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a b s t r a c t

Using phase field simulations, it is possible to simulate the dynamics and morphology of immiscible
liquids/solids appearing at the miscibility gap of any system. These simulations may also be used to
determine the asymptotic compositions of the fluids for a given Gibbs energy. Even more, it is known
that different parameters of the excess Gibbs energy of a certain phase may exhibit different asymptotic
morphologies, in spite of the similarity of the associated equilibrium curves. This method can be used
to choose the best excess Gibbs energy’ parameters for the liquid (or solid) phase of a system that will
suffer spinodal decomposition. It can also be important (like in the sol–gel process) to choose the best
composition, temperature and time to obtain a certain wanted morphology, just by means of the Gibbs
energy of the respective phase. In thiswork, we have performed phase field simulations of the two liquid’s
separation occurring in the Bi–Zn system, for different temperatures, concentrations and times. We have
found a rich diversity of asymptotic morphologies for different points of the Bi–Zn phase diagram. Two
different Gibbs energieswere used to showhow themorphologieswill be affected by different parameters
of the excess Gibbs energy.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There are many systems that present miscibility gaps in the
liquid or solid phase. These systems are, for example, Bi–Zn, Li–Zr,
Mg–Mn, S–Sb, Sn–P, Ti–W, Cu–Ni–Sn or even glasses, such as
Vycor r©, that contains approximately 75wt% SiO2, 20wt% B2O3 and
5 wt% Na2O.
In the ternary phase diagram of B2O3–SiO2–Na2O, Vycor r© cor-

responds to a composition in which at a given temperature, two
immiscible liquid phases are formed, one of them rich in SiO2.
When the sample is quenched from the miscibility gap, the two
phases corresponding to the immiscible liquids are kept. For indus-
try and for most of the applications only the SiO2 rich phase is im-
portant, and so the other phase will be leach out leaving a porous,
high-silica skeleton [1].
In this paper, the dynamics of a thermodynamically unstable

solution with respect to composition variations is studied. In such
a regime, nucleation of the new phase is not necessary. The phase
transformation occurs spontaneously by spinodal decomposition
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and may result in a multi-phase microstructure in which phases
are highly interconnected (for a certain range of compositions and
temperatures of the spinodal region). The latter microstructures
have numerous applications: one of them already mentioned is
Vycor r© glass, whose silica structure can be the matrix for other
applications such as the study of superfluids [2].
Another very important and up-to-date application concerns

the sol–gels for the production of nanoparticles [3] and mem-
branes, with applications in health and in food technology [4].
The spinodal decomposition may also be used to improve the

mechanical properties of certain materials since, in general, spin-
odally decomposed materials can exhibit very fine scale compo-
sition modulations, resulting in very high strength materials. The
phase field simulations of solid or liquid miscibility gaps may be
used to determine how the mechanical properties (local stress,
strain fields or Young’s modulus) depend on the composition of
the blend. For example, Cu–Ni–Sn alloys can be hardened by spin-
odal transformation and are used in electrical contact materials
that grip by elastic springback, such as in computer connectors [5].
Lead free solder materials are under investigation for environ-

mental reasons. Structural and mechanical properties are also of
great importance in what concerns solders. In order to study the
mechanical properties of amorphous solders alloys, it is crucial to
study the liquid phase.
The phase field method is a subject of interest since a

long time ago. Based on the Ginzburg–Landau theory of phase
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Fig. 1. The zoom of the miscibility gap occurring in the liquid region as well as
its spinodal region obtained from Gibbs energy by [16] after [14]. The scale limits,
which are the values of φ for each temperature obtained with the simulations,
are represented by the two opposing circles in the phase diagram miscibility gap
curve (x(Liquid#1, Zn) and x(liquid#2, Zn)); points in squares present variations of
the simulated asymptotic morphology at different temperatures and compositions
shown in Fig. 3.

Fig. 2. The zoom of the miscibility gap occurring in the liquid region as well as
its spinodal region obtained from Gibbs energy by [15]; points in squares present
variations of the simulated asymptotic morphology at different temperatures and
compositions shown in Fig. 4.

transitions, one of the first applications of phase field method
was developed by Cahn–Hilliard [6] which describes the process
of phase separation, by which the two components of a binary
solution spontaneously separate. The main feature of this method
is to substitute boundary conditions at the interface by a partial
differential equation for the evolution of an auxiliary field (the
phase field) that takes the role of an order parameter. Since the
seventies [7] and mostly on the nineties, the multiphase field
concept has been developed by [8–13].
Using phase field simulations, it is possible to simulate the

dynamics of immiscible liquids appearing at the miscibility gap of
an alloy, just by having access to the Gibbs energy of the liquid
phase for each composition and temperature. These simulations
may be used to determine the asymptotic compositions of the
fluids for a given Gibbs energy. Even more, it is known that
different parameters of the excess Gibbs energy of a certain
phase may exhibit different asymptotic morphologies, in spite of
the similarity of the associated equilibrium curves. Hence, these
morphological studies may be an efficient method to distinguish
between different Gibbs energies that give approximately the
same equilibrium compositions, in spite of having different
corresponding parameters of the excess Gibbs energy.
In this work we have performed phase field simulations for

the two liquids separation occurring in the miscibility gap of the
Bi–Zn system, for different temperatures and concentrations. We
have used the Bi–Zn Gibbs energy previously calculated using
the CALPHAD method and found a rich diversity of asymptotic
morphologies for different points of the Bi–Zn phase diagram.
It was also possible to determine the asymptotic compositions
of Liq.#1 and Liq.#2. The latter calculations were performed for
two different Gibbs energies representing the liquid phase of the
Bi–Zn system obtained by two different authors [14,15] using the
CALPHAD method.

2. Theory and calculation

2.1. Determination of the Gibbs energies using the CALPHAD method

The CALPHADmethod was used prior to this work to obtain the
Gibbs energy of the liquid phase [16].
The method for the calculation of thermodynamic equilibrium

is based on modeling the Gibbs energies of all coexisting phases
and minimizing the total Gibbs energy of the system. The system
Bi–Zn was assessed by Malakhov [14] but some changes were
introduced in the first assessment by [16].
The Gibbs energy ofmixing of the substitutional solution (liquid

phase mixture in this case) is expressed by [17], as:

Gmix = Gid + GE (1)

where Gid = RT
∑
i xi ln(xi) is the ideal mixing contribution, xi

is the molar fraction of the component i with
∑
i xi = 1 and

GE =
∑
i
∑
i>j xixjLij (with Lij =

∑k
ν=0(xi − xj)

ν . νLij where
νLij = aν + bν + cνT ln T ) the contribution due to non-ideal
interactions between the components (also known as the excess
Gibbs energy of mixing) where xi and xj are the molar fractions of
the components i and j (xj = 1− xi).
In this work we have used the assessments of two different

authors: Vizdal et al. [16], after Malakhov [14], and Djaballah
et al. [15].
Vizdal et al. [16], after Malakhov [14], assessed the liquid phase

using the excess Gibbs energy written as:

GE = xBixZn[0LBi,Zn+(xZn − xBi) ·
1LBi,Zn+(xZn − xBi)

2
·
2LBi,Zn

+ · · · + (xZn − xBi)6 · 6LBi,Zn]

with νLBi,Zn = aν + bνT (a and b where determined using the
CALPHAD method and experimental data).
Djaballah et al. [15] assessed the liquid phase using the excess

Gibbs energy written as follows:

GE = xBixZn[0LBi,Zn+(xZn − xBi) ·
1LBi,Zn+(xZn − xBi)

2
·
2LBi,Zn

+ (xZn − xBi)3 · 3LBi,Zn]

with νLBi,Zn = aν+bνT+cν ln T (a, b and cwhere determined using
the CALPHAD method and experimental data).

3. Phase field simulations

During the phase separation occurring at the spinodal region of
Bi–Zn system, amixture of Liq.#1 and Liq#2 is formed. Because the
mixture is incompressible we can characterize the system by one
order parameter, φ, which is defined as φ = xZn − xBi. The free
energy of the system can be written, phenomenologically, as the
Landau functional [6,18],

F [φ] =
∫
dEr
[
k (∇φ)2 + Gliquid (φ)

]
, (2)
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Fig. 3. The zoom of the miscibility gap occurring in the liquid region; simulations’ pictures present variations of the asymptotic morphology at different temperatures and
compositions for the Gibbs energy obtained by [16] after [14]. The scale limits, that are the values of φ for each temperature, are represented by the two corresponding circles
in the phase diagram miscibility gap curve (x(Liquid#1, Zn) and x(liquid#2, Zn)). Note that the cubic anisotropy that is seen in some of the simulations is a low resolution
effect with no physical meaning.
Fig. 4. The zoom of the miscibility gap occurring in the liquid region; simulations’ pictures present variations of the asymptotic morphology at different temperatures and
compositions for the Gibbs energy obtained by [15]. Note that the cubic anisotropy that is seen in some of the simulations is a low resolution effect with no physical meaning.
where Gliquid (φ) is the Gibbs energy Gmix, presented in (1) (making
φ = xZn − xBi). The surface tension corresponds to the energy of

the flat interface per unit length and is given by σ = k
∫
dn
(
∂φ

∂n

)2
,

where the integral is performed across the interface and in the
direction normal to it. The functional derivative of F is δF/δφ =
k∇2φ − ∂Gliquid

∂φ
.

The time evolution of the order parameter can be described by
Cahn–Hilliard equation for the phase separation in isotropic solids
or liquids at the diffusive regime [6,18], which can be written in
the form of a continuity equation ∂φ/∂t = −∇.Ej, with current
Ej = −∇(δF/δφ). Since φ is conserved in the total volume, ∂φ/∂t
is the divergence of a fluxEj,

∂φ

∂t
= −∇ ·Ej = ∇2

(
∂Gliquid

∂φ
− k∇2φ

)
. (3)

The asymptotic growth regime for phase separation in binary
liquids, in the diffuse regime, is given by L ∝ t1/3, where L
is the characteristic length of the phase boundaries. Thus, the
asymptotic evolution is very slow leading to almost stationary
morphologies for large evolution times. The time that is needed
to reach the asymptotic growth regime in a given sample will in
general depend on the mobility of the alloy species. In a future
work we intend to calibrate the key parameters characterizing the
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Fig. 5. Differentmorphologies obtained for the same composition x(Zn)= 0.8 and time, at different indicated temperatures, to allowa comparison between themorphologies
obtained with different Gibbs energies (Gibbs1 by [14,16] and Gibbs2 [15]). Time increases from left to right starting above (time in each large square is the same). The scales
correspond to the values of φ.
system by performing a detailed quantitative study of the time
evolution of L in the simulations and a subsequent comparison
with the observed one in different system samples.
In Eq. (3) changing the time scale can scale out k. In fact the

same dynamics can be obtained with a different surface tension
by changing the size of the simulation box accordingly. Hence, the
asymptoticmorphology of the system is just a function of theGibbs
energy and not of the value of k.
In the alloy system, the atoms of A and B (Bi and Zn in this

case) can exchange position only locally (not over large distances),
leading then to a diffusive transport of the order parameter.
We have integrated (3) using a standard finite-difference

method [19]. In all simulations we have used initial random
conditions for φ and k = 1.

4. Results and discussion

In Figs. 1 and 2 both the miscibility gap and spinodal curves,
obtained after the assessments of [14,16] and [15] respectively, can
be observed. In Fig. 1 the points corresponding to the asymptotic
values of x(Liq.#1, Zn) and x(Liq.#2, Zn), obtained in this work by
phase field simulations, can also be observed.
In Fig. 3, themiscibility gap curve of the Bi–Zn system is shown.

A good agreement, between the equilibrium curve calculated
in [16] and the one obtained by the simulations was found as
expected. Here, the simulations’ images for different compositions
and temperatures represent the asymptotic morphologies of the
Bi–Zn system near the equilibrium configuration. It can be seen
that the size and shape of the domains change considerably
with temperature for the same concentration, and with the
concentration, for the same temperature.
In Fig. 4 equivalent results to those of Fig. 3 are shown. It can

be observed that the morphologies corresponding to the same
temperatures and compositions are considerably different. For
instance, interconnected structures may appear in a region of the
miscibility gap of Fig. 4 where in Fig. 3 round shaped domains
appear.
By the analysis of the asymptotic morphologies shown inside

the miscibility gap, it can be seen that for the compositions near
each side of the spinodal line (Figs. 1–4), there is a matrix of the
more abundant liquid and inside thismatrix, isolated round shaped
domains of the other liquid phase appear. Concerning the system’
compositions that are more in the middle of the spinodal region,
for the same temperature as the previously referredmorphologies,
interconnected domains can be observed. These interconnected
domains have many applications and the identification of the
compositions for which they appear is crucial [20,21].
Note for example that, for x(Zn) = 0.8 in Fig. 3, interconnected

domains appear at least for T ≤ 780 K.Only round shapeddomains
can be observed for x(Zn) = 0.8 in Fig. 4. If the phase diagrams
and spinodal lines are compared, it can be seen that the latter
composition in the miscibility gap of Fig. 1 corresponds to the
center of the spinodal region and that at T = 720 K it is clear
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Fig. 6. 3D diagrams showing the evolution of the two immiscible liquids in the Bi–Zn phase diagram for an alloy with x(Zn)= 0.8 at 700 K and at 800 K. The arrow points
the direction of time evolution. The Gibbs energy used was determined by [14,16].
Fig. 7. The Vycor r© glass (a) and (b). SEM microphotograph by Vogel [20]. (c) is a simulation obtained for the Bi–Zn system using the Gibbs energy determined by [14,16].
The simulation was obtained for the condition T = 700 K, x(Zn) = 0.8 and the figure was graphically modified to be easily compared with the real one obtained with the
glass. The objective is to show that the morphologies obtained using phase field simulations and Gibbs energies, assessed by the CALPHAD method, can be very similar to
the real ones for different systems.
that Liq.#1 is more abundant (matrix is Liq.#1). On the contrary,
by the observation of Fig. 2, it can be seen that x(Zn)= 0.8 does not
correspond to the center of the spinodal and that at T = 720 K it
is clear that Liq.#2 is more abundant (matrix is Liq.#2).
The analysis of the morphologies as a function of temperature
also reveals that the interconnected domains will change to
spheres as the temperature rises to the upper limit of the
miscibility gap.
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Fig. 8. Schematic phase diagram of the miscibility gap (solid line) and spinodal (broken line) of the sol–gel system (SiO2/others) and SEMmicrographs of the dried sol–gels
obtained by Nakamura et al. [21]. A – isolated pores – (the base is silica and pores were left by the other phase belonging to the miscibility gap). At the middle the zoom of
the real microphotograph and on the right the 2D simulation obtained for Bi–Zn that was treated graphically to be easily compared with real structures. B – interconnected
structure – (the base is silica and pores were left by the other phase belonging to the miscibility gap). At the middle the zoom of the real microphotograph and on the right
the 2D simulation obtained for Bi–Zn that was treated graphically to be easily compared with real structures. C — aggregates of particles (the particles are from silica and
space around them was left by the other phase belonging to the miscibility gap). At the middle the zoom of the real microphotograph and on the right the 3D simulation
obtained for Bi–Zn that was treated graphically to be easily compared with real structures. The same type of variation of structure with composition for a given temperature,
that can be seen in A, B, and C, can also be observed on the simulations of the Bi–Zn (Figs. 3 and 4) at T = 700 K.
The same type of composition and temperature morphologies
dependence was found in [20,21].
It can also be seen in Fig. 5 that the dynamics toward equi-

librium also differs when different Gibbs energies are considered.
We have performed 3D simulations of the phase separation for the
Gibbs energy of [14,16], as it can be observed in Fig. 6, where the
evolution of the phase boundaries is presented for two different
temperatures.
Although Vycor and sol–gel cannot be directly compared with

Bi–Zn, it is relevant to show that, in spite of their different Gibbs
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energies, similar morphologies can be observed in corresponding
relative positions of the miscibility gap and spinodal regions. This
fact enhances the possible applications of the method.
Figs. 7 and 8 show comparisons between our Bi–Zn simulated

morphologies (obtainedwith the Gibbs energy [14,16]) and similar
ones for observed samples of Vycor r© [20] and sol–gel [21],
respectively.

5. Conclusions

Using phase field simulations, the dynamics of the two
immiscible liquids appearing on the phase diagram of the Bi–Zn
system was studied. Good agreement between the miscibility gap
curve determined by the simulations and the one obtained by the
CALPHAD method was found, as expected.
It was found a rich diversity of asymptotic morphologies for

different points of the Bi–Zn phase diagram.
We have compared the morphologies for two different

Gibbs energies determined by Calphad method and found very
different morphologies for the same times, concentrations and
temperatures. Thus, it can be concluded that the different
morphologies and the time it takes to reach them is a signature of
the calculated excess Gibbs energy parameters for a given system.
It could also be verified the similarities between the simulated

structures and those observed in different real systems, such as
Vycor r© glass and sol–gel.
It can be pointed out, that for a given temperature, the

morphologies of the Bi–Zn system depend on the composition in
a similar way as those observed in the sol–gel system, especially
the morphologies obtained with one of the Gibbs energies.
The results obtained in this work show that using the Gibbs

energies, obtained for example with the CALPHAD method and
phase field simulations, we have a straightforward method to
determine the morphologies of the miscibility gap as a function
of the concentration, temperature and time. This method may be
useful to find the best structures, depending on the applications
and purposes; for instance, for the fabrication of nanoparticles.
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