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Abstract. We study a model based on the so called SIR model to control
the spreading of a disease in a varying population via vaccination and treat-
ment. Since we assume that medical treatment is not immediate we add a new
compartment, M , to the SIR model. We work with the normalized version of
the proposed model. For such model we consider the problem of steering the
system to a specified target. We consider both a fixed time optimal control
problem with L1 cost and the minimum time problem to drive the system to
the target. In contrast to the literature, we apply di↵erent techniques of op-
timal control to our problems of interest. Using the direct method, we first
solve the fixed time problem and then proceed to validate the computed so-
lutions using both necessary conditions and second order su�cient conditions.
Noteworthy, we perform a sensitivity analysis of the solutions with respect to
some parameters in the model. We also use the Hamiltonian Jacobi approach
to study how the minimum time function varies with respect to perturbations
of the initial conditions. Additionally, we consider a multi-objective approach
to study the trade o↵ between the minimum time and the social costs of the
control of diseases. Finally, we propose the application of Model Predictive
Control to deal with uncertainties of the model.

1. Introduction. Recently, we have witnessed an increasing interest in the appli-
cation of optimal control methods to the important task of controlling the spreading
of such disease via vaccination, medical treatment and education measures. Using
compartmental models to describe the dynamic behaviour of the populations when
exposed to a disease, various di↵erent optimal control problems have been proposed
(see, for example, [27], [4], [24], [25] to name but a few). These models di↵er on the
choice of the dynamic model, on the constraints enforced and on the cost.
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In this paper, we illustrate how various optimal control tehcniques can be of
help to study the control of the spreading of infectious diseases within a certain
population. Here, we work in an abstract framework and our data is not specific
of any real population or disease. While some of the analysis used in this paper is
now routine in the literature, we bring out some unexplored techniques of optimal
control to mathematical epidemiology. Indeed, we discuss and perform a sensitivity
analysis, we study minimum time problems and a multi-objective control approach
and we illustrate the application of Model Predictive Control (MPC) to the control
of diseases.

Our starting point is a SIR compartmental model of a horizontally transmit-
ted disease. Assuming that the disease under consideration can be controlled via
both vaccination and medical treatment, we propose the addition of an extra com-
partment, denoted M , where those infected with the diseases but under medical
treatment, are placed (see section 2 for a description of our model) for the dura-
tion of the treatment. Our aim is to steer the number of individuals in a certain
population to residual values. We call such a residual value the target. We consider
both fixed terminal time problems and minimum time problems. Although we do
not consider a constant population, we work with a normalized model to keep our
model with a minimum (but meaningful) number of di↵erential equations.

In Section 3, we first concentrate on a fixed optimal control problem with a L1

cost representing the economical cost of the infection and the treatement. We solve
this problem numerically via the direct optimization method and we validate the
computed solution confronting it with the analysis of necessary conditions. Addi-
tionally, and as in [25], we check second order su�cient conditions for all occuring
bang-bang controls. We then go a step further and we add a fresh discussion on the
sensitivity of the the solutions with respect to the parameters.

If we put aside any considerations of economical costs to fight the disease (as some
healthy populations may do), how much time do we need to drive the number of
infectious individuals to the required residual values? This leads us to consider the
minimum time problem to steer our system to the target. Minimum time problems
are routine in Engineering problems but, to the best of our knowledge, they have
not been treated in the context of Mathematical Epidemiology. We consider the
minimum time as a function of the initial conditions and show that this function is
the solution of a Hamiltonian-Jacobi-Bellman equation (HJB). We use the software
ROC-JC to compute this function and then show how di↵erent trajectories can be
computed by the same code. It is of interest to note that software codes based on
the HJB approach profit from the fact that the number of di↵erential equations
describing the system is low.

Although the study of minimum time problem is of high relevance in Epidemiol-
ogy, it does not take into account the costs of the control intervention which may
be highly relevant to some societies. We study how to balance control costs and
minimum time e�ciency: we propose a multi-objective framework in section 5.

Finally, we turn to issues concerning the implementation of computed control
policies. We consider a situation where public health measures to control a certain
disease are implemented. In such cases it is of foremost importance to monitor the
situation to make sure that all goals are achieved. Since any model used to design
such measures is but a rough approximation of the real situation, it is no surprise
that the real system does not respond as expected. We propose the use of a Model
Predictive Control method to control the real system while maintaining the target
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and keeping the cost as closely as possible to the cost obtained from mathematical
models. We assume that the implemented measure are determined by solving the
fixed time optimal control problem proposed previously. To better simulate reality
we use a dynamic system, where one of the parameters of the model, the incidence
rate c, is perturbed by a time dependent function c

p

(t).

2. SIR Model. To model the progress of infectious diseases in a population, SIR
models place the individuals of a population of size N into three di↵erent compart-
ments relevant to the epidemic:

• susceptible (S),
• infectious (I),
• recovered (R) (immune by vaccination or recovered after being infected).

An individual is in the S compartment if he/she is vulnerable or susceptible
to catching the disease. Infected individuals are also infectious and so they can
spread the disease when in contact with susceptible individuals. They are placed
in compartment I. It is assumed that individuals who recovered from infection
become immune. They are put into the compartment R that also contains those
individuals who have become immune by vaccination.

Such models are also based on the conviction that all new born are susceptible to
the disease. The disease modeled in this way is related to the so called horizontal
incidence meaning that the transmission of a disease proceeds from one infected
individual to a susceptible one. The contact may be direct (through touching, for
example) or indirect as in the case of coughing. Those infected who recover from
the disease become immune. These assumptions cover many known diseases. In
contrast with SEIR models, SIR models do not considered diseases where individuals
get exposed to the disease but do not become infectious right away.

To present the SIR model, let S(t), I(t), and R(t) denote the number of individ-
uals in the susceptible, infectious and recovered class at time t, respectively. The
total population then is N(t) = E(t) + I(t) + R(t). Here, we consider that the
parameters in the spreading of a disease are kept constant on a fixed time hori-
zon. The parameters describing the e↵ect of the disease are g1, the rate at which
infectious individuals recovered, and a1, the death rate caused by the disease. The
rate of transmission is described by the number of contacts between susceptible and
infectious individuals. If c is the incidence coe�cient of horizontal transmission,
such rate is c S(t)

N(t)I(t). The population parameters of interest are the natural birth
rate b and death rate d.

Let us further assume that the control of the spreading of the disease is done
by a vaccination program aiming at the susceptible individuals and the medical
treatment of the infected population. Let u(t) be the rate of susceptible individuals
vaccinated per unit of time and ⌘ be the e�ciency rate of the vaccine, the rate of
those who are vaccinated and become immune. Let also v(t) be the rate of those
infected that undergo medical treatment. Since the medical treatment does not
have an immediate response, we introduce the new compartment

• medical treatment (M).

We define M(t) as the number of infected individuals under medical treatment. We
assume that those under medical treatment recover fully and become immune at
the rate g2. However, those under treatment can also die at a rate a2 due to the
disease or the treatment itself. Clearly, we assume that a1 > a2 and g1 < g2 since
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otherwise treatment would not be an option. The above considerations lead to the
dynamical system

Ṡ(t) = bN(t)� dS(t)� c
S(t)

N(t)
I(t)� ⌘S(t)u(t), (1)

İ(t) = c
S(t)

N(t)
I(t)� (g1 + a1 + d)I(t)� I(t)v(t), (2)

Ṁ(t) = I(t)v(t)� (g2 + a2 + d)M(t), (3)

Ṙ(t) = ⌘S(t)u(t) + g1I(t) + g2M(t)� dR(t), (4)

Ṅ(t) = (b� d)N(t)� a1I(t)� a2M(t), (5)

with the initial conditions

S(0) = S0, I(0) = I0, M(0) = 0, R(0) = R0, N(0) = N0. (6)

Here, we consider u(t) 2 [0, u
max

], where u
max

2 [0, 1] is the maximum rate of
susceptible people that can be vaccinated per unit of time. Likewise, we have
v(t) 2 [0, v

max

], where v
max

2 [0, 1] is fixed. Both u
max

and v
max

translate the
maximum capability of vaccination and treatment programs to be implemented.

Figure 1. SIMR compartmental model with treatment and vaccination.

Note that the di↵erential equation (4) can be removed from the system of equa-
tions (1)-(5), since R can be obtained from N(t) = S(t) + I(t) +M(t) +R(t). This
gives rise to a model with four di↵erential equations which can be further reduced
to three if it is normalized. Although the number of equations is not an issue when
solving optimal control problems numerically, it may be of importance when indi-
rect methods are considered and for the solution of the Hamilton-Jacobi-Bellmann
(HJB) equation; see, for example, the ROC-HJ code [6]. These observations to-
gether with some other features of interest of the normalized models discussed in
[13], leads us to do our forthcoming analysis with the normalized version of (1)-(5).
Such a normalized model is obtained from (1)-(5) by dividing each variable by N(t)
and setting

s(t) =
S(t)

N(t)
, i(t) =

I(t)

N(t)
, m(t) =

M(t)

N(t)
, r(t) =

R(t)

N(t)
.

In particular, we get

s(t) + i(t) +m(t) + r(t) = 1 for all t.
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The normalized counterpart of (1)-(5) then is

ṡ(t) = b� bs(t)� cs(t)i(t) + (a1i(t) + a2m(t))s(t)� ⌘u(t)s(t), (7)

i̇(t) = cs(t)i(t)� bi(t)� (g1 + a1)i(t) + (a1i(t) + a2m(t))i(t)� i(t)v(t), (8)

ṁ(t) = �(a2 + g2 + b)m(t)) + (a1i(t) + a2m(t))m(t) + i(t)v(t), (9)

ṙ(t) = ⌘u(t)s(t)� br(t) + g1i(t) + g2(t)m(t) + (a1i(t) + a2m(t))r(t), (10)

with the initial conditions

s(0) = S0/N0, i(0) = I0/N0, m(0) = 0, r(0) = R0/N0.

Once again we have the control constraints

0  u(t)  u
max

, 0  v(t)  v
max

8 t, (11)

where u
max

2 [0, 1] and v
max

2 [0, 1] are fixed. Since r(t) = 1 � s(t) � i(t) �m(t)
and r(t) only appears in (10), equation (10) can be removed from the system.

However, the system (7)–(9) model does not have such an easy and simple in-
terpretation as the system (1)–(5); for a discussion regarding the interpretation
of analogous SEIR models, see [13]. One remarkable fact is that the death rate
disappears. Besides the reduction of one di↵erential equation, normalized models
describe the spreading of diseases in di↵erent populations with the same birth rate.

Throughout this work we work with the parameters presented in Table 1.

Table 1. Parameters for the normalized SIMR model (7)–(10)

Parameter Description Value

b Natural birth rate 0.01
c Incidence coe�cient 1.1
a1 Infection induced death rate 0.08
a2 Treatment induced death rate 0.005
g1 Recovery rate of those infected 0.02
g2 Recovery rate of those under treatment 0.5
⌘ E�ciency of vaccine 0.8

u
max

Maximum rate of vaccination 0.8
v
max

Maximum rate of treatment 0.8
s0 Initial percentage of susceptible population 0.95
i0 Initial percentage of infected population 0.05
m0 Initial percentage of infected population under treatment 0

Note that we do not concentrate on any specific disease or population. Since
our focus is on the illustration of how various optimization methods can be of
help to better control infectious diseases, our parameters are not clinically valued
and they are mainly illustrative. The birth rate chosen is close to that of some
European countries, the incidence rate c of the disease is high (giving rise to a
high reproduction number). We obviously choose the death rate of those under
treatment to be much lower than that of those infected, while the opposite holds
for the recovery rates of those two compartments.
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3. Fixed Time Optimal Control Problem. In what follows we will concentrate
on three di↵erent optimal control problems involving our model (7)-(9). The basic
control problem is one with a fixed terminal time T (years). A simple examina-
tion of the solution to this basic problem leads us to consider two other problems,
namely the minimum time problem and a two-objective control problem for which
we determine the Pareto front; see Section 5.

The first problem depicts the situation, when in the presence of a infectious
disease, the aim is to determine vaccination and treatment policies to control the
spreading of the diseases in a time horizon of T years. It is reasonable to seek
policies guaranteeing that the percentage of infected population is driving, if not
to zero, then to a small residual quantity. Let us assume that such a quantity is
5⇥ 10�4. In optimal control terms this means that we want to ensure that

i(T )  5⇥ 10�4. (12)

As it is well known, the design of any public health policy always takes into ac-
count the costs associated with its implementation. For our model (7)-(9) such
costs include the cost of vaccination, the cost of the medical treatment and also
the economic cost of the infection itself (for example, absence to work of infected
individuals or how the presence of the disease a↵ects the revenues from tourists,
etc). These considerations lead us to the following optimal control problem:

(P1)

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Minimize J1(u, v) =

Z
T

0
(Ai(t) +Bu(t) + Cv(t))dt

s.t.

ṡ(t) = b� bs(t)� cs(t)i(t) + (a1i(t) + a2m(t))s(t)� ⌘u(t)s(t),

i̇(t) = cs(t)i(t)� bi(t)� (g1 + a1)i(t) + (a1i(t) + a2m(t))i(t)� i(t)v(t),

ṁ(t) = �(a2 + g2 + b)m(t) + (a1i(t) + a2m(t))m(t) + i(t)v(t),

(u(t), v(t)) 2 [0, u
max

]⇥ [0, v
max

],

(s(0), i(0),m(0)) = (s0, i0,m0),

i(T )  5⇥ 10�4.

Observe that problem (P1) is a�ne in the two control variables u and v. There is
an extensive literature on optimal control problems in epidemiology with a control-
a�ne system dynamics. Many authors have used control-quadratic L2 costs which
leads to continuous control functions that are di�cult to administer in practice. For
that reason, L1 costs with an a�ne control are more suited in practical applications.
The conditions of the Maximum Principle [29, 19] seem to suggest that optimal con-
trols are concatenations of bang-bang and singular controls. This control structure
will be confirmed by our computations. The piecewise constant bang-bang controls
are easy to administer, while in many cases the singular controls can be closely
approximated by piecewise constant controls; cf. the piecewise constant control
approximations (20) and the examples in [25] and [13].

Let us turn again to the problem (P1) of interest. To characterize the solution we
now apply the Maximum Principle (MP) [29, 19]. Let x = (s, i,m) denote the state
variable. Note that now we are maximizing �J1(u, v). Observe that our system
can then be written in the form

ẋ(t) = f(x(t)) + g1(x(t))u(t) + g2(x(t))v(t), (13)
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with appropriate functions f , g1 and g2. Let (s⇤, i⇤,m⇤, u⇤, v⇤) be an optimal solu-
tion of (P1) and let x⇤ = (s⇤, i⇤,m⇤) be the optimal state. Define the Hamiltonian
as

H(x, p, u, v,�) = hp, f(x)i+ hp, g1(x)iu+ hp, g2(x)iv � �
�h(0, A, 0), xi+Bu+ Cv

�
,

where p = (p
s

, p
i

, p
m

) 2 R3 is the adjoint (costate) variable. Then the MP asserts
the existence of a scalar � � 0 and an absolutely continuous function p such that
for almost every t 2 [0, T ]:

(i) max{|p(t)| : t 2 [0, T ]}+ � > 0,

(ii) ṗ(t) = �H
x

[t] = hp(t), f
x

[t] + (g1)x[t]u⇤(t) + (g2)x[t]v⇤(t)i � �(0, A, 0) ,

(iii) H(x⇤(t), p(t), u⇤(t), v⇤(t),�) = max
u

{H(x⇤(t), p(t), u⇤(t), v⇤(t),�) :

0  u  ū, 0  v  v̄ },
(iv) p(T ) 2 {(0, ⇠, 0) : ⇠ � 0}.
The condition (iv) above is a consequence of the final time constraint i(T )  5⇥10�4

which dictates that p
i

(T ) takes values in the normal cone to the set ]�1, 5⇥10�4].
Because of such constraint we cannot a priori assume � = 1. However, since our
numerical values show that � = 1, we proceed the analysis with � = 1.

Define the switching functions

�1(t) = H
u

[t] = hp(t), g1[t]i �B, �2(t) = H
v

[t] = hp(t), g2[t]i � C.

From (iii) we get

u⇤(t) =

⇢
u
max

if �1(t) > 0,
0 if �1(t) < 0,

v⇤(t) =

⇢
v
max

if �2(t) > 0,
0 if �2(t) < 0.

(14)

In terms of the data of (P1) we have

�1(t) = �⌘p
s

(t)s(t)�B, �2(t) = (p
m

(t)� p
i

(t))i(t)� C. (15)

¿From (ii) we get the adjoint equations (deleting the t dependency for readability)

�ṗ
s

= (�b� ci⇤ + a1i⇤ + a2m⇤ � ⌘u⇤)ps + ci⇤pi, (16)

�ṗ
i

= (�c+ a1)s⇤ps + (cs⇤ � a1 � g1 � b+ a1i⇤ + a2m⇤ � v⇤)pi

+a1i⇤pi + (a1m⇤ + v⇤)pm �A, (17)

�ṗ
m

= a2s⇤ps + a2i⇤pi + (a1i⇤ + 2a2m⇤ � a2 � g2 + b)p
m

. (18)

Moreover, from (iv) we deduce that p
s

(0) = 0, p
i

(T ) � 0 and p
m

(T ) = 0.
Let us now turn to the control law (14). It leaves out the possibility of �

i

(t) = 0.
If �

i

(t) = 0 and d

dt

�
i

(t) 6= 0, then the respective control switches between the
maximum value and 0: the control is then said to be bang-bang. Singular controls
appear if one switching function �

i

(t) vanishes on a time interval. Our computations
show that u⇤(t) can have singular arcs, whereas v⇤(t) is always bang-bang. This
prompts us to derive a formula for the singular control u⇤.

Let us assume that u⇤(t) is singular in an interval [t1, t2]. Then we have

�1(t) = 0,
d

dt
�1(t) = 0,

d2

dt2
�1(t) = 0 8 t 2 [t1, t2].
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Since s⇤(t) � 0, we deduce from the first equation that p
s

(t) < 0 in ]t1, t2[. Now

calculating the derivative of d

2

dt

2�1(t) with respect to u we get

@

@u

✓
d2

dt2
�1(t)

◆
= �2b⌘p

s

(t) > 0.

This inequality is called the strict Generalized Legendre-Clebsch Condition (GLC)
[23]. After some long calculations we obtain the following expression for the singular
value of u⇤(t) in terms of the state variable x and adjoint variable p (again we drop
the t dependency):

u
sing

(x, p) =
⇣
� cs⇤i⇤A� [v⇤ � a1m⇤]cs⇤i⇤pm � [s⇤ps(c� a1)� i⇤a1pi]cs⇤ii

�⇥� 2b+ bs⇤ � cs⇤i⇤ + s⇤(a1i⇤ + a2m⇤)
⇤
ci⇤pi

+[b+ ci⇤ � a1i⇤ � a2m⇤]bps
⌘
/(�2⌘bp

s

).

(19)

An analogous analysis of �2 for determining a singular control v results in long
and tedious calculations. Such calculations are much longer than those done in [24]
where a SIR model is considered. The reasoning in [24] cannot be applied in our
case, since here we place the population under treatment in an extra compartment.
Therefore, we refrain from presenting such calculations since all our numerical com-
putations show that the control v⇤ does not have singular arcs.

3.1. Numerical Solutions. We now present the numerical solution of problem
(P1) for T = 20 and with the parameters in Table 1. We consider two cases with
di↵erent weights in the objective J1 = J1(u, v) of the control problem (P1):

Case 1 : A = 10, B = 1, C = 3.

Case 2 : A = 10, B = 3, C = 1.

Problem (P1) is solved by the so-called direct method; for a description of this
method see, for example, [28]. We first discretize the problem on a su�ciently
fine grid to obtain a nonlinear optimization problem that is implemented by the
Applied Modeling Programming Language AMPL [17]. AMPL can be interfaced
with several large-scale nonlinear optimization solvers like the interior-point solver
Ipopt; see [31]. We mostly use N = 10000 grid nodes and apply the Implicit Euler
Scheme or the Trapezoidal Rule to compute the solution with an error tolerance
eps = 10�9.

Case 1 (A = 10, B = 1, C = 3): The computed values for the cost J1, the final
states as well as the initial and final values for the multipliers are provided below.

Numerical results for (P1) with A = 10, B = 1, C = 3: Cost J1 = 22.02571,

s(T ) = 1.201593e� 01, i(T ) = 5e� 04, m(T ) = 8.932084e� 06
p
s

(0) = �6.3486, p
i

(0) = �7.6544e+ 01, p
m

(0) = �6.2821e� 02,
p
s

(T ) = �3.2237e� 03, p
i

(T ) = �5.8613e+ 03, p
m

(T ) = �1.4648e� 05.

In Figure 2 we present graphs of the computed state variables side by side with
those of the corresponding adjoint (costate) variables.

The optimal controls are presented in Figure 4. The control u⇤ is bang-singular-
bang with two switching points tu1 and tu2 while v⇤ is bang-bang with one single
switching point tv1. Inspecting the values of u⇤(t) and v⇤(t) provided by AMPL
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Figure 2. Case 1: state variables for (P1) with parameters as in
Table 1.

and Ipopt, we verify that the values of the switching times are approximatively
tu1 = 4.45, tu2 = 13.55 and tv1 = 6.46.
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Figure 3. Case 1: controls for (P1) with parameters as in Table 1.

To show that the computed solution satisfies precisely the necessary optimality
conditions, we compare the singular part of the computed u⇤ with that of the
analytical value u

sing

(x⇤(t), p⇤(t)) given in (19), where we insert the computed
values of x⇤(t) and p⇤(t). Moreover, we also compare the behavior of v⇤ with that
of its switching function. The results are presented in Figure 4, where the graphs
concerning u⇤ are on the left and those of v⇤ on the right. The graphs of u⇤ and
u
sing

(19) coincide in the interval ]tu1 , t
u

2 [. It is also clear that the switching point
of v⇤ coincides with the zero of the �2.

We are not able to verify numerically that the second-order su�cient conditions
(SSC) in Aronna et al. [2] hold. However, in Section 4.2 we will show that an
approximative control with a nearly identical functional value satisfies (SSC). The
construction of the approximative control is motivated by the fact that the computed
singular u⇤(t) takes values around 0.188 for t 2]tu1 , tu2 [ and is nearly constant.
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Figure 4. Case 1 with parameters as in Table 1. (left) comparison
between the computed values u⇤(t) and the values of the singular
control u

sing

(x⇤(t), p⇤(t)) (19), (right) control v⇤(t) and switching
function �2 showing that the control law (14) for v⇤ is precisely
satisfied.

It is worth mentioning that our computations show that the percentage of infected
population reaches the target i(T ) = 5⇥ 10�4 at around t = 15.5. This fact will be
explored later on when we consider the minimum time problem.

Case 2 (A = 10, B = 3, C = 1): We keep the parameters as in Table 1 but
now we swap the values of B and C in the cost. In this case we get a lower cost
J1 = J1(u, v) = 15.568 instead of J1 = 22.026 in Case 1. As in Case 1, we provide
the values of the final states as well as the initial and final values of the adjoint
(costate) variables:

Numerical results for (P1) with A = 10, B = 3, C = 1: Cost J1 = 15.56816,

s(T ) = 3.33773e� 01, i(T ) = 5e� 04, m(T ) = 1.37010e� 05
p
s

(0) = �5.61447, p
i

(0) = �3.43249e+ 01, p
m

(0) = �5.36007e� 02,
p
s

(T ) = �5.4088e� 04, p
i

(T ) = �1.9668e+ 03, p
m

(T ) = �2.4584e� 06.

The computed controls in Case 1 and Case 2 are compared in Figure 5. Remarkably,
in Case 2 both controls are bang-bang. Figure 5 also displays the switching functions
�1 and �2 in Case 2 (now in dashed blue line) which shows that the computed
controls and switching functions perfectly match the control law (14).
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Figure 5. Optimal controls for (P1). Left: Control u⇤(t) for Case
1 in red and, for Case 2, control u⇤(t) in blue and its switching
function �1(t) in dashed blue. Right: Control v⇤(t) for Case 1 in
red and, for Case 2, control v⇤(t) in blue and its switching function
�2(t) in dashed blue,
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3.2. Second-order su�cient conditions and and sensitivity analysis. Case
1 (A = 10, B = 1, C = 3). The computed control u⇤ in Figure 3 is a bang-singular-
bang control, whereas v⇤ is bang-bang. In principle, one could apply the second-
order su�cient conditions (SSC) for bang-singular controls in Aronna et al. [2] to
verify the local optimality of the controls. The second-order test in [2] requires to
check whether a certain quadratic form in a Hilbert space is positive definite on an
associated cone. However, so far it is not clear how to design a numerical test of
the positive definiteness of the quadratic form.

Instead, we shall verify SSC for the approximative control defined in (20). We
recall from Figure 3, left, that the computed singular control u⇤(t) is nearly constant
on the singular arc [tu1 , t

u

2 ] = [4.55, 13.6]. Hence, we replace the singular arc of the
control u⇤(t) by a constant control u(t) = u

c

and thus consider the control structure

(u(t), v(t)) =

8
>><

>>:

(u
max

, v
max

) for 0  t < t1,
(u

c

, v
max

) for t1  t < t2,
(u

c

, 0) for t2  t < t3,
(0, 0) for t3  t  T.

(20)

To optimize this structure, we study the so-called Induced Optimization Problem
(IOP) which comprises the optimization variables t1, t2, t3, uc

and the equation
i(T ) = 5 ⇥ 10�4. The IOP can be solved using the arc-parametrization method
[26, 28] and its implementation in the optimal control package NUDOCCCS [9].
This gives the numerical results

J1 = 22.025735, t1 = 4.43766, t2 = 6.46944, t3 = 13.4694, u
c

= 0.189770.

It is remarkable that the functional value J1 = 22.025735 for the approximative
control di↵ers only in the 7th decimal from the functional value J1 = 22.02571
obtained earlier. The SSC are satisfied for the finite-dimensional IOP, since the
code NUDOCCCS computes the reduced (projected) Hessian of the Lagrangian as
the positive definite 2⇥ 2 matrix

Proj(H) =

✓
2.2601 �2.8051

�2.8051 3.7731

◆
.

Since SSC hold, it follows from a standard sensitivity result in finite-dimensional
optimization [16] (cf. also [11]) that the optimal solution (t1, t2, t3, uc

) of the IOP
is locally a C1-function with respect to all parameters q in the system. The code
NUDOCCCS also allows to compute the sensitivity derivatives dt

k

/dq for k =
1, 2, 3 and du

c

/dq at a nominal parameter value q0. Choosing, e.g., the parameter
q 2 {B,C, a1} we get the following sensitivity derivatives evaluated at their nominal
values B0 = 3, C0 = 1, (a1)0 = 0.08:

parameter dt1/dq dt2/dq dt3/dq du
c

/dq
q = B �0.5892, 0.7584, 0.7584, �0.1868,
q = C 0.1520, �0.6556, �0.6556, 0.07068,
q = a1 �1.960, �23.52, �23.52, 0.4620.

Note that the sensitivity derivatives dt
k

/dq are equal for k = 2, 3. This follows
from the construction of the approximative control (20). The sensitivity derivatives
quantify our more intuitive feeling on how switching times change under parameter
perturbations. As an example, let us increase the weight parameter q = B in the
objective J1. We then expect that the first switching time t1 decreases while t2 in-
creases and that the constant value u(t) = u

c

decreases. The sensitivity derivatives
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could also be used in real-time control techniques based on Taylor expansions for
computing approximations of perturbed solutions; cf. [12]. However, in a biological
framework such real-time control methods are not needed.

Case 2 (A = 10, B = 3, C = 1). In this case both controls u and v are bang-bang
with only one switching time t1, resp., t2. In this case we can show that second-order
su�cient conditions (SSC) are satisfied not only for the associated IOP but for the
bang-bang control problem [28]. First, we apply the arc-parametrization method
[26, 28] and the control package NUDOCCCS [9] to determine the switching times
t1 and t2. The IOP with the terminal constraint i(T ) = 5e� 04 has the solution

J(u) = 15.56806, t1 = 2.252141, t2 = 11.16786.

The SSC for the IOP are satisfied, since the reduced (projected) Hessian of the
Lagrangian is computed as the positive number ProjH = 0.6383 > 0. Moreover,
the bang-bang controls in Figure 5, right, satisfy the strict bang-bang property with
respect to the Maximum Principle:

�
k

(t) > 0 for 0  t < t
k

, �̇
k

(t
k

) < 0, �
k

(t) < 0 for t
k

< t  T (k = 1, 2).

It follows from Theorem 7.1 in [28] that the controls (u⇤(t), v⇤(t)) provide a strict
strong maximum.

Again, it follows from the sensitivity results in finite-dimensional optimization
(cf. [16, 11]) that the optimal solution (t1, t2) of the IOP is locally a C1-function
of all parameters q in the system. Moreover, the bang-bang controls with switch-
ing times t1(q) and t2(q) provide a strict strong minimum for all parameters q
in a neighborhood of a nominal parameter q0. The code NUDOCCCS allows to
compute the sensitivity derivatives dt

k

/dq for k = 1, 2. Choosing again the param-
eter q 2 {B,C, a1}, we get the following sensitivity derivatives evaluated at their
nominal values B0 = 3, C0 = 1, (a1)0 = 0.08:

parameter dt1/dq dt2/dq
q = B �0.49896, 1.45249
q = C 1.4525, �5.4816
q = a1 0.27758, �24.112

In particular, note the high sensitivity of the switching time t2 of the control v with
respect to the infection induced death rate a1.

4. Minimum Time Problem. Minimum time problems, routine in Engineering,
have received little attention in Epidemiology. They however can be of help when
studying the control of infectious diseases. It is clear from the numerical solution of
problem (P1) that there is no need to consider the time horizon of T years to drive
the percentage of infected population to the residual value of 5 ⇥ 10�4. Putting
aside any considerations of the cost, it is reasonable to ask how long it would take
to drive the system (7)-(9) to the target. The answer is given by the solution of a
control problem where the cost to be minimized is the final time T needed to steer
the state to the target.

As one may guess, the interest in this problem does not reside on the profiles
of the optimal controls. Not surprisingly, our computations show that the optimal
controls are both at maximum values throughout the interval [0, T ]. It is however
of interest to see how the minimum time t

f

changes with the initial conditions.
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We consider a family of control problems parametrized by the initial position
y = (s0, i0,m0) defined by:

(P
y

)

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Minimize T

s.t.

ṡ(t) = b� bs(t)� cs(t)i(t) + (a1i(t) + a2m(t))s(t)� ⌘u(t)s(t),

i̇(t) = cs(t)i(t)� bi(t)� (g1 + a1)i(t) + (a1i(t) + a2m(t))i(t)� i(t)v(t),

ṁ(t) = �(a2 + g2 + b)m(t) + (a1i(t) + a2m(t))m(t) + i(t)v(t),

(u(t), v(t)) 2 [0, u
max

]⇥ [0, v
max

],

(s(0), i(0),m(0)) = y,

i(T )  5⇥ 10�4,

Now, consider the map T : y 7�! T (y) that associates to each initial position y
the optimal value of the problem (P

y

):

T (y) := inf(P
y

).

Observe again that the state equation can be written in the form:

ẋ(t) = f(x(t)) + g1(x(t))u(t) + g2(x(t))v(t),

with appropriate functions f, g1 and g2. We denote by xu,v

y

the trajectory satisfying
the state equation with the controls (u, v) and starting from the position y at the
initial time 0.

It is known in control theory (see [5] and the references therein) that the map T
satisfies the dynamic programming principle: for every h > 0, we have

T (y) = min
u,v

(T (xu,v

y

(h)) + h). (21)

In general, the minimum time function is discontinuous and may take infinite values
when there is no policy that can steer the system to the desired target. Though it
is of interest to introduce the new control problem:

(P 0
✓;y)

8
>>>>>>><

>>>>>>>:

Infimum '(xu,v

y

(✓))

s.t.

ẋu,v

y

= f(xu,v

y

(t)) + g1(xu,v

y

(t))u(t) + g2(xu,v

y

(t))v(t)

(u(t), v(t)) 2 [0, u
max

]⇥ [0, v
max

],

xu,v

y

(0) = y,

where '(y) := i� 5⇥ 10�4. Observe that (P 0
✓;y) has no final state constraint. The

problem is parametrized by ✓, the final time, and the initial condition, y. For (P 0
✓;y),

we define a value function

#(✓, y) = inf(P 0
✓,y

).

The cost function in (P 0
✓,y

) is the distance from the target. So the problem (P 0
✓,y

)
provides, at every final time ✓, an indication of how far the system deviates from
the desired target. In particular, at time ✓ > 0, the optimal value #(✓, y)  0 if and
only if there is an admissible control that drives i(t) values to values equal or lower
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than the threshold 5⇥ 10�4. As for the minimum time value, it turns out that the
following relation holds for every initial position y:

T (y) = inf{✓;#(✓, y)  0}.
Results in control theory assure us that the function # is Lipschitz continuous and
it is a solution to a partial di↵erential equation, called Hamilton-Jacobi-Bellman
(HJB) equation (for y = (s0, i0,m0)):

@
✓

#(✓, y) +H(y,D
y

#(✓, y)) = 0;

#(0, y) = '(y),

where H(y, p) = �f(y) · p+max
u,v

((�g1(y)u� g2(y)v) · p) and @
✓

# and D
y

# stand
for the partial derivative with respect to the time variable ✓ and the gradient with
respect to y. Solving this equation has been the subject of a vast literature in
numerical analysis of PDEs. We refer the reader to [30, 15, 7, 1]. Here we use
the software ROC-HJ [6] to compute numerically the minimum time function as a
solution of the HJB equation satisfied by #.

In figure 6, we plot the minimum time as a function of i0 and s0 considering
m0 constant. Let us emphasize that the numerical computation of the minimum

Figure 6. Value of the minimum time function for di↵erent values of

(s0, i0). The vertical axis corresponds to the values of the minimum

time.

time function requires a great computation e↵ort because we are solving a time-
dependent PDE. However, the SIMR model involves only three state variables and
so the HJB equation is stated in a three dimensional space (for y) which is quite
acceptable for computing the value function in a reasonable time. Once the value
function is computed and the minimum time function is stored, one can reconstruct
the optimal trajectories for di↵erent scenario without solving again the HJB equa-
tion. Indeed the trajectories can be reconstructed by appealing to the dynamic
programming principle (21), see [3, 1]. Here, the structure of the optimal control
is obtained by (21) without requiring an analysis of the optimality conditions of
the first or second order. This structure seems ultimately to confirm the natural
intuition that the vaccination rate must be maximal if the state i(t) is to be reduced
in a minimum time. However, the approach can also be used in situations where the
structure of the control is more complicated (for example if we add other constraints
on the state). In Figure 7, we plot di↵erent trajectories corresponding to various
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initial datum (s0, i0,m0). In this figure, the three state variables corresponding to
the same trajectory are plotted with the same color.

Figure 7. State variables for optimal trajectories corresponding
to di↵erent values of the initial position (s0, i0,m0).

5. Multi-objective Optimal Control. The computations of the minimum time
function confirms that there is no need to consider the time horizon T = 20 years
to drive the percentage of infected population to the residual value i(T ) = 5⇥10�4.
However, the vaccination policy associated to the minimum time function may have
high economic cost. For this reason it is interesting to treat the minimum time
problem in the framework of a two-objective optimal control problem, where the
first objective is the cost

J1(u, v) =

TZ

0

(Ai(t) +Bu(t) + Cv(t)) dt

in problem (P1) and the second objective is the minimal time J2(u, v) = T . Hence,
we minimize the vector

(J1(u, v), J2(u, v)) (22)

subject to the the dynamics (7)-(9), boundary condition i(T ) = 5 ⇥ 10�4 and the
control constraint (u(t), v(t)) 2 [0, u

max

]⇥ [0, v
max

] in problem (P1).
For the numerical treatment of multi-objective control problems, the reader is

referred to Kaya, Maurer [22]. Multi-objective finite-dimensional optimization prob-
lems are thoroughly studied in Eichfelder [14]. The Pareto front (e�cient set) of
the two-objective control problem can be determined by minimizing the scalarized
objective

J (w)(u, v) = (1� w)J1(u, v) + wJ2(u, v), 0  w  1. (23)

Henceforth, we shall use the abbreviations J
k

= J
k

(u, v), k = 1, 2, and J (w) =
J (w)(u, v). Thus we have J (0) = J1 and J (1) = J2 = T . The optimal solution of
the scalarized control problem constitutes a compromise solution between the two
objectives. Since the Pareto front turns out to be convex, there is no need to apply
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the Tschebyche↵ scalarization introduced in [22] for studying non-convex fronts. We
solve the scalarized control problem for weights w = k/100, k = 0, 1, . . . , 100, and
determine the corresponding values J1 and J2 = T as well as the norm ||(J1, J2)||2
of the Pareto point.

5.1. Case 1 : A = 10, B = 1, C = 3. For fixed terminal time T = 20, the
optimal control computed in Section 3.1 is a bang-singular-bang control; cf. Figure
5. However, for free terminal time T our computations show that for every w 2 [0, 1]
the optimal control u is a bang-bang control with only one switching time t1, while
always v(t) ⌘ v

max

holds. The solution for the limiting weights w = 0 and w = 1
are characterized by

w = 0 : J1 = 21.085, J2 = T = 7.1323, t1 = 3.50, v(t) ⌘ v
max

,
w = 1 : J1 = 22.993, J2 = T = 6.8227, u(t) ⌘ u

max

, v(t) ⌘ v
max

.

How does the Pareto front (Figure 8, top row, left) help to find an appropriate

Figure 8. Case 1 : A = 10, B = 1, C = 3. Minimize the scalar-
ized objective J (w) (23). Top row: (left) Pareto front (J1, T ) for
w 2 [0, 1], (right) objective J1 as function of w 2 [0, 1]. Bottom
row: (left) Distance of Pareto curve to the origin, (right) objective
J2 = T as function of w 2 [0, 1].

compromise solution? For that purpose, we introduce a new objective which will be
optimized over the Pareto front; cf. Bonnel, Kaya [8]. A good candidate for a new
objective is the norm ||(J1, J2)||2 of the Pareto point measuring its distance to the
origin; cf. Figure 8, Bottom row, left. By inspecting the norm values ||(J1, J2)||2
as function of the weight w, we see that the minimal value 22.2514 is attained at
w = 0.25 which gives the numerical results:

w = 0.25 : J1 = 17.591, J2 = T = 7.0926, t1 = 3.63, v(t) ⌘ v
max

.
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Determining the Pareto front for other parameters in the system, we see that the
Pareto fronts are always convex and look qualitatively the same as in Figure 8.
Hence, we refrain from giving more numerical results.

5.2. Case 2 : A = 10, B = 1, C = 3. The optimal control u(t) for the scalarized
functional J (w) (23) is bang-bang for every w 2 [0, 1] with only one switch at t1,
while always v(t) ⌘ v

max

holds. The solutions for the limiting weights w = 0 and
w = 1 are characterized by:

w = 0 : J1 = 12.551, J2 = T = 9.0994, t1 = 1.66.., v(t) ⌘ v
max

,
w = 1 : J1(u, v) = 22.993, J2(u, v) = T = 6.8227, u(t) ⌘ u

max

, v(t) ⌘ v
max

.

The solutions for w = 1 in Case 1 and Case 2 agree by definition of the scalarized
functional (23). The Pareto front, the objectives J1(u, v) and J2(u, v) = T as
functions of w, and the distance of the Pareto front to the origin are shown in
Figure 9.

Figure 9. Case 2 : A = 10, B = 3, C = 1. Minimize the scalar-
ized objective J (w) (23) for w 2 [0, 1]. Top row: (left) Pareto
front (J1, J2) for w 2 [0, 1], (right) objective J1(u, v) as function
of w 2 [0, 1]. Bottom row: (left) Distance of Pareto curve to the
origin, (right) objective J2 = T as function of w 2 [0, 1].

To determine a compromise solution for the two objectives, we consider again the
distance ||(J1(u, v), J2(u, v))||2 of a point on the Pareto to the origin. The minimal
norm has the value 15.2117 and is attained at w = 0.39 (Figure 9, Bottom row,
left) for which we obtain the numerical results:

w = 0.39 : J1(u) = 11.0135, J2(u) = T = 8.25137, t1 = 2.066, v(t) ⌘ v
max

.
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6. Model Predictive Control Applied to (P1). Up to now, our focus has been
on optimal control techniques that can be of help to define strategies for the control
of an infectious diseases. We now turn to the next phase consisting on the follow
up of the measures applied.

Since any model used to define a control strategy is but a rough approximation of
reality, it is no surprise that, once health control measures are implemented, the val-
ues of the state variable measured di↵er from the those obtained in the simulations
by solving the original optimal control problem used to define control strategies.
From the public health point of view, it is then important to follow up the “real”
situation to make sure that the objectives defined from the beginning are achieved.
If the control strategies are implemented with high precision, the di↵erences be-
tween expected and real values of the states may be due to uncertainties in the
parameters. For infectious diseases, while the death and recovery rates may be con-
stant and not di�cult to determine, the incidence rate c is known to vary during
the time and may change due to weather conditions or changes in the behavior of
the populations.

In this section we illustrate, via simulations, how Model Predictive Control
(MPC) can be of help to guarantee that the real system performs according to the
objectives first defined. We choose here MPC (see [18]), because this optimization
based method has proved to be a very successful method in handling uncertainties
in areas like power systems and robotics and it has been extensively used in indus-
try. Surprisingly, to our knowledge, there is no literature on applications of MPC
to Epidemiological control problems.

For our purpose, we assume that the implemented control policy is the solution of
problem (P1), Case 1, with T = 20. To make sure that the gap between the expected
and the ”real” values of the state variables does not jeopardize the objective, we
propose the application of the following MPC algorithm:

1. Divide [0, 20] into N sub intervals of equal length h = 20/N . Set k = 0
2. Calculate the solution of (P1) for t 2 [0, 20] (meaning we take T = 20). Here

the initial values and parameters used are those in table 1.
Let (u0

⇤, v
0
⇤) denote the optimal control for such problem.

3. For t 2 [0, h], implement the computed controls (u0
⇤, v

0
⇤).

4. a. Set k = k + 1.
b. Evaluate the “real” states s

real

(kh), i
real

(kh) and m
real

(kh).
c. Solve (P1) (again, with parameters given in table 1) restricting now the

time interval to [kh, 20] and using the sampled states s
real

(kh), i
real

(kh)
andm

real

(kh) as initial conditions. Denote by (uk

⇤, v
k

⇤ ) the optimal control
for such problem.

d. For t 2 [kh, (k + 1)h], implement the computed controls (uk

⇤, v
k

⇤ ) and go
to 4. a.

Observe that at each iteration k we calculate the optimal policy by solving (P1)
with t 2 [kh, 20] to ensure the minimization of the cost in this remaining interval
while still driving the percentages of infected population to a residual value.

To simulate what we have been calling the “real” situation, where we can get
the so called sampling values s

real

(kh), i
real

(kh) and m
real

(kh) at each iteration of
MPC, we run our code assuming that all the parameters characterizing the disease
and the population area as in Table 1 with the exception of the incidence rate c
(and the initial conditions, of course) that we consider to be a function of the time
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defined as

c
p

(t) = 1.8� 0.7 tanh(t+ 0.5) + 0.02 cos(⇡t) (24)

whose graph is that in Figure 10.
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1

1.1

1.2

1.3

1.4

1.5
constant incidence rate c

perturbed incidence rate 

Figure 10. Perturbed incidence rate c
p

.

Applying the MPC as described above with N = 10, we obtain states variables of
the form presented in figure 11. For readability, we show only the first 5 iterations
of the MPC method.

Figure 11. Six computed values of the state variables for the
Fixed Horizon MPC described above assuming that the “real” sys-
tem di↵ers from the model of (P1) solely with respect to the inci-
dence rate c. From left to right, we show the s, the i and the m
state variables. All the four graphs have di↵erent scales.

Observe that due to the perturbations of c, the sampled values of the percentage
of infected population increases considerably with respect to the expected values
in the first years although the control measures applied are at their maximum.
However, as the perturbation of c

p

(t) swings around 1.1, the sampled states tend to
the initial calculated one. To keep the exposition short, we refrain from presenting
the graphs of the various controls. They do not di↵er greatly from those of the
original problem (P1).

In the above example we simulate a situation where the incidence rate c
p

(t),
after the first three years, oscillates around the nominal value of 1.1. Although this
may have some resemblance with some diseases, there may be other cases where the
uncertainties of some parameters behave in a more erratic way. It may then be of
interest to apply MPC with a receding horizon. In this method, the time horizon
is increased at each iteration of the MPC so as to guarantee that the percentage of
infected people is driven to the target with minimum cost.
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