and self-checking description the using parity check
technique

Block Device Number of LCs Percent of
device used

Clock Frequency
(MHz)

Phy_5 EPF10K20RC240-4 179 15% 18.41

Fhd3frm EPF10K20RC240-4 363 31% 10.35

Phy_5 EPF10K20RC240-4 248 21% 14.81

Fhd3frm EPF10K20RC240-4 511 44% 5.13

Combinational

logic

Flip-flops

Parity
Checker

OutputsInputs

Error indication

The four descriptions of the Profibus
slave, the original and the self-checking one,
were synthesized using the ALTERA tool
[ALT95]. Results in terms of number of logic
cells, frequency of operation and device used
are shown in Table 1. In this table, white rows
represent the original descriptions, and gray
rows apply to the self-checking descriptions.
With these results, it is possible to compare the
cost of the insertion of self-checking structures
in a real application.

The increase in terms of logic cells is
of 40% and of 38,54%, respectively for
FHD3FRM and PHY_5.

In terms of clock frequency, the
penalties were also important. This decrease
may compromise the performance of some
applications. However, one should consider the
advantages of using a n on-line test technique to
increase the safety of the entire system.

7 Evolving to Fault Tolerant Slave

An other technique used to test FSMs is
called Monitoring Machine. In this approach an
auxiliary sequential circuit, called monitoring
machine, operates in lock-step with the main
machine, such that any faulty in either of the two
machines is immediately detected [PAR96].

The monitoring machine can be applied
to FSMs with pre-encoded states and facilitates
on-line detection of errors, then it also applies
description of slave PROFIBUS.

We are now working on a proposed of
a different new implementation of the
monitoring machine. In this version, the
monitoring machine not only monitores the main
Profibus FSM but it is also capable to replace
this FSM in case of fault. The capability to
distinguish wich of the two machines is faulty is
achived by parity check, in much the same way
as described in the previous section.

8 Conclusions and Future Works

This work presented an implementation
of a self-checking Profibus slave. Two modules
inside a VHDL description were identified,
studied, and re-defined so that self-checking
structures could be inserted. New VHDL
descriptions were implemented and synthesized,
generating a complete at-speed self-checking
Profibus slave. Results in terms of area
overhead and clock frequency for both
descriptions were presented and compared.

In the near future we intend to study the
fault coverage for all blocks, to compare the
implementation of different self-checking

strucutres to study the power consumption for
the self-checking implementation and to define
the best test schedule.

Since the fault tolerance extension is an
on going activity, the experimental referring
results of the implementation of the monitoring
machine technique will also be demonstrated in
future publications.

9 References

[AGR93a] AGRAWAL, V. D. , KIME, C.R.,
SALUJA, K. K., A Tutorial on Built-In
Self_Test - Part 1: Principles. IEEE Design and
Test of Computers, n. 10, v(1), 1993.
[AGR93b] AGRAWAL, V. D., KIME, C. R.,
SALUJA, K. K., A Tutorial on Built-In
Self_teste - Part2: Applications. IEEE Design
and Test of Computers, n. 10, v(2), 1993.
[ALT95] ALTERA DATA BOOK 1995.

Altera Corporation, march, 1995.
[AND71] ANDERSON, D.A., Design of Self-
Checking Digital Networks Usign Coding
Techniques, CSL Univ. Of Illionois, Urbana,
Report 527, September 1971.
[CAN98] CAN- Controler Area Network -
http//www.nrtt.demonco.co.ukl.
[CAR68] CARTER, W.C. And SCHNEIDER,
P. R., Design of Dynamically Checker
Computers, 4th IFIP Congress, Edinburgh,
Scotland, v(2), pp. 878-883, 1968.
[CHE90] Cheng, K.T.;Jou, J.Y, Functional
Test Generation for Finite State Machines,
International Test Conference, Proceedings...,
1990, pp.162-168.
[CHE92] Cheng, K.T.;Jou, J.Y., A Functional
Fault Model for Sequential Machines, IEEE
Transactions Computer-Aided Design, V(11),
1992, pp. 1065-1073.
[D&T97] Built-in Self-Test for Design. D&T
Roundtable. IEEE Design and Test of
Computers, n. 3, v. 14, july-setember 1997.
[FOU96] Foundation Fieldbus. Technical
Overview, revision 1.0, September 1996.
[INT98] INTERBUS,
http://www.interbusclub.com, 1998
[LEE76]Lee, S.C., Digital Circuits and Logic
Design, Prentice-Hall, Englewood Cliffs, N.J.,
1976.
[LEE96] LEE, D. And YANNAKAKIS, M.,
Principles and Methods of Testing Finite
State Machines - A Survey . Procedings of the
IEEE, n. 8, v(84), August 1996.
[LUB92] LUBASZEWSKI, M. And
COURTOIS, B., On the Design of Self-
Checking Boundary Scannable Boards,
International Test Conference, proceedings...,
pp. 372-381, September, 1992.

[NIC84] NICOLAIDIS, M., JANSCH, I. And
COURTOIS, B., Strongly Code Disjoint
Checkers, Proc. Fault Tolerant Comp. Symp.,
pp. 16-21, 1984.
[PAR96] PAREKHJI, R. A., VENKATESH, G.
And SHERLEKAR, S. D., Monitoring
Machine Based Synthesis Technique for
Concurrent Error Detection in Finite State
Machines. Journal of Eletronic Testing: Teory
and Applications, n. 8, pp. 179-201, 1996.
[PRO98] PROFIBUS. Technical Overview.
http://www.profibus.com, 1998.
[SHE94] SHEU, M.l.; Lee, C.L.,
Simplifying Sequential Circuit Test
Generation, IEEE Design and Test of
Computers, fall, 1994, pp.28-38.
[SMI78] SMITH, J.E. And METZE, G.,
Strongly Fault Secure Logic Networks, IEEE
Trans. On Computer, v(27), n 6, June 1978.
[ROC95] ROCHET, R..; LEVEUGLE, R. And
SAUCIER, G. Efficiency Comparison of
Signature Monitoring Schemes for FSMs.
International Conference ASP-DAC'95,
CHDL'95 and VLSI'95, procedings...,

Japan, 1995.

